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Design team interactions are one of the least understood aspects of the

engineering design process. Given the integral role that designers play in the

engineering design process, understanding the emotional states of individual

design team members will help us quantify interpersonal interactions and how

those interactions affect resulting design solutions. The methodology presented

in this paper enables automated detection of individual team member’s

emotional states using non-wearable sensors. The methodology uses the link

between body language and emotions to detect emotional states with accuracies

above 98%. A case study involving human participants, enacting eight body

language poses relevant to design teams, is used to illustrate the effectiveness of

the methodology. This will enable researchers to further understand design team

interactions.
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E
ngineering design is “widely considered to be the central or distin-

guishing activity of engineering” (Bucciarelli, 1994). Yet, it remains

an insufficiently researched and understood topic (Ackroyd, 2006;

Dym, Agogino, Eris, Frey, & Leifer, 2005). In particular, interactions within

design teams are amongst the least understood aspects associated with the en-

gineering design process. This is due to the dynamic, nonlinear and often

loosely coupled nature of design (Edmondson & Nembhard, 2009). While

there are established methods of evaluating the ideas and concepts generated

by a design team (Goldschmidt & Tatsa, 2005; Liu, Chakrabarti, & Bligh,

2003; Shah, Kulkarni, & Vargas-Hernandez, 2000), the process of generating

these ideas and concepts remains difficult to study. Existing approaches rely

heavily on hand coding of video-recorded or observed interactions and design

team member surveys (Brannick & Prince, 1997). An important aspect of the

team dynamic is the interpersonal interactions between its team members.

The emotions expressed by the individuals during these interactions can

lead to insights about the team’s dynamics. Traditional self-reported feedback

of team interactions is often unreliable because it is susceptible to user
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Machine learning classifi
reported biases (Barker, Pistrang, & Elliott, 2002). Additionally, this feedback

is not in real time. Thus, there is a need for a system that can capture individ-

uals’ emotions in real time. Such a system would allow for a better under-

standing of interpersonal interactions in design teams.

Body language has been linked to emotional states by past studies (Panksepp,

1998). An individual can exhibit various body language poses, depending on

whether he or she is interested, bored, frustrated, delighted etc.

(Birdwhistell, 2010; Panksepp, 1998). Unfortunately, having a human

observer assess body language poses exhibited by design team members can

be costly and time consuming. Thus, there is a need for an automated system.

Studies have been conducted that quantify body language using various sen-

sors such as pressure sensitive chairs and motion tracking suits or by

measuring other reactions such as pupil dilation (Craig, Graesser, Sullins, &

Gholson, 2004; Kapoor & Picard, 2005). Unfortunately, such methods require

expensive specialized, wearable hardware. To address these factors, the au-

thors of this work propose a machine learning driven approach that utilizes

off-the-shelf, non-wearable sensors to detect individuals’ body language in a

real time minimally-invasive manner. This approach enables researchers to

quantify the emotional states of individual team members in a design team

and thus, better understand the team dynamics. The methodology outlined

in this work demonstrates the efficacy of non-wearable sensors and machine

learning algorithms to model individuals’ body language in non-design tasks

with the ultimate goal of applying these methods to quantify design team

interactions.

This paper is organized into four sections. In Section 1, the authors provide an

overview of related literature, followed by the methodology in Section 2.

Thereafter, the authors illustrate the methodology in practice with a case study

in Section 3, before finally concluding in Section 4.

1 Literature review

1.1 Team dynamics and human emotions
Team dynamics is a complicated research topic. In engineering design teams in

particular, the process rarely follows a linear, prescribed methodology

(Stempfle & Badke-Schaub, 2002). A variety of factors such as team members’

work load, time pressures, etc., are at play. Studies have shown that design

team interactions are an interplay of design discussions, walkthroughs and

progress evaluations (Olson, Olson, Carter, & Storrosten, 1992). Within this

context, past research has shown that social aspects also interact significantly

with the technical and cognitive processes of design (Cross & Cross, 1995).

Additionally, conscientiousness, agreeability and emotional stability are posi-

tively related to job performance involving interpersonal interactions (Mount,

Barrick, & Stewart, 1998). The success of teams is modeled using team
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members’ behaviors as key elements (Reilly, Lynn, & Aronson, 2002). Also,

the use of Myers-Briggs personality types has been studied with respect to

learning in teams within the education system (Jensen, Wood, & Wood,

2003). Learning itself has also been shown to be associated with emotions

(Marchand & Gutierrez, 2012; Munoz & Tucker, 2014; Shen, Wang, and

Shen, 2009). In recent years, emotional state detection has been shown to be

a useful tool with the potential to improve learning (Craig et al., 2004;

D’Mello and Graesser 2011; Graesser et al., 2006; Shen et al., 2009). Design

teams involve interactions where there is learning between team members.

Therefore, the link between emotional states and learning further highlights

the importance of team members’ emotional states (Baker et al., 2012; Won

& Bailenson, 2014).

The mood and behavior of individuals can have an impact on the entire team.

