

Design Analysis Technology Advancement (D.A.T.A) Laboratory

DETC2013-12651

Digital Representation of Physical Artifacts: The Effect of Low Cost, High Accuracy 3D Scanning Technologies on Engineering Education, Student Learning and Design Evaluation Tuesday, August 6th, 2013

Nitish Vasudevan & Conrad S. Tucker {nuv115, ctucker4}@psu.edu

Overview

Introduction

Research Motivation

Methodology

- Research Objective
- Proposed Methodology
- Data Acquisition
- Quantifying Form Similarity

Case Study

- Experiment Setup 3D Scanner
- Survey Results
- Student Grades

Conclusion

PENNSTATE

Overview

Introduction

Introduction

Vasudevan, Tucker 2013 www.engr.psu.edu/datalab/

Research Motivation

- Shift from physical to digital space
- Educators prefer hands-on activities to convey concepts easily to students*.
- Increasing use of technology creates lack in hands-on activities to supplement digital student learning.
- With advancements in digital interactive technology, with products such as *Microsoft's Kinect* and *Nintendo Wii*, the boundaries of hands-on interaction are being pushed into the digital space.

* Gorman et al.

- Experiments conducted by Stanford University with their bicycle disassembly course have shown that students learn better when multimedia tools are employed as part of the existing teaching methodology*.
- Digital tools such as the 3D scanner, livescribe digital pen and the voice to text feature have accelerated and improved the process of information extraction through simple hands-on activities.

PENNSTATE

5

* Regan and Sheppard

Research Motivation – contd.

- Automated student assessment techniques
- Variations across digital model assessments given by graders (teaching assistants). Increase in student designs, increases the variations in grades and the number of graders.
- Automated grading solutions have focused on textual and choice based response data to a large extent*.
 Techniques to quantify qualitative design data has not been explored.

* Zoeckler and Valenti et al.

Methodology

Methodology

Vasudevan, Tucker 2013 www.engr.psu.edu/datalab/

Research Objective

- To help bridge the gap between digital design education and hands-on experiences in design classrooms.
- Assess variations in grading across student design activities.

Proposed Methodology

- Introduce 3D scanning as a technique to supplement digital model creation through hands-on interaction with live artifacts.
- Use degree of form similarity as a measure to evaluate student designs benchmarked against a standard model.

PENNSTATE

• Sample 3D Scanner.

Sample object to object comparison.

Data Acquisition

Data Acquisition – contd.

- 3D scanners are digital image and depth capturing devices which help create digital 3D models of objects.
- They consist of a combination of photographic lenses to capture images and lasers to capture point by point depth values across the surface of the artifact.

3D Scanner

3D Scanner - Sample

3D Scanner in a • classroom setup along with generated 3D models of objects.

Speaker Color

Speaker Surface

Card Reader Color Card Reader Surface Card Reader Mesh

Speaker Mesh

Camera Color Camera Surface Camera Mesh

PENNSTATE

Vasudevan, Tucker 2013 www.engr.psu.edu/datalab/ 13

Form Similarity

- Generated student 3D models (STL files) are compared with the model created by the scanner using the form similarity metric using the evaluation of reeb graphs as generated by *Doraiswamy et al.*
- Form similarity by definition is the evaluation of degree of alikeness in form (pure geometric) between two artifacts.
- The result gives a relative value of the deviation from standard when comparing various models to a benchmarked model.

Reeb Graphs

Reeb graph is a form visualization technique based on Morse theory which evaluates geometry of objects upon the surface topology through based the determination of iso-surface parameters along increasing level set values (along Z-axis).

PENNSTATE

 Similarities in Reeb graphs represent similarities in through the analysis of identical critical points in the Reeb graph.

*Doraiswamy et al.

Reeb Graphs – contd.

• Reeb graphs can be compared for similarities through a comparison of the level set data for each reeb graph.

PENNSTATE

PENN

• The degree of similarity is a direct correlation to the level of similarity between the two 3D models.

Level set data			Sample of	
Saddle	Maxima	Minima	generated	Object 1 Object 2
1	0	0	data.	$\left(\right) $
2	0	2		
3	6	5	Reeb graph	$\left(\right)$
			comparison –	
1543	1554	1023	visualization.	
STATE				x

Vasudevan, Tucker 2013

www.engr.psu.edu/datalab/

Methodology

16

Quantitative Assessment

- Student designs created are compared for similarities in form using the reeb graph technique.
- Comparisons are done between student designs and a benchmark design either generated from a 3D scanner or present in the product database.
- Student grades are a direct representation of the degree of similarity between the comparisons (e.g. similarity value of 0.86 correlates to a grade of 86/100).

Case Study

Case Study

Vasudevan, Tucker 2013 www.engr.psu.edu/datalab/

Case Study

- 25 Students created the model of the coffee mug during a lab class of 2 hours duration.
- Each student was given identical mugs and were asked to recreate the model using the standard *Solidworks* design package.

On a scale of 5 (5 being the easiest):

Q1: How much easier was it to regenerate a solid part using the

scanner as opposed to designing it on the software?

Q2: How easy was it to learn the working of the scanner?

Q3: How easy was it to navigate through the software that is

associated with the scanner for scanning?

Case Study

Results for student assessment

Student	Student Model	TA 1 Score	TA 2 Score	Scores from reeb graph
1		87	69	91
2		78	47	78
3		95	90	100
4		92	73	49
5		95	84	76
6		90	68	74
7	\mathbf{D}	80	68	98
8		92	78	99

Statistic	TA 1	TA 2			
Mean	88.63	72.13			
Std. Deviation	6.5	12.93			
One sample t at 95% CI	(83.19,94.06)	(61.31,82.94)			
Estimate of difference	16.5				
95% CI for difference	(5.0968, 27.9032)				
T – value	3.22				
P – value	0.009				
Case Study	Vasudevan, Tucker 2013 www.er	ngr.psu.edu/datalab/			

pennS

Conclusion

Conclusion

Vasudevan, Tucker 2013 www.engr.psu.edu/datalab/

- The conducted between digi
 - The conducted research aims to aid in bridging the gap between digital and hands-on activities in design classroom by introducing 3D scanners as a tool to create digital models of objects.
 - Variations in assessments of student generated models across graders is eliminated through the automated evaluation of models by similarity comparison to a benchmarked model.

Questions Comments

