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This article proposes a top-down product family design methodology that enables product design engineers
to identify the optimal number of product architectures directly from the customer preference data set by
employing data mining attribute weighting and clustering techniques. The methodology also presents
an efficient component sharing strategy to aid in product family commonality decisions. Two key data
mining models are presented in this work to help guide the product design process: (1) RELIEFF attribute
weighting technique that identifies and ranks product attributes, and (2) the X-means clustering approach
that autonomously identifies the optimal number of candidate products. Product family commonality
decisions are guided by once again employing the X-means clustering technique, this time to identify the
components across product families that are most similar. A family of prototype aerodynamic air particle
separators is used to evaluate the efficiency and validity of the proposed product family design methodology.

Keywords: data mining; X-means clustering; RELIEFF; bi-level quasi-separable problem; product
architecture; aerodynamic particle separator

Nomenclature

AF Air flow area.
fk Local product design objective function(s), a function of local design variables:

fk (xk).
REng Engineering design response (feasible/infeasible).
TCj Vector of product attributes represented by the cluster centroid in the data mining

model.
ys,k Linking variable at the engineering subsystem level cascaded up to system level.
εy Deviation tolerance between linking variables.
ξ Particle separation efficiency.
w′ The vector of newly transformed RELIEFF weights for target vector TCj .

‖ · ‖2
2 Squared L-2 norm notation measuring the deviation between targets and responses.

k kth candidate product architecture determined by the results of the X-means clustering.
K The total number of cluster centroids Cj that exist for the X-means clustering solution.
Costk Total product cost represented as the summation of individual component costs.
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1. Introduction

In complex engineering systems that require a wide range of operating conditions, engineers
are left with the challenge of designing product portfolios that meet customer preferences. The
product family paradigm has been proposed to address the challenges of designing products
for mass customization or for highly diversified customer functionality requirements. The term
‘product family’ is frequently defined in literature as a group of related products that share an
underlying product design architecture (Messac et al. 2002, Alizon et al. 2007, Tucker and Kim
2007). The product family paradigm enables companies to standardize certain aspects of a product
and at the same time provide product diversity to customers through product variants. Product
cost savings may be realized as a result of product standardization due to ‘economies of scale’
(e.g. cost savings due to a standard manufacturing line for all products, rather than a specialized
manufacturing line for each product). However, greater product standardization may also lead
to lower product diversity in the market space and diminished product performance (e.g. limited
customizable features for customers such as product colour, reliability, size, etc.) Therefore, in
the product family approach, the level of product standardization versus product variety presents
a trade-off scenario as product performance and appeal (from the customer’s perspective) may
diminish in an attempt to increase product standardization (Messac et al. 2002).

The product family design problem has been segmented into two well established domains:
the ‘Bottom-Up’ approach and the ‘Top-Down’ approach (Alizon et al. 2007). In the ‘Bottom-
Up’ approach, companies are more interested in making significant improvements to an existing
product portfolio by combining products within the existing product family into a new product
architecture. An assumption in the ‘Bottom-Up’ approach is that the newly redesigned product
family will be able to satisfy customer needs through minimal additional technology investments.
On the other hand, in the ‘Top-Down’ approach to product family design, the next generation of
products is not based on an existing product family, but instead emerges from a market driven need.
This need arises from the evolution of customer preferences far beyond what the current product
portfolio can satisfy (Alizon et al. 2007). In this work, a ‘Top-Down’product family methodology
is proposed that analyses large customer preference data sets and identifies candidate product
architectures that will be used in the product family design. This product design architecture can
represent a group of design components that perform a series of functional processes. Products
sharing similar product architecture can satisfy a broader range of customer requirements simply
by possessing functionality capabilities that vary beyond the underlying architecture. The sharing
of components also has the potential to reduce the time and costs associated with manufacturing
diverse products. The challenge of developing a product architecture to be used in a product family
presents an interesting design problem as the customer pool and functionality demands increase.

As data storage and information retrieval capabilities become more widely available, there is
an emerging trend for companies to acquire and store customer preference data. For example,
the physical characteristics (vehicle horsepower, number of doors, colour, etc.) of an automobile
purchased by a customer visiting a dealership, along with the customer’s demographic information
(age, gender, household income, etc.) can enable auto manufacturers to determine emerging trends
in the automotive industry and design next generation products accordingly. A great challenge in
storing such data for product design purposes, however, is the non-homogeneity of customers,
along with their individual preferences. Therefore, as the size of this non-homogeneous data
increases, so does the complexity of identifying natural patterns within the data set. The ability
to determine suitable product architectures for a particular group of customers becomes a chal-
lenge as enterprise decision makers and engineers attempt to extract meaningful patterns within
the data set to aid in the product design and development process. Data mining in the context
of product development is an emerging area of research that has the potential to significantly
impact engineering design and manufacturing efforts (Kusiak 2006, Tucker and Kim 2007). By
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Engineering Optimization 3

identifying patterns within the large data set of customer preferences, engineers can incorporate
this knowledge in the product family design process.

The product family design scenario that this article focuses on is described as follows. An
enterprise is launching a portfolio of products that potentially share a subset of components.
However, there are a few issues that must be resolved prior to the design process. First, the data
set used in this product portfolio design scenario comprises large-scale non-homogeneous data
which indicates that the product (the aerodynamic particle separator) undergoes a wide range of
operating/environmental conditions. Second, the enterprise does not have a prior knowledge as
to how many product variants should be introduced in the market, although customer preference
data is available from survey or market research. Third, the enterprise does not know which
components should be shared in case more than one product variant is introduced, although it has
the flexibility to accommodate the component sharing decisions.

This article presents a product family design methodology that is driven by data mining capabili-
ties, which resolves the product family design challenges presented above. Often in the engineering
design process, quantifying attribute importance from a customer’s perspective is challenging.
Possessing a mechanism that can identify which performance attributes are more dominantly
represented in the preference data set would help the engineering design teams focus resources
in a more efficient manner. For this, the RELIEFF (Kira and Rendell 1992) attribute weighting
algorithm is employed to identify attributes in order of importance in the data set. Then, the X-
means clustering algorithm is employed to identify groups of similar operating states within the
raw data set. As a result, the number of product variants that should be introduced to reflect prefer-
ences (represented in the data) can be identified. Finally, the X-means clustering is applied again
to the detailed designs of the initial product variants to identify which components may be shared
among them. These sharing design decisions are implemented in a multi-disciplinary design opti-
mization framework where an individual product variant is modelled as an individual subsystem.

