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A DATA MINING METHODOLOGY FOR PREDICTING EARLY STAGE                    

PARKINSON’S DISEASE USING  

NON-INVASIVE, HIGH DIMENSIONAL GAIT SENSOR DATA 

ABSTRACT 

Parkinson’s disease (PD) is the second most common neurological disorder after Alzheimer’s 

disease. Key clinical features of PD are motor-related and are typically assessed by healthcare providers 

based on qualitative visual inspection of a patient’s movement/gait/posture. More advanced diagnostic 

techniques such as computed tomography scans that measure brain function, can be cost prohibitive and 

may expose patients to radiation and other harmful effects. To mitigate these challenges, and open a 

pathway to remote patient-physician assessment, the authors of this work propose a data mining driven 

methodology that uses low cost, non-invasive sensors to model and predict the presence (or lack therefore) 

of PD movement abnormalities and model clinical subtypes. The study presented here evaluates the 

discriminative ability of non-invasive hardware and data mining algorithms to classify PD cases and 

controls. A 10-fold cross validation approach is used to compare several data mining algorithms in order 

to determine that which provides the most consistent results when varying the subject gait data. Next, the 

predictive accuracy of the data mining model is quantified by testing it against unseen data captured from 

a test pool of subjects. The proposed methodology demonstrates the feasibility of using non-invasive, low 

cost, hardware and data mining models to monitor the progression of gait features outside of the traditional 

healthcare facility, which may ultimately lead to earlier diagnosis of emerging neurological diseases.  

Keywords: Parkinson’s disease (PD), gait, non-invasive, sensor, data mining, healthcare, 

prediction, neurological disease, privacy, telehealth 

1. INTRODUCTION 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s 

disease, affecting more than one million people in North America and about 2% of the population over the 

age of 65 years (Gil and Manuel 2009), (Patel et al. 2009), (Lang and Lozano 1998). The key abnormality 
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in PD is the deficiency of dopamine in the sustantia nigra, a region in the midbrain (Hughes, Ben-Shlomo, 

et al. 1992). Although dopaminergic therapy offers substantial relief from the debilitating motor symptoms 

associated with PD, the lack of PD features for the dopamine cell loss makes it difficult to determine the 

optimal time to administer such medication (Lawrence, Evans, and Lees 2003). In addition, greater than 

50% of the dopaminergic neurons are lost by the time that a patient is clinically diagnosed with PD, making 

early-stage detection challenging and critically important for neuroprotective efforts (Gil and Manuel 

2009). The progression of the disease is formally described as the Hoehn and Yahr Staging of PD (from 

stage I to stage IV) (S. J. G. Lewis et al. 2005). PD motor symptoms typically include tremor at rest, rigidity, 

bradykinesia, and gait-/posture-related dysfunction (Hoff et al. 2001; Fahn 2003). Recent studies have 

demonstrated that some gait abnormalities may appear particularly early in PD, although these early 

features remain to be elucidated fully (Huang et al. 2012; Lewek et al. 2010). Non-motor symptoms of PD 

also exist such as hypophonia, sleep disturbances, depression, and dementia (Olanow 2004). Physicians and 

scientific investigators presently use published criteria to establish a PD diagnosis (as discussed further in 

the next section) but these approaches can vary among raters. In addition, PD may evade early diagnosis 

due to the lack of routine screening, hindering efforts of targeting early intervention.  

In order to mitigate these challenges, the proposed methodology aims to quantitatively evaluate PD 

by using low-cost, non-invasive and privacy preserving hardware to capture patient data and mine it for 

potentially novel PD features that can be used in PD diagnosis. Furthermore, the proposed methodology 

may enable patients to perform PD diagnosis in non-traditional settings, such as in the comfort of their 

home, as the hardware and resulting machine learning algorithms are not specific to a clinical location. The 

proposed methodology aims to serve as a decision support system for physicians so that patients at risk of 

PD can be flagged at the early stages. Related approaches to PD diagnosis employ artificial intelligence 

(AI) techniques. For example, a biometric “smart pen” has been proposed to capture fine motor skills by 

measuring acceleration, finger grip force, and refill force (Barth et al. 2012). Other similar data collection 

techniques were employed by Patel et al. (Patel et al. 2009). However, the main limitation of these existing 
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techniques is that the PD features are pre-determined and may omit latent controller variables reflecting 

neural organization, particularly at the early stages of PD. Gait impairment, conversely, may involve 

distinctive abnormalities in inter-limb dynamics that occur relatively early in PD (Huang et al. 2012; Lewek 

et al. 2010; Bartels et al. 2003). Moreover, detection of PD using gait-related features may be well suited 

for the application of machine learning, since limb dynamics can be captured easily and inexpensively by 

remote sensing technologies. In addition to n-fold cross validation techniques that will be employed to 

evaluate the veracity of the proposed data mining models, the results from this study will also be compared 

against previous works by (Huang et al. 2012; Lewek et al. 2010) that have identified notable gait related 

features (e.g., variations in arm swing as a discriminating feature of PD patients). 

The organization of this paper is as follows. This section gives a brief introduction and background 

about the problem. Section 2 describes some previous work related to the current research and compares 

them to the methodology proposed in this paper. Section 3 introduces the data mining driven methodology 

for early stage PD detection. A case study involving PD patients and controls is presented in Section 4, 

along with the results and discussion. Section 5 concludes the paper and outlines future work.  

2. LITERATURE REVIEW 

2.1 Clinical PD diagnosis 

Currently, clinical PD diagnosis is primarily based on clinical history and physical examinations. 

For example, a patient is first evaluated by a general practitioner, followed by a referral to a neurologist if 

patient abnormalities are suspected. A neurologist would then interview the patient, followed by a symptom 

questionnaire. Finally, neurology movement disorder specialist would examine information based on 

published diagnostic PD criteria to finally determine if someone is a PD patient or not (Schrag, Ben-

Shlomo, and Quinn 2002), (Hughes, Ben-Shlomo, et al. 1992), (Rajput et al. 1991). Typically, a patient’s 

history and medication records would first be screened for preliminary PD related evidence, followed by 

several physical examinations such as blood and imaging tests, depending on the physician’s observations. 

Physicians may give a trial of dopaminergic drugs to observe patient response and changes in health 



 

 

                             4                                                          

conditions (Freed, Curt R. 1992). Despite the ability of current clinical based criteria to correctly diagnose 

PD, they require each patient to visit the clinic for a series of invasive and non-invasive tests. Furthermore, 

different physicians may give results based on variable rating scales such as Unified Parkinson’s Disease 

Rating Scale (UPDRS) and Intermediate Scale for Assessment of PD (ISAPD). These rating scales are 

subjective and qualitative, sometimes making interpretation or comparison difficult (Martinez-Martin et al. 

1994). Other techniques used to diagnose PD include neurologically based techniques such Single-photon 

emission computed tomography (SPECT) scans that measure dopaminergic transport levels in the brain. 

