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Medication non-adherence is a major concern in the healthcare industry and has led to increases in
health risks and medical costs. For many neurological diseases, adherence to medication regimens can be
assessed by observing movement patterns. However, physician observations are typically assessed based
on visual inspection of movement and are limited to clinical testing procedures. Consequently, medi-
cation adherence is difficult to measure when patients are away from the clinical setting. The authors
propose a data mining driven methodology that uses low cost, non-wearable multimodal sensors to
model and predict patients' adherence to medication protocols, based on variations in their gait. The
authors conduct a study involving Parkinson's disease patients that are “on” and “off” their medication in
order to determine the statistical validity of the methodology. The data acquired can then be used to
quantify patients' adherence while away from the clinic. Accordingly, this data-driven system may allow
for early warnings regarding patient safety. Using whole-body movement data readings from the
patients, the authors were able to discriminate between PD patients on and off medication, with
accuracies greater than 97% for some patients using an individually customized model and accuracies of
78% for a generalized model containing multiple patient gait data. The proposed methodology and study
demonstrate the potential and effectiveness of using low cost, non-wearable hardware and data mining
models to monitor medication adherence outside of the traditional healthcare facility. These innovations
may allow for cost effective, remote monitoring of treatment of neurological diseases.

& 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Medication non-adherence is a widespread problem in the
United States, increasing safety risks for patients and placing a
significant financial burden on the healthcare industry [1]. Poor
adherence to medication often results in substantial worsening of
a disease, increased mortality, and unnecessary healthcare costs
[2,3]. For the purposes of this paper, we limit the definition of
adherence to the medication regimen a physician prescribes, and a
patient's commitment to taking those medications as prescribed.
When evaluating patients having neurologically-induced move-
ment disorders, clinicians often rely upon self-reports to deter-
mine medication adherence. For example, the patient may be
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asked whether he or she is taking medication as prescribed or
whether he or she is attending physical therapy as planned. In the
clinic, adherence can be assessed subjectively by trained health-
care professionals. However, a given patient's presentation during
office visits may not accurately reflect his or her typical daily
function. Non-adherence is widespread and can be very difficult to
determine during brief clinical visits.

Medication non-adherence is particularly problematic in
patients with Parkinson's disease (PD), a disease that often affects
elderly individuals. The cognitive deficits associated with PD may
exacerbate this problem. A recent study revealed that 61% of PD
patients were non-adherent to their medical prescriptions. Addi-
tionally, the average medical cost per non-adherent patient was
$15826, compared with $9228 for adherent patients [4]. Further-
more, the shortage of movement disorders subspecialists limits
the availability of in-office visits for PD patients. Technologies that
can help monitor patients' overall health and motor symptoms
may allow for improved quality of care, reduced costs, and more
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efficient office visits. One existing technology, for example, Auto-
CITE [5] is used to automate partially constraint-induced move-
ment therapy in stroke victims. However, such approaches are
highly customized and are physically invasive because they require
patients to use wearable devices. Non-wearable approaches are
needed so that physical contact with devices may be reduced or
eliminated. Finally, since patients spend the majority of their time
away from a healthcare provider's supervised environment, there
is a need for systems that can monitor medication adherence
outside the clinic or hospital [6].

In order to overcome these challenges, the authors of this work
propose a data mining driven methodology that uses low-cost,
non-wearable sensors such as the Microsoft Kinect, to quantita-
tively evaluate adherence to medication and drug responses
among movement disorder patients. The proposed methodology
can be adapted easily to a patient's home setting, allowing for the
measurement of adherence in a non-office based setting. The
methodology presented in this paper will be solving the following
scenario:

1.1. Physician–patient healthcare scenario

Parkinson's disease (PD) patient (i) goes to the hospital to visit
his/her physician. Since physicians cannot rely on patients to
provide consistent and accurate information pertaining to their
medication adherence, the physician prescribes the proposed
motion sensor system to the patient with instructions on how to
use it. Each sensor system will be customized to a specific patient
using their initial setup data as the ground truth. The initial cali-
bration/ground truth data can either be captured at the physician's
office or at home in the patient's location of choice. Given the
baseline/ground truth data, the data mining models will deter-
mine anomalous gait patterns, hereby indicating that a patient is
non-adherent to his/her medication protocol. The availability of
quantifiable evidence of medication adherence through the pre-
sence/absence of gait dysfunctions will enable healthcare decision
makers to know how adherent their patients are and what inter-
vention strategies enhance/diminish adherence. The physician will
also know whether a patient is utilizing the system, based on a
time log stored on the system itself, hereby minimizing a patient's
ability to “game the system” by not using it.

The methodology proposed in this work first uses remote
sensor hardware to capture patient gait data. Machine learning
algorithms are then employed to help healthcare practitioners
detect PD patients' medication status as “taking” (“on”) medica-
tion and “not taking” (“off”) medication, based on gait features. It
has been reported that visual evidence of gait dysfunction are
observed in Parkinson's disease patients that are “off” medication,
compared to when they are “on” medication [7–9]. While these
gait dysfunctions are readily observable by a trained medical
expert, there exists a knowledge gap in terms of whether these
variations in gait (between “on” and “off” medication) can be
captured by non-wearable sensors and data mined for patients'
adherence to medication protocols. This works aims to fill this
knowledge gap by demonstrating the feasibility of non-wearable
data capture and data mining of patient gait during “on” and “off”
medication states. The methodology described herein has allowed
for high discriminative ability using gait data and, in the future,
may be used to predict medication adherence in the home setting.

For the purposes of this paper, we limit the definition of
adherence to the medication regimen a physician prescribes and a
patient's commitment to taking those medications as prescribed.
This paper advances the field of remote detection of adherence by:

1. The ability to use low cost, non-wearable data acquisition
techniques that concurrently maintain patient privacy by
Please cite this article as: C. Tucker, et al., Machine learning classificati
using non-wearable sensors, Comput. Biol. Med. (2015), http://dx.do
collecting only the three-dimensional (3D) geospatial data
pertaining to a patient's skeletal node location.

2. The ability to quantify movement abnormalities at a non-office/
non-hospital location, allowing for use within the home setting.

3. The ability to act as both an early warning and active mon-
itoring system that can provide relevant information to patients,
clinicians, and healthcare decision makers.

The organization of this paper is as follows. This section pro-
vides a brief introduction and motivation pertaining to the pro-
blem. Section 2 describes previous work related to the current
research. Section 3 outlines our methodology for patient adher-
ence monitoring. A clinical study involving PD patients and con-
trols is presented in Section 4, with the results and discussion.
Section 5 concludes the paper and outlines some future work and
areas for expansion.
2. Literature review

2.1. Motor dysfunction in neurological diseases and the effect of
medication

Certain neurological diseases such as Huntington's and Par-
kinson's diseases are associated with motor dysfunctions. Move-
ment disorders are often detected and evaluated based upon the
typical motor patterns of each disease entity (i.e. hyperkinesia,
hypokinesia, rigidity, gait freezing, etc.) [10–12]. Pharmacologic
treatment of PD focuses upon restoring dopamine levels (depleted
in PD) to the basal ganglia in order to ameliorate PD-related
symptoms, such as hypokinesia, rigidity, and impaired postural
balance [13]. However, pharmacologic treatments often have
complications, such as “wearing off” period at the end of dosing
cycles. This reduction in efficacy can cause patients' motor
symptoms to return [10,11,13]. Recent advances in sensor tech-
nology can help researchers and clinicians to monitor such drug-
related fluctuations in motor function [14]. Moreover, since these
fluctuations are related to daily medicine intake [15], they may
serve to identify and flag patients that require adjustments to their
treatment regimens. Since medication adherence for chronic dis-
eases is a known issue in this population [1], the monitoring
system developed by this study may allow for identification of
individuals who require help remembering their medications or
who might benefit from longer-acting drugs.