The usefulness of involving all team members in the design process has been

shown to have both a perceptive and productive impact (Fisher, 1993;

Stasser & Dietz-Uhler, 2001; Yang, 2010). Individual team members can

spread both positive and negative emotions throughout the entire team

(Kelly & Barsade, 2001) and their belief structures play a role in the develop-

ment of shared cognition (Klimoski & Mohammed, 1994). Additionally, non-

verbal communication has been shown to have an impact in design team inter-

actions (Le Dantec & Do, 2009). Such aspects have become even more impor-

tant with the spread and effectiveness of cross-functional teams (Parker, 2003).

Thus, understanding individual team member’s emotional state is of impor-

tance as it can enable researchers to gain insight into team dynamics. Finally,

regular assessment has been shown to improve team performance (Busseri &

Palmer, 2000). A real time automated system, that captures design team mem-

bers’ emotional states, can help address these challenges and potentially result

in significant team performance improvements.

1.2 Body language and emotional states
Body language plays a critical role in the communication process. It provides

cues to detect various aspects of an individual’s mental state. According to

Birdwhistell (Birdwhistell, 2010), words represent only 7% of the communica-

tion process, while non-verbal communication represents 55%. Various

studies have shown that body language and individuals’ emotional states,

are closely related (Panksepp, 1998). This linkage is usually referred as

emotional body language. Wallbott analyzed body language cues and its link

to various sets of emotions (Wallbott, 1998). Clear patterns were encountered

for body movement and posture representing different emotions. A recent

study showed that body poses were more effective for discriminating between

intense positive and negative emotions than facial expressions (Aviezer, Trope,

& Todorov, 2012). Other studies have supported the idea that intense emo-

tions can be recognized more accurately (Gao & Maurer, 2009; Marneweck,

Loftus, & Hammond, 2013). Thus, body language cues can be used to
Design Studies Vol 39 No. C July 2015



Table 1 Emotional states and their associated body language

Emotional state Typical behavior

Engagement/Interest Slightly inclined forward, Nodding head, Head tilting, Feet pointing toward the speaker,
Cross fingers, Rub palms against each other, Eye contact

Delight Clapping hands, Laughing
Frustration Hands on hip, Scratching hair or back part of the neck, Drumming fingers

Hands clasped behind back
Boredom Yawning frequently, Chin resting on hand, Pulling ears, Tapping hands or feet, fidgeting,

Support hand on cheek, Slouching, Sitting with legs crossed
Laid back and foot kicking

Machine learning classifi
determine emotional states. In Table 1, typical body language poses associated

with various emotional states are shown (Baker, D’Mello, Rodrigo, &

Graesser, 2010; Coker & Burghoon, 1987; D’Mello & Graesser, 2009;

Eastwood, Frischen, Fenske, & Smilek, 2012; Furnham & Petrova, 2010;

Pease & Pease, 2008; Provine, 1986).

1.3 Automated detection of body language
Past studies have achieved high rates of accuracy in detecting emotional states

such as boredom, frustration, confusion, engagement, delight and interest us-

ing sensors. Kapoor and Picard (Kapoor & Picard, 2005) used a camera and a

pressure sensitive chair to classify participants’ emotional states denoting in-

terest or disinterest. The camera allowed them to track facial features as

well as head gestures. Their proposed classification methods obtained a recog-

nition rate of 86%. However, a rate of 82% was achieved when using only

posture. A single-mode system using pupil tracking was proposed by Kapoor

and Picard (Kapoor & Picard, 2001) for real-time detection of head nods and

head shakes, which are body language poses indicating interest (Panksepp,

1998). The recognition achieved was 78.46%. Frustration has also been de-

tected by automated systems in an intelligent system environment. Kapoor

et al. (Kapoor, Burleson, & Picard, 2007) achieved a prediction accuracy of

79%. In their approach, non-verbal behavior was captured through a camera,

pressure sensitive chair, mouse, and a skin conductance device. An automated

emotion detection system using students’ gross body language was proposed

by D’Mello and Graesser (D’Mello & Graesser, 2009). They studied the states

of boredom, confusion, delight, flow, and frustration. The detection accuracies

were 73%, 72%, 70%, 83%, and 74% respectively while using a pressure sen-

sitive seat to detect emotional states.

Several studies support that body language could be used to detect various

emotions over time with relatively good accuracy, if compared with other sin-

gle or multi-channels (D’Mello & Graesser, 2009). However, many of the pro-

posed methodologies found in the literature require wearable sensors for each

participant. While wearable sensors (e.g., eye tracking devices) are becoming

less invasive (Kassner, Patera, & Bulling, 2014; Spagnolli, Guardigli, Orso,
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Varotto, & Gamberini, 2014; Ye et al., 2012), they still face negative social per-

ceptions (Bodine &Gemperle, 2003; Hong, 2013). Furthermore, the constraint

that each individual in a design team would need a separate wearable device

presents scalability challenges in real world engineering design scenarios.

The authors of this work seek to address these limitations by utilizing commer-

cial, off-the-shelf, non-wearable sensors to capture human body language

data, which is then mined for distinct body language patterns using machine

learning techniques.