The rest of the article is organized as follows. Section 2 provides research background followed
by the proposed methodology in Section 3; the methodology is demonstrated in a case study in
Section 4 followed by results and discussion in Section 5 and conclusion in Section 6.

2. Research background

A selective literature review on research areas pertaining to the concepts and techniques proposed
in this work will be presented. These research areas were reviewed in a selective manner based
on their relevance to data mining in product family design/product portfolio optimization.

2.1. Data mining in product design

There have been several researchers in the product design community that have incorporated data
mining techniques in the product design process. For example, Agard and Kusiak (2004) utilize
data mining clustering techniques to address the customer segmentation problem by determining
a target market in a new product development process. Association rule mining is then used to
discover attribute patterns in the segmented data (Agard and Kusiak 2004). Later works by Kusiak
illustrate the benefits of data mining in a wide array of diversified industries such as biotechnology,
energy, pharmaceutical, etc. (Kusiak 2006).

Tucker and Kim have incorporated data mining techniques in the product portfolio formulation
process for extremely volatile markets (Tucker and Kim 2007, 2008). In such industries, product
life cycles are short lived. Therefore, being able to correctly predict a customer’s product pref-
erences is paramount to increasing a product portfolio’s chances of market success. Tucker and
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Kim (2007) approached this design problem by systematically linking a customer’s preferences,
acquired through predictive data mining techniques, directly with engineering detailed design
through multilevel optimization techniques (Kim et al. 2002, Kim et al. 2003).

Data mining techniques are also employed by Moon et al. (2006) in representing the functional
requirements of customers. The proposed methodology uses fuzzy clustering techniques to deter-
mine the module composition of a product architecture (Moon et al. 2006). The work assumes that
a product is an amalgam of module-based components with prior knowledge of the functionality
capabilities of each module.

The primary contribution of this work is to present a product family design methodology for
complex engineering systems that autonomously identifies the number of products to design by
extracting weighted product preference information from a customer data set. This work focuses
on design problems with large product preference data sets that can be integrated into the product
design process. Since it would be impractical and highly expensive (from a cost and logistics
standpoint) to design an independent system for each operating scenario, the proposed methodol-
ogy instead identifies the most similar operating requirements given a large data set of operating
conditions/scenarios. This in turn highlights the cost savings associated with product platform
design through the concept of component sharing. This is modelled by the shared linking variable
in the bi-level quasi-separable problem formulation that attempts to achieve an optimal design
solution for each product while concurrently satisfying specific product functionality requirements
(Tosserams et al. 2007). The term ‘quasi-separable’ is used in this work to denote independent
sub-problems that share a common design variable/component. In this work, sub-problem simply
means a unique product design. The bi-level formulation is used in this work to co-ordinate these
sharing decisions among sub-problems. Therefore, the individual sub-problem formulation for
the bi-level quasi-separable problem is as follows:
Minimize

fk(ys,k, xk) (1)

Subject to:

gk(ys,k, xk) ≤ 0 (2)

hk(ys,k, xk) = 0 (3)

For the quasi-separable formulation, each xk represents the vector of local design variables unique
to each sub-problem (k), where k = 1, . . . , K sub-problems. The vector of linking variables ys,k

makes the sub-problems quasi-separable as each sub-problem sharing a linking variable becomes
influenced by the solution of other sub-problems sharing the same linking variable. A master
problem is used to co-ordinate the linking variable among sub-problems and is explained in more
detail in Section 3.2 of this work.

2.2. Product family optimization

The product family design paradigm has been investigated extensively throughout the engineer-
ing design community. Although there are a wide range of application areas, the underlying
focus of product family optimization is to design a group of related products built around a
common functional system architecture/platform. The aim is that commonality among prod-
uct variants will reduce product design and manufacturing costs while still satisfying customer
requirements. There have been many proposed methodologies and metrics for evaluating product
commonality decisions in product family optimization. For example, the degree of commonal-
ity index (DCI) proposed by Collier (1981) measures the ratio of common components existing
among products within a product family to the total number of components (Collier 1981). Later
proposed commonality strategies such as the total constant commonality index (TCCI) (Wacker
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and Trelevan 1986), the commonality index (CI) (Martin and Ishii 1996, 1997, Khajavirad and
Michalek 2007), component part commonality index (CI(C)) (Jiao and Tseng 2000), product line
commonality index (PCI) (Kota et al. 2000), the percent commonality index (%C) (Siddique et
al. 1998), the generational variety index (GVI) (Martin and Ishii 2002), the functional similarity
index (FSI) (McAdams et al. 1999, McAdams and Wood 2002), and the comprehensive metric
for commonality (CMC) (Thevenot and Simpson 2007), propose strategies to help improve prod-
uct commonality decisions by either rewarding or penalizing component sharing decisions. The
aforementioned commonality indices are referenced in this work to give the reader a glimpse at
the myriad of approaches available to address the issue of commonality in product design and
development and how the proposed approach differs from them.

Instead of employing traditional commonality indices such as those listed above, product com-
monality decisions are investigated by employing the X-means clustering technique during the
product family optimization process to identify similar components among product designs,
hereby avoiding the need to exhaustively search all possible component sharing possibilities.
In the aerodynamic particle separator problem that is investigated, the X-means clustering tech-
nique is first used to identify similarities among unique operating requirements. These clusters
will form the basis of the individual product platform. For the aerodynamic particle separator
problem, commonality decisions will be based primarily on the manufacturing costs associated
with each unique design. The costs savings benefits of incorporating commonality decisions in
the product family design process will be presented later in this work.

3. Methodology

Figure 1 is a flow diagram visually illustrating the sequence of the proposed product family design
methodology. Figure 1 begins with the acquisition of raw customer product preference data and
employs data mining attribute weighting and clustering techniques to determine the number of
unique products needed for a given data set. One of the novel contributions proposed in this
work, to solve the top-down product family research problem, is the ability to identify the optimal
number of product architectures based solely on the data set. For products with highly diverse
operating conditions, the data set itself may be highly heterogeneous making it quite difficult for
engineers to determine the number of products to design in order to satisfy the market space. By
employing the data mining RELIEFF attribute weighting and X-means clustering techniques to
the raw data set (Figure 1), engineers can determine the initial product architectures to design.

Steps 2 and 3 in Figure 1 illustrate the added benefits of component sharing by clustering
similar products together in an attempt to reduce product design costs. The X-means clustering
technique is employed at the engineering design level to determine which products are similar
enough to potentially benefit from component sharing decisions. The details of Figure 1 will now
be explained in depth in the following sections.

