

Design Analysis Technology Advancement (D.A.T.A) Laboratory

8/5/2015

DETC2015-47401

A Computer Vision Approach for Automatically Mining and Classifying End of Life Products and Components

Matthew Dering and Conrad S. Tucker

Penn State University

dering@cse.psu.edu ctucker4@psu.edu

Outline

- Introduction
- Motivation
- Methodology
- Case Study
- Conclusions

Outline

- Introduction
- Motivation
- Methodology
- Case Study
- Conclusions

End of Life Products

- Recovery and disposal of products at the end of their life is an integral part of the product lifecycle
- These products and components can be sourced for parts and raw materials
- Generates billions of dollars, over 1 million people employed (EPA)

State of the Art

Design	Planning	Recycling/Rema nufacture	Sorting
Favi et al. (2012)	Behdad et al. (2010,2012)	Johnson & Wang (2010)	Zikopoulos & Tagaras (2008)
Huang et al. (2010)	Kang et al. (2014)	Zhao & Thurston (2013)	Oguchi et al. (2011)
Gonzalez-Torre (2004)	Kwak et al. (2011)	Kwak & Kim (2014)	Hatayama et al. (2012)
Peng et al. (2013)		Rahman & Subramanian (2012)	Gaustad et al. (2012)

Knowledge Gap

- Extant literature incorporates sorting into costs
- Labor accounts for 60% of EOL costs^[1]
- Can easily become unprofitable

[1]: http://msl.mit.edu/theses/Dantec_D-thesis.pdf

Outline

- Introduction
- Motivation
- Methodology
- Case Study
- Conclusions

EOL Process

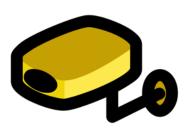
Call2Recycle Physical Flow: Canada

WESTERN CANADA RETRIEV *Trail, BC* EASTERN CANADA
TERRAPURE ENVIRONMENTAL
Ft Erie, ON
LAURENTIDE RE/SOURCES

PENN<u>STATE</u> Source: http://www.call2recycle.ca/

Inefficiencies of Sorting

- End of Life recovery is a highly manual process
 - Identification
 - Sorting
- In some cases, tasks that can be done using computer vision


Steps to Sort

Current Practice

Observe

Observe

Identify

Identify

Classify

PET Classify

Research Hypothesis

Automatic classification of EOL objects provides comparable performance to that of a human sorter

Outline

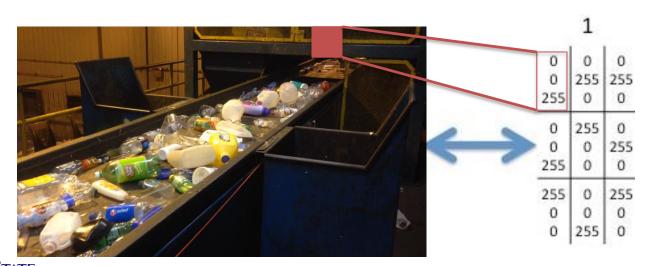
- Introduction
- Motivation
- Methodology
- Case Study
- Conclusions

Methodology

Gather Waste Stream Video Data

EOL Object Recognition EOL Object Classification

Real Time Enterprise level EOL Decision Making



Gather Waste Stream Video

- Incoming data is any video containing EOL products already on-belt
- Each video can be represented as a series of matrices of color data

Methodology

Gather Waste Stream Video Data

EOL Object Recognition EOL Object Classification

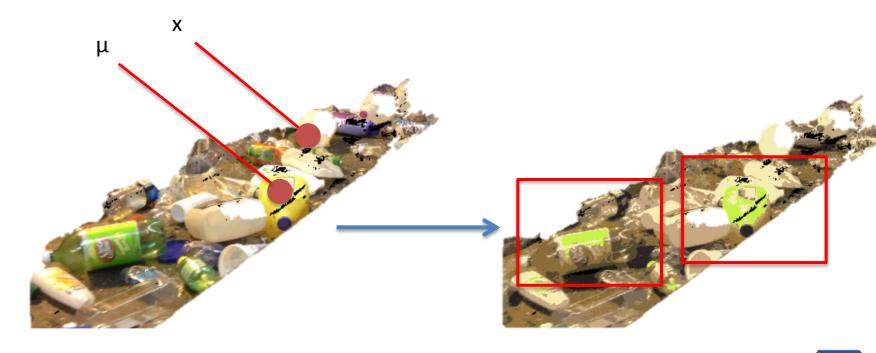
Real Time Enterprise level EOL Decision Making