1.4 Modeling body poses using skeletal joint data
With the growth of motion capture technologies, the use of skeletal joint data

inferred form individuals’ body language poses is becoming more prevalent.

Additionally, with the advent of relatively low cost infrared cameras,

tracking human skeletal joints has become readily accessible (Shotton

et al., 2013). For example, using skeletal data captured by the Microsoft Kin-

ect, researchers were able to employ dynamic time warping techniques, a tem-

plate matching algorithm from speech recognition, to recognize gestures

made by humans, and classify them according to joint positions (Celebi,

Aydin, Temiz, & Arici, 2013). In fact, human gesture and action recognition

using skeletal data has proven to be a very effective approach with high accu-

racies achieved using various machine learning techniques such as support

vector machines (Chung & Yang, 2013; Miranda et al., 2012; Wang & Lee,

2009; Xia, Chen, & Aggarwal, 2012). Researchers have also been able to illus-

trate real time classification of dance gestures with an average accuracy of

96.9%, in spite of noisy sensor data (Raptis, Kirovski, & Hoppe, 2011). In

order to combat noise in skeletal data, processing of the raw joint position

data into angular velocities between joints and their ratios has proved to be

helpful in increasing accuracies (Miranda et al., 2012; Raptis et al., 2011).

Evaluations of dance performances using skeletal data have also been

explored (Alexiadis et al., 2011). Additionally, the non-wearable sensors

have been utilized to recognize sign language. Researchers were able to use

the Kinect to achieve 76% sentence verification in adults while standing

and 51% sentence verification in adults while seated (Zafrulla, Brashear,

Starner, Hamilton, & Presti, 2011). Another study utilized hidden Markov

models with a continuous observation density and was able to achieve a

recognition rate of 97% in initial results (Lang, Block, & Rojas, 2012). In

other works, cues such as inferring respiratory rates (by the rising and falling

of the chest) and detecting fidgeting (by detecting rapid oscillations of a per-

son’s knee), have been explored (Burba, Bolas, Krum, & Suma, 2012). Man-

ohar and Tucker utilized skeletal joint data to predict the emergence of

human threats in an audience (Manohar & Tucker, 2013). Such techniques

illustrate the potential of machine learning methods using skeletal data.

The authors of this work explore the use of machine learning methods using

skeletal data to classify body language poses and infer individuals’ emotional

states within a design team.
Design Studies Vol 39 No. C July 2015



Figure 1 Overview of the methodology: using non-wearable sensors to predict emotional states

Machine learning classifi
2 Methodology
The methodology presented in Figure 1 proposes the use of non-wearable sen-

sors and machine learning algorithms to infer individuals’ emotional states in a

design team. The methodology demonstrates the efficacy of non-wearable sen-

sors and machine learning algorithms to model individuals’ body language in

non-design tasks, with the ultimate goal of applying these methods to quantify

design team interactions. This inference is based on the acquisition and classi-

fication of different body language poses that can be captured for each member

of a design team using non-wearable sensors. Step 1 of the proposed method-

ology (Data Acquisition in Figure 1) utilizes non-wearable sensors to acquire

and store skeletal joint data from a particular individual in the design team.

This allows for minimally-invasive and real time acquisition of body move-

ment data. As can be seen from Step 1 in Figure 1, existing sensors are capable

of capturing multiple skeletal joint images using a single sensor device, hereby

mitigating the need to a separate sensor for each design team member. For the

purposes of this study, the skeletal data for one team member will be studied.

The expansion towards simultaneously capturing multiple skeletal data
cation of design team members 105
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pertaining to each team member would follow the similar steps outlined in

Figure 1 and is a topic for future work. Step 2 of the methodology is the pro-

cessing of the acquired skeletal joint data to generate 3D position, velocity,

and acceleration values for the skeletal joints. This generates identifying fea-

tures in order to classify body language poses. Step 3 of the methodology em-

ploys machine learning algorithms on the generated set of features (i.e., 3D

position, velocity, and acceleration) to classify the body language exhibited

by an individual into one of several mutually exclusive emotional states

(e.g., engagement, frustration and boredom). Step 4 is the interpretation of

the quantified body language states observed into emotional states of the indi-

vidual. Within the context of a design team, this allows for real time tracking

of the emotional states of the individuals comprising the design team and how

those emotional states evolve over time.

2.1 Data acquisition
Step 1 of the proposed methodology utilizes low cost, off the shelf infrared sen-

sors (e.g., Microsoft Kinect) to acquire data pertaining to an individual’s body

movement patterns. While the Kinect has been used extensively to capture

body movement patters in different applications, the methodology is not

limited to the use of a specific sensor hardware. For example, alternative

non-wearable sensors such as Asus Xtion Live (“Xtion PRO e Overview”