These techniques can be used to assist the diagnosis process and differentiate PD from essential tremor and 

other neurodegenerative disorders that may exhibit similar characteristics of PD patients (M. M. Lewis et 

al. 2007), (Dastgheib, Lithgow, and Moussavi 2011), (Huang et al. 2006). While these diagnosis techniques 

have been proven to be effective at accurately diagnosing PD, greater than 50% of the dopaminergic 

neurons are lost by the time that a patient is clinically diagnosed with PD, making early-stage detection 

challenging and critically important for neuroprotective efforts (Gil and Manuel 2009). Furthermore, such 

techniques (e.g., SPECT scans) are cost prohibitive and require pre-domain knowledge about the factors 

that affect PD. These challenges are further exacerbated by the variations in PD symptoms and motor 

complications (referred to as motor fluctuations) among different people, hereby potentially reducing the 

quality of the resulting diagnosis. 

2.2 Phonation based PD diagnosis 

Researchers have also shown that voice may be a useful signal for differentiating PD patients from 

controls since the vast majority of PD patients typically exhibit some form of vocal disorder such as reduced 

loudness, increased vocal tremor, and noise (Ho et al. 1999), (Little et al. 2009). For example, the phonation 

impairments between PD patients and control groups have been measured based on 132 dysphonia features 

using Support Vector Machines (SVM) algorithms. Researchers were able to detect PD cases using only 

10 of the 132 dysphonia features with about 99% accuracy (Tsanas et al. 2012). Similar studies can be 

found in (Tsanas 2010), (Tsanas et al. 2010). Even though these phonation based methodologies were able 
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to distinguish PD patients from controls, phonation data collection could be difficult and complicated (e.g., 

due to variations in accents, speech patterns, etc.), which may increase the testing requirements for the 

subjects (Tsanas et al. 2012). In addition, even though phonation defects are common evidence in PD, they 

are typically good indicators for detecting advanced PD stages (Stewart et al. 1995), (Darley, Aronson, and 

Brown 1975), (Critchley 1981), as opposed to early stage detection. 

2.3 Gait based PD diagnosis  

Another approach to detecting PD is based on gait impairment evaluations such as reduced stride 

length, reduced arm swing, reduced gait speed and stride freezing. For example, abnormal movement/gait 

in PD patients could be recognized by movement disorder specialist and measured through accelerometers 

(ACC) and surface electromyographic (EMG) signals (Bonato et al. 2004). Another example is to have 

sensor-based systems placed on the upper and lower limbs of each subject so as to measure the hand motor 

and gait functions (Barth et al. 2012). However, the main limitation among these methodologies is that the 

applied markers may not be the most predictive indicators of PD. Furthermore, these data collection 

techniques require physical contact with the patient, which may affect the manner in which the patient 

responds.  

3. METHODOLOGY 

To overcome the limitations of PD diagnosis discussed in the previous section, the proposed data-

mining driven methodology employs machine learning tecuniques that reduce subjective biases (resulting 

from human physical examnation) and identifies latent PD features that may be relevant in detecting early 

stage PD. The authors hypothesize that: non-invasive sensors that capture 3D gait data, and subsequent 

machine learning algorithms employed on the acquired data, detect gait features relevant to PD. Figure 1 

presents the overall methodology which is based on extracting relevant PD motor features and applying 

these features to detect PD gait patterns. The methodology is partitioned into four steps. Step 1 outlines the 

manner in which patient gait data is acquired in a non-invasive manner and stored for subsequent data 

mining/knowledge discovery. Step 2 involves data cleaning and feature dimension reduction. The process 



 

 

                             6                                                          

of data mining and knowledge discovery is introduced in step 3, where multiple machine learning 

algorithms are investigated and benchmarked against one another. Finally, step 4 evaluates the model 

performance of different machine learning algorithms and outlines the potential for the methodology to be 

integrated into a healthcare decision support system.  

The data captured by each patient at each time interval (33ms) is considered an independent sample, 

so as to minimize the assumptions made about the gait features, their correlations with each subsequent 

data point captured in time, and their correlations with the class variable (i.e., whether a subject has PD or 

not). For example, it may be determined that whether a subject has PD or not has more to do with the 

maximum position his/her arm is able to swing upwards, rather than where that arm position was in the 

previous time stamp. Researchers in the data mining community have proposed algorithms that augment 

existing data mining classification algorithms (such as those employed in this work) to factor data streams 

with concept drift (C. S. Tucker and Kim 2011; Wang et al. 2003; Richards et al. 2011; Domingos and 

Hulten 2000; Hulten, Spencer, and Domingos 2001). As new incoming patient data is acquired, the models 

generated by the data mining algorithms employed in this work can be iteratively updated, once their 

predictive accuracies fall below a given threshold (determined by the healthcare decision makers). Using 

non-invasive sensors, the authors have demonstrated the feasibility of modeling body movement data in 

this manner to predict emerging human behavior patterns (for security applications) and emotional states 

(for engineering education applications) with relatively high accuracy (Manohar and Tucker 2013; Behoora 

and Tucker 2014; Behoora and Tucker 2015). The authors have also demonstrated that these non-invasive 

sensors are capable of modeling and predicting medication adherence in patients with neurologically 

induced movement disorders (C. Tucker et al. 2015). The methodology presented in this work aims to 

advance the field of neurological disease detection in the following ways: 

    1. The ability to use low cost, non-invasive data acquisition techniques that concurrently maintain patient 

privacy by only collecting the three-dimensional (3D) geospatial data pertaining to a patient’s node 

location. 
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    2. The ability to extract relevant gait features in order to model and predict early stage PD. 

    3. The ability to quantify PD movement abnormalities, independent of clinic location (e.g., from a 

patient’s home), hereby serving as an early warning system that can be communicated to physicians and 

healthcare decision makers. 

 

Figure 1: Overview of proposed data mining methodology 

Step 1: Sensor Data Acquisition 

Step 1 of the proposed methdology utilizes low cost, off the shelf hardware sensors (e.g., Microsoft 

Kinect) to capture  human gait data. While multimodal sensors such as the Kinect are capable of capturing 

multiple data streams (VGA, depth using infrared sensors), only the 3D coordinate skeleton data (XYZ 

coordinate data of each node) is required for the proposed methodology as shown in Figure 2. For example, 

the Kinect can non-invasively approximate full body human gait by using its depth sensors to map 20 nodes 

on a human body as seen in Figure 2, starting with the XYZ coorinate data of the Head node, down to the 

XYZ coordinate data of the Foot Right and Foot Left nodes. As a patient walks through space, the coordinate 

data for each of these nodes is captured and stored in a structured table similar to that shown in Figure 2. 
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Figure 2: Skeleton image of a person with 20 nodes and example data from Shoulder Center node 

In addition, since human gait is approximated using only the 3D unidentifiable skeleton data (XYZ 

coordinate points of each node) as seen in Figure 2, patients’ privacy would be preserved as well. The 

Microsoft Kinect sensor is employed in the case study to collect human gait due to its wide availability, 

relatively low cost and high fidelity (Kamel Boulos 2012). This hardware enables researchers to capture 

data samples (initially containing XYZ node locations for each of the 20 nodes) in a timely and efficient 

manner. Each row of the table in Figure 2 represents a data sample that is captured every 33ms, representing 

position data from each of the 20 nodes. The hardware is capable of adjusting the 20 node locations, based 

on varying degrees of human characteristics (size, shape, height, etc.). While the Kinect is one of the most 

popular off the shelf hardware for skeletal and depth sensing capabilities, other alternatives such as the 

Asus Xtion Live (“Xtion PRO LIVE - Multimedia - ASUS” 2013) and PrimeSense Carmine (Primesense 

2013), make the proposed data acquisition step of the proposed methodology unconfined to a specific 

hardware. 