EOL Object Recognition

- Key insight: EOL objects are moving
- By removing non-dynamic pixels, only potential EOL objects remain.

$$M(x,y) = \begin{cases} 1 & I(x,y)_{t-1} - I(x,y)_t < \theta \\ 0 & I(x,y)_{t-1} - I(x,y)_t < \theta \end{cases}$$

$$0 \quad I(x,y)_{t-1} - I(x,y)_t < \epsilon$$



Identify Regions of Interest

$$\underset{\mathbf{S}}{\operatorname{arg\,min}} \sum_{i=1}^{\kappa} \sum_{\mathbf{x} \in S_i} \|\mathbf{x} - \boldsymbol{\mu}_i\|^2$$

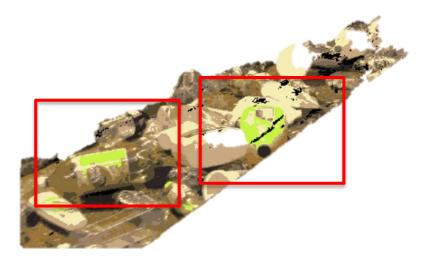
- Convert to LAB Space
- K-means

Methodology

Gather Waste Stream Video Data

EOL Object Recognition EOL Object Classification

Real Time Enterprise level EOL Decision Making


PENNSTATE

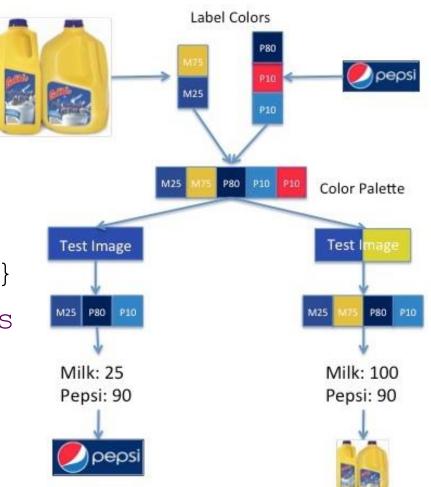
Object Classification

Candidate Objects

Ground Truth

Object Classification

- Each object being searched for is also quantized into a color palette
- These palettes are merged into a search space



Object Classification

```
space := {EOL objects}
For each i in space do
  quantize i
  save to palette
Merge similar colors
colors := {Quantize video}
For each color j in colors
  if j in palette
    assign label
```


Input Video Processing

- Apply moving pixels mask
- Cluster remaining colors
 - Key idea is to find large continuous areas
- If there is a color match, assign a label
- Aggregate label results

Methodology

Gather Waste Stream Video Data

EOL Object Recognition EOL Object Classification

Real Time Enterprise level EOL Decision Making

EOL Enterprise Decision Making

Maximize π :

$$p = \int_{\hat{I}} \hat{a} \hat{a} \hat{a}_{dr} \times (P_{dr} - C_{dr}) \hat{y}$$

 P_{dr} = Revenue of decision d for product r a_{dr} = number of units of product r and decision d *Cdr* = Cost of decision d for product r

We need to find a for each d,r

Outline

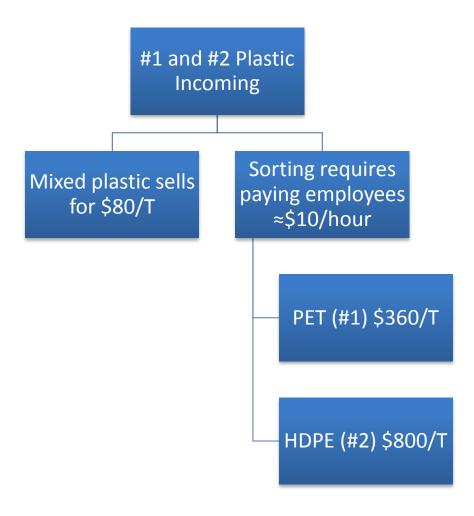
- Introduction
- Motivation
- Methodology
- Case Study
- Conclusions

Case Study: Centre County Recycling

- Our Case Study is a local Recycling Center
- Processes approximate 200 lbs of plastic per hour

Case Study

 Decision to be made: Whether or not to sort a given load of plastics


	Decision		
Operation	Discard	Sort	Do Not Sort
Collection	X	X	Х
Transport to Disposal Site	x		
Sorting *		X	
Trans to Market		X	Х
Trans to Disposal Facility	X		

Why Sort?