2.2. Remote non-wearable disease monitoring

An important aspect that needs to be addressed is the avail-
ability and convenience of healthcare providers. Certain factors,
such as distance to adequate facilities, can be hindrances for
access. Approaches such as teleconferencing have been explored to
overcome these limitations [16]. Encouragingly, stroke victims
using AutoCITE that were supervised 25% of the time by a person
showed the same progress as patients supervised 100% of the time
[1]. These results demonstrate the potential for significantly
reducing healthcare provider supervision in some diseases. Addi-
tionally, patient evaluations during office visits are limited con-
textually because they may not represent adequately the patient's
status during everyday tasks [16]. Long-term monitoring approa-
ches have been proposed to overcome the short time duration of
healthcare provider visits and the unreliability of existing
approaches (i.e. patient diaries and self-reporting) [17]. In addi-
tion, phonation-based approaches have been explored for detec-
tion of neurological diseases, such as PD, and may be extended to
adherence monitoring. However, phonation data is complicated by
variations in accents and speech patterns. Furthermore, symptoms
on of medication adherence in patients with movement disorders
i.org/10.1016/j.compbiomed.2015.08.012i
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have to be very severe for detection [18]. Approaches to monitor
movement dysfunctions have been explored by Bonato et al. using
accelerometers (ACC) and surface electromyographic sensors
(EMG) [14]. Barth et al. used gyroscopes and accelerometers in
order to measure the hand motor and gait functions [19]. Finally,
ankle mounted sensors have been explored by Moore et al. for
long-term monitoring of gait in PD [20]. These techniques require
physical contact of sensors with the patient, which can affect
movement and reduce adherence. Although these methods pro-
vided preliminary concepts, the authors concluded that such
methods are still too physically intrusive and inconvenient [19].
Thus, there is still a substantial need for contactless detection and
monitoring techniques for movement disorders.

Researchers have begun exploring more contactless detection
of neurologically induced movement disorders, in order to miti-
gate some of the aforementioned limitations of existing non-
wearable approaches. For example, Clark et al. investigate the
validity of the Microsoft Kinect for assessment of postural control,
compared to a benchmark multiple-camera 3D motion analysis
system [21]. Their findings concluded that the Kinect system can
validly assess kinematic strategies of postural control. Gabel et al.
propose a Kinect based approach for measuring stride and arm
kinematics in patients and demonstrate the validity of the Kinect
system for remote gait capture [22]. Clark et al. propose a Kinect
based system for providing lateral trunk lean feedback during gait
retraining [23]. The authors conclude that the Kinect based system
can be used as a real time biofeedback system, without the need
for expensive wearable sensor systems. Specifically relating to
neurologically induced movement disorders such as Parkinson's
disease, Summa et al. propose the use of a Kinect based system, in
conjunction with virtual reality to implement a technologically
assisted version of the Lee Silverman's Voice Therapy, LSVT

s

BIG
[24]. Takač et al. employ both wearable (smartphone sensors) and
non-wearable (Kinect) sensors to detect freezing of gait (FoG), a
phenomenon observed in PD patients resulting in a temporary,
involuntary inability to initiate or continue movement that lasts
for few seconds or minutes [25].

Literature relating to the capture of patient gait data using non-
wearable sensors is promising and demonstrates the feasibility of
these techniques. While the literature has investigated the ability
of systems such as the Kinect to capture patient gait in a manner
comparable to more advanced non-wearable or wearable sensors,
there exists a knowledge gap in terms of whether the impact of
intervention mechanisms (such as medications) on patients' gait
Fig. 1. Overview of

Please cite this article as: C. Tucker, et al., Machine learning classificati
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patterns can be distinguished from patients' abnormal gait pat-
terns (e.g., in PD patients). This work aims to fill this gap through
the use of non-wearable sensors that capture patients' gait data
and machine learning algorithms that discover latent, previously
unknown patterns that help distinguish patients “on” and “off”
medication states.

2.3. Data mining for characterization of human movement

Together with the recent availability of low-cost multimodal
sensors and the growth of motion capture technologies, data
mining has emerged rapidly as a means to characterize human
movement in an automated and accurate manner. Data mining
techniques can allow for accurate automated classification of
human movements and gestures [26–28]. Begg et al., for example,
explored the ability for data mining to recognize changes in gait
between young and older humans [27]. The data recorded using
the PEAK Performance Technology Inc. motion analysis system
utilized support vector machine learning to identify 24 gait fea-
tures and distinguish between age-related gait patterns with 91.7%
accuracy. Additionally, using skeletal data captured using the
Microsoft Kinect, Celebi et al. were able to use dynamic time
warping (a template matching algorithm from speech recognition)
to recognize gestures made by humans and classify them accord-
ing to joint positions [26]. Using the same sensor, Raptis et al. were
able to illustrate real time classification of dance gestures using a
cascaded correlation based classifier, achieving an average accu-
racy of 96.9% despite noisy sensor data [28]. Such techniques
illustrate the potential of data mining methods for human move-
ment pattern recognition and characterization.
3. Methodology

A non-wearable data-mining driven methodology is proposed
in this work to differentiate between PD patients who are adher-
ent to their medication and PD patients who are non-adherent.
The methodology proposed consists of four steps, as outlined in
Fig. 1. Step 1 is the usage of non-wearable sensors in a non-hos-
pital environment to gather skeletal joint data from the patient.
This allows for patient convenience and remote monitoring of
adherence. Step 2 is the processing of the collected skeletal joint
data to generate 3D position, velocity, and acceleration values for
the skeletal joints of the patient. This data is used to generate a set
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of identifying features that will be used subsequently to determine
whether a patient is adherent to his or her medication. Step
3 employs machine learning algorithms on the generated set of
features to classify a patient as adherent to their medication or not.
The results are summarized in Step 4 and will serve to inform a
physician of a patient's current PD medication adherence state.
This potentially allows the healthcare provider to monitor the
patient's adherence and propose intervention strategies aimed at
enhancing patient safety and wellbeing.

3.1. Step 1. Data acquisition

Low cost, off-the-shelf time of flight sensors (e.g., Microsoft
Kinect) can be used in a non-clinical environment to capture
human gait data. Multimodal time of flight sensors can collect a
variety of measurements from video data, similar to regular
cameras, with the addition of depth readings of humans and
objects. Our methodology relies on collecting 3D coordinate ske-
letal data of the patient. Time of flight sensors can approximate
nodes on a human body without the need of wearable sensors and
use these nodes to map the 3D locations of the joints of the ske-
letal system [29]. For the data collection step, four walking
orientations are conducted, i.e., walking towards the sensor (for-
ward), walking away from the sensor (backward), walking to the
right of the sensor (RHS) and walking to the left of the sensor
(LHS), as seen in Fig. 2. With each reading, the sensor collects X, Y,
and Z coodinate data for k node representing various joints on the
human skeleton, as shown in Fig. 2. Note that the patient is
walking toward the sensor (red arrow). The sensor collects the 3D
coordinates of k skeletal joints, represented by the red dots, on the
patient in Fig. 3. The number of joints tracked, k, varies depending
on the sensor used. For the original Kinect sensor employed in this
work, the number of joints k tracked is 20, ranging from the head
joint (in XYZ space) to the right and left foot joints (in XYZ space),
as shown in Fig. 3.