Step 2: Data Preprocessing 

The Data preprocessing step of the proposed methodology aims to remove irrelevant/noisy data 

from the initial raw data captured from Step 1, leaving only the XYZ data needed for the data mining 

machine learning step (Step 3). The Data Preprocessing step also includes the calculation of velocity                          
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( 
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑡𝑖)−𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑡𝑖−1)

𝑡𝑖−𝑡𝑖−1
 ) and acceleration ( 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑡𝑖)−𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑡𝑖−1)

𝑡𝑖−𝑡𝑖−1
 ) of each node, based on the original 

XYZ position data of each of the 20 nodes. Here, the change in time (𝑡𝑖 − 𝑡𝑖−1) from one instant in time 

(𝑡𝑖−1) to a subsequent instant in time (𝑡𝑖) is approximately 33ms. The Microsoft Kinect employs a 

randomized decision forest algorithm to automatically assign landmarks on a human body that correspond 

to different human joint locations for the 20 joint locations that it is capable of tracking (Lai, Konrad, and 

Ishwar 2012; Ye et al. 2011; Clark et al. 2012). The Kinect is capable of tracking the skeletal joints across 

a wide range of different body sizes, skin pigmentations and outfits (Shotton et al. 2013). During the 

machine learning training step of the proposed method however, the performance of the resulting machine 

learning models may be reduced if the heights of the test subjects significantly differs from that of the 

training subjects, as measured primarily by the Y position direction of the skeletal data. These model 

inaccuracies may be overcome by normalizing patients’ height data or training the model to be more robust 

to wide variations in patients’ height. Therefore in this work, the ratio in each dimension from each pair of 

nodes in the position, velocity and acceleration data are also generated in order to normalize variations in 

human characteristics (size, height, weight) that may cause biases in the resulting data mining predictive 

models. The result is a total of 1890 features generated, comprising of 60 position features (i.e., 20 position 

features pertaining to the X node, 20 position features pertaining to the Y node and 20 position features 

pertaining to the Z node), 60 velocity features (i.e., 20 velocity features pertaining to the X node, 20 velocity 

features pertaining to the Y node and 20 velocity features pertaining to the Z node), 60 acceleration features 

(i.e., 20 acceleration features pertaining to the X node, 20 acceleration features pertaining to the Y node 

and 20 acceleration features pertaining to the Z node). The remaining 1710 features represent ratio features 

generated using the XYZ position, velocity and acceleration data (i.e., enumerative combination of ratios 

of each node relative to the remaining nodes). The features can be considered as input variables while the 

class variable, can be considered as the output variable. The class variable in this case is binary in nature 

(i.e., whether a patient has Parkinson’s disease [denoted as PD] or not [denoted as non-PD]). It is 

demonstrated in this work that features predicted by the data mining algorithms (explained in Step 3 of the 
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proposed methodology) are relevant in distinguishing PD vs non-PD patients using an argmax function. 

Furthermore, the authors of this work demonstrate that the features identified as relevant in the resulting 

data mining models, are consistent with those found in previous works such as (Huang et al. 2012; Lewek 

et al. 2010) that employ different techniques (such as wearable technologies or visual inspection) to predict 

early stage PD.  

Step 3: Data Mining Knowledge Discovery 

The data mining/knowledge discovery step of the proposed methodology aims to develop a 

function f(X)= Y that would map the selected features 1 2 nX = {x ,x ,...,x } to the class variable (Y), where 

n is the total number of features relevant to the class variable Y. The Data Mining step (Step 3) develops a 

model that quantifies novel feature combinations that are relevant to predicting the class variable (in this 

case binary). In this section, several data mining algorithms are discussed based on their applicability, 

accuracy and complexity in binary classification problems (A and B 2006), (Ramani, R. Geetha 2011), 

(Youn and McLeod 2007), (D’heygere, Goethals, and De Pauw 2003). 

Naïve Bayes Algorithm 

The Naïve Bayesian classification algorithm has been extensively employed in the data mining research 

community and has demonstrated accuracies comparable to more advanced machine learning algorithms, 

while being less computationally complex (Zhang and Su 2004).  Mathematically, the Naïve Bayes 

algorithm can be succinctly represented as: 

                                                   𝑃(𝑦𝑖|𝑥1, … , 𝑥𝑛) = 𝑝(𝑦𝑖) ∏ 𝑝(𝑥𝑗|𝑦𝑖)𝑛
𝑗=1                                                       (1) 

Where, 

 𝑥𝑗: represents a feature/input variable (j) included in the model 

 n: represents the total number of features in the data set 

 𝑝(𝑦𝑖): is the prior probability of the class/output variable 

 𝑝(𝑥𝑗|𝑦𝑖): is the likelihood of the feature, given the class variable 𝑦𝑖  
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Support Vector Machines  

Support Vector Machines (SVMs) are a relatively new branch of data mining classification 

techniques that aim to maximize the linear boundary in logistic regression modeling. SVMs attempt to 

construct a decision boundary based on a kernel function which could optimally separate two classes by 

maximizing the geometric margin between data points in two classes. In SVMs, the fitting process is novel, 

where problematic observations are treated differently and could finally determine the “best” boundary by 

constructing two parallel lines without any observations within the space between them. In practice, since 

data cannot be linearly separated in some cases, SVMs would also be able to transform the current data to 

a higher dimensional space and construct the decision boundary (Hastie et al. 2005). The general fitting 

function of the model is. 

                                                             𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = ∑ (𝑤𝑗𝑥𝑗) + 𝑏𝑛
𝑗=1                                                (2) 

Where,  

b: is the misclassification tolerance  

n: is the total number of input variables  

𝑤𝑗: is the weight corresponding to any input variable 𝑥𝑗  

C4.5 Decision Tree Induction 

 The C4.5 decision tree classifier is a supervised machine learning algorithm that iteratively tests 

each feature for its ability to reduce uncertainty (randomness) in the class/output variable (Quinlan 1993).  

The methodology comprises of three steps: best feature evaluation, splitting point selection and model 

training and evaluation. The feature evaluation step of the methodology attempts to select the most 

informative node in each subset of the training data set by maximizing the gain ratio metric (Quinlan 1993). 

