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PRESENTATION OVERVIEW
Research Motivation
- Challenges for generating design concepts

Related Research
- Engineering design methodologies relating to concept generation

Methodology
- Creating a database of products
- Identifying candidate source products with functional similarities
- Creating tangible design concepts

Combine source product forms
Combine source product functions

Application
- Generating a design concept for a hybrid marine model

Conclusion

Introduction
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Research motivation

Research motivation
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Design factors in product design 

Research motivation

A Framework for Decision based Engineering Design, G.A.Hazelrigg,1998

Demand = f(product , price , time)

“Optimize Price while Maximizing Utility”



5

a1 a2 a3 a4 ai aj ak

Company 1 ✓ ✓ ✓ ✓

Company 2 ✓ ✓ ✓ ✓ ✓

• Higher product differentiation may increase a company’s competitive edge 
Shooter and Simpson, 2006

Research Motivation

Design factors in product design 

a1 a2 a3 a4 …

Company 1 ✓ ✓ ✓ ✓ …

Company 2 ✓ ✓ ✓ ✓ …

… ✓ ✓ ✓ ✓ …

• Lower product differentiation results in lower competitive edge
Shaked and Sutton, 1982 

Company 1 Company 2
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Research Questions

How can designers explore potentially 
relevant attributes from large scale 
data in timely efficient manner?

Research Motivation
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Research hypothesis

Product attributes

Next generation 
product (R)

Ri Rj Rk

Synthesized
design concept (C)

Ci Cj Ck

Existing
product (S)

Si Sj Sk

∆ 𝑌 = 𝑅 − 𝑆

∆ 𝑋 = 𝑅 − 𝐶

𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠: ∆ 𝑋 < ∆ 𝑌

Research Motivation
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Related Research

Related research
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Literature Review

Models Definitions Limitations Ref.

Single 
Domain 
Predictive 
Morphing 

Generate design concepts by 
partially changing current 
products

Design fixation occurs [12-21]

Design by 
Analogy

Discover novel design concepts by 
exploring analogy across 
designers’ knowledge/ product 
descriptions for reducing design 
fixation

Require experts 
knowledge to discover 
concepts 

[25-30]

Bio-
Inspired 
Design

Discover novel design solutions by 
taking account into biological 
domains as design sources

Require deep
understanding of 
Biological domains

[22,23],
[31-33]

Functional 
Model

Generate functional structure 
based on design concepts from 
previous sections

Require to select 
candidate 
modules with designers’ 
functional knowledge

[34-46], 

Related research
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Identify 
customer 
needs

Gathering 
ideas

Generate 
initial design 
concepts

Detail design

Sketch forms
Describe general functions

Experts knowledge
Search competitive products

Functional modelling
Design structure matrix

Step 1

Step 2

Step 3

Step 4

Step 5

Prototypes

Mockups

Knowledge Gap

Related research

Hsiao and Chou, 2004
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Methodology

Methodology
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The initial step of product design

Methodology

Designers describe requirements in texts
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Overall process of the proposed methodology

Step 2. Search 
products that satisfy 
the design 
requirements

Step 3. Create 
distinctive design 
concepts from the 
source products

Step 1. Collect 
product data to 
create database of 
products

Acquire functional 
description (text)

Acquire 3D form of 
product (3D mesh)

Identify the product i
that satisfies most of 
the requirements in 
terms of function

Identify the product i’
that satisfies the rest 
of requirements in 
terms of function

Integrate functions of 
the products and 
reduce common 
functions from 
product i’

Integrate 3D forms of 
the products by 
morphing each 
source product 

Methodology
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Collect product data to create database of 
products

.Function: 

representing the objective of a 
design artifact.

Form: 

representing  the geometric 
surface of a design artifact.

Methodology
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Overall process of the proposed methodology

Step 2. Search 
products that satisfy 
the design 
requirements

Step 3. Create 
distinctive design 
concepts from the 
source products

Step 1. Collect 
product data to 
create database of 
products

Acquire functional 
description (text)

Acquire 3D form of 
product (3D mesh)

Identify the product i
that satisfies most of 
the requirements in 
terms of function

Identify the product i’
that satisfies the rest 
of requirements in 
terms of function

Integrate functions of 
the products and 
reduce common 
functions from 
product i’

Integrate 3D forms of 
the products by 
morphing each 
source product 

Methodology
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d1

d2 d3

D

Collecting descriptions A database containing functions of 
product

tx=p........................