To take the readings, the sensor should be placed such that the
patient is within the range and field of view of the sensor being
used. Thereafter, the patient walks in a straight line in one of the
following four directions: directly toward the sensor, directly away
from the sensor, parallel to the sensor from left to right, and par-
allel to the sensor from right to left. The sensor captures data as
the patient walks in one of the four directions. The amount of
skeletal tracking error highly depends on the sensor being
employed, the environmental lighting, the sensor's latency, and a
patient's distance away from the sensor. The Kinect is more
accurate when all skeletal joints are being tracked, which is more
likely to occur during the front and back orientations. For the left
and right walking experiments, there may be instances where
Fig. 2. Four different di

Please cite this article as: C. Tucker, et al., Machine learning classificati
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certain joints are not observable by the Kinect system due to the
orientation of the subject, relative to the patient. Clark et al. per-
formed a study on the accuracy of the Kinect system in providing
reliable posture data. Their research found comparable inter-trial
reliability (ICC difference¼0.0670.05; range, 0.00–0.16) and
excellent concurrent validity for the majority of measurements
(r¼0.9670.04; range, 0.84–0.99) [21]. In this work, whenever the
sensor system is unable to track a joint, this data instance is
automatically inferred by the sensor, based on previously known
joint data. Given the sampling rate of 30 frames per second,
enough data is generated during a 4–6 s walking experiment to
offset anomalous joint data. It is important to note that the sensor
system tracks skeletal joints, independent of the attire worn by the
patient, i.e., a patient could be wearing a business suit or a night
gown, as the depth sensor data enables the system to calculate
position data (Fig. 3). Existing experimental setups found in the
literature have proposed collecting data with comparable distance
or time constraints [30–33]. However, these data collection tech-
niques typically require extensive human observation or inter-
vention. The proposed methodology employs the use of non-
wearable sensors that can capture data at high frequency rates.

3.2. Step 2. Raw skeletal data processing

The raw data aquired by the sensor, is used to generate iden-
tifying features that will be subsequently used to distinguish
adherent (“on” medication) vs non-adherent (“off medication”)
patients. At each time stamp, the sensor captures the 3D coordi-
nate (X, Y, Z) positions for each of the k joints (red circles in Fig. 3),
hereby generating a 3 k dimensional feature space relating to the
position data of the k joints. For the Kinect system, the number of
joints tracked (k) is 20, although other non wearable sensors may
track more or less gait related joints. In addition to joint position
data captured by the Kinect system, velocity ( t t

t t
position positioni i

i i

1

1

( ) − ( )
−

−
−

)

and acceleration ( t t
t t

velocity velocityi i

i i

1

1

( ) − ( )
−

−
−

) are calculated based on the

original XYZ position data of the k joints. Given the average frame
rate of 30 frames per second, the time between two data points
(i.e., t ti i 1− )− is approximately 33 ms.

In addition to the position, velocity and acceleration features,
the ratio between joints are also calculated in order to generate a
unit less set of features that accounts for variations in gait across a
wide range of individuals and orientations, relative to the sensor
system. Therefore by initially tracking k¼20 joints, a total of 60
position features (i.e., 20 position features for the X, Y and Z
dimensions), 60 velocity features (i.e., 20 velocity features for the
X, Y and Z dimensions), 60 acceleration features (i.e., 20 accelera-
tion features pertaining for the X, Y and Z dimensions), in addition
to the remaining 1710 ratio features generated using the
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Fig. 3. Unprocessed readings from the KinectQ3 sensor. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Table 1
Comparison of classifiers used [42], where nnnn represents the best and n represents the worst performance.

Decision Tree Based Algo-
rithms (C4.5, Random Forest)

SVM IBk Naïve
Bayes

Model accuracy nn nnnn nn n

Training speed nnn n nnnn nnnn

Classification speed nnnn nnnn n nnnn

Tolerance to noise nn nn n nnn
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enumerative combination of each of the XYZ position, velocity and
acceleration joints, relative to the other joints. For example, in
order to calculate the ratio features for the position dimension in
the X direction, each node is compared in a pairwise manner,
taking into account symmetry (i.e., the distance from A to B is the
same as the distance from B to A and is therefore considered once).
Therefore, for the 20 position nodes in the X direction, there are
19þ18þ17þ16….þ1 possible ratio features generated, resulting
in a total of 190 ratio position features in the X direction. For all
ratio positions (i.e., X, Y, and Z), this results in (3*190¼570 position
ratio features). A similar calculation is performed for the velocity
and acceleration features, resulting in a total ratio feature gen-
eration (XYZ for position, velocity and acceleration features) of
(3*570¼1710). The entire feature space containing 1890 features
(180 position, velocity and acceleration features þ1710 ratio fea-
tures from the enumerative combinations) serves as the input
space, with the class variable being that which we aim to predict
(i.e., “adherent” (“on” medication) or “non-adherent” (“off”
medication)).

3.3. Step 3. Data mining

The objective of the data mining step is to determine the fea-
ture combinations that enable the classification of an unseen set of
gait readings as “adherent” (“on” medication) or “non-adherent”
(“off” medication), based on the position features captured in Step
1 and the velocity, acceleration and ratio positions generated in
Step 2 of the methodology. The elements of this r-tuple contain
numeric values for the gait features relating to the binary classifier
(i.e., “adherent” or “non-adherent”), thus representing if the
reading indicates a person who is adherent to their medication or
someone who is nonadherent, for a given time stamp. The binary
classifier is trained using a data set of known adherent and non-
adherent patients. Each reading is considered an independent
sample so as to minimize assumptions about the gait features,
Please cite this article as: C. Tucker, et al., Machine learning classificati
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their correlations with subsequent samples, and their correlation
with the output class variable (label). The resulting data mining
model can be retrained and updated if additional gait data is
acquired from a patient in order to ensure that evolving gait pat-
terns are captured by the model. Here, the healthcare decision
makers can decide the threashold predictive accuracy that a model
must fall below in order for the model to be retrained on new
patient gait data. If the predictive accuracy of the data mining
model falls below this predictive accuracy, then the new patient
gait data will be included in the training data, with the model
retrained using the same steps originally used during model
generation. Manohar and Tucker have demonstrated the feasibility
of using non-wearable sensors for modeling human body move-
ment data in order to accurately perform emerging threat detec-
tion [34]. Behoora and Tucker have discovered correlations
between engineering designers' body language and their emo-
tional states [35,36]. The authors of this work expand on previous
research findings by exploring the ability of the proposed system
to accurately predict patients' “on”/ “off” medication states.

In this work, the authors employ the (i) C4.5 Decision Tree
Classification algorithm, (ii) IBK classificaiton algorithm, (iii)
Naïve Bayes Classification algorithm, (iv) Support Vector
Machines and (v) Random Forest. These five data mining
classification algorithms are employed in this work because of
their accuracy, complexity, and comprehensibility [37–40]. The
motivation behind choosing these classifiers is that while
quantifying the exact time and space complexity of various
algorithms depends on the data set and the implementations
details, the above algorithms have been shown to have good
real world performance across a wide variety of classification
areas and provide a suitable range of classification and learning
speeds [41]. For example, C4.5 and Random Forest have good
classification and learning speeds. Additionally, the C4.5 can
provide insight into the joint positions, velocities, and accel-
erations that are the most important for classification. SVM's,
on of medication adherence in patients with movement disorders
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conversely, have good classification and computational speed
but slow learning speed. Thus, they may be more appropriate
in situations when the training data model does not get
updated very often. Finally, others such as IBK have slower
classification speeds but have been shown to have good per-
formance in a variety of situations [41]. The performance
variations of these classifiers across various metrics is sum-
marized in Table 1 below.