3.1. Data mining product preferences

The data mining of product preferences is the stage where dominant patterns are identified within
the raw data set (Fayyad et al. 1996). With each unique instance in the data set representing a
customer’s preferred operating state for the product, the number of operating states can increase
rapidly, thereby making it impractical for a single design to exist for each unique state. The
engineering design goal is to identify those operating states within the data set that are similar in
design requirements (as determined by the data mining algorithm). Since product attributes may
vary in terms of design significance, an appropriate attribute weighting technique would help guide
the engineering design process. To accomplish these product design challenges, the RELIEFF
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Figure 1. Flow diagram of proposed product family design methodology: From data mining product architecture
identification to component sharing through X-means clustering.

attribute weighting algorithm is first employed to weight attributes in order of importance in
the data set (Kira and Rendell 1992). Then the X-means clustering algorithm is used to identify
groups of similar operating states within the raw data set (illustrated in the data mining flow
diagram in Figure 1 and visually represented on the left in Figure 2). The weighted attributes will
influence both the data clustering process as well as the engineering design model as more valued
product attributes will be given more weight in the overall product family design methodology.
The X-means clustering algorithm is employed again in the component sharing decisions during
the product family optimization stage as similar individual product designs are grouped together
by similarity of design (Steps 2 and 3 in Figure 1 and visually represented on the right in Figure 2).
Below is an introduction to the RELIEFF attribute weighting technique that will later be applied
to the raw data set.

3.1.1. RELIEFF product attribute weighting algorithm

In this work, the enhanced version of the RELIEF algorithm called RELIEFF is employed
(Kononenko 1994). RELIEFF extends the original RELIEF algorithm by enabling it to efficiently
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Figure 2. Visual representation of family design based on data mining RELIEFF attribute weighting and X-means
clustering for product centroid generation and X-means clustering for product family component sharing optimization.

handle multi-class variables and also missing values within the data set (Kononenko 1994). A
class variable can be thought of as the response or predictor variable of interest. Examples of
class variables in product design data sets may include efficiency, energy consumption, price, etc.

The original RELIEF algorithm proposed by Kira and Rendell (1992) is an attribute evaluation
technique that will enable product development engineers extract the importance of individual
product attributes within a raw data set without explicit user provided ranking information (Kira
and Rendell 1992). This can prove to be a vital time saving strategy, especially for extremely
large data sets containing many attributes. Identifying the order of attribute relevance within a
data set can reduce the overall computational complexity and increase the efficiency of data mining
algorithms (Kira and Rendell 1992, Kononenko 1994).

Given a raw data set S, m instances are selected to serve as the number of sampled instances
where p denotes the total unique attributes within the sample set m (Kira and Rendell 1992).
The overall objective of the RELIEF algorithm is to take a random sample, and using a nearest
neighbour search, to identify an identical class variable, which is defined as a NEAREST HIT
(H ), and also a different class variable that is nearest to the sample, defined as a NEAREST MISS
(M) (Kira and Rendell 1992). The iterative process of RELIEF estimates attribute weights W [Ai]
based on their similarity to a given class, where Ai , represents a unique attribute within the data
set. The general form of the algorithm can be represented as follows (Kira and Rendell 1992).

Given m, the desired number of sampled instances, and p, the number of attributes,

1. set all weights W [Ai]: = 0.0;
2. for j : = 1 to m do begin;
3. randomly select an instance X;
4. find nearest hit H and nearest miss M;
5. for i: = 1 to k do begin;
6. W [Ai] := W [Ai] − diff(Ai; X; H)/m + diff (Ai; X; M)/m;
7. end;
8. end;
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where the diff function above measures the difference between the attribute being evaluated Ai

taken from the randomly selected instance X, and the value of that same attribute given the closest
hit (H ) or closest miss (M). For discrete attributes, if the value of the attribute (Ai) of the randomly
selected instance (X) matches that of the nearest hit (H ) or nearest miss (M), then the diff value
is 0 (meaning values are identical), otherwise (1) meaning they are different. For continuous
attributes, the actual difference is used and then normalized on a scale of [0, 1].

By its design, the RELIEFF attribute weighting technique does not constrain the attributes
to non-negative values. Therefore, the weights will first be normalized based on the mini-max
normalization (Han and Kamber 2006). For a given vector of attribute weights [w1, w2, . . . , wp],
the weights are normalized using the following formulation:

For weight i = 1, . . . , p

w′
i = wi − min

maxw − minw

(new_maxw − new_minw) + new_minw (4)

Here,

w′
i The newly transformed weight (i) of attribute (i).

minw The minimum value in the vector of RELIEFF attribute weights.
maxw The maximum value in the vector of RELIEFF attribute weights.
new−maxw The maximum value of the new range.
new−minw The minimum value of the new range.

The new vector of weights w′ determines the level of importance for each target vector (TCj ) at
the engineering design level.

The data set with the newly updated weighted attributes will be used to:

• Weight clusters generated by the X-means clustering approach (discussed in the following
section).

• Serve as attribute target weights for the engineering product design model.

3.1.2. X-means clustering

The X-means clustering algorithm in data mining is an enhancement of the k-means clustering
algorithm (Pelleg and Moore 2000). Before investigating the X-means clustering algorithm and
its significance in product family optimization, the k-means algorithm will be briefly described.

Given a raw data set of unique customer preferences (operating conditions), the k-means
algorithm attempts to partition the original data set into k subsets of the data, where k represents
the number of unique subsets or in the appropriate data mining terminology, clusters (Hartigan
and Wong 1979, Jain and Dubes 1988). Each cluster contains a centroid, with data points of the
cluster associated with this centroid. It is important to note that the number of clusters in the
k-means algorithm is given a priori as a user defined input. In the context of product family
design, this would be analogous to the engineering design team specifying the number of product
platforms that the customer’s product operating requirements must adhere to. Rather than design
teams making postulations about the raw data set, a more natural process would be for the inherent
patterns of the raw data set to help guide the product platform number (this is one of the contri-
butions of the X-means data mining technique). Although there have been many enhancements
to the k-means since its conception (Arora et al. 1998, Kanungo et al. 2002, Tarpey 2007), the
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basic underlying mathematical formulation can be represented as follows:

f =
K∑

j=1

∑
xi∈Sj

‖xi − cj‖2 (5)

Here, Sj is a cluster of data points.
Here, S will be defined as all instances in the raw data set and, therefore, Sj would simply be a
subset of this.
cj is the centroid of a cluster Sj .

xi is a data point existing within a cluster.
K is the total number of clusters (specified a priori by the user).