2015), Primesense Carmine, now owned by Apple (“Depth Sensors

Comparison e iPiSoft Wiki” 2015), etc., are capable of achieving similar

data acquisition requirements and serve as practical alternatives. Non-

wearable infrared sensors can approximate nodes on a human body in a

minimally-invasive manner due to the absence of the wearable aspect. This

data can be used to map the 3D locations of the joints of an individual’s skel-

etal system. With each reading, the sensor collects X, Y, Z coordinate data for

k joints, representing various points on the human skeleton as shown in

Figure 2. The number of joints tracked, k, varies depending on the sensor

used. The sensor collects the 3D coordinates of k skeletal joints represented

by the red (in the web version) dots on the participant in Figure 2. A single

data sample is illustrated with k ¼ 10 in Figure 2 (the origin of the coordinate

system is the sensor itself and sample readings of two joints are indicated in

parenthesis). In the context of a design team, this non-wearable technique of

skeletal joint data acquisition enables skeletal data to be acquired for each

member of a design team. As mentioned earlier, existing sensors are capable

of simultaneously capturing skeletal data for multiple individuals using a sin-

gle sensor device, hereby mitigating the need for multiple sensor devices for a

typical engineering design team.

The non-wearable sensors such as those discussed in this section and illus-

trated in Figure 2 are portable and can be connected to a desktop or mobile

computing device (e.g., tablet device), depending on the location and data

needs of the design team. Research teams have even created Wi-Fi enabled
Design Studies Vol 39 No. C July 2015



Figure 2 Skeletal joint data collection
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solutions so that sensors can capture and remotely stream data to a computer

in another location (“Projects j Mobile Kinect j BIG” 2015).

2.2 Raw skeletal data processing
Step 2 of the proposed methodology uses the raw data acquired by the sensors

to generate identifying features that can then be used to characterize human

body language. For each reading taken by the sensors in step 1, a time stamp

and 3D coordinate (X, Y, Z) positions for each of the k joints are acquired,

generating a total of 3 k features.

To effectively capture human body language (i.e., motion and temporal char-

acteristics), multiple readings are taken by the sensor to calculate the velocity

and the acceleration of each joint. The velocity of each of the k joints are sub-

sequently used to calculate the acceleration. This is illustrated in Figure 3

above. Thus, for each tuple in the data set, there are 9 k-features whose ele-

ments represent the position, velocity and acceleration in 3 dimensions for

each of the k joints. Each reading is considered an independent sample so as

to minimize assumptions about body language poses.

2.3 Machine learning to quantify body language states
Machine learning classification builds a predictive model based on the avail-

able data. Typically, the process consists of getting a feature set (input) which

the machine learning algorithm has to correctly label (output). In supervised

machine learning, training data is provided that consists of example feature

sets and their correct labels. This training data is then used to build a classifi-

cation model and thereafter, for any subsequent feature sets, the machine

learning algorithm can use its model to predict the label. In order to quantify

the ability of machine learning algorithms to accurately classify body language

data, the label/output variable consists of q known emotion states. The ma-

chine learning models aim to identify body language poses and classify each

reading as one of these q poses using the r-feature set generated, where

r ¼ 9 k. The r-feature set serves as input variables (features) to a classifier
cation of design team members 107



Figure 3 Data generation from sensor readings

108
and the output is the classification into one of the q known body language

poses (label) representing an individual’s emotional state. The classifier is

trained using a data set of participants enacting or exhibiting known body lan-

guage poses (i.e., ground truth) and can be used to classify new participants in

a real time, dynamic manner. The authors explore the use of the following four

machine learning classifiers. The suitability of the models for the methodology

is outlined in the subsections for each classifier.

2.3.1 C4.5
The C4.5 decision tree classifier is a supervised machine learning algorithm

that builds a decision tree from the training set on the basis of information en-

tropy. At each node of the tree, the algorithm chooses the features that most

effectively splits its input into subsets enriched in one label or the other

(Murthy, 1998). C4.5 has a good combination of error rate and low computa-

tional complexity for learning and classification (Lim, Loh, and Shih 2000;

Quinlan, 2014). Additionally, decision trees have high comprehensibility. Un-

fortunately, Decision trees tend to perform better when dealing with discrete

features, not continuous variables such as velocity and acceleration

(Kotsiantis, 2007).

2.3.2 IBK
The IBK classifier is a supervised machine learning classifier that has low

computational complexity for learning (Mitchell, 1997). The algorithm clas-

sifies a particular feature set by using the majority vote of the labels of its n

closest feature sets from the labeled training data (Cover & Hart, 1967). Its

main disadvantages are that it has large storage requirements and the choice

of n affects the effectiveness of the classifier. The IBK classifier selects appro-

priate values of n based on cross-validation. However, this adds to the compu-

tational complexity (Guo, Wang, Bell, Bi, & Greer, 2003). Additionally, it is

susceptible to irrelevant and noisy data and has high computational

complexity for classification which is a disadvantage, as the algorithm classifies
Design Studies Vol 39 No. C July 2015
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each reading (Wettschereck, Aha, & Mohri, 1997). However, such n nearest

neighbor classifiers have demonstrated good performance in real life applica-

tions. In addition, their low computational complexity for learning makes

them desirable (Kotsiantis, 2007).