3.4. Step 4. Hospital feedback

Accurate methods for detecting medication non-adherence would
provide clinicians with critical information for the management
having neurologic movement disorders. Machine learning algorithms
may enable individualized monitoring of medication adherence, the
lack of which, can exacerbate disease severity. Knowledge of
decreasing adherence and worsening disease status would be parti-
cularly relevant for the prescribing clinician because these indications
may prompt modification of the treatment strategy. For example,
cognitive function often declines throughout the progression of PD
and is a potential source for reduced medication adherence [43].
Machine learning systems may enable the detection of frequently
missed doses, using remotely sensed motion data, and allow for the
transmission of important alerts to healthcare providers. Accordingly,
providers may utilize this data to evaluate the efficacy of a given
treatment plan and adjust medications as necessary. For example, a
patient who frequently forgets to take his or her afternoon dose of
medication may be placed on a longer acting drug to increase
adherence. Finally, the data available to the providers may be custo-
mized according to patient consent. Remote visualization of patient-
specific gait patterns, for example, would be straightforward to
implement and require minimal data transfer using skeletal coordi-
nates and data mining results (Fig. 4). The skeletal representation of a
patient's gait provides movement information and is analogous to
capturing a video of the patient and uploading it for review by phy-
sicians [16]. Interactive video conferences have been shown to have
favorable results for remote Parkinson's disease monitoring. Our
approach allows for an analogous review of the data collected by
healthcare providers. Simultaneously, our approach has the advantage
of only needing to transmit the joint data captured, as opposed to a
video thus reducing network bandwidth requirements. Systems such
as the Kinect have inbuilt algorithms that separate objects in an
Fig. 4. Feedback to he
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environment from actual individuals using computer vision and the
depth sensing data streams. For a community deployment (which is
planned for future work), an individual would be uniquely identified
using facial recognition algorithms and skeletal joint patterns that are
unique to each individual such as those proposed by [44–47]. This
would help minimize the potential for individuals to “game the sys-
tem” by having either friends or relatives capture data for them.

While community based adoption of new systems typically
presents new challenges, the “plug and play” nature of the pro-
posed motion sensor system, along with the wide user base of
existing users, enhances the ability for researchers to continually
make enhancements to the system [48,49]. With the existing
Graphical User Interface, a patient would simply go home, plug the
Kinect sensor system into their laptop or computer, open the
graphical user interface prescribed by their physician, and begin
the data capture process, with the system calibrating, based on the
height and distance away from the patient. Similar to how a
physician instructs a patient to routinely conduct blood pressure
or blood sugar tests at home, Step 1 of Fig. 1 will be routinely
coded by the physician into the instruction manual for the patient.
Given that the sensor system collects time stamped data that is
connected to the physician's office, the physician will be flagged if
a patient misses a given data collection time period.
4. Parkinson's disease clinical study

A study involving free walking trials of seven PD patients first
off their dopaminergic drugs and thereafter on their prescribed
drugs is presented in this section to demonstrate the feasibility of
the proposed data mining driven methodology. The details relat-
ing to the experimental set up and sensor data acquisition are
presented below. For the current study, 7 PD subjects were
recruited from a tertiary movement disorders clinic. PD diagnosis
was established by a movement disorders specialist (XH) using
published criteria [50]. Subjects were confirmed for absence of
other major and acute neurological disorders, hypothyroidism,
vitamin B12 and folate deficiencies, and kidney and liver disease.
All patients were asked to withhold PD medications overnight
(412 h) before the off-medication walking trial [51]. Written
informed consent was obtained for each subject, in accordance
with the Declaration of Helsinki and the research protocol was
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reviewed and approved by the Penn State Hershey Medical Center
Institutional Review Board (IRB protocol number 28989). On-
medication trials were recorded after waiting at least one hour
from the time of dopaminergic medication administration. The
validity of the proposed model will be explored based on the
ability of (i) the data mining models to provide individually cus-
tomized monitoring of patient medication adherence and (ii) the
ability of the data mining models to generalize across PD patients
in their “on” and “off” medication states.

4.1. Sensor data acquisition

In the experiment, the Microsoft (MS) Kinect multimodal sensor
was used to capture 3D skeletal images in a contactless manner. The
MS Kinect is an off-the-shelf, low cost sensor that is capable of cap-
turing multimodal motion data and software interface using the Kinect
software development kit. The Kinect is capable of tracking up to 20
joints of the human skeleton via its infrared sensor, which captures
data at the rate of 30 Hz. The sensor has a resolution of 640�480 and
the horizontal and vertical fields of view of the sensor are 57° and 43°,
respectively. These factors make it suitable for our study [29]. Addi-
tionally, while the sensor's accuracy decreases with distance, the
maximum error reaches 4 cm. These factors make it suitable for our
study [52]. Gait sensor systems such as the Microsoft Kinect are “plug
and play”, making them compatible with a wide range of existing
laptops and tablets [29,53]. The Kinect sensor has sold over 24 million
units as of 2013, in part due to its price and cross platform compat-
ibility (i.e., the ability to use it with the Microsoft gaming platform,
along with a wide range of laptops, desktops and tablets).

To record the motion of each subject, the Kinect was configured
at an elevation of 3 ft and 10 in. above the floor, as shown in Fig. 5.
Subsequently, the whole-body representation of the patient was
verified and the camera angle calibrated while the patient stood at
a distance of 10 ft from the Kinect. Each subject was then
instructed to Forward Walk (FW), which took 4–6 s per trial,
depending on the subject. The subjects repeated the gait data
collection by subsequently walking away from the sensor (back) to
the left of the sensor (LHS) and to the right of the sensor (RHS) as
explained in Fig. 2). During each trial, data point sets were recor-
ded every 33 ms, resulting in approximately 100–180 total data
point per subject. For example for the forward walking experi-
ment, subjects were asked first to take 2–3 steps backward (4 ft)
from the point of camera calibration, while remaining within the
distance limit of the device. Subjects were then instructed to walk
comfortably towards the Kinect and were not given any specific
Fig. 5. Example of forward

Please cite this article as: C. Tucker, et al., Machine learning classificati
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instructions regarding side of initiation. One trial was recorded
during the “off” medication state, mimicking non-adherence. The
subsequent trial was recorded one hour after the patient was
administered dopaminergic medication (“on” medication,
mimicking adherence). During the experiment, only readings
where all 20 joints of the subject were located by the Kinect
skeletal data tracking were included. For each run, an average of
206 readings were captured per subject. Note that multiple read-
ings were taken per patient and classified to test for accuracy. Each
such reading represents an independent sample.

4.2. Data processing

For the Kinect up to 20 joints can be tracked resulting in k¼20.
Once the data collection is complete, the additional features were
generated, resulting in a total of 1890 gait related features per
patient, per experiment.

1. Only readings in which the 3D positions of all 20 joints were
measured by the sensor were utilized. The remaining readings
were discarded. This led to a 60 position features for each
complete reading, representing the 3D (X,Y,Z) coordinate data
for each joint with the Kinect as the origin and an average of
206 readings per patient.