The iterative process of the k-means algorithm begins by initially selecting the desired number
of clusters (Sj ) and making an initial guess of the cluster centroid values (cj ) (Hartigan and Wong
1979). The next stage involves assigning a data point to the closest cluster centroid and centroid
value (if necessary) by minimizing the error function in Equation (5) until negligible deviation
occurs with each iteration.

The X-means clustering algorithm aims to improve on three key areas of the k-means algorithm
(Pelleg and Moore 2000).

(1) Eliminating the need for number of clusters to be known as a priori.
(2) Improving the computational scalability.
(3) Enhancing the search criteria for updating cluster centroids.

The process by which X-means achieves these improvements is in part based on its selection
criterion to determine when to add or replace a specific cluster centroid with child centroids. Child
centroids originate from splitting the original solution of a k-means iteration and determining if
the child clusters more accurately represent the data points once belonging to the parent centroid
(Pelleg and Moore 2000). The posterior probabilities will be used to rank the models Pr[Mj |D],
where D represents the given data set and Mj represents each model with a given cluster size
k. The Bayesian information criterion (BIC) is used by X-means to rank which model is a more
accurate representation of the original raw data set. Mathematically, the BIC is represented as
follows (Kass and Wasserman 1995, Pelleg and Moore 2000):

BIC(Mj ) = lj (D) + pj

2
log R (6)

Here,
lj (D) is the log likelihood of the data taken at the maximum likelihood point.
D represents the given data set.
pj represents the number of parameters in Mj.

R is the total number of data points of candidate centroids.

3.1.3. Relevance of X-means to engineering product architecture design

Engineering design problems involving a wide range of operating states specified by customers,
can benefit from X-means clustering by identifying appropriate product functionality criterion
for developing a product architecture and subsequent product family. The X-means clustering
technique eliminates the need to guess the number of product architectures needed for a par-
ticular customer pool by analytically generating the appropriate number of clusters (product
architectures) with corresponding product functionality specifications. A user instead specifies a
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broad range for the number of clusters and X-means will identify the optimal cluster, given the
natural patterns within the data set (Pelleg and Moore 2000). This will ensure that the result-
ing product family will be a true representation of the data set for which the designs are made.
Figure 2 illustrates how the cluster centroids of the X-means data mining clustering approach
are integrated into the engineering design. The product centroids illustrated in Figure 2 rep-
resent the individual vectors of attribute value solutions that best describe similar groups of
customers within the raw data. Each unique product centroid will form a vector of product
preference targets used to guide the product architecture optimization process. The engineer-
ing design illustrated in Figure 2 represents the design of individual products based on the
X-means cluster centroids where each product will have unique functionality characteristics that
aim to satisfy the overall customer preference targets. Section 3.2.3 describes how product vari-
ants are then designed based on underlying product architecture under the notion of component
sharing.

3.2. Engineering design optimization of product family

3.2.1. Step 1: Individual product design optimization

The results from the data mining stage provide product design engineers with several vital pieces
of information. First, the results from the X-means clustering represent the vector of product
attributes that form the product design targets (TCj ) around which a product architecture is
designed (Step 1 in Figure 1). Product design targets can range anywhere from physical prod-
uct dimension targets such as length or width to product performance targets such as efficiency
or speed.

The second vital piece of information from the data mining stage is the relevance of each
attribute target to the customer as determined by the RELIEFF attribute weighting technique.
That is, for each attribute target vector (TCj ), there will be an accompanying vector of attribute
target weights w′. The engineering product architecture optimization is comprised of the detailed
engineering design model and incorporates the results from the data mining stage that help guide
the product architecture design. Here, local design variables are used to model the physical
dimensions and performance objectives of the product architecture subject to engineering design
constraints.

The general mathematical model for the engineering product architecture optimization is
as follows:
Note: The deviation is measured by the squared L-2 norm, which will be used throughout the engineering optimization

models presented in this work. For example:

‖x − y‖2
2 =

∑
i

(xi − yi)
2.

For the kth product architecture,
Minimize

F(x)Architecture(k)
= fk + w′

∥∥∥TCj − REng

k

∥∥∥2

2
(7)

Subject to:

gk(xk,) ≤ 0

hk(xk,) = 0
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Here,

fk Local product design objective function (s), a function of local design variables: fk (xk).
TCj Vector of product attributes represented by the cluster centroid in the data mining

model. That is, for cluster centroid Cj = [A1, A2, . . . , Ap], target TCj is set as [A1,
A2, . . . , Ap] where A1, A2, . . . , Ap represent attribute values for a given centroid Cj .

w′ The vector of newly transformed RELIEFF weights for target vector TCj .
REng

k Vector of engineering responses based on the formulation of the engineering design
model. REng

k is a function of local design variables xk and is represented by REng

k

(xk).
gk Inequality design constraints bounding the product architecture model.
hk Equality design constraints bounding the product architecture model.
K The kth candidate product architecture determined by the results of the X-means

clustering.
K The total number of cluster centroids Cj that exist for the X-means clustering solution.

Note: It is important to note that although there may be K candidate product architectures to investigate, there may not

always be a feasible design solution for the kth product architecture as generated product preference requirements may

be too demanding, given the constraints of the engineering design model. That is, at optimality k ≤ K .

3.2.2. Step 2: Component sharing through X-means clustering

If a feasible design solution exists after Step 1, X-means data mining clustering technique is once
again employed, this time to determine the most similar product architecture design solutions
within the product portfolio. While the first X-means clustering technique helped identify the
similar groups of attributes in the raw data, the X-means clustering employed in Step 2 will
help identify the similar groups of design variable values among the feasible product architecture
design solutions (Step 2 in Figure 1).

For a given vector of design variables (xk) of an optimal product architecture solution, (where
the objective function F(xk) of product architecture (k) has been minimized given the external
targets TCj and the local objective(s) fk(xk)), the goal is to determine the similarity among product
architecture variable solutions. The notion is that the closer the optimal design solutions are, for
example [(xk) and (xk+1)], the more likely these product architectures may be able to share certain
design components.

3.2.3. Step 3: Product family optimization with shared design components

The third and final step in the proposed product family design methodology aims to reduce
the product portfolio cost by sharing certain components among product architectures, thereby
creating a family of products (Step 3 in Figure 1). Since the component sharing decision is
inherently a combinatorial problem, Step 2 of the design methodology eliminates the need to search
all possible component sharing combinations by guiding the component sharing decisions based
on the optimal solution of each resulting product architecture. Once similar product architectures
have been identified by the X-means technique in Step 2, the component variables are identified
and modelled as linking variables (ys,k) in the quasi-separable bi-level problem. The model in
Step 1 is adapted into a bi-level hierarchical optimization model where level 1 strictly handles
the coordination of the linking variables and level 2 still remains the product architecture design
level, but this time including the linking variable targets as part of the objective function. The
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bi-level design problem is modelled based on the quasi-separable problem (Kim 2001, Kim et al.
2002, Kokkolaras et al. 2002, Allison et al. 2006). A bi-level model is presented which comprises
the component sharing co-ordination model at the upper level and the individual product design
model at the lower level. At the component sharing level, updated linking variable values are
distributed among product variants in an iterative manner until a feasible solution is achieved that
is common among all product variants. If a feasible design solution does not exist for a given
sharing scenario (that is, linking variable value yS does not converge to a solution shared by all
products), the original product design solutions (without shared variables) from Step 1 are kept.

