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Motivation
• Misclassification of the state-of-the-art 

method using uni, bi, tri grams with SVM 
classifier.

– Keyword Recognition Problem.
• yep he’s fine...was only a mild case of the 

swine :)

– Term Disambiguation Problem.
• This is sick , it’s snowing again. :- It’s 

like i am living in Russia.

• Traditional document classification techniques 
would fail when dealing with social media 
because:
– They are high-dimensional but sparse: due to having 

short length.

– They are noisy: Grammatical errors, misspelling, new 
terms.



Research Objectives

• A message is said to be 
health-related if at least one 
of these two following 
conditions is met:

– The message indicates its 
author has health issues.

– The message talks about 
someone else getting sick, or 
expresses health concern.

Fever, back pain, 

headache... ugh!

I completely 

understand, more 

than anyone! Try a 

warm bath too. 

That always helped 

me w/ Pauly. & 

drinking water.



Previous Works on Social Media 
Document Classification 

• Keyword Based
– Ginsberg et al., Culotta, Corley et al. identified flu-

related content in query logs [17,28,29].

– Yang et al. identified content containing the averse 
drug reactions [24,30].

• Learning Based
– N-gram based classification [21,22,32] (Baseline)

– Keyword filtering -> N-gram based classification [5]

– Social media specific features: Authors and reply-to 
users [33] 



Methodology: Overview
• 5 different feature types representing semantically different aspect 

of the data.
• A machine is trained to learn a different aspect. 
• Combine 5 base classifiers using standard ensemble methods.

Data

Unstructured

Nonstandard text



N-Gram Features (NG)

• Represent a document with N-
grams.

• N-gram features have been used 
extensively in text classification to 
learn word patterns in the training 
data.

• Best configuration: 
– ⟨c = SVM, clean = T; stem = T; N = 2; W = 

tfidf ⟩

• Baseline by Paul and Dredze [21]: 
– ⟨c = SVM, clean = F; stem = F; N = 3; W = 

binary⟩ Parameter comparison of NG feature extraction 
as the maximum size of grams (N).

NG DC

ST TD



Dictionary Based Compound Features (DC)

• Problems with NG features:

– Words with multiple meaning are treated 
the same (Ex. cold can be used in both 
disease or temperature contexts)

– Important keywords are treated as normal 
words (Ex. Xeroderma pigmentosum)

• Represent a document with compounds 
[47], each of which must contain at least 
a keyword from the dictionary.

• Best configuration (F = 56.47%):
– ⟨c= SVM, stem = true; vocab = all; N = 1; C = 2; 

W = tfidf ⟩

Parameter comparison of DC feature extraction as the function of 
maximum gram size (N).

NG DC

ST TD



Topic Distribution Features (TD)

• Represent a document with topic 
distribution.

• Use LDA to model topics.

• Best configuration: 

– ⟨c= Random Forest; clean = F; Z = 
200⟩

Parameter comparison of TD feature extraction as the 
function of number of topics (Z)

NG DC

ST TD



Sentiment Features (ST)
• Physical Based:

– Number of health-related 
keywords

• Emotion Based:
– Positive/Negative sentiment scores

• Best Configuration (F = 51.08%):
– ⟨c= RIPPER; stem = T; N = 2; type = 

both⟩

Parameter comparison of ST feature extraction as the function of 
maximum gram size (N)

NG DC

ST TD



Base Classifiers

• Random Forest (RF)[38] is a tree-based ensemble 
classifier consisting of many decision trees.

• Support Vector Machine (SVM)[40] is a function based 
classifier built upon the concept of decision planes that 
define decision boundaries.

• Repeated Incremental Pruning to Produce Error 
Reduction (RIPPER)[42] is a rule-based classifier which 
implements a propositional rule learner.

• NaiveBayes (NB)[43] is a simple probabilistic classifier 
implementing Bayes’ theorem. NaiveBayes has been 
shown to perform superior in some text classification 
tasks such as spam filtering [44].



Ensemble Methods

• Majority Voting (VOTE) Each classifier outputs either a 
‘yes’ or ‘no’. The final outcome is the majority vote of all 
the classifiers.

• Weighted Probability Averaging (WPA) Each classifier is 
given a weight, where the sum of all weights is 1. Each 
classifier outputs a probability estimate of the positive 
class. The final output is the weighted average of all the 
classifiers.

• Multi Staging (MS) Classifiers operate in order. If a 
classifier says ‘yes’, the final output is yes; otherwise the 
instance in passed to the next classifier to decide.

• Reverse Multi Staging (RevMS) Similar to the MS 
technique, except that an instance is passed to the next 
classifier if the prior classifier says ‘yes’.



Combined Features (CB)

• Having a classifier that learns all the aspects of 
the data may be helpful when combined with 
other one-aspect classifiers.

• We create such an overall classifier by training 
a base classifier with combined features 
generated by merging all the four feature sets 
discussed above into a single feature set with 
SVM as the base classifier.

NG DC

ST TD



Experiments and Classification Results

10 fold classification performance of the baseline, proposed 
base and ensemble classifiers, in terms of precision, recall, 

F1, and ∆F1 on the dataset

• Dataset: 5,128 manually labeled 
tweets
– Positive: 1,832 (35.73%) 

– Negative 3,296 (64.27%)

• 10 Fold X-validation with 10% held-
out data.



Impact of Each Feature Type

• Each proposed feature type is combined 
with the features used by the baseline.

• NG features: Impact is not significant 
since the baseline and our NG features are 
both N-gram based; hence, they provide 
redundant information to the classifier.

• DC features: Most impact on the 
performance, because it can mitigate both 
keyword-recognition and term-
disambiguation problems.

• ST features capture both health-related 
keywords used and emotion in a 
document. Since these properties are not 
captured in the baseline feature set, 
combining the ST features with the 
baseline allows the classifier to learn more 
information as expected.
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Contributions

• Develop a public health surveillance system using the 
dynamic large scale availability of social media data. 

• Propose to use 5 heterogeneous feature types 
representing different aspects of semantics for 
identification of health-related messages in social 
media.

• Combine feature types using ensemble methods 
where each base classifier learns a different aspect of 
the data.



Conclusions

• Propose to use 5 semantically heterogeneous feature 
types for short text classification tasks.

• Propose to combine the features by combing base 
classifiers each of which learns a different aspect of the 
data using standard ensemble techniques.

• The proposed methodology outperforms the baseline 
using N-gram binary feature by 18.61%.

• Dictionary based compound features have the most 
additional impact since they can solve both keyword 
recognition and term disambiguation posed by the 
features used by the baseline. 
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