The splitting point selection determines the best numerical split point which has the minimum 

misclassification error. The last step of the algorithm trains the resulting tree model, based on a predefined 

stopping criteria and evaluates its predictive performance. The general modeling forms are shown here 

(Ramani, R. Geetha 2011), (Maroof 2012), (Ozcift 2012). 
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                                                 ( ) ( ) / ( )GainRatio A Gain A SplitInfo A                                               (7) 

Where, 

Info(D): is the expected information (entropy) needed to classify a tuple in D 

𝑝𝑖  : is the probability that an arbitrary tuple in D belongs to class 𝑦𝑖, calculated by |𝑦𝑖,𝐷|/|D|, for a total of 

m mutually exclusive class variables 

𝐼𝑛𝑓𝑜𝐴(𝐷): is information needed (after using feature A to split D into v partitions) to classify, where l 

represents a mutually exclusive value of a given feature A, and v represents the number of mutually 

exclusive values of feature A 

Gain(A): is information gained by partitioning the data set on attribute A  

SplitInfo(A): is the normalization of the Gain (A) to account for attributes with a wide range of mutually 

exclusive values 

GainRatio(A): is the metric used by the algorithm to evaluate each attribute during tree generation 

Random Forest  

The Random Forest (RF) model is an effective classifier that capitalizes on flexible fitting 

procedures, hereby potentially improving on accuracies, compared to traditional tree based models. The 

general procedure of RF is as follows. First, M cases are randomly sampled (M is the predetermined sample 

size) with replacement which is the training data set for each tree. Next, an n variable sample would also 

be created (n is the variable sample size) to help split in each node which is similar in the single tree 
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construction. Finally, each tree is grown to the largest extent and the maximum voted class in the forest is 

accepted as the final decision (Amasyali and Diri 2006). 

IBK 

The classifier IBK is another type of the instance-based learner. In the IBK classifier, a normalized 

distance is applied so that each feature has the same impact on the distance measure, and each observation 

would be classified in the most similar class assigned to the majority of its K neighbors (K is the number of 

nearest neighbors in prediction model). For example, if K = 1, then each new observation would be 

classified in the class by its nearest neighbors as shown in Equation 8 (Ramani, R. Geetha 2011), (Ozcift 

2012). 

                                              
2

1 1

( , ) ( , ) ( )
n n

i i i i

i i

Similarity x y f x y x y
 

                                               (8) 

Where,  

𝑥𝑖: is the value of 𝑖𝑡ℎ feature of observation x 

𝑦𝑖: is the value of 𝑖𝑡ℎ feature of observation y and 

n: is the total number of features. 

Based on the machine learning algorithms above, the early PD status would be modeled and 

quantified based on a combination of relevant features. Furthermore, these identified features may serve as 

evidence to help doctors screen potential early PD patients (explained in detail in the next session).   

Step 4: Heathcare Decision Support 

Step 4 outlines how the results from the data mining step, can serve as an integrated healthcare 

decision support system, connecting patients with physicians for early stage PD detection and progression. 

In order for the proposed methodology to be viable as a healthcare decision support system, the accuracy 

and robustness of PD models need to be clearly outlined and visualized. The methodology outlines two 

stages of validation: i) validation of data mining algorithms through n-fold cross validation using sample 
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data to both train and test the model and ii) validation of model predictive power using unseen data from 

both PD patients and controls. 

Stage 1: Validation of Data Mining Algorithms through n-fold Cross Validation 

The n-fold cross validation (CV) method is employed in this work in order to evaluate algorithm 

performance and consistency. Given a sample data set containing both PD patients and controls, CV 

involves partitioning the data set into n subsets, training the predictive model on one subset called the 

training data set, and testing/validating the model performance using the remaining n-1 subsets called the  

test data sets. Then, multiple rounds of CV are performed and the validation results are averaged (Kohavi 

1995). In the computer science domain, 10-fold CV has been shown to generate consistent results 

(Tibshirani, Robert and Hastie, Trevor and Narasimhan, Balasubramanian and Chu 2002), (Ambroise, 

Christophe and McLachlan 2002) and is employed in this work to demonstrate the robustness of the 

resulting data mining models in consistently predicting the correct class values.  

Stage 2: Validation of Data Mining Models’ Predictive Power Using Unseen Patient Data  

 Once the robustness of data mining algorithms have been determined and a stable set of data mining 

algorithms have been selected, the goal of stage 2 is to determine whether the data mining models have 

predictive power. Unlike stage 1 validation that randomly partitions each data sample during the model 

generation stage and uses some of the randomly partitioned unseen data samples to test the model, the stage 

2 model validation tests the data mining models based on an entire sample set acquired from subjects not 

included in the data mining model generation step. Stage 2 therefore measures the data mining models’ 

ability to predict PD vs controls from an actual subject pool. 

The performance of the machine learning algorithms will be assessed using the Correctly Classified 

Instances (CCI) measure. The CCI uses statistics from the confusion matrix shown in Table 1 to evaluate 

the average accuracy of each classifier using the following mathematical equation (Eq.9).  

                                                       *100%
TP TN

CCI
TP TN FP FN




  
                                                     (9) 
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Eq.9 contains four values predicted by a given data mining model: true positive (TP), false positive 

(FP), false negative (FN) and true negative (TN). These four outcomes are also used to derive the precision, 

recall, F-measure and ROC curve performance metrics (Fielding and Bell 1997). 

Table 1: Outline of a confusion matrix 

Actual/Ground 

Truth 

Classified as 

True False 

True True positive (TP) False positive (FP) 

False False negative (FN) True negative (TN) 

              

Precision and recall also provide additional insights into the robustness of the resulting data mining 

model. Precision indicates the type I error in statistics while the recall indicates the type II error. The 

precision represents the number of true positives divided by the total number of elements labeled as 

belonging to the positive class (shown in Eq.10), while recall (shown in Eq.11) represents the number of 

true positives divided by the total number of elements that actually belong to the positive class (i.e. the sum 

of true positives and false negatives, which are items that are not labeled as belonging to the positive class 

but should have been).  

                                                       
TP

precision
TP FP




                                                                      (10) 

                                                      
TP

recall
TP FN




                                                                            (11) 

The F-measure combines precision and recall and  aims to explain the weighted average value of 

the precision and recall, ranging from 0 (worst) to 1 (best). The calculation is shown in Eq.12. The last 

performance evaluation metric proposed in this methodology is the Receiver Operating Characteristic 

(ROC) curve. The ROC describes different model performances based on varying values of threshold so 

that the optimal operating point is selected. The best operating point might be chosen so that the classifier 

gives the best trade-off between the costs of failing to detect positives against the costs of raising false 
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alarms. These costs need not be equal; however this is a common assumption. Note that the best place to 

operate the classifier is usually the point on its ROC which lies on a 45 degree line closest to the upper-left 

corner (0, 1) of the ROC plot. 

                                                       
*

2*
precision recall

F
precision recall




                                                              (12) 

The PD evaluation would be quantified based on the proportion of “PD” frames (data points 

captured every 33ms that are classified by the data mining model as PD) to the total captured frames during, 

for example, a 5 second walk towards the multimodal sensor hardware. In addition, the relevant PD gait 

features are also identified from the selected model in order to explore the potential effective way to capture 

and evaluate PD gait patterns in the future. As a healthcare decision support system, the proposed 

methodology would quantify the predictive accuracy of the data mining models and identify novel feature 

combinations relevant to early stage PD diagnosis, all from a non-clinical location. The resulting model 

could then be used to “flag” patients with abnormal gait patterns for follow up PD consultation with 

physicians and healthcare decision makers, rather than wait for the disease to progress to significantly 

noticeable stages before visiting a physician, which at that point greater than 50% of the dopaminergic 

neurons have been lost (Gil and Manuel 2009). 