Upper level: Component sharing co-ordination

The upper level (component sharing co-ordination) handles the coordination of linking variables
to each of the product variants. In an effort to minimize design costs, certain design intensive
and costly product components are shared among the different product variants. Under the quasi-
separable formulation, these are represented as the linking variables (ys,k) . The sharing strategy
is handled at the component sharing level wherein updated linking variable values from the lower
level product architecture design are cascaded up to the component sharing level. Constraint
Equation (9) is formulated as an inequality rather than an equality constraint due to numerical
difficulties reported in the literature of equality constraint based bi-level formulations that fail
to satisfy the standard Karush-Kuhn-Tucker (KKT) conditions for a constrained optimization
problem (Alexandrov and Lewis 2002).
Minimize

εy (8)

Subject to:

g1 :
∑
k∈Q

∥∥∥ys − yEng

s,k

∥∥∥2

2
− εy ≤ 0 (9)

Here,
ys Linking variable at the upper level. In essence, ys is simply a coordination variable

ensuring that at the optimal solution, all of the subsystems attain the same value.
Equation (9) is always active in the above formulation so solving for ys , it can be
observed that at each iteration ys assumes the average value of the linking variable(s)
being shared across the products within the product family.

yEng

s,k Linking variable value at the lower level cascaded to the upper level. This is constant at
each iteration in the above formulation that is subsequently updated at the engineering
product architecture optimization level after each iteration.

k The kth candidate product architecture that has been identified for component sharing.
Q The total number of products that exist in a particular candidate product family. This

is based on the X-means cluster solutions described in Step 2. The term candidate
product family is used because until a feasible design solution can be achieved for
the shared component case, these Q products will remain unique products within
the product portfolio (note that Q ≤ K which simply means that the number of
candidate product families cannot exceed the total number of unique products that
initially exist).

εy Deviation tolerance between linking variables. For each shared variable, another
constraint g(i) is added based on a similar formulation as equation (9) and add
another tolerance variable in the objective function to represent this additional shared
variable.
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Lower level: Product family optimization

In the kth sub-problem,
Minimize

F(x)Architecture(k)
= fk + w′

∥∥∥TCj − REng

k

∥∥∥2

2
+ ∥∥yU

s − ys,k

∥∥2

2 (10)

Subject to:

gk(xk, ys,k) ≤ 0

hk(xk, ys,k) = 0

Here,

fk Local product design objective function (s).
TCj Vector of product attributes represented by the cluster centroid in the data mining

model. That is, for cluster centroid Cj = [A1, A2, . . . , Ap], target TCj is set as
[A1, A2, . . . , Ap] where A1, A2, . . . , Ap represent attribute values for a given
centroid Cj .

w′ The vector of newly transformed RELIEFF weights for target vector TCj .
REng

k Vector of engineering responses based on local design variables. REng

k is a function of
local design variables xk, and is represented by REng

k (xk, ys,k).
gk Inequality design constraints.
hk Equality design constraints.
yU

s Linking variable target value cascaded down to the lower level from the upper level; a
constant value at each iteration that is subsequently updated with each successful
iteration.

ys,k Linking variable at the lower level. This is local to the kth model and attempts to match
the value of yU

s at each iteration.

The overall flow of the proposed product family optimization is succinctly described below:

Bi-level product family optimization

Step 1:
Given w′ vector of weights and TCj targets, where length(w′) = length(TCj ) and K cluster
centroids:

1. Solve K engineering design problems (with no linking variables ys,k) weighting each
‖TCj − REng

k ‖2
2 based on RELIEFF;

2. If solution exists for the Individual Product Design Optimization Model (i.e., optimal
‖TCj − REng

k ‖2
2 solution while satisfying local objectives and constraints);

3. Optimal solution found for weights w′ and targets TCj without sharing components;

Step 2:

4. Employ X-means clustering to identify candidate product families based on solution
similarities from Step 1;

Step 3:

5. Solve bi-level quasi-separable problem (component sharing among products) using the
Upper Level-Lower Level formulation with linking variables ys,k;

6. If feasible solution exists (i.e., optimal ‖TCj − REng

k ‖2
2 and ‖ys − yL

s,k‖2
2 at the Lower Level

and also optimal εy at the Upper Level, (εy should be close to 0 at the Upper Level, indicating
a feasible shared component among product variants within a product family));
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7. Optimal solution found for weights w′ and targets TCj and linking variables ys,k for each
product variant;

8. Else, solution does not exist for linking variable scenario; that is, sharing ys,k is not feasible
for product variants, therefore keep initial solutions found from Step 1;

9. end;
10. end;

4. Application: Aerodynamic particle separator case study

Indoor air quality (IAQ) is becoming an increasing concern for human health. Particulate matter is
a leading cause of human respiratory illness in addition to degrading the performance of heating
ventilation and air conditioning (HVAC) systems (WHO). As a result, abatement technologies
for these aerosols are in high demand. Aerodynamic particle separators are filter-less air clean-
ing devices that can be capable of removing micron size particles with low energy consumption
and minimal maintenance (Zhang 2005). Determining the optimal aerodynamic particle separa-
tor design for a specific application is challenging when taking into account its unique system
requirements and environmental conditions.

4.1. The engineering design problem

4.1.1. Aerodynamic particle separator design

To demonstrate the effectiveness of the proposed design methodology, the design of a uniflow type
particle separator is investigated (illustrated in Figure 3). The basic design of this device can be
partitioned into three sections: (1) vane section, (2) straight region and (3) converging region/dust
bunker. These sections are defined by eight design variables as shown in Figure 3 and Table 1.