2. The velocity and acceleration of each node were computed in X,
Y and Z coordinate spaces using the timestamp generated by the
Kinect for each reading. To normalize according to subject-
specific body metrics, the ratios between these values were
calculated resulting in a total of 1890 features, where 60 fea-
tures were the 3D position coordinates, 60 were from velocity,
60 from acceleration, and 1710 from the ratios between them.

3. A data set was generated from the readings acquired by the
7 PD patients while off of their medications. This data set was
labeled “non-adherent” and represented non-adherence. Sub-
sequently, each patient was administered his or her prescribed
dopaminergic medication. On medication data was collected
after one hour from the time of dopaminergic medication
administration. These readings were placed into a data set
labeled “adherent” and were used to represent medication
adherence.

4.3. Application of machine learning algorithms for classification

Given the feature space containing 1890 features, the goal of
each data mining algorithm is to first train a model, based on a
given training data set. Next, unseen test data is used to quantify
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Table 2
Summary of default parameters used in the Data mining algorithms in WEKA.

Default Weka Parameters

Naïve Bayes Debug¼false, displayModelInOldFormat¼False, UseKernelEstimator¼False, UseSupervisedDiscretization¼False
IBK KNN¼1, CrossValidate¼False, Debug¼False, DistanceWeighting¼No Distance Weighting, MeanSquared¼False, Near-

estNeighbourSearchAlgorithm¼LinearNNSearch, WindowSize¼0
SVM BuildLogisticModels¼False, C¼1.0, ChecksTurnedOff¼False, Debug¼False, Epsilon¼1.0E-12, FilterType¼Normalize Training Data,

Kernel¼PolyKernel –C 250007 –E 1.0, NumFolds¼-1, RandomSeed¼1, ToleranceParameter¼0.001
C4.5 (J48) decision tree BinarySplits¼False, ConfidenceFactor¼0.25, Debug¼False, MinNumObj¼2, NumFolds¼3, ReducedErrorPrunning¼False, SaveIn-

stanceData¼False, Seed¼1, SubtreeRaising¼True, Unprunned¼False, UseLaplace¼False
Random Forest Debug¼False, MaxDepth¼0, NumFeatures¼0, NumTrees¼10, Seed¼1

Table 3
Confusion matrix for adherence.

Actual adherence status Adherence status classified as

Adherent Non-adherent
Adherent True Positive (TP) False Negative (FN)
Non-adherent False Positive (FP) True Negative (TN)

C. Tucker et al. / Computers in Biology and Medicine ∎ (∎∎∎∎) ∎∎∎–∎∎∎8
the accuracy of the data mining model by classifying unseen
instances as either as “adherent” or “non-adherent.” The Waikato
Environment for Knowledge Analysis (WEKA) [54] software was
used to execute the five data mining algorithms described in
the methodology. For the purposes of this study, the default
parameters of the WEKA software's machine learning algorithms
were used and summarized in Table 2 below:

4.4. Evaluation metrics for data mining models

In order for the proposed methodology to be viable, the accu-
racy and robustness of the models needs to be validated. To
evaluate the performance of the classifiers, the authors investi-
gated two validation steps: (i) validation of data mining models for
providing individually customized monitoring of patient-adher-
ence and (ii) validation of the generalizability of the resulting data
mining models to unseen patient data. Each step of the validation
is assessed using the statistics presented in Table 3. Table 3 shows
how classification results in either true positive (TP), false positive
(FP), false negative (FN), and true negative (TN). The four values,
when presented together, are termed the “confusion matrix.”

These four outcomes are used to calculate the precision, recall, F-
measure, and receiver-operator characteristic (ROC) curve perfor-
mance metrics of the classifier models [55]. The precision represents
the number of patients divided by the total number of elements
classified as belonging to the positive class. This measure is indicative
of how accurately the methodology predicts an adherent patient
between patients “on” and “off” their medication. High precision
avoids missed non-adherent patients. Recall represents the number of
true positives divided by the total number of elements that actually
belong to the positive class. This is indicative of how accurately the
methodology correctly identifies a patient on their medication as
adherent. High recall avoids false alarms. The F-measure combines
precision and recall. The F-measure is the harmonic mean of the
precision and recall. It represents howwell the methodology balances
the measures of precision and recall. Accordingly, it represents the
degree to which the classifier identifies non-adherent patients while
avoiding false alarms. The Receiver Operating Characteristic (ROC)
curve measures the performance of a classifier as its discrimination
threshold is varied. It is used to characterize the tradeoff between the
costs of failing to detect adherence against the costs of raising false
alarms. The area under the ROC curve is an indicator of the quality of
our classifier.
Please cite this article as: C. Tucker, et al., Machine learning classificati
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4.5. Results and discussion
1. Investigate the ability of the data mining models to provide individually
customized monitoring of patient medication adherence.
The results presented in Tables 4–10 are quite promising and
demonstrate the ability of the proposed methodology to accu-
rately predict the “on” and “off” states of each individual
patient. For conciseness, the data mining algorithm that yielded
the best performance (compared to the others) are presented
for each walking orientation in each of the tables. Out of the 28
experimental walking scenarios spanning the 7 PD patients, it
can be seen that the C4.5 (denoted as the J48 algorithm in
WEKA) had the most consistent predictive performance, achiev-
ing the highest performance for 14 out of the 28 walking
experiments (i.e., LHS for patient 113, Back and RHS for patient
118, Back, Front and RHS for patient 162, Back for patient 164,
Front, Left and RHS for patient 176, Back and RHS for patient
183, Back and Front for patient 215). The highest predictive
accuracy achieved by the C4.5 (J48) model was 100% with
patient 162, with the lowest predictive accuracy being 52% with
patient 118. The IBK and SVM algorithms performed second and
third best across the 28 walking experiments spanning 7 PD
patients with 6 and 5 best performances respectively. For
patient #164, RHW data was unavailable and denoted as “N/
A” in Table 7.
In terms of walking orientation, there does not seem to be a
consistent walking direction across patients that represents the
best walking experiment to achieve high predictive accuracy.
For example, the highest Back walking experiment achieves
100% (patient 118), while the lowest accuracy for a back walking
experiment resulted in a 44% accuracy (for patient 183). The
data mining models and walking orientations seem to have
highest accuracy for patient 162, with three of the orientations
achieving an accuracy greater than 99%, with the lowest
accuracy for that patient being 85.1%. A potential reason for
this could be the severity of this patient's PD case and the
magnitude of the medication effect on the patient's gait when
they are “on” versus “off” medication. The data mining models
and walking orientations seem to have the poorest accuracy for
patient 176, with three of the four orientations having predic-
tive accuracies in the 60% range and one in the 40% range. This
may indicate that the difference between this patient's gait “on”
versus “off” medication, may not be as pronounced as patient
162, hereby making it more difficult for the sensor system and
subsequent data mining models to determine differences
between the “on” and “off” states.
The next paragraph investigates how the proposed data mining
models generalize when multiple patients are used to train the
model and a single patient is used to test the model (i.e., leave-
one-out-validation). In this work, leave-one-out validation is
limited to patients 162 and 176 since they represent the best
on of medication adherence in patients with movement disorders
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Table 4
Summary of Data Mining Classification Accuracies for different walking orientations for patient 113.