4. PD DETECTION STUDY 

A study including both PD patients and controls is presented in this section to demonstrate the 

feasibility of the proposed data mining driven methodology. Fourteen subjects (seven PD patients and seven 

controls) were recruited from a tertiary movement disorders clinic for the data mining model generation 

and validation stage (stage 1 validation explained in step 4, section 3). In addition to the fourteen subjects, 

three additional subjects (one control and two patients diagnosed with showing signs of PD) were recruited 

for the stage 2 validation in order to quantify the data mining algorithms’ predictive power for unseen data.  

PD diagnosis was established by a movement disorders specialist (prior to the start of this study) using 

published criteria (Hughes, Ben-Shlomo, et al. 1992; Hughes, Daniel, et al. 1992). Prior to the start of the 

study, subjects were evaluated and confirmed free of major and acute neurological disorders, 
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hypothyroidism, vitamin B12 and folate deficiencies, and kidney and liver disease. Written informed 

consent was obtained for each subject, in accordance with the Declaration of Helsinki. The research 

protocol was reviewed and approved by the Penn State Hershey Medical Center Institutional Review Board 

(IRB protocol number 28989). The details relating to the experimental set up and sensor data acquisition 

are presented in Step 1. Data preprocessing is presented in Step 2, followed by data mining knowledge 

discovery in Step 3. Finally, the practicality of the proposed methodology as a decision support system is 

discussed in Step 4.  

 

Step 1: Sensor Data Acquisition 

In the experiment, the human gait movement was captured through the Microsoft Kinect 

multimodal sensor which results in capturing 3D skeleton images in a non-invasive manner. The MS Kinect 

is an off the shelf, (relatively) low cost sensor that is capable of capturing multimodal sensor data with the 

appropriate Application Programming Interfaces (APIs) and drivers installed. Although initially released 

by the Microsoft Corporation as a wireless controller for their Xbox gaming console, the Microsoft Kinect 

sensor has also been applied for research with motion tracking and virtual reality applications (Gonçalves 

et al. 2012).  

During the experiment, the Kinect was configured at an elevation of 3 feet and 10 inches above the 

floor as seen in Figure 3. Then, the whole-body representation of each subject was verified and the sensor 

angle calibrated by having the subject stand relaxed while facing the Kinect at a distance of 10 feet. Each 

subject was then instructed to walk forward (front), which took 4-6 seconds, depending on the subject. 

Therefore, collecting one new data point every 33 ms, each subject generated an average of 206 data points 

(individual rows in the data table in Figure 2) during the entire 4-6 second data collection run. In the 

experiments, subjects were asked to first take 2-3 steps backward (4 feet) from the point of sensor 

calibration, still remaining within the distance limit of the device. Then, subjects were instructed to walk 
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comfortably towards the Kinect and were not given any specific instructions regarding side of initiation. 

The overall Kinect setup diagram is shown in Figure 3.  

 

Figure 3: PD Data Acquisition Experiment Setup 

 

Step 2: Data Preprocessing 

Once the data collection is complete, the data is cleaned to reduce noise in the original data set and extract 

the correlated feature set. For example, using the Kinect for human gait data acquisition, data such as 

tracking status (e.g., tracked or not tracked), user ID and frame number are initially captured in the original 

data set and hence can be removed. The cleaning includes several components as follows. 

1. The velocity and acceleration of each node are generated in X, Y and Z coordinate space, with 

the position of the sensor taken as reference point (i.e., (0, 0, 0)). 

2. Position, velocity and acceleration ratios are generated between each of the nodes in X, Y and Z 

coordinates. Here X is the horizontal direction where the right direction of the zero point is considered as 

positive. For the Y direction, the upward direction is considered the positive direction. For the Z direction, 

subjects walking towards the Kinect, represent the positive direction. 

3. For the binary class variables, PD is considered a subject that has Parkinson’s disease (value of 

1) and CONTROL is considered a non-Parkinson’s disease subject (value of 0); 
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4. Two data sets are generated called PD-OFF data set and CONTROL data set, with 1890 features 

included in each data set. The PD-OFF data set represents data generated by the seven PD patients. If a PD 

patient was on medication, they were taken off medication for at least 1 hour prior to the experiment so that 

their natural gait patterns could be observed, without being masked by any PD medications. The CONTROL 

data set represents the gait data captured from the control group comprising of seven subjects. 

Step 3: Data Mining Knowledge Discovery 

Once the data acquisition and preprocessing steps are complete, the Waikato Environment for 

Knowledge Analysis (WEKA) software (Weka 2012) is used to discover novel, previously unknown 

features pertaining to patient gait by employing the aforementioned data mining/machine learning 

algorithms. The WEKA default parameters for each of the data mining predictive models are used to 

generate the predictive models. The proposed methodology is able to model and predict PD gait patterns 

based on the selected features presented in the previous subsection. Furthermore, the researchers are also 

able to evaluate performances of different algorithms in order to select the best classifier/model for 

healthcare decision support and obtain more insights into early stage PD diagnosis. The authors perform a 

10-fold cross validation in order to measure the robustness of the data mining models to consistently predict 

the correct class variable, while varying the test data used to validate the models. Empirical studies have 

shown that 10 fold cross validation is a good measure of model predictive consistency (Kohavi 1995).    

 

Figure 4: Visualization of Non-invasive Patients’ Gait Data Collection 

Patient Gait Capture Corresponding Patient Skeletal Data 



 

 

                             20                                                          

Figure 4 presents a visualization of the experiment in progress. As the patient walks towards the 

sensor hardware, non-identifiable depth sensor data is collected, with the corresponding skeleton data (right 

side of Figure 4), used for the actual data mining pattern discovery. After a 4-6 second run, the algorithm 

is able to classify a subject as either exhibiting symptoms of PD (determined by the relevant features in the 

data mining model) or a control group. Step 4 of the case study focuses on the veracity of the model in 

order to demonstrate the viability of the proposed methodology in being integrated into the healthcare 

system as an early warning/disease progression/management tool. 

Step 4: Healthcare Decision Support 

 In order to investigate the robustness of the proposed data mining algorithms in predicting PD 

patients from controls, the authors repeated the study, varying the walking patters of both the PD patients 

and controls (Figure 5). The original study (walking forward towards the sensor) was used as the baseline 

for comparison. Three additional experiments were conducted: i) walking away from the sensor, ii) walking 

to the right of the sensor and iii) walking to the left of the sensor. For each of these studies, the skeleton 

data captured by the non-invasive sensor may differ. For example, the sensor data captured by a subject 

walking towards the sensor would include symmetrical data points from both the left and right sides of the 

body. However, the sensor data captured by a subject walking to the right of the sensor would primarily 

capture the right side body data, leaving the left side body data primarily concealed from the view of the 

sensor.  