2.3.3 Random forest
The Random Forest (RF) algorithm is an ensemble classifier that operates on

the principle of generating a random forest of decision trees to classify the

problem (Breiman, 2001). The method combines the existing approaches of

bagging (Ho, 1995) and the random selection of features (Amit & Geman,

1997) to improve performance. Random forest provide better error rates com-

parable to boosting techniques such as ADABoost but is more robust to noise

and avoid over fitting (Breiman, 2001). Additionally, the Random Forest algo-

rithm has been shown to have good real world performance across a variety of

domains (Verikas, Gelzinis, & Bacauskiene 2011).

2.3.4 Na€ıve Bayesian
Naive Bayesian is a probabilistic classifier based on Bayes’ theorem with

strong independence assumptions. The presence or absence of a particular

feature is considered unrelated to the presence or absence of any other feature

(Kotsiantis, 2007). Despite its simplified nature, Naive Bayes classifiers have

worked quite well in complex, real-world situations (Domingos & Pazzani,

1997; Kononenko, 1990; Zhang & Su, 2004). Additionally, analysis has shown

that there is theoretical basis for the surprising efficiency of the classifier,

despite its feature independence assumptions (Zhang & Su, 2004). Another

advantage of the algorithm is that it often requires a small amount of training

data to perform well (Kotsiantis, 2007).

The authors’ motivation behind choosing these four classifiers is that the clas-

sifiers have been shown to have good real world performance across a wide va-

riety of classification areas (Kotsiantis, 2007). The relative pros and cons of

various popular classifiers has been studied (Kotsiantis, 2007), making them

well suited for direct comparison. If we assume four stars represents the best

performance for a metric and one star represents the worst performance

(Table 2), we can illustrate the advantages and disadvantages of various ma-

chine learning classifiers. Support vector machines (SVMs) have high accuracy

across a multitude of applications and are thus assigned a score of four stars

for model accuracy. The C4.5 decision tree classifier is typically not as accurate

as SVMs and is assigned a score of two stars, which is still better than the per-

formance of the Na€ıve Bayesian classifier which performs the worst and is as-

signed a score of one star. However, SVMs suffer from slow training speed,

when compared with the other classifiers. The performance variations of these

classifiers across various metrics is summarized in Table 2 below. Random for-

est provides us with high accuracy while maintaining performance in the other

three metrics comparable to decision tree classifiers (Verikas et al., 2011) and
cation of design team members 109



Table 2 Comparison of classifiers used (Kotsiantis, 2007), where**** represents the best and * represents the worst

performance

Decision tree based algorithms (C4.5, random forest) SVM IBk Na€ıve Bayes

Model accuracy ** **** ** *
Training speed *** * **** ****
Classification speed **** **** * ****
Tolerance to noise ** ** * ***

110
are thus chosen in place of SVMs for the methodology. However, if training is

performed offline, while classification is performed online, SVMsmay also be a

suitable candidate machine learning algorithm for this design problem. In this

work, it is assumed that training may have to be performed online in cases

involving concept drift, a phenomenon in data stream mining where there is

a shift in the target variable, resulting in a diminished accuracy of the data

mining models (Li, Hu, & Wu 2008; Tucker and Kim 2011). For example, if

there becomes a new societal gesture involving the hand on cheek that shifts

for representing the emotional state of boredom, then one would want the ma-

chine learning model to process this new incoming data stream and retrain the

model online in a timely and efficient manner.

2.4 Emotion detection and feedback
Finally, once the machine learning algorithms have classified the readings into

the q known body language poses, the model uses the known links between

body language poses and emotions to predict the individual’s emotional state.

This step links the body language exhibited by a team member to the

emotional state of the team member in real time. This results in knowledge

of the emotional states of the team member during the entire design process

and thus enables fine grained analysis of the emotional states exhibited.

Furthermore, this knowledge, when used in conjunction with other design

team metrics such as productivity and design solution, will reveal the extent

of these correlations. Additionally, feedback from the results can be incorpo-

rated to improve the classification stage of the methodology. This iterative cy-

cle of data collection, processing, classification and feedback for improvement,

provides a continuously improving methodology for non-wearable real time

emotion detection. An example is illustrated in Figure 4 below.

3 Case study
A case study demonstrating the feasibility of the proposed methodology was

conducted using participants in an engineering design laboratory. This study

was performed in accordance with IRB guidelines as per Penn State’s IRB

40258: “A Dynamic Pattern Recognition Framework for Mining and Predict-

ing Emerging Threats”. For the case study, each participant is recorded enact-

ing various body language poses which were then classified using the machine

learning algorithms discussed in Section 2.3. The enacted poses and the
Design Studies Vol 39 No. C July 2015



Figure 4 Example of emotion state detection

Table 3 Enacted body languag

Body language

Tilted head
Nodding head
Hands behind back
Scratching back of the neck
Pulling of ears
Chin on hand
Hand on cheek
Neutral

Machine learning classifi
emotions they represent were chosen to be from those expected during design

team interactions and are listed in Table 3 below.