Patient Walking orientation Algorithm CCI ICI TP rate FP rate Precision Recall F-Measure ROC Area

113 Back SMO 53.7% 46.3% 53.8% 46.5% 54.1% 53.8% 53.9% 53.6%
Front IBK 69.7% 30.3% 69.7% 30.4% 70.1% 69.7% 69.8% 69.7%
Left (LHS) J48 57.1% 42.9% 57.1% 47.8% 76.4% 57.1% 45.6% 54.7%
Right (RHS) IBK 65.7% 34.3% 65.7% 35.8% 66.2% 65.7% 65.0% 65.0%

Table 5
Summary of Data Mining Classification Accuracies for different walking orientations for patient 118.

Patient Walking orientation Algorithm CCI ICI TP Rate FP Rate Precision Recall F-Measure ROC Area

118 Back J48 DT 52.1% 47.9% 52.1% 48.9% 51.8% 52.1% 50.8% 56.5%
Front SVM 74.3% 25.7% 74.3% 27.1% 74.2% 74.3% 74.2% 73.6%
Left (LHS) IBK 98.1% 1.9% 98.1% 0.0% 98.1% 98.1% 98.1% 98.1%
Right (RHS) J48 DT 61.7% 38.3% 61.7% 37.3% 78.4% 61.7% 55.4% 62.2%

Table 6
Summary of Data Mining Classification Accuracies for different walking orientations for patient 162.

Patient Walking orientation Algorithm CCI ICI TP rate FP rate Precision Recall F-Measure ROC Area

162 Back J48 DT 100.0% 0.0% 100.0% 0.0% 100.0% 100.0% 100.0% 100.0%
Front J48 DT 100.0% 0.0% 100.0% 0.0% 100.0% 100.0% 100.0% 100.0%
Left (LHS) IBK 99.2% 0.08% 99.2% 0.7% 99.2% 99.2% 99.2% 99.2%
Right (RHS) J48 DT 85.1% 14.9% 85.1% 14.7% 86.9% 85.1% 84.9% 85.2%

Table 7
Summary of Data Mining Classification Accuracies for different walking orientations for patient 164.

Patient Walking orientation Algorithm CCI ICI TP rate FP rate Precision Recall F-Measure ROC Area

164 Back J48 DT 65.3% 34.7% 65.3% 27.5% 80.5% 65.3% 62.3% 68.9%
Front SVM 59.5% 40.5% 59.5% 37.9% 63.1% 59.5% 58.1% 60.8%
Left (LHS) SVM 83.8% 16.20% 83.8% 17.1% 83.8% 83.8% 83.8% 83.4%
Right (RHS) N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 8
Summary of Data Mining Classification Accuracies for different walking orientations for patient 176.

Patient Walking orientation Algorithm CCI ICI TP rate FP rate Precision Recall F-Measure ROC Area

176 Back Naïve Bayes 48.7% 51.3% 48.7% 55.2% 34.3% 48.7% 35.5% 46.7%
Front J48 DT 65.9% 34.1% 65.9% 35.9% 75.6% 65.9% 61.9% 64.7%
Left (LHS) J48 DT 60.9% 39.10% 60.9% 36.9% 66.3% 60.9% 58.4% 62.2%
Right (RHS) J48 DT 67.7% 32.3% 67.7% 30.4% 72.1% 67.7% 66.7% 68.7%

Table 9
Summary of Data Mining Classification Accuracies for different walking orientations for patient 183.

Patient Walking orientation Algorithm CCI ICI TP rate FP rate Precision Recall F-Measure ROC Area

183 Back J48 DT 44.0% 56.0% 44.0% 41.9% 56.5% 44.0% 32.0% 51.1%
Front IBK 63.0% 37.0% 63.0% 39.5% 62.9% 63.0% 62.1% 61.7%
Left (LHS) SVM 56.0% 64.00% 56.0% 42.5% 87.3% 56.0% 55.7% 56.7%
Right (RHS) J48 DT 97.5% 2.5% 97.5% 2.4% 97.5% 97.5% 97.5% 97.6%

Table 10
Summary of Data Mining Classification Accuracies for different walking orientations for patient 215.

Patient Walking orientation Algorithm CCI ICI TP rate FP rate Precision Recall F-Measure ROC Area

215 Back J48 DT 95.6% 4.4% 90.7% 4.9% 96.0% 95.7% 95.6% 98.3%
Front J48 DT 91.7% 8.3% 91.8% 7.5% 93.0% 91.8% 91.7% 92.1%
Left (LHS) IBK 68.3% 31.70% 68.4% 23.1% 85.1% 68.4% 67.7% 71.1%
Right (RHS) RF 66.3% 3370.0% 66.3% 30.1% 75.3% 66.3% 64.0% 84.6%
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and worst case predictions in the individual customized model
(this section). The generalized model does not quantify the
average performance across all patients due to the lack of a
superior walking scenario (i.e., front, back, left, right) across all
patients, as discussed in this section. Since the focus of this
paper is on demonstrating the feasibility of the system to
capture, store and mine gait related data for individual patients,
future work will explore the generalizability of the proposed
methodology across a large sample of patients.

2. Investigate the ability of the data mining models for to generalize
across PD patients in their “on” and “off” medication states.

The next validation stage explores the generalizability of the
proposed methodology in predicting unseen cases of PD patients
in their “on” and “off” medication states. In this scenario, the
training data consists of a pool of patient gait data (as opposed to
individual gait data, as seen in validation Stage 1). The test data
consists of the gait pattern of an unseen patient in their “on” and
“off” medication state, i.e., a patient that was not included in the
training data set. To test the generalizable data mining model, the
authors select patient 162 (Table 6) to represent the patient with
the most distinguishable “on” and “off” medication gait patters,
based on the high predictive accuracy of the data mining models
in Tables 4–10. The authors select patient 176 (Table 8) to repre-
sent the patient with the least distinguishable “on” and “off”
medication gait patters, based on the low predictive accuracy of
the data mining models in Tables 4–10. Together, patients 162 and
176 represent the best and worst case performance of the non-
wearable sensor system and corresponding data mining models
presented in validation stage 1. Given that each patient receives
his/her own sensor system, the focus on this paper is on indivi-
dually customized medication adherence models. However, for
completeness, the authors include results from the generalizable
cases for the patients exhibiting the best and worst predictive
performance, as seen in Tables 6 and 8.

Table 11 and 12, and Fig. 6 present the results of the J48 Data
Mining classification model that uses patients 113, 118 164, 176,
183 and 215 as training data to generate the model, with patient
162 as unseen data to test the model. The results in Table 11 reveal
a predictive accuracy of 77.9% for the generalized model. It is
interesting to note that the model correctly classifies all instances
where a patient is “off” their medication (i.e., a precision score of
1), highlighting the system's ability to accurately detect “off”
medication states (Table 11), albeit at times being overly sensitive
and in some cases classifying individuals that are “on” medication
as being “off” medication. Fig. 6 provides us with a detailed
understanding of the relevant features of the model that enable
the accurate classification of PD “on” and “off” states. Out of the
original 1890 features included in the original training data, 139
features are found to be relevant to the Decision Tree model in
Fig. 6, with the top 10 features (corresponding to their hierarchy in
Fig. 6) being ElbowLeftXPosition, ElbowLeftYPosition, ShoulderCen-
terYPosition, WristRightXPosition, KneeLeftXPosition, HeadZPosition,
SpineYPosition, KneeLeftXPosition, HipLeftXAcceleration. Positions x2/
x16. The importance of the arm features (i.e., elbow joints) is
consistent with existing literature that have found that reduced
arm swing serves as an identifying feature of PD patients [56].
Beyond arm features, our model discovered relevant features in
Table 11
Summary of Data Mining Classification Error Rates for the generalized PD model using

Correctly classified
instances

Incorrectly classified
instances

Kappa
statistic

Mean absolute
error

R
s

127 (77.9%) 36 (22.1%) 0.5458 0.2236 0

Please cite this article as: C. Tucker, et al., Machine learning classificati
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predicting PD “on” and “off” medication states such as the knee
and spine joint locations, hereby expanding on the potential joint
locations that physicians can focus on when trying to detect
medication adherence in PD patients.

