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End of Life Products

• Recovery and disposal of products at the 
end of their life is an integral part of the 
product lifecycle

• These products and components can be 
sourced for parts and raw materials

• Generates billions of dollars, over 1 million 
people employed (EPA)
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Knowledge Gap

• Extant literature incorporates sorting 
into costs

• Labor accounts for 60% of EOL costs[1]

• Can easily become unprofitable

Introduction

[1]: http://msl.mit.edu/theses/Dantec_D-thesis.pdf
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EOL Process

Source: http://www.call2recycle.ca/

Research Motivation
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Inefficiencies of Sorting

• End of Life recovery is a highly manual 
process

– Identification

– Sorting

• In some cases, tasks 
that can be done 
using computer vision

Research Motivation
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Steps to Sort

Identify Classify

Observe
Identify Classify

Current Practice
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Research Hypothesis

Automatic classification of EOL objects 
provides comparable performance to that of a 

human sorter

Research Hypothesis
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Methodology
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Gather Waste Stream Video

• Incoming data is any video containing EOL 
products already on-belt

• Each video can be represented as a series of 
matrices of color data

Research Methodology
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EOL Object Recognition

• Key insight: EOL objects are moving

• By removing non-dynamic pixels, only 
potential EOL objects remain.

M (x, y) =
1 I(x, y)t-1 - I(x, y)t ³e

0 I(x, y)t-1 - I(x, y)t <e

Research Methodology

M = Mask
I(x,y) = Intensity of 
(x,y)
ε = threshold
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Identify Regions of Interest

• Convert to LAB Space

• K-means

Research Methodology

μ
x
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Object Classification

Research Methodology

Candidate Objects Ground Truth
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Object Classification

• Each object being searched for is also 
quantized into a color palette 

• These palettes are merged into a search 
space

Research Methodology
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Object Classification

space := {EOL objects}

For each i in space do

quantize i

save to palette

Merge similar colors

colors := {Quantize video}

For each color j in colors

if j in palette

assign label

Research Methodology
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Input Video Processing

• Apply moving pixels mask

• Cluster remaining colors

– Key idea is to find large continuous areas

• If there is a color match, assign a label

• Aggregate label results

Research Methodology
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EOL Enterprise Decision Making

Maximize π:

p = adr × Pdr -Cdr( )
rÎR

å
dÎD

å
ì
í
î

ü
ý
þ

Pdr = Revenue of decision d for product r
adr = number of units of product r and decision d
Cdr = Cost of decision d for product r

We need to find a for each d,r

Research Methodology
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Case Study: Centre County 
Recycling

• Our Case Study is a local Recycling 
Center

• Processes approximate 200 lbs of plastic 
per hour

Case Study
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Case Study

• Decision to be made: Whether or not to sort 
a given load of plastics

Decision

Operation Discard Sort Do Not Sort

Collection X X X

Transport to 
Disposal Site

X

Sorting * X

Trans to Market X X

Trans to Disposal 
Facility

X

Case Study
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Why Sort?

#1 and #2 Plastic 
Incoming

Mixed plastic sells 
for $80/T

Sorting requires 
paying employees 

≈$10/hour

PET (#1) $360/T

HDPE (#2) $800/T

Case Study
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Case Study

• Real-time Decision Making

– Monitor video feed

– Based on identified objects, determine if it is 
more profitable to sort

Case Study
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Results

Video Precision Recall

1 50% 71%

2 78% 84%

Case Study
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Profitability

• Based on 3:12 video:

– 49 HDPE objects found

• 8 missed

• Using this system to sort instead of humans:

– +$10/Hr in unpaid wages

– -$6.17/Hr in losses due to misidentification

• +$3.83/Hr in profits * 4160 Hrs = $16,000

Case Study
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Conclusion

• By using object identification, real time 
decisions can be made for objects on a 
conveyor belt

• Can greatly reduce labor costs, even in light 
of less than perfect recall

Conclusion



http://www.engr.psu.edu/datalab/ 33

Future Work

• Improve Algorithm Generalizability

• Consider other EOL decisions

Future Work
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Questions?

Thank you!

Thank you!