 

 Figure 5: Extension of Study to Include Variations in Walking Directions 
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The PD detection study presents results involving the two validation stages explained in Section 3 of this 

work: i) validation of data mining algorithms through n-fold cross validation using sample data to both train 

and test the model and ii) validation of model predictive power using unseen data from both PD patients 

and controls. 

Stage 1: Validation of Data Mining Algorithms through 10-fold Cross Validation 

By testing the resulting data mining models against the unseen test sample data using 10-fold cross 

validation, the authors are able to identify the most accurate and reliable data mining models that facilitate 

PD gait assessment. In addition, the relevant features are also extracted, which may serve as better evidence 

to measure early stage PD gait patterns.  To demonstrate the potential for gait data to be captured at 

multiple walking positions, beyond simply walking forward and walking backwards, the authors conducted 

experiments where participants walked to the left and right of the sensor for 4-6 seconds. Data mining 

models were then generated, based on both symmetric (i.e., walking forward and backward) and 

asymmetric (walking left and right) data sets.   

 

Table 2: Performance of the classification algorithms in the Forward Walking experiment 

Algorithm    Actual/Ground Truth                Classified as Accuracy 

IBK 

  PD Control Sum 

95.4 % 
PD 1195 62 1257 

Control 64 1422 1486 

Sum 1259 1484 2743 

Naïve 

Bayes 

  PD Control Sum 

50.6% 
PD 724 533 1257 

Control 822 664 1486 

Sum 1546 1197 2743 

SVM 

  PD Control Sum 

74.0% 
PD 851 406 1257 

Control 306 1180 1486 

Sum 1157 1586 2743 

J48 

Decision 

Tree 

  PD Control Sum 

88.0% PD 1110 147 1257 

Control 181 1305 1486 



 

 

                             22                                                          

Sum 1291 1452 2743 

Random 

Forest 

  PD Control Sum 

66.3% 
PD 623 634 1257 

Control 290 1196 1486 

Sum 913 1830 2743 

 

The results from Step 1 validation indicate that the IBK classifier has the highest accuracy (95.4%), 

based on 10-fold cross validation. The accuracies of the C4.5 (represented as J48 in WEKA) and SVM 

models were also high with 88% and 74% respectively. That is, these three models are able to correctly 

recognize between 74%-95% of the PD frames among the 14 subjects. The lowest accuracy was from the 

Naïve Bayes and Random Forest models (50.6% and 66.3% respectively), indicating that there may exists 

correlations between the samples or features not captured by these algorithms. For example, the Naïve 

Bayes algorithm assumes independence of all features. The results from the forward walking experiment 

reveal that IBK and J48 are the most suitable classifiers in quantifying correlations between the input space 

(i.e., features) and the class variable (i.e., PD classification) as seen in Tables 2 and 3. 

  

Table 3: Performance indicators of various classification algorithms (Forward Walking) 

Algorithm TP rate FP rate Precision Recall F-Measure ROC 

IBK 95.4% 4.6% 95.4% 95.4% 95.4% 95.0% 

Naïve Bayes 50.6% 48.3% 51.5% 50.6% 50.5% 51.4% 

SVM 74.0% 26.9% 74.0% 74.0% 73.9% 73.6% 

J48 Decision 

Tree 88.0% 11.9% 88.1% 88.0% 88.1% 88.3% 

Random Forest 66.3% 36.3% 66.7% 66.3% 65.4% 73.6% 

 

Similar to the results conducted with participants walking towards the sensor (Tables 2 and 3), the results 

from participants walking away from the sensor (Table 4), to the left of the sensor (Table 5) and to the right 

of the sensor (Table 6), reveal high predictive accuracy of the J48 algorithm (using 10 fold cross validation). 

While the IBK algorithm had high predictive accuracy for the forward and back walking experiments, it 

performed poorly on the left and right walking experiments with 59.2% and 57.9% respectively.    

 



 

 

                             23                                                          

 Table 4: Performance indicators of various classification algorithms (Back Walking) 

Algorithm TP rate FP rate Precision Recall F-Measure ROC 

IBK 91.5% 8.6% 91.6% 91.5% 91.5% 91.3% 

Naïve Bayes 56.7% 45.5% 58.8% 56.7% 52.2% 56.1% 

SVM 72.5% 28.0% 72.8% 72.5% 72.3% 72.2% 

 J48 Decision 

Tree 94.1% 6.0% 94.1% 94.1% 94.1% 94.5% 

Random 

Forest 68.6% 32.1% 68.9% 68.6% 68.3% 75.9% 

 

Results from Tables 3-6 reveal that despite the symmetric (forward and back walking) and asymmetric (left 

and right walking) characteristics of the data points, the J48 algorithm was able to distinguish gait variations 

between PD patients and controls with accuracies ranging from 88%-94%. The Naïve Bayes and SVM 

algorithms have NaN values in Table 5 and 6 because they failed to generate results in the allocated time.  

The consistency of the J48 algorithm when i) test data subsets are varied through 10-fold cross validation 

and ii) walking positions are varied, serves as a guide for healthcare decision makers seeking to investigate 

which machine learning algorithms are suitable for PD detection of unseen samples (i.e., stage 2 validation). 

Table 5: Performance indicators of various classification algorithms (Left Walking) 

Algorithm TP rate FP rate Precision Recall F-Measure ROC 

IBK 59.3% 54.3% 76.2% 59.3% 46.2% 53.0% 

Naïve Bayes N/A N/A N/A N/A N/A N/A 

SVM N/A N/A N/A N/A N/A N/A 

J48 Decision 

Tree 
91.3% 9.3% 91.3% 91.3% 91.3% 91.4% 

Random 

Forest 
70.0% 35.2% 70.4% 70.0% 68.7% 77.8% 

 

Table 6: Performance indicators of various classification algorithms (Right Walking) 

Algorithm TP rate FP rate Precision Recall F-Measure ROC 

IBK 57.9% 48.3% 59.4% 57.9% 51.7% 55.8% 

Naïve Bayes N/A N/A N/A N/A N/A N/A 

SVM N/A N/A N/A N/A N/A N/A 
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J48 Decision 

Tree 93.6% 6.6% 93.6% 93.6% 93.6% 93.6% 
Random 

Forest 71.7% 31.5% 73.3% 71.7% 70.6% 79.0% 

 

Future work will investigate the theoretical aspects inherent in these algorithms that make them suitable for 

PD classification. The rate of data capture by the sensor (i.e., one new data instances every 33ms) means 

that classification algorithms can be iteratively retrained on new incoming data, hereby making the resulting 

data mining models, a function of the constantly increasing data streams of PD patients and controls.  