Tables 13 and 14, and Fig. 7 present the results of the J48 Data
Mining classification model that uses patients 113, 118 162, 164, 183
and 215 as training data to generate the model with patient 176 as
unseen data to test the model. The ability of the generalized model to
accurately predict patient 176's “on” and “off” medication state was
poor, resulting in only a 50.4% predictive accuracy. Given that patient
176's “on” and “off” medication states were difficult to predict using
both the individually customized approach (validation Stage 1) and
the generalized approach (validation Stage 2) highlights some of the
limitations of the current work and outlines potential areas of
expansion. Fig. 7 presents the J48 Decision Tree classification model
with the top 10 attributes being ElbowLeftXPosition, KneeRight-
YPosition, ElbowRightXPosition, WristRightXPosition, KneeLeftXPosition,
HeadZPosition, SpineYPosition, WristLeftXPosition, KneeRightXPosition,
AnkleRightXPosition. The size of this tree is 103, slightly smaller than
the previous J48 in Fig. 6. Similar to the J48 algorithm in Fig. 6, the
most relevant feature in determining PD “on” and “off” states is the
ElbowLeftXPosition feature. The J48 DT model in Fig. 7 differs in some
of the features such as ankle position, and not containing any velocity
or acceleration data in the top 10 attributes.

For completeness, the authors performed an evaluation for
each of the PD patients in the study. I.e., for patients 113 (results in
Tables 15 and 16), 118 (results in Tables 17 and 18), 164 (results in
Tables 19 and 20), 183 (results in Tables 21 and 22) and 215 (results
in Tables 23 and 24), a similar experimental setup as described for
patients 162 and 176 was performed. The results in Tables 15–24
highlights the challenges of utilizing a generalized PD medication
adherence model to predict individual PD gait abnormalities, as
each patient may exhibit different gait abnormalities. Further-
more, the effects of PD medication may impact patients differently,
hereby making it difficult for gait based anomalies to be the sole
differentiating factor for a general population. These results
highlight the benefits for individually customized PD medication
adherence models, as presented in the first paragraph of Section
4.5 (results in Tables 4–10). Given the relatively low cost of the
proposed system, each patient could have their own individually
customized sensor system and PD medication adherence feedback.

The proposed evaluation methods would allow healthcare
providers to obtain real time and concise feedback regarding
patient adherence. Importantly, adherence can be determined in a
non-clinical location and transmitted to the healthcare providers
remotely. The result of our study is in agreement with the motor
function impairment exhibited due to non-adherence and sug-
gests skeletal data mining can be a powerful tool in detecting
adherence. Also, although the sensors used have range and accu-
racy limitations, the study shows using data mining techniques
even on such noisy data can provide insight into patient adher-
ence. The methodology proposed herein, accordingly, may provide
a feasible and low-cost implementation for remote detection of
medication adherence. Additionally, as the sensor used to record
data can be turned on, as and when required for remote mon-
itoring and data collection, patient's privacy concerns are com-
parable to using video conferencing for medical diagnosis. The
125
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128
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130
131
132

patient 162 as the unseen test patient.

oot mean
quared error

Relative absolute
error

Root relative
squared error

Total number of
instances

.4698 44.70% 93.92% 163

on of medication adherence in patients with movement disorders
i.org/10.1016/j.compbiomed.2015.08.012i
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Table 12
Summary of Data Mining Classification Accuracy for the generalized PD model using patient 162 as the unseen test patient.

TP rate FP rate Precision Recall F-Measure ROC Area Class

53.2% 0.0% 100.0% 53.2% 69.5% 83.1% Off_Med
100.0% 46.8% 70.5% 100.0% 82.7% 83.1% PD_on

Weighted average 77.9% 24.7% 84.4% 77.9% 76.5% 83.1%

Fig. 6. Partial Visualization of Weka's Decision Tree Model [54] for Generalized PD ON-OFF Medication States using patient 162 as the test case.

Table 13
Summary of Data Mining Classification Error Rates for the generalized PD model using patient 176 as the unseen test patient.

Correctly classified
instances

Incorrectly classified
instances

Kappa
statistic

Mean absolute
error

Root mean
squared error

Relative absolute
error

Root relative
squared error

Total number of
instances

117 (50.4%) 115 (49.6%) 0.0152 0.4939 0.6933 98.8% 138.6% 232

Table 14
Summary of Data Mining Classification Accuracy for the generalized PD model using patient 176 as the unseen test patient.

TP rate FP rate Precision Recall F-Measure ROC Area Class

43.0% 41.4% 53.1% 43.0% 47.5% 52.8% Off_Med
58.6% 57.0% 48.5% 58.6% 53.1% 52.8% PD_on

Weighted average 50.4% 48.9% 50.9% 50.4% 50.2% 52.8%
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sensors proposed for this methodology already have widespread
adoption and are present in over 24 million homes [57].

4.6. Improving medication adherence in movement disorder patients

Medication adherence among neurologic disease patients is
thought to reflect a variety of interconnected factors [58]. Medi-
cation non-adherence is common among PD patients, as 51.3% of
patients are reported to skip at least one dose per week [59]. These
patients may benefit from the proposed methodology as a means
Please cite this article as: C. Tucker, et al., Machine learning classificati
using non-wearable sensors, Comput. Biol. Med. (2015), http://dx.do
to receive self-reminders if non-adherence is detected. Cognitive
impairment, a common complication of late-stage PD, may present
additional challenges for medication adherence. Indeed, cognitive
dysfunction and eventual dementia are known to reduce inde-
pendence and quality of life substantially among PD patients, often
placing heavy burdens on families and caregivers [60,61]. These
patients may benefit substantially from remote detection tech-
nologies, since repeated missed doses may signal further changes
in cognition or independence. Early alerts, received by clinical
staff, could prompt reevaluation by the prescribing physician and
on of medication adherence in patients with movement disorders
i.org/10.1016/j.compbiomed.2015.08.012i
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Fig. 7. Partial Visualization of Weka's Decision Tree Model [54] for Generalized PD ON-OFF Medication States using patient 176 as the test case.

Table 15
Summary of Data Mining Classification Error Rates for the generalized PD model using patient 113 as the unseen test patient.

Correctly classified
instances

Incorrectly classified
instances

Kappa
statistic

Mean absolute
error

Root mean
squared error

Relative absolute
error

Root relative
squared error

Total number of
instances

86 (46.24%) 100 (53.76%) �0.0169 0.5375 0.7294 107.4% 145.7% 186

Table 16
Summary of Data Mining Classification Accuracy for the generalized PD model using patient 113 as the unseen test patien.

TP rate FP rate Precision Recall F-Measure ROC Area Class

0.824 0.842 0.452 0.824 0.583 0.496 Off_Med
0.158 0.176 0.516 0.158 0.242 0.496 PD_On

Weighted average 46.2% 48.0% 48.7% 46.2% 39.8% 49.6%

Table 17
Summary of Data Mining Classification Error Rates for the generalized PD model using patient 118 as the unseen test patient

Correctly classified
instances

Incorrectly classified
instances

Kappa
statistic

Mean absolute
error

Root mean
squared error

Relative absolute
error

Root relative
squared error

Total number of
instances

141 (42.08%) 194 (57.91%) �0.155 0.578 0.757 115.5% 151.3% 335

Table 18
Summary of Data Mining Classification Accuracy for the generalized PD model using patient 118 as the unseen test patient.