For example, the IDEO shopping cart documentary showcases a design team

deeply engaged in the brainstorming process of design (ABC Nightline e

IDEO Shopping Cart 2009). The IDEO design team exhibits many of the

body language poses utilized in this study, which have also been shown to

be relevant to emotional states (Aviezer et al., 2012). Some of the body lan-

guage poses seen in the shopping cart video include tilted head (@1:42 min),

nodding head (@1:56 min) and chin on hand (@4:37 min). Individually custom-

ized emotional state models can be generated for each team member, provided

that each team member has provided ground truth data to validate the pre-

dicted emotional states. The following design scenario outlines the potential

for the proposed research.

3.1 Design scenario
A design team is focused on creating a design solution (Y). While there exists

well established methods for evaluating design concepts and solutions, the

design team would like to understand the design team interactions (I) that in-

fluence these resulting design solutions. E.g., what combination of emotions

expressed by designers within a team influence the quality of design solution

(Y)? Prior to the design challenge, characteristics (X) of each member of a

design team can be acquired such as:
e and associated emotions

Emotion

Engagement/Interest
Engagement/Interest
Frustration
Frustration
Boredom
Boredom
Boredom
Neutral

cation of design team members 111
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� Design expertise

� Personality type (introvert, extrovert, etc.)

� Demographics (age, gender, etc.)
Given this data, researchers can answer a wide range of questions pertaining to

a design team, based on prior design team interaction models (I). For example,

what characteristics (X) of a design team, correlate with desired/undesired

design team interactions (I) such as engagement or boredom? Beyond a deeper

understanding of the composition of a design team, designers may want to un-

derstand what aspects of design team interactions (I), result in the most suc-

cessful or creative design solutions (Y). The ability to quantify correlations

between design team interactions and either the design team characteristics

(X) or resulting design solutions (Y) require an accurate method of quanti-

fying design team interactions (I). In the case study presented in this work, a

design team would utilize the non-invasive sensors as a means of generating

a baseline model of design team interactions in a non-invasive manner. The

validity of the non-wearable approach to modeling design team interactions

could then be evaluated based on either survey feedback from each of the

design team members about their emotional state during a given design pro-

cess or through more quantitative methods such as the use of wearable eye

tracking devices that are becoming less invasive (Kassner, Patera, & Bulling

2014; Spagnolli et al. 2014; Ye et al., 2012). Therefore given the proposed

non-wearable system for capturing and inferring body language poses, de-

signers will be able to explore both the design team characteristics (X) and

the design team solutions (Y). However, before such correlations can be

explored, the validity of utilizing non-wearable approaches to capturing and

mining design team interactions must be established. The case study presented

in this work demonstrates the feasibility of capturing and mining individual

body postures with high accuracy. From this model, designers will be able

to explore research questions pertaining to either their design team character-

istics or design solutions.

3.2 Data acquisition
For the experiment, the Microsoft Kinect multimodal sensor was used to cap-

ture 3D skeletal images in a minimally-invasive manner. The MS Kinect is an

off-the-shelf, low cost sensor. The Kinect is capable of tracking 20 joints in the

human skeleton via its infrared sensor which captures data at the rate of 30 Hz

and at a resolution of 640� 480. The horizontal and vertical fields of view of

the sensor are 57� and 43� respectively (Breiman, 2001). Additionally, while

the sensor’s accuracy decreases with distance, the maximum error reaches

1.5 inches. These factors make it suitable for our study (Khoshelham &

Elberink, 2012). Although, the authors utilized the Kinect for their case study,

other devices with similar capabilities such as PrimeSense are available as an

alternative.
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Figure 5 Experimental setup

Machine learning classifi
During the experiment, the Kinect was configured at an elevation of 2 feet

above the floor as seen in Figure 5. For each participant, data was collected

while they were seated at a distance of 75 inches from the Kinect on a chair

that was 16 inches above the ground level. This is illustrated in Figure 5 below.
For our study, each participant was then instructed to enact each of the 8 body

language poses for 12 s. For poses involving motion such as nodding, the par-

ticipants repeated the movements. For gesture learning, human variations can

often be accounted for by using as few as 3 participants (Gillian, Knapp, &

O’Modhrain 2011). The training data requires the class variable to have mutu-

ally exclusive postures so that once a model is generated, test data can be as-

signed to one of the mutually exclusive classes. The presence of more than one

individual enacting a body posture introduces variability in the manner in

which the same body posture can be enacted, hereby making the resulting

model more robust to unseen test data. For our study, we recorded 4 partici-

pants, with each participant generating approximately 150 reading for each

pose. The focus is the number of independent labeled samples obtained for

the classifier. Each such reading, captured once every 33 ms, represents an in-

dependent sample. Thus for the study, the authors obtained 4072 labeled sam-

ples split evenly among the 8 poses. Examples of the skeletal joint data

collected during the poses are visualized in Figure 6. As can be seen from

Figure 6, the left image presents skeletal joint data of a person sitting, while

the right image in Figure 6 presents skeletal joint data of a person sitting

and pulling their ear. The positions of the head, elbow and knee joints are

included in Figures 6 and 7 for clarity and reference.
The body language of scratching the back of one’s neck (left image in Figure 7)

and the tilting of one’s head (right image in Figure 7) are visually distinguish-

able, as seen in Figure 7.