The performance of an aerodynamic particle separator design is strongly dependent on system
requirements and environmental conditions. System requirements such as the air cleaning effi-
ciency, pressure drop (thus power consumption), air flow rate and overall device size contribute
to the design objectives and directly define the constraints for a given application. Environmen-
tal conditions, including the air properties and contaminant particle size distribution can have a
significant impact on the performance of a particular design and must also be incorporated into
the system model (Barker 2008). Together, these two groups can be used to characterize a given
application or operating state. These factors can vary by an order of magnitude between different
applications, thereby complicating the design process. The product architecture design objective
will, therefore, be to minimize cost while satisfying external product preference targets and local

Figure 3. Uniflow type aerodynamic particle separator flow pattern and design variables.
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Table 1. Design variable notation for aerodynamic particle separator.

Variable Units Description

r1 Meters (m) Inner tube radius
r2 Meters (m) Outer tube radius
LS Meters (m) Maximum pressure drop
α Radians (rad) Vane discharge angle
LC Meters (m) Length of converging gap
r3 Meters (m) Radius of exit tube
LE Meters (m) Length of exit tube
N # Number of units in parallel

design constraints. The broader enterprise portfolio objective will be to minimize overall product
design and development costs by capturing the component sharing opportunities that exists within
the product portfolio.

4.2. Data mining product preferences

4.2.1. Raw data set of product operating states

A data set of 1000 operating states was generated to simulate the large variation in physical
requirements and environmental conditions characterizing the broad range of applications in which
aerodynamic particle separators are frequently employed (Barker 2008). Table 2 represents a
snapshot of the 1000 operating states with distinct product attributes and environmental conditions
represented by each column. Section 5 of the article presents the results from both the RELIEFF
attribute ranking algorithm and the X-means data mining clustering approach and demonstrates
how the data mining process influences product family design efforts.

4.2.2. RELIEFF attribute weighting

The results from the RELIEFF attribute ranking approach in Table 3 reveal that the two engineering
design targets—efficiency (ζ ) and flow area (AFmax)—have normalized weights of 0.1687 and
0.0785 respectively. The other attributes in Table 3 are used as design parameters in the engineering
design model and, therefore, also play a significant role in the overall optimal solution. The
efficiency (ζ ) and flow area (AFmax) are selected based on the type of engineering problem being
solved (in other applications, one may choose to set all attributes in the data set as targets for the
product architecture design model). This vital information is a data pre-processing step that will
help generate product cluster centroids that take into account the weighted attribute preferences
of the different operating states given by the raw data set.
Note: RELIEFF results were obtained using Weka version 3.5.8 (Witten and Frank 2005) and it took approximately 20

seconds running on a Intel Pentium Duo 2.5 GHz Processor. The normalized attribute weights are based on Equation (4)

in Section 3.1.1.

Table 2. Snapshot of aerodynamic particle separator data set consisting of 1000 states.

�P max Lmax AF max Nmax # F(dp) ρp Tair Pair

Q (m3/s) (Pa) (m) (m2) units (%) (kg/m3) (◦C) (kPa) Efficiency % Price $

State 1 1.58 250 1 0.5 50 A1 2650 20 101 82 1,200
State 2 1.48 200 0.3 0.1 3 A4 2650 0 99 85 450
State 3 1.27 1500 1.5 1.5 16 Limestone 2700 500 200 90 900
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Table 3. Attribute ranking of raw dataset via RELIEFF algorithm.

Normalized Attribute
Attribute Rank Attribute Name Attribute Weight Weight

Highest Nmax 0.0881 1.0000
Efficiency 0.0110 0.1687

∣∣
Tair 0.0100 0.1575

∣∣
Pair 0.0099 0.1570

∣∣
Q 0.0073 0.1287

∣∣
Dpmax 0.0036 0.0888

∣∣
Afmax 0.0026 0.0785

∣∣
Lmax 0.0018 0.0695

∣∣
Rhop −0.0006 0.0433

∣∣
↓ Operating States −0.0031 0.0169

Lowest Fdp −0.0046 0.0000

4.2.3. Data mining X-means clustering results

The X-means clustering results reveal that a total of five clusters most accurately represents the
similarities in the data set of 1000 operating states. The results from Table 3 represent the product
design targets and parameters for the product portfolio of aerodynamic particle separators. Initially,
each product centroid will be used to design an individual aerodynamic particle separator. Compo-
nent sharing benefits will then be presented based on the vane section component. [Results attained
using Weka version 3.5.8 (Witten and Frank 2005) and Data to Knowledge D2K (McEntire 2003)].

4.3. Engineering design optimization of product family

4.3.1. Step 1: Individual product design optimization

The X-means clustering algorithm generates k = 1, . . . , 5 clusters, each with unique centroids
Cj . Based on the results from the X-means clustering, and the RELIEFF attribute weights accom-
panying each cluster centroid, engineers can now determine whether an optimal product design
solution exists based on the aerodynamic particle separator response model.

The aerodynamic particle separator objective function attempts to match the particle separation
efficiency target (ζ

Cj

k ) and the flow area target (AFCj ) generated from the X-means clustering
results while at the same time minimizing product design and manufacturing cost objective. The
attributes within a cluster centroid (Cj ) will form the design/environmental parameters of the
model. The efficiency model selected was initially developed by Zhang (2005) and later augmented
by Barker (2008). In this model, the flow is assumed to be fully turbulent and the steady state
particle motion results from a balance between the centrifugal force and aerodynamic drag in the
Stokes regime (Zhang 2005). The vector x contains the eight design variables as described by
Table 1 and Figure 3. The cost function was based on the estimated mass of material required and
injection moulding costs of the vane section. The material selected is an engineered polymer with
a density of 1200 kg/m3 at a cost of $3.00 per kilogram. The injection moulding cost is estimated
at a fixed cost of $10,000 per design for the required capital equipment and labour. The efficiency
model as a function of variables in x and particle size dpi

is shown in Equation (11). The total
efficiency for a given particle size distribution is then calculated by Equation (12).

ξ(x, dpi
) = 1 − exp

(
−ρpd2

pi
CcQ tan(α)LS

9η(r2
2 − r2

1 )

)
· exp

(
ρpd2

pi
Cc(V

2
t Gt (x) + V 2

z Gr(x))

ηVz

)
(11)
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ξT =
N∑

i=1

ξ(x, dpi
) · F(dpi

) (12)

Here,

Cc Cunningham slip correction factor.
dpi

Diameter of particle (i), m.
F(dp) Particle size distribution.
Gt(x) Efficiency model geometric relationship between design variables, tangential

acceleration.
Gr(x) Efficiency model geometric relationship between design variables, radial acceleration.
ρp Particle density, kg/m3.
η Air viscosity, Pa·s or kg· m/s.
Q Air flow rate, m3/s.
Vt Tangential velocity of particle mixture.
Vz Axial velocity of particle mixture.
r1 Inner tube radius.
r2 Inner tube radius.
α Vane discharge angle.
LS Maximum pressure drop.