...............................

...............tx=q.

tx=r.........................

............tx=v.

............................               

...............................

.....................  

Ff=1

Ff=2

.

.

.

Ff=F

A functional description 
di

dn

d1

d2 d3

Identify the Product i that satisfies most of the 
requirements in terms of function

ID (i) Product Description (di)

1 Camera Encodes digital image 
and… store… memory…

… … …

n … …

Methodology
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Identify the Product i that satisfies most of the 
requirements in terms of function

where,

ti,f : the functions that can found in a textual description of product (i)

di: the textual description of product (i)

qf: fth function (paragraph) in the textual description of  product (i)

F: the maximum number of functions of product (i)

, ,1
( | ) ( | ) ( | )

F

i f i i f f f if
P t d P t q P q d




tx=p........................

.......................tx=q.

tx=r.......... tx=v.

............................    

…………………

.................

Ff=1

Ff=2

.

.

.

Ff=F

Product (i=1) Description (di=1)

Camera Encodes digital image and… store…

t1,1 = image t1,2 = encode … t1,F  = …

0.16299 0.10111 … …

LDA

 𝑃(𝑡𝑖,𝑓|𝑑𝑖

(1)

Methodology
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ti,f : the functions that can found in a textual description of product (i)

tr: the terms that can be found in designers’ requirements.

,

,

,

( , )
r i f

r i f

r i f

t t
Sim t t

t t


Identify the Product i that satisfies most of the 
requirements in terms of function

tr

ti,f

ti,f

ti,f

(2)

Methodology



http://www.engr.psu.edu/datalab/ 19

Overall process of the proposed methodology

Step 2. Search 
products that satisfy 
the design 
requirements

Step 3. Create 
distinctive design 
concepts from the 
source products

Step 1. Collect 
product data to 
create database of 
products

Acquire functional 
description (text)

Acquire 3D form of 
product (3D mesh)

Identify the product i
that satisfies most of 
the requirements in 
terms of function

Identify the product i’
that satisfies the rest 
of requirements in 
terms of function

Integrate functions of 
the products and 
reduce common 
functions from 
product i’

Integrate 3D forms of 
the products by 
morphing each 
source product 

Methodology
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' ,( )c

r r r i ft t t t

tr’: the rest of terms that can be found in the requirements.

ti,f

Identify the Product i’ that satisfies most of the 
requirements in terms of function

' ',

' ',

' ',

( , )
r i f

r i f

r i f

t t
Sim t t

t t


ti’f

tr’

tr’

(3)

(4)

Methodology

ti’,f : the functions that can found in a textual description of product (i’)
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Overall process of the proposed methodology

Step 2. Search 
products that satisfy 
the design 
requirements

Step 3. Create 
distinctive design 
concepts from the 
source products

Step 1. Collect 
product data to 
create database of 
products

Acquire functional 
description (text)

Acquire 3D form of 
product (3D mesh)

Identify the product i
that satisfies most of 
the requirements in 
terms of function

Identify the product i’
that satisfies the rest 
of requirements in 
terms of function

Integrate functions of 
the products and 
reduce common 
functions from 
product i’

Integrate 3D forms of 
the products by 
morphing each 
source product 

Methodology
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, '( )I I i fF T t t

, ', , ' ', '( ) ( ) ( )c

I i f i f i f i fF t t t t t

tItI
ti,f ’

TI

Integrate functions of the products and reduce 
common functions from product i’

where, 

TI the integrated functional terms from each product

tI: the functional terms having no common functional terms between each product

, ' ,i f i ft t

', ' ',i f i ft t
, ' , ',i f i f i ft t t

, ' , ',i f i f i ft t t

subject to,

(5)

(6)

(7)

(8)

(9)

(10)

Methodology
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Overall process of the proposed methodology