3.3 Data processing
Once the data collection is complete, an r-feature set is generated, as described

in the methodology. For the Kinect, 20 joints can be tracked, k ¼ 20.
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Figure 6 Pulling of ears

Figure 7 Scratching the back of the neck and tilting of head
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1. Only readings where the 3D positions of the all 20 joints were measured

by the sensor were considered, with the rest discarded. This results in

60-features for each data sample acquired by the Kinect (i.e., 20 features

pertaining to the X coordinate, 20 features pertaining to the Y coordinate

and 20 features pertaining to the Z coordinate). Each reading represents

an independent sample.

2. As per the methodology, the velocity and acceleration of each node are

also generated in X, Y and Z coordinate space, resulting in 120 additional

features. In total, 60 features relate to the 3D position coordinates, 60

features relate to the velocity, 60 features relate to the acceleration.

3. A data set was created from the readings generated by the participants

enacting the 8 body language poses. These were each labeled, based on

the body language pose that the participants were enacting.
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Table 4 Classifier accuracy va

Number of Participants

1
2
3
4

Machine learning classifi
4. Given a combination of the input features (180 features representing XYZ

coordinate data of position, velocity and acceleration), the goal is to clas-

sify input data into one of the eight 8 body language poses.

Waikato Environment for Knowledge Analysis (WEKA) (Hall et al. 2009)

software was used to execute the four machine learning techniques described

in the methodology. For the purposes of this study the default parameters

of the WEKA software’s machine learning algorithms were used.

3.4 Machine learning classification of body language
In order for the methodology to be viable, the accuracy and robustness of the

model needs to be demonstrated. Given the static nature of the body language

poses and the focus on individual emotion state models for each teammember,

the authors performed 10-fold cross validation (CV) and used the four ma-

chine learning algorithms to mine the data. The original training data for

the entire study contained 4072 tuples that are split into training and test

data sets, based on the 10-fold CV. CV involves partitioning the collected

data set into two subsets; training the predictive model on one subset called

the training data set, and testing/validating the model performance using the

other, called the test data set. Typically, the split used is 90% assigned as

the training and 10% as the test data set for 10 fold CV (Kohavi, 1995). For

scenarios where generalizations of emotional states are needed with minimum

retaining of the model for each individual, the accuracy of classification

models should be evaluated, based on a leave-one-out sampling method

(Refaeilzadeh, Tang, & Liu 2009).

3.4.1 Classification results
The results in Table 4 represent the accuracies of the classifiers in predicting

the body language poses exhibited, given a set of input movements (i.e., based

on the 180 features representing XYZ position, velocity and acceleration).

Analysis of the C4.5 classifier revealed the decision tree’s size was 87. This in-

dicates there is a significant decrease in the dimensionality of the feature space.

Additional data and tests can be used to select an optimal set of features. Next,

the authors explored how accuracies changed as data from additional partic-

ipants were added. This is illustrated in Table 4 and Figure 8. The accuracies

reported in Tables 4, 5 and 7, represent average accuracies over the 10-fold

CV. The resulting predictive errors reported for each algorithm therefore
riation across number of participants

C4.5 Random forest IBk Na€ıve Bayesian

99.59% 100% 99.92% 98.44%
98.25% 99.85% 98.97% 81.45%
98.36% 99.94% 99.04% 62.78%
98.40% 99.85% 99.51% 53.44%
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Figure 8 Accuracy across number of participants

Table 5 Accuracy percentage variation depending on attributes used

Features C4.5 Random forest IBk Na€ıve Bayesian

Position 98.79% 99.95% 99.92% 60.16%
þVelocity 98.55% 99.90% 99.87% 53.33%
þAcceleration 98.40% 99.85% 99.50% 53.17%

Table 6 Confusion matrix for

116
represent the average of the 10 models generated during the 10-fold cross vali-

dation step. Table 6 outlines the source of the 10-fold CVmodel errors for each

of the models, including the Na€ıve Bayesian algorithm, given that it has lower

performance, compared to the other algorithms, especially as the number of

participants increases.
each of the machine learning classifiers
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Figure 9 Accuracy variation among top 3 classifiers

Figure 10 Variation of accuracy d

Machine learning classifi
Figure 8 illustrates that the classifiers (except for the Na€ıve Bayesian classifier)

maintain high accuracy, as the number of participants increase. This indicates

the Na€ıve Bayesian classifier may not be well suited for this classification prob-

lem. The variations across the three effective classifiers are illustrated in

Figure 9 below.

Figure 9 illustrates that while a participant’s body state can be classified effec-

tively, there is a drop off when trying to classify multiple people due to varia-

tions in human body movements. However, the accuracy increases as the

number of participants increases, indicating that acquiring more data pertain-

ing to a wider range of individuals body movement, may lead to higher accu-

racies. For now, the methodology is focused on modeling individual team

members’ emotional states, although future work will explore generalized

emotional state patterns existing within a design team.

3.4.2 Variation across features used
To understand the effect of using position values as features versus the use of

velocity and acceleration values for better classification, the authors conducted

tests, with the resulting accuracies depicted in Table 5 and Figure 10 below.

