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PRESENTATION OVERVIEW

• Research Motivation

• Methodology
– Trajectory Partitioning 

– Line Segment Clustering

• Case Study

• Conclusion and Path Forward

Presentation Overview http://www.engr.psu.edu/datalab/
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RESEARCH MOTIVATION

Research Motivation http://www.engr.psu.edu/datalab/
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Research Motivation http://www.engr.psu.edu/datalab/

How to capture and quantify dynamics 

in an indoor space ?
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Existing Techniques for Assessing Indoor 

Space Utilization

Literature Review http://www.engr.psu.edu/datalab/

 Qualitative Methodologies
-Observations, interview-based and questionnaire-based surveys [1-

3]. 

Subjective bias.

 Quantitative Methodologies
-Layout Optimization techniques [4-5]. E.g. Material flow optimization 
[5].

-Statistical Analysis [6-10]. E.g. Pyramid based methodology [6]. 

Pre-determined trajectory paths.  
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Research Objective

A data mining driven methodology is proposed to
quantify and model common trajectory movement
patterns in order to predict team dynamics and
enhance indoor space design.

Research Objectives http://www.engr.psu.edu/datalab/
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RESEARCH METHODOLOGY

Research Methodology http://www.engr.psu.edu/datalab/
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What do we get from this trajectory mapping?
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Individual Trajectory Partitioning Example

Geospatial Trajectory  Methodology

Original trajectory data set: 
𝑇_2 ={t1,t2 ,. . . ,t6 }.

Characteristic point data
set: P _2 ={𝑝1,𝑝2 ,𝑝5,𝑝6 },
which is an approximation
of the original trajectory.
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Q: How to select characteristic point ?

Geospatial Trajectory  Methodology

The Minimum Description
Length (MDL) is applied to
extract characteristic points
[11].

If 𝑀𝐷𝐿𝑝𝑎𝑟 𝑡𝑘 > 𝑀𝐷𝐿𝑛𝑜𝑛𝑝𝑎𝑟

( 𝑡𝑘 ), then 𝑡𝑘−1 would be a
characteristic point.

e.g.
𝑀𝐷𝐿𝑝𝑎𝑟 𝑡5 < 𝑀𝐷𝐿𝑛𝑜𝑛𝑝𝑎𝑟 (𝑡5)

𝑀𝐷𝐿𝑝𝑎𝑟 𝑡6 > 𝑀𝐷𝐿𝑛𝑜𝑛𝑝𝑎𝑟 (𝑡6)
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Trajectory Clustering
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Given the extracted characteristic points  P = {p1, p2, . . . , pm from each
trajectory, the clustering algorithm will group different individual
movement patterns into different clusters  C = {c1, c2, . . . , cn where
common movement patterns are shared.



12

Trajectory Clustering Example 
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Three trajectories TR_1, TR_2
and TR_3 are described by
characteristic points.

The line segments in the
rectangular are close enough
to each other, and they are
considered as a cluster.
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Q: How to generate cluster? 
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The number of neighborhood of 
every line segment 𝑁𝜀(𝑙𝑖).

If 𝑁𝜀(𝑙𝑖)≥MinLns, then a density-
based set is generated.

If the cardinality (𝑁𝜀(𝑙𝑖))>1, then 
a cluster is generated.
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Trajectory Clustering Example
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 𝐿 = {𝑙1, 𝑙2, . . . , 𝑙9 . Noise set Q= ∅.

Step 1: 
No cluster,  𝐿 = {𝑙2, . . . , 𝑙9 , Q={𝑙1}.

Step2:
 𝑐1 = {𝑙2, 𝑙3, 𝑙6, 𝑙7 , L={𝑙4, 𝑙5, 𝑙8, 

𝑙9},  𝑄 = {𝑙1 .

Step 3:

  𝑐1 = {𝑙2, 𝑙3, 𝑙6, 𝑙7 , 𝑐2 = {𝑙4, 𝑙5, 𝑙8 , L= ∅
 𝑄 = {𝑙1, 𝑙9
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Learning Factory Indoor Space 

Utilization Case Study
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Learning Factory at Penn State

 The Learning Factory (LF) at Penn State provides student-oriented
design/prototyping space for the College of Engineering at Penn
State, particularly capstone design projects [12-13].

 An expansion of the LF facility in 2007 doubled its square footage;
however, the program has seen explosive growth as more
departments have become engaged [14].
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Starting Position

Twelve tags were provided 
for teaching assistants (TAs). 

A TA would wear one of the 
tags and then guide student 
experiments normally until 
the work is done and put the 
tag back to the container.

Learning Factory Layout
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Clustering Result
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Case study http://www.engr.psu.edu/datalab/
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What do we get from this trajectory mapping?
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Visualization

20

Case study http://www.engr.psu.edu/datalab/
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Results: 
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Case study http://www.engr.psu.edu/datalab/

1. Nine types of common movement patterns are
generated.

2. Cluster 8 and Cluster 9 can explain the most significant
movement patterns as large number of individuals are
included. At the same time, we can see the “back-and-
forth” pattern represented.

3. Two middle spaces are most utilized regions. In addition,
they are always utilized simultaneously in the Learning
Factory.
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Movement Pattern Evolution 

Detection
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Case study http://www.engr.psu.edu/datalab/

The objective: detect any change of indoor space utilization

patterns in the Learning Factory.
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Case study http://www.engr.psu.edu/datalab/

Visualization of Period I (01/20/2012 to 02/21/2012)

 Four clusters.

 Part of the middle
spaces are utilized.



24
24

Case study http://www.engr.psu.edu/datalab/

Visualization of Period II (02/22/2012 to 03/22/2012)

 Four clusters.

 More spaces are
utilized including Lab
Space and Toilet.
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Case study http://www.engr.psu.edu/datalab/

Visualization of Period III (03/23/2012 to 04/23/2012)

 Only two clusters
which means the
trajectory patterns are
tend to be more
similar comparing to
the first two periods.
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Results: 
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Case study http://www.engr.psu.edu/datalab/

4. Utilized spaces are increasing from the Period I to the
Period 3.

5. The similarities among multiple clusters are increasing
from the Period I to the Period 3 since the number of
clusters are decreasing from Period I to Period III.
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Conclusion:
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Case study http://www.engr.psu.edu/datalab/

In this paper, we propose a data mining driven methodology
which is able to model and predict common trajectory
movement patterns in order to understand team dynamics and
navigate indoor space design.



28

Future Work

Future work http://www.engr.psu.edu/datalab/



29

1. Include indoor facility layout optimization to enhance
team dynamics and overall project quality ;

2.Explore other potential indoor space design
applications such as emergency room in hospital, etc.

Future Work
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