Stage 2: Validation of Data Mining Models’ Predictive Power Using Unseen Patient Data  

Based on the results from Stage 1 validation, we are now able to understand how different data mining 

algorithms perform under varied experimental setups. Based on the results from Stage 1, the J48 decision 

tree algorithm has the most consistent predictive performance, relative to the sample data set containing 7 

PD patients and 7 controls. Furthermore, the extracted gait features included in these models help to identify 

the important features in order to assist physicians in better understanding emerging gait features of PD 

patients. For example, the top 10 features of the J48 decision tree classifier model are: WristRightZPosition, 

WristLeftXPosition, WristRightXPosition, KneeLeftXVelocity, KneeLeftXPosition, HeadXPosition, 

HandRightXPosition, HipRightYPosition, HipLeftYPosition, and  ElbowLeftXVelocity. It is important to 

note that the position features found relevant by the Decision Tree model in Figure 6, primarily relate to 

position in the X-direction. I.e., there exists differences in the lateral position of skeletal joints between PD 

and controls. These findings reveal that factors such as height variations (which would be more evident in 

the Y-direction) are not differentiating features between PD and controls. A subset of our results are 

consistent with previous research studies that reveal that reduced variations in arm swing and leg movement 

(i.e., relevant position attributes) are important features to recognize PD gait patterns (Marconi et al. 1994), 

(FitzGerald and Jankovic 1989). In addition, this research study has also successfully identified additional 

PD features that may be relevant to early PD detection. Other novel features include left elbow velocity in 

the X direction and several position features relating to the knee and hip. These features could explain 
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intensity of gait pattern instead of just position variations. A subset of the J48 Decision Tree model is shown 

in Figure 6, with the accompanying numeric values for each feature.  

 

  Figure 6: Data Mining J48 (C4.5) Decision Tree Model 

 

For example, in the model shown in Figure 6, the most important feature (based on its hierarchy in 

the decision tree model) is Wrist Right Z Position. For example, for a given frame (captured at a 33 ms 

interval), if the Wrist Right X Position value is less than 3.817m, and the Wrist Left X Position is greater 

than -0.5568m, and the Wright Right X Position is less than -0.0162 and the Knee Left X Velocity is less 

than 0.000367, then this individual is classified as a PD patient for that captured frame. For a given 4-6 

second experimental run, an average of 206 data instances are captured per subject. A final PD prediction 

is based on the total number of frames being classified as PD vs. control) That is: 

                                               𝑃𝐷 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = arg 𝑚𝑎𝑥
𝑖∈{1,…𝑌}

(𝑝(𝑦𝑖))                                                           (13) 
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Where,  

Y: number of mutually exclusive class values. In this case, the classification is binary (PD, non-PD), 

although this can be extended to greater partitions (e.g., moderate PD, severe PD) in subsequent works 

p(yi): represents the probability of the class value i 

Table 7: Data Mining Model Predictive Accuracy Based on Unseen Data from Control Subject 

Front  Back  LHS   RHS 

    Predicted      Predicted      Predicted      Predicted 

    PD 

CON

TRO

L      PD 

CON

TRO

L      PD 

CON

TRO

L      PD 

CON

TRO

L 

Actual 

(CONT

ROL) 

78 

(50

%) 

78 

(50%)  

Actual 

(CONT

ROL) 

27 

(71.1

%) 

11 

(28.9

%)  

Actual 

(CONT

ROL) 

9 

(7.6

%) 

110 

(92.4

%)  

Actual 

(CONT

ROL) 

50 

(45.0

%) 

61 

(55.0

%) 

 

Unseen Test Data for Subject 1 (CONTROL): The control subject used for the stage 2 validation 

represents an individual with normal body functions that has been cleared by a neurologist as being free of 

PD related gait symptoms. As can be observed in Table 7, the proposed methodology accurately predicts 

the control subject based on the left (LHS) and right (RHS) walking experiments with 92.4% and 55% 

respectively. However, the front and back walking experiments does not predict the control subject, 

resulting in 50% and 28.9% predictive accuracies respectively, as can be seen in Table 7. The numerical 

values to the left of each percentage values in Tables 7 and 8, represent the raw instance counts (i.e., tuples 

in the data set). 

Unseen Data for Subjects 2 and 3 (PD at risk patients): Subjects 2 and 3 in Table 8 represent actual 

patients that have been flagged by an expert neurologist as exhibiting signs of PD. Their classification of 

PD at risk was characterized prior to this study. Typically, a follow up examination is required, which may 

include a DaTscan to measure dopamine levels in the brain. The stage 2 validation of the proposed model 

aims to determine whether the J48 decision tree model generated for a particular walking direction, has 

predictive power in classifying an individual as having PD or not.  
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Table 8: Data Mining Model Predictive Accuracy Based on Unseen Data from PD at Risk Patients 

Front  Back  LHS   RHS 

  

Predicted      Predicted      Predicted      Predicted 

PD 

CONT

ROL      PD 

CONT

ROL      PD 

CONT

ROL      PD 

CONT

ROL 

Actu

al 

(PD 

Patie

nt 1) 

104 

(61.9%

) 

64 

(38.1%

)  

Actu

al 

(PD 

Patie

nt 1) 

92 

(89.3

%) 

11 

(10.7%

)  

Actu

al 

(PD 

Patie

nt 1) 

52 

(44.8

%) 

64 

(55.2%

)  

Actu

al 

(PD 

Patie

nt 1) 

17 

(12.4

%) 

120 

(87.6%

) 
                   
                   

    Predicted      Predicted      Predicted      Predicted 

    PD 

CONT

ROL      PD 

CONT

ROL      PD 

CONT

ROL      PD 

CONT

ROL 

Actu

al 

(PD 

Patie

nt 2) 

94 

(66.7%

) 

47 

(33.3%

)  

Actu

al 

(PD 

Patie

nt 2) 

49 

(67.1

%) 

24 

(32.9%

)  

Actu

al 

(PD 

Patie

nt 2) 

29 

(22.3

%) 

101 

(77.7%

)  

Actu

al 

(PD 

Patie

nt 2) 

52 

(35.9

%) 

93 

(64.1%

) 

 

Table 8 presents a summary of the J48 Data Mining models when tested on the PD at risk patient 1 and PD 

at risk patient 2. As can be seen from the results in Table 8, both the front and back experiments provide 

consistent classification of PD patients as actually being PD. For example, for the forward walking position 

for PD at risk patient 1, 104 unseen tuples (61.9%) pertaining to this patient’s gait, were classified as 

exhibiting characteristics of a PD patient, compared to 64 unseen tuples (38.1%) classified as exhibiting 

characteristics of a non-PD (i.e., control) subject. For the back walking position for PD at risk patient 1, 92 

unseen tuples (89.3%) pertaining to this patient’s gait, were classified as exhibiting characteristics of a PD 

patient, compared to 11 unseen tuples (10.7%) classified as exhibiting characteristics of a non-PD (i.e., 

control) subject. Similar results can be observed for the forward and backward walking positions of PD at 

risk patient 2 in Table 8. However, the J48 algorithm does not accurately predict PD patients when the LHS 

and RHS experiments are conducted, as seen in Table 8. This may be attributed to the fact that the LHS and 

RHS walking experiments primarily capture the skeleton data of a subject’s profile view, instead of a 

symmetric data collection such as those of the front and back walking experiments. This hypothesis is 
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consistent with the literature that has found the absence of symmetrical gait to be an indicator of the 

emergence of PD (Huang et al. 2012).  