Step 2. Search 
products that satisfy 
the design 
requirements

Step 3. Create 
distinctive design 
concepts from the 
source products

Step 1. Collect 
product data to 
create database of 
products

Acquire functional 
description (text)

Acquire 3D form of 
product (3D mesh)

Identify the product i
that satisfies most of 
the requirements in 
terms of function

Identify the product i’
that satisfies the rest 
of requirements in 
terms of function

Integrate functions of 
the products and 
reduce common 
functions from 
product i’

Integrate 3D forms of 
the products by 
morphing each 
source product 

Methodology
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Integrate 3D forms of the products by morphing 
each source product 

Generate Reeb graph for each source and target 3D model [44]

Minima

Saddle
Y

Z

X

Maxima

Similarity ratio = 

the number of matched points in the level sets / 

the number of larger data sets 

Methodology
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Generate an intermediate model 

Y

Z

X

Source
model

Target
model

Intermediate 
model

Integrate 3D forms of the products by morphing 
each source product 

Methodology
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Case Study

Case study
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New Product Development
-application

Design Scenario

Designers want to explore additional domains 
to search novel design concepts that can lead to 
the development of novel differentiated 
products in the marine domain. 

Case study
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Design Scenario

Designers have described the functional requirements for novel product 
domains

• It will be a vehicle

• It will operate over water

• It will not be influenced by waves

• It will operate over land

• It will move with stability

• It will be able to use the ground effectively

• It will be able to fly

New Product Development
-application

Case study
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New Product Development
- data collection

Form: 

Function: 

“A digital camera has a compressor and decompressor to provide for 
raw sensor data to be stored more compactly prior to image 
processing…”

“The cellular phone system according to the present invention separates 
one or more of such components…”

X

Y

Z

Digital camera Cell phone Hovercraft Motorcycle Airplane

Case study
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New Product Development
- Search candidate products

Functional probabilities (%) from each product corresponding to 

the requirements
Product 

Requirements (tr)
vehicle 0% 0% 1% 6% 0%

water 0% 0% 2% 0% 0%

wave 0% 0% 1% 0% 0%

land 0% 0% 1% 1% 2%

stability 7% 0% 0% 14% 3%

ground-effect 0% 0% 9% 0% 0%

flight 0% 0% 0% 0% 4%

Case study
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Functional similarity between the requirements and products 
Product (i)

Functional 
similarity

5%
(1/14)

0%
(0/25)

21%
(5/22)

13%
(3/19)

4%
(3/67)

vehicle ✓ ✓

water ✓

wave ✓

land ✓ ✓ ✓

stability ✓ ✓ ✓

ground-effect ✓

flight ✓

New Product Development
- Search candidate products

Case study

ti,f ti’f
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New Product Development
- Functional concept generation

Common functions between the products

Parent products 
overlapped 
functions

hovercraft (i) airplane (i’)

turbine 2% 7%

propeller 4% 3%

aerodynamics 1% 1%

maneuverability 1% 2%

absorber 2% 1%

cargo 1% 1%

the functional concepts for novel product domain =
the hovercraft’s 22 functions + airplane’s 61 functions 

Case study

tItI
ti,f ’

TI
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Hovercraft

Airplane

Design concept of the 
hybrid marine model

Morph

New Product Development
- Form concept generation

Case study
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New Product Development
- verification

Form and function similarity between wig and models

form 
similarity (x)

function 
similarity (y)

design
concept

hover craft airplane

WIG x = 61%

y = 30%

x = 17%

y = 23%

x = 47%

y = 9%

Case study
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Conclusions

Conclusions



http://www.engr.psu.edu/datalab/ 36

Differentiated design concepts are generated from source 
products by reducing their similarity during the combination 
process in terms of form and function. 

The experiment of the methodology demonstrates the 
possibility of an automated concept generation process that 
combines different products that satisfy designers’ 
requirements

Conclusions

Summary
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Future work

Future work
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Improving the generated concepts into detailed engineering 
specifications by employing function-behavior-structure (FBS) 
model

Analyzing the interaction between form and function by 
related domain expertise will provide sophisticated design 
concepts to designers

Future work

Future work
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Q & A
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