The engineering design model for the aerodynamic particle separator can be mathematically
represented as:
kth aerodynamic particle separator
Minimize:

F(x)Architecture(k)
= w′

ζ

∥∥∥ζ
Cj

k − ζ
Eng

k

∥∥∥2

2
+ w′

AF

∥∥∥AF
Cj

k − AF
Eng

k

∥∥∥2

2
+ Costk (13)

Subject to:
Pressure drop constraint (g1):

PT (x) − Pmax ≤ 0 (14)

Face area constraint (g2):

4r2
2 N − AFmax ≤ 0 (15)

Product length constraint (g3):

LV + LS + LC + LE − Lmax ≤ 0 (16)

Here,

AFk Maximum allowable face area perpendicular to air flow direction.
w′

ζ Efficiency RELIEFF attribute weight.
w′

AF Flow area (AF) RELIEFF attribute weight.
Lmax Total allowable length of the system.
LV Length of vane section.
LS Length of straight region.
LC Length of converging region.
LE Length of exit tube.
PT (x) Total pressure drop of the system as a function of design variables x.
N Number of aerodynamic particle separator units in one module.
Pmax Maximum allowable pressure drop (air flow restriction).
Costk Total product cost represented as the summation of individual component costs.
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Note: The design model is also bounded by a set of linear inequality constraints Ax ≤ b and con-
straints Equations (14)–(16) that can be further expanded. A more detailed design model can be found
in Barker (2008).

4.3.2. Step 2: Component sharing through X-means clustering

If an optimal solution exists for the aerodynamic product portfolio based on the X-means clustering
targets, the next step is to determine whether additional costs savings can be realized by shar-
ing the most design intensive components among different product architectures. The X-means
clustering technique is employed to determine the similarities among the unique aerodynamic
particle separator designs based on the solution results after Step 1. A successful sharing solution
among products represents a unique product family. The results from the unique aerodynamic
particle separator solutions can be seen in Table 5 which is further explained in Section 5.1.

4.3.3. Step 3: Product family optimization with shared design components

For the aerodynamic particle separator case study, the vane section is the most design intensive
and costly component. The complex curved vanes must be injection moulded, which requires a
unique mould to be machined for each vane section design. By employing the X-means clustering
technique, product engineers will be able to (1) determine which product architecture designs are
similar based on the solutions attained during Step 1 and (2) determine the number of candidate
product families to include in the enterprise product portfolio based on the number of X-means
cluster centroids generated. The L2 norm distance measure used by X-means will favour those
design solutions that are numerically close to one another. This will help guide the sharing decision
of the vane section as products with close numerical values for the variables that define the vane
section (vane angle α, the inner and outer tube radii r1 and r2) will be favoured within a given
cluster centroid.

Upper level: Component sharing co-ordination

The upper level (component sharing co-ordination) of the aerodynamic particle separator model

Q19

will handle the co-ordination of the shared vane section among product families. The component

Table 4. Product cluster centroids based on X-means clustering algorithm.

System requirements System requirements

�P max Lmax AF max Nmax F(dp) ρp Tair Pair

States Q (m3/s) (Pa) (m) (m2) # units (%) (kg/m3) (◦C) (kPa) Efficiency % Price $

Product Centroid 1
285 1.20 463 0.71 0.60 36 Limestone 2226 25 100 78 962

Product Centroid 2
765 3.39 1507 0.79 0.68 39 A4 2211 71 111 86 1,168

Product Centroid 3
750 3.36 1623 0.67 0.55 14 Limestone 2389 72 107 85 411

Product Centroid 4
456 1.94 911 0.72 0.62 24 A1 2278 45 102 80 632

Product Centroid 5
260 1.29 458 0.69 0.75 11 Limestone 2225 24 100 78 290
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sharing objective function will minimize the tolerance deviation variable of each shared variable.
There are three variables that define the vane section, including the vane angle α, the inner and
outer tube radii r1 and r2.
Minimize

εα + εr1 + εr2 (17)

Subject to:

g1 :
∥∥∥αs − α

Eng

s,k

∥∥∥2

2
− εα ≤ 0 (18)

g2 :
∥∥∥r1,s − r

Eng

1,s,k

∥∥∥2

2
− εr1 ≤ 0 (19)

g3 :
∥∥∥r2s − r

Eng

2s,k

∥∥∥2

2
− εr2 ≤ 0 (20)

Here,

αs Vane angle linking variable at the component sharing level.
α

Eng

s,k Value of vane angle linking variable response of engineering design model for product
k.

r1,s,k Inner tube radius (r1) linking variable at the component sharing level.
r

Eng

1,s,k Value of inner tube radius (r1) linking variable response of engineering design model
for product k.

r2,s,k Outer tube radius (r2) linking variable at the component sharing level.
r

Eng

2,s,k Value of outer tube radius (r2) linking variable response of engineering design model
for product k.

εα Deviation tolerance variable between vane angle linking variable that is minimized in
the objective function.

εr1 Deviation tolerance variable between inner radius linking variable that is minimized in
the objective function.

εr2 Deviation tolerance variable between outer radius linking variable that is minimized in
the objective function.

To minimize overall product portfolio costs, the number of unique vane section designs will
be minimized by sharing this component with products that can attain a feasible design solution
given this added objective. Equation (13) is, therefore, reformulated to reflect the candidate product
families and also the shared vane components among each of these products within a given product
family (represented as linking variables).

Lower level: Product family optimization

Minimize:

F(x)Architecture(k)
= w′

ζ

∥∥∥ζ
Cj

k − ζ
Eng

k

∥∥∥2

2
+ w′

AF

∥∥∥AF
Cj

k − AF
Eng

k

∥∥∥2

2
+ Costk + ∥∥αs,i − αLink

s,k

∥∥2

2

+ ∥∥r1s − rLink
1s,k

∥∥2

2
+ ∥∥r2s − rLink

2s,k

∥∥2

2
(21)

Subject to: Constraints as defined in Equations (14), (15) and (16).



1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

Engineering Optimization 21

Ta
bl

e
6.