Table 7 and 8 can be used to determine the walking direction with the most consistent predictive 

accuracy across participants (both PD and controls). I.e., the aggregated front walk experiments (summing 

down using Tables 7 and 8) correctly classifies 276 of the total 465 tuples captured from both the 

CONTROL and PD patients, yielding an overall classification accuracy of 59.3%. The aggregated back 

walking experiments correctly classifies 152 of the total 214 instances captured from both the CONTROL 

and PD patients, yielding an overall classification accuracy of 71.0%. The aggregated LHS experiments 

correctly classifies 191 of the total 365 instances captured from both the CONTROL and PD patients, 

yielding an overall classification accuracy of 52.3%. The aggregated RHS experiments performed the 

worst, only correctly classifying 130 of the total 393 instances captured from both the CONTROL and PD 

patients, yielding an overall accuracy of 33.07%. If the authors are to select only one walking direction for 

all subjects (e.g., front), then the results would indicate that two out of the three subjects were accurately 

classified (i.e., the PD patients). For the front walking direction for the CONTROL subject, the 

methodology has a predictive accuracy of only 50%. The authors postulate that the challenge in accurately 

predicting any one subject accurately, regardless of walking direction is due to the class imbalance problem 

which is a well-known issue in the machine learning research community that affects the robustness of 

machine learning classifiers (Japkowicz and Stephen 2002). I.e., there are fourteen subjects selected for this 

study, with 50% of them being PD patients. The prevalence of PD in the United States population is much 

lower at 0.3% (“National Parkinson Foundation - Parkinson’s Disease” 2015). Therefore, the skewness of 

the training data set may be reducing the robustness of the resulting data mining models. The authors 

included seven CONTROLS (e.g., instead of only one) in order to have a large enough sample to train the 

machine learning model. However, this issue can be resolved by increasing the sample size to accommodate 

more CONTROLS in the training data set, without altering the steps within the methodology. 
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Instead of determining which single walking position (front, back, LHS, RHS) generalizes to 

include both CONTROL and PD patients, a subject (either CONTROL or PD) could walk in all four 

directions, with a final disease classification made by selecting the class that has the highest distribution of 

assigned tuples. Based on this criteria, the CONTROL subject in Table 7 would be classified as non-PD 

with 260 tuples correctly classified as CONTROL and 164 tuples misclassified as PD (i.e., 61.3% correctly 

classified instances). For PD at risk patient 1, aggregating their front, back, LHS and RHS walking 

directions results in 265 tuples correctly classified as PD, with the remaining 259 tuples incorrectly 

classified as CONTROL (i.e., 50.6% correctly classified instances). For the PD at risk patient 2, aggregating 

their front, back, LHS and RHS results in 224 tuples correctly classified as PD, while the remaining 265 

tuples are misclassified as CONTROL (i.e., 45.8% correctly classified instances). Therefore employing the 

argmax function for each subject, given their four walking directions, would result in two (CONTROL and 

PD at risk patient 1) out of the three subjects being correctly classified. However, the decision to make 

disease predictions based on a specific walking direction or across all walking directions will be further 

explored in future work with a larger population of subjects. 

 To put this research study into perspective, given fourteen subjects to train the data mining model 

and three additional subjects to test its validity and robustness, the proposed methodology was able to 

correctly classify two out of the three test subjects using the argmax function for classifying across all 

walking directions. Furthermore, each subject only had to walk in front of the sensor system for 

approximately 4-6 seconds per experiment, resulting in a total of approximately 25 seconds worth of data 

collected for each patient. For a patient sample of 14 subjects, this amounts to less than 10 minutes of data 

collection that is demonstrating evidence of predictive power. This paper aims to demonstrate the feasibility 

of the proposed methodology in capturing gait data in a non-invasive manner, employing data mining 

models that are robust across different walking experiments and demonstrate the model’s predictive power 

using unseen data captured by additional subjects. 
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Figure 7: Histogram of Wrist Right X Position between PD and Controls 

In addition to the predictive accuracies, our preliminary findings are consistent with previous 

related research and help provide evidence of significant gait differences between PD patients and controls 

(Huang et al. 2012). For example, the right hand wrist position in the X coordinate is plotted for the 7 PD 

patients and 7 controls in Figure 7 and reveals reduced arm swing in PD patients (red), compared to controls 

(blue). The visualization of the results is consistent with the research findings in (Huang et al. 2012), 

indicating a reduced arm swing in PD patients since the range of red (represent arm swing range in PD 

patients) is less than the range of blue (represent arm swing range in controls).  

Based on the proposed methodology, human gait can be captured and modeled using non-invasive 

techniques in an effort recognize PD patients from controls. By generating data mining predictive models 

based on the gait data captured by the non-invasive sensors, researchers are able to determine the predicted 

status (i.e., PD or not PD) of each observation (i.e., frame), and an early stage PD. The final prediction 

would be the proportion of PD frames to the total number of frames collected. In terms of potential clinical 

application, this research aims to demonstrate the feasibility of utilizing non-invasive sensors and data 

mining algorithms to predict PD from non-hospital settings. For example, potential PD patients may be able 

to have PD gait screening, prior to a hospital visit. The proposed methodology serves as a quantitative 

reference for flagging patients that may be developing PD. While the current study was limited by sample 

size, our results are in agreement with previous characterizations of gait impairment in early PD. 

Specifically, several studies have suggested that gait impairment in early PD may involve reduced swing 
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of the upper limbs during ambulation (Huang et al. 2012; Lewek et al. 2010; Isaias et al. 2012; Crenna et 

al. 2008; Carpinella et al. 2007; Roggendorf et al. 2012) . Moreover, the agreement of our results with 

previous studies supports the notion that whole-body data mining techniques may be used to reveal novel 

markers of gait dysfunction. Future remote sensing studies using larger sample sizes may offer new insights 

regarding high-level characteristics of gait symptoms and PD progression.  

5. CONCLUSION  

In this paper, a data mining based methodology is proposed to analyze and predict PD patients from 

controls through the low-cost, non-invasive sensor hardware. The proposed methodology enables 

researchers and physicians to utilize low cost, non-invasive data acquisition techniques to model and predict 

the emergence of Parkinson’s disease. The proposed methodology maintains patient privacy by only 

collecting the three-dimensional (3D) geospatial data pertaining to a patient’s node location. The proposed 

methodology is also successful at extracting relevant gait features in order to model and predict early stage 

PD. The researchers in this work aim to provide healthcare decision makers with the ability to quantify PD 

movement abnormalities, independent of clinic location (e.g., from a patient’s home), hereby serving as an 

early warning system that can be communicated to physicians and healthcare decision makers, towards 

telehealth solutions. 

In future work, the proposed methodology may be expanded to other neurodegenerative disorders 

and possible medication effectiveness evaluation. In addition, this decision support may serve as a non-

location based screening system hereby detecting serious health conditions at their infancy and 

recommending individuals for follow up consultations with their healthcare providers.  
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