Case Study

- Real-time Decision Making
 - Monitor video feed
 - Based on identified objects, determine if it is more profitable to sort

Results

Video	Precision	Recall
1	50%	71%
2	78%	84%

Profitability

- Based on 3:12 video:
 - 49 HDPE objects found
 - 8 missed
- Using this system to sort instead of humans:
 - +\$10/Hr in unpaid wages
 - -\$6.17/Hr in losses due to misidentification
- +\$3.83/Hr in profits * 4160 Hrs = \$16,000

Conclusion

- By using object identification, real time decisions can be made for objects on a conveyor belt
- Can greatly reduce labor costs, even in light of less than perfect recall

Future Work

- Improve Algorithm Generalizability
- Consider other EOL decisions

References and Acknowledgments

Favi, C., Germani, M., Mandolini, M., and Marconi, M., 2012, "Promoting and Managing End-of-Life Closed-Loop Scenarios of Products Using a Design for Disassembly Evaluation Tool," ASME, p. 1339.

Behdad, S., Kwak, M., Kim, H., and Thurston, D., 2010, "Simultaneous Selective Disassembly and End-of-Life Decision Making for Multiple Products That Share Disassembly Operations," J. Mech. Des., 132(4), p. 041002.

Behdad, S., Williams, A. S., and Thurston, D., 2012, "End-of-Life Decision Making With Uncertain Product Return Quantity," J. Mech. Des., 134(10), p. 100902. Johnson, M. R., and Wang, M. H., 2010, "Economical evaluation of disassembly operations for recycling, remanufacturing and reuse," International Journal of Production Research, 36(12), pp. 3227–3252.

Zikopoulos, C., and Tagaras, G., 2008, "On the attractiveness of sorting before disassembly in remanufacturing," IIE Transactions, 40(3), pp. 313–323.

Huang, H., Zhang, L., Liu, Z., and Sutherland, J. W., 2010, "Multi-criteria decision making and uncertainty analysis for materials selection in environmentally conscious design," Int J Adv Manuf, 52(5-8), pp. 421–432.

Woo Kang, S., Sane, C., Vasudevan, N., and Tucker, C. S., 2014, "Product Resynthesis: Knowledge Discovery of the Value of End-of-Life Assemblies and Subassemblies," J. Mech. Des., 136(1), p. 011004.

Zhao, Y., and Thurston, D., 2013, "Maximizing Profits From End-of-Life and Initial Sales With Heterogeneous Consumer Demand," J. Mech. Des., 135(4), p. 041001.

Oguchi, M., Murakami, S., Sakanakura, H., and Kida, A., 2011, "A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources," Waste management.

Gonzalez-Torre, B., 2004, "Optimizing decision making at the end of life of a product," Proc. SPIE.

Kwak, M., Behdad, S., Zhao, Y., Kim, H., and Thurston, D., 2011, "E-Waste Stream Analysis and Design Implications," J. Mech. Des., 133(10), p. 101003.

Kwak, M., and Kim, H., 2014, "Design for life-cycle profit with simultaneous consideration of initial manufacturing and end-of-life remanufacturing," Engineering Optimization, 47(1), pp. 18–35.

Hatayama, H., Daigo, I., Matsuno, Y., and Adachi, Y., 2012, "Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology," Resources.

Peng, Q., Hosseinpour, A., Gu, P., and Fan, Z., 2013, "Tools for Sustainable Product Design: Review and Expectation," ASME, p. V004T05A044.

Rahman, S., and Subramanian, N., 2012, "Factors for implementing end-of-life computer recycling operations in reverse supply chains," International Journal of Production Economics.

Gaustad, G., Olivetti, E., and Kirchain, R., 2012, "Improving aluminum recycling: A survey of sorting and impurity removal technologies," Resources, Conservation and Recycling, 58, pp. 79–87.

Questions?

Thank you!