O
pt

im
al

so
lu

tio
ns

fo
r

ae
ro

dy
na

m
ic

pa
rt

ic
le

se
pa

ra
to

r
pr

od
uc

tf
am

ili
es

sh
ar

in
g

th
e

va
ne

co
m

po
ne

nt
.∗

Pr
od

uc
t

Pr
od

uc
t

#
U

ni
ts

/
In

je
ct

io
n

To
ta

l
Pr

od
uc

tD
es

ig
n

V
ar

ia
bl

es
E

ffi
ie

nc
y

U
ni

tC
os

t
C

lu
st

er
M

ol
d

C
os

t
Pr

od
uc

tC
os

t

r 1
r 2

L
s

á
L

c
r 3

A
F

L
N

Pr
od

uc
t

(m
et

er
s)

(m
et

er
s)

(m
et

er
s)

(r
ad

)
(m

et
er

s)
(m

et
er

s)
(m

et
er

s)
(m

et
er

s)
(#

un
it)

ζ
(%

)
$

(#
un

its
)

$
$

Pa
rt

ic
le

Se
pa

ra
to

r
Pr

od
uc

tF
am

ily
1

V
ar

ia
nt

1
0.

16
43

0.
19

35
0.

27
71

0.
95

32
0.

01
06

0.
08

84
0.

59
93

0.
28

77
4

77
.9

98
5

81
.5

4
22

6
10

,0
00

.0
0

28
,4

28
.2

1
V

ar
ia

nt
5

0.
16

53
0.

19
35

0.
29

91
0.

95
33

0.
00

97
0.

08
12

0.
74

87
0.

30
88

5
77

.9
97

9
10

5.
10

16
1

Sh
ar

ed
16

,9
21

.9
0

Pa
rt

ic
le

Se
pa

ra
to

r
Pr

od
uc

tF
am

ily
2

V
ar

ia
nt

2
0.

09
08

0.
10

64
0.

55
59

0.
94

46
0.

00
71

0.
09

05
0.

67
97

0.
56

30
15

95
.8

44
44

19
6.

45
20

7
10

,0
00

.0
0

50
,6

64
.5

2
V

ar
ia

nt
3

0.
09

03
0.

10
70

0.
05

09
0.

94
46

0.
00

72
0.

06
86

0.
54

95
0.

05
81

12
84

.9
99

1
74

.7
7

17
3

Sh
ar

ed
12

,9
35

.7
4

Pa
rt

ic
le

Se
pa

ra
to

r
Pr

od
uc

tF
am

ily
3

V
ar

ia
nt

4
0.

06
90

59
0.

08
03

57
0.

36
96

26
1.

04
0.

08
03

57
0.

06
83

03
0.

44
99

83
0.

61
98

93
24

79
.9

95
50

6
18

9.
70

23
3

10
,0

00
.0

0
54

,1
99

.6
5

To
ta

lP
ro

du
ct

Po
rt

fo
lio

co
st

16
3,

15
0.

02

∗ O
pt

im
al

re
su

lts
at

ta
in

ed
us

in
g

M
at

la
b®

an
d

To
m

la
b®

to
so

lv
e

th
e

m
ix

ed
in

te
ge

r
no

nl
in

ea
r

pr
og

ra
m

m
in

g
pr

ob
le

m
(G

ri
ffi

th
s

20
05

,H
ol

m
st

ro
m

et
al

.2
00

6)
.



1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

22 C.S. Tucker et al.

5. Results and discussion

5.1. Aerodynamic particle separator optimization results

Given the product design targets from the data mining X-means clustering step, the aerodynamic
particle separator model first attempts to identify feasible design solutions for the efficiency (ζCj ),
flow area (AFCj ) targets and given physical and environmental (Tair, Pair , etc.) parameters for each
unique cluster centroid (Cj ). The aerodynamic particle separator solutions in Table 5 reveal that a
total of five unique products can be designed for the initial five cluster centroids targets generated
by the X-means clustering with a total product portfolio cost of $173,910.

If Step 1 of the product family design methodology is successful, engineers can further inves-
tigate the potential costs savings (Steps 2 and 3) that may be realized due to component sharing.
The X-means clustering technique performed during Step 2 reveals that out of the five unique
aerodynamic particle separator solutions, products 1 and 5 form a feasible unique product family
cluster, products 2 and 3 another and finally product 4 cannot be shared with any other product
and, therefore, reverts back to the original solution from Step 1. The cost of the injection mould
manufacturing process presents an opportunity for the initial product portfolio of five unique
products to be redesigned. The vane section of the product which is made through the injection
moulding process is shared among similar products existing in the original portfolio. In this case
study, the decision to share the vane angle is known as a priori due to the high cost of designing
each individual injection mould for the vane. Step 3 of the product family design methodology
employs the X-means clustering algorithm to identify products that have similar vane design
solutions. The decision to share the vane angle is an attempt to minimize the overall costs of the
enterprise product portfolio by minimizing the number of unique vane sections needed for the five
aerodynamic particle separators. Products successfully sharing a vane section will be considered
a unique product family and each product existing in this product family, is defined as a variant.
However, it must be noted that the cost savings benefits of component sharing using the product
family approach to design may be offset by the decrease in the performance capabilities attain-
able by the newly designed product variants. This trade-off scenario will, therefore, be based on
how much cost savings can be realized through component sharing and how much performance
deviation can be accommodated by the customer.

The results in Table 6 reveal that sharing products 1 and 5, 2 and 3 (with product 4 being a
separate unique design), reduces the total product portfolio cost to $163,150; a total savings of
approximately $10,760 for this product portfolio design scenario. However, it can be observed
that the efficiency of product 2 decreases from 85.99% with the individual optimization model
solution (Table 5) to 85.84% with the component sharing product family model solution (Table 6).
The level of allowable performance deviation will be dependent on customer expectations and the
level of competition within the market space. Although a feasible design may not always exist for
every sharing scenario (for example sharing a single vane component for each of the five products
returned an infeasible solution), the benefits of investigating sharing strategies through the X-
means clustering recommendations may prove beneficial as can be seen from the results in Table 6.

6. Conclusion

In this work, a comprehensive product family design methodology is presented that integrates
realistic product operation data with the engineering design of complex products such as the
aerodynamic particle separator. The data mining RELIEFF algorithm is employed to determine
the weights of each attribute. This information is then incorporated into the data mining X-means
clustering algorithm in order to generate the number of clusters along with the cluster centroids
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that are inherent to the data itself. The results of the data mining clustering technique aid in
determining the number of unique products to design for a group of highly diverse customers.
With this clustering information, a product architecture can be designed that takes into account
specific customer product functionality needs that are represented in a large data set. Further cost
savings can be realized through a component sharing strategy that is achieved in this work by
once again employing the X-means clustering technique to identify similar design solutions. The
hope is to expand on the concepts presented in this work by enabling the feasibility of the product
architecture optimization step to influence the generation of X-means cluster centroids. That is,
local objective functions may be highly sensitive to certain local design variables which can be
taken into account during the X-means clustering step.
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