TP rate FP rate Precision Recall F-Measure ROC Area Class

0.357 0.512 0.421 0.357 0.386 0.429 Off_Med
0.488 0.643 0.421 0.488 0.452 0.429 PD_On

Weighted average 42.1% 57.6% 42.1% 42.1% 41.8% 42.9%
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adjustment of treatment. For example, a patient who repeatedly
misses his or her afternoon dose may benefit from longer acting
medications or a simpler treatment plan. Notably, substantial
Please cite this article as: C. Tucker, et al., Machine learning classificati
using non-wearable sensors, Comput. Biol. Med. (2015), http://dx.do
efforts have been made to measure accurately medication adher-
ence among PD patients [58]. Our methodology may provide a
novel method to monitor drug adherence and has the added
on of medication adherence in patients with movement disorders
i.org/10.1016/j.compbiomed.2015.08.012i
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Table 19
Summary of Data Mining Classification Error Rates for the generalized PD model using patient 164 as the unseen test patient.

Correctly classified
instances

Incorrectly classified
instances

Kappa
statistic

Mean absolute
error

Root mean
squared error

Relative absolute
error

Root relative
squared error

Total number of
instances

102 (52.6%) 92 (47.4%) 0.0346 0.4567 0.6451 91.2% 128.7% 194

Table 20
Summary of Data Mining Classification Accuracy for the generalized PD model using patient 164 as the unseen test patient

TP rate FP rate Precision Recall F-Measure ROC Area Class

0.442 0.407 0.463 0.442 0.452 0.564 Off_Med
0.593 0.558 0.571 0.593 0.582 0.564 PD_On

Weighted average 52.6% 49.1% 52.4% 52.6% 52.4% 56.4%

Table 21
Summary of Data Mining Classification Error Rates for the generalized PD model using patient 183 as the unseen test patient

Correctly classified
instances

Incorrectly classified
instances

Kappa
statistic

Mean absolute
error

Root mean
squared error

Relative absolute
error

Root relative
squared error

Total number of
instances

43 (42.2%) 59 (57.8%) 0 0.5778 0.7574 115.4% 151.2% 102

Table 22
Summary of Data Mining Classification Accuracy for the generalized PD model using patient 183 as the unseen test patient

TP rate FP rate Precision Recall F-Measure ROC Area Class

0 0 0 0 0 0.492 Off_Med
1 1 0.422 1 0.593 0.492 PD_On

Weighted average 42.2% 42.2% 17.8% 42.2% 25.0% 49.2%

Table 23
Summary of Data Mining Classification Error Rates for the generalized PD model using patient 215 as the unseen test patient.

Correctly classified
instances

Incorrectly classified
instances

Kappa statistic Mean absolute
error

Root mean
squared error

Relative absolute
error

Root relative
squared error

Total number of
instances

83 (36.2%) 146 (63.8%) �0.3031 0.6379 0.7985 127.5% 159.6% 229

Table 24
Summary of Data Mining Classification Accuracy for the generalized PD model using patient 215 as the unseen test patient

TP rate FP rate Precision Recall F-Measure ROC Area Class

0.525 0.822 0.421 0.525 0.467 0.341 Off_Med
0.178 0.475 0.247 0.178 0.207 0.341 PD_On

Weighted average 36.2% 66.0% 34.0% 36.2% 34.5% 34.1%
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ability to prompt accommodations and treatment adjustments for
non-adherent patients.

4.7. Limitations of existing work

While this work has demonstrated the feasibility of detecting
medication adherence in PD patients, several limitations exist that
need to be addressed in future work. First, the collection of gait data
was conducted in a controlled laboratory setting, inwhich patient gait
dynamics may not represent the entire range of natural walking
patterns that might be expected in a free-living environment. Second,
this study presented proof of concept for monitoring patient adher-
ence to medication using an off-drug state to represent non-adher-
ence. However, we cannot infer directly that the pattern of gait
accompanying medication non-adherence would necessarily be the
Please cite this article as: C. Tucker, et al., Machine learning classificati
using non-wearable sensors, Comput. Biol. Med. (2015), http://dx.do
same as that of an off-drug state. Third, PD patients are known to
exhibit increasing gait impairment, including freezing episodes, as the
disease progresses [62]. Our study could not capture the wide range
of possible gait patterns throughout disease and responsiveness/non-
responsiveness of various features to dopaminergic treatment [63].
Nonetheless, our technique was sufficient to detect key differences in
the gait of PD subjects between off- and on-drug states. Lastly, our
study could not directly address temporal changes of PD-related gait
dynamics as a function of fatigue, time of day, or disease subtype [64].
These factors may be important and should be taken into account
when designing a broadly generalizable machine learning algorithm
to classify PD medication adherence. In order to address these lim-
itations, prolonged clinical studies that utilize a larger sample size and
a non-clinical environment are needed in order to assess the propose
on of medication adherence in patients with movement disorders
i.org/10.1016/j.compbiomed.2015.08.012i
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system's performance in detecting PD medication adherence across
different scenarios.
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5. Conclusions and future work

In this paper, a remote data mining based methodology is
proposed to differentiate between “on” and “off” medication states
among PD patients using low-cost, non-wearable sensor hard-
ware. Using whole-body movement data readings from the
patients, the authors were able to discriminate between PD
patients on and off medication, with accuracies greater than 97%
for some patients using an individually customized model and
accuracies of 78% for a generalized model containing multiple
patient gait data. This shows that remote sensing coupled to data
mining approaches may provide feasible techniques for healthcare
providers to determine medication adherence among PD subjects
from a non-clinical location. Moreover, this system may serve as a
platform to provide early warnings if non-adherence is detected.
These goals are particularly important among PD patients, since
cognitive [65] impairment is common within this population and
may increase risk for medication adherence. In addition to their
potential role in the classification of medication adherence,
machine learning techniques may reveal information regarding
highly relevant yet undiscovered motor patterns in neurologic
diseases (i.e. specific patterns of joint positions, velocities, and
accelerations). Interestingly, the feature selection process yielded a
remarkably smaller subset of informative features across all four
experiments. This large reduction in dimensionality indicates that
relatively few variables are required to discriminate between “off”
and “on” medication gait patterns in PD. The relatively low num-
ber of variables required for classification is encouraging because it
may lead to faster and more accurate learning and classification.
Notably, the data collection step for each patient took less than
10 s, including calibration of the sensor. The methodology pro-
posed herein, accordingly, may provide a feasible and low-cost
implementation for remote detection of medication adherence.

In future work, the proposed methodology can be extended to
incorporate measures of movement disorder severity. These data
may be of particular use in medication management and adjust-
ment. In addition, the placement of sensors and their directionality
in a given room can be optimized to reduce costs and improve
detection. Future studies may focus upon the robustness of kinetic
measurements across multiple sensors and classification accuracy
according to directionality and multi-sensor modalities. Moreover,
longitudinal in-home data collection may reveal novel gait fea-
tures and improve classification accuracy of PD adherence and
non-adherence. Additionally, further studies can explore exploit-
ing the temporal nature of the data captured by using techniques
such as dynamic time warping to further improve classification.
Future work may explore the feasibility of expanding the proposed
methodology to include other neurological diseases and move-
ment disorders.
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