The data used to train the classifiers were only position data, followed by

both position and velocity data and finally all three position, velocity and
epending on attributes used
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Figure 11 Accuracy variations across top 3 classifiers

118
acceleration data. The three are indicated in Figure 10 as “Pos”, “þVel” and

“þAccel” respectively.

Figure 10 indicates that the use of velocity and acceleration as additional fea-

tures other than position data, is actually counterproductive and leads to a loss

of accuracy. Classifiers such as the Na€ıve Bayesian reveal a larger decrease in

accuracy, when velocity and acceleration are included. The remaining classi-

fiers also show the same trend as is seen in Figure 11.

3.4.3 Source of errors
To understand the source of errors, the confusion matrix for each of the algo-

rithms was investigated. The confusion matrix is given below in Table 6, where

the rows represent the actual body language depicted and the columns for each

rowprovide the resultingdistributionof classificationby eachof the algorithms.

Table 6 highlights the fact that the Na€ıve Bayes classifier suffers most in cases

with slight variations in body language, compared to the other classifiers. For

example, challenges in classification accuracy can be observed between a

neutral pose and when the participant is nodding his/her head or when the

participant is scratching the back of his/her neck versus pulling his/her ear.

The similar skeletal data readings are between nodding of head and neutral

pose illustrated below in Figure 12.

The similar skeletal data readings between pulling of the ears and scratching

the back of the neck are shown below in Figure 13. This illustrates the difficulty

in differentiation between the two poses and their respective associated emo-

tions of frustration and boredom. However, with improvements in sensor ac-

curacy and more data, such challenges can be addressed within the presented

methodology. This would allow for more fine grained detection of emotional

states and hence help us better understand design team dynamics.

For completeness, the authors performed a sensitivity analysis on the Na€ıve

Bayes algorithm to determine how the accuracy of the model varied with
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Figure 12 Nodding of head and neutral pose are similar

Figure 13 Scratching the back of the neck and pulling one’s ears are similar

Machine learning classifi
the number of folds used to train the data and the number of folds used to test

the data. As can be seen in Figure 14, the stability of the algorithm is relatively

consistent, independent of the number of folds used to train the model. While

the first scenario of utilizing 2/3rd of the 4072 tuples to train the data, with the

remaining 1/3 tuples to test the data has the highest predictive accuracy, the

difference between accuracies still does not compare to the other algorithms

such as C4.5, IBK or Random Forest. In the scientific literature, 10-fold CV

has been shown to generate a consistent and stable approximation of an algo-

rithm’s true predictive power (Tibshirani, Hastie, Narasimhan, & Chu, 2002),

(Ambroise, & McLachlan, 2002) and is employed in this work as a baseline to

evaluate the predictive accuracies of each of the models.
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Figure 14 Variation of accuracy depending on the number of folds

Table 7 Accuracy percentage

Joints tracked

6
13
20

Figure 15 Variation of accuracy d

120
3.4.4 Variation across number of joints tracked
To understand the effect of using fewer or larger number of joints on classifi-

cation, the authors conducted tests, with the resulting accuracies are depicted

in Table 7 and Figure 15 below.

The results in Table 7 and Figure 15 indicate that using the sensor’s full capa-

bilities and tracking 20 joints does not always increase performance and that

the accuracy gain is not always positive. For example, the Na€ıve Bayesian clas-

sifier shows a larger improvement, with an initial increase in the number of

joints, followed by a reduction in the predictive accuracy. Similar results can

be observed by the other classifiers as seen in Figure 16.
depending on joints used

C4.5 Random forest IBk Na€ıve Bayesian

98.62% 99.83% 99.48% 38.73%
97.94% 99.83% 99.46% 56.16%
98.43% 99.9% 99.51% 53.44%

epending on joints tracked
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Figure 16 Accuracy variation among top 3 classifiers

Machine learning classifi
4 Conclusion
In this paper, a machine learning driven methodology is proposed to quantify

emotional states of individuals in a design team using low-cost, non-wearable

sensor hardware. The authors achieve this by exploiting the known link be-

tween body language and emotional states. The methodology demonstrates

the efficacy of non-wearable sensors andmachine learning algorithms to model

individuals’ body language in non-design tasks with the ultimate goal of

applying these methods to quantifying design team interactions. The perfor-

mance of the proposed methodology is evaluated using a case study containing

the classification of 8 body language poses relevant to design team interac-

tions. The authors identify certain classifiers as effective for the methodology

used. Additionally, the effect of using various attributes such as position, ve-

locity and acceleration for classification was studied in detail. The results

reveal that the impact of velocity and acceleration data may not enhance the

predictive accuracy of the proposed model. Also, the effect of the number of

joints tracked was investigated, indicating that the selection of which joints

to track needs to be explored further.

The proposed methodology can be improved by incorporating measures to

identify a larger range of body language cues that are more subtle. For now,

the methodology is limited to modeling individual team members’ emotional

states, although future work will explore generalized emotional state patterns

existing across design team members. For this to occur, predictive models will

have to be evaluated based on a “leave one out” method in order to demon-

strate the generalizability of detected emotional states on other teammembers.

Beyond exploring the generalizability to multiple team members, the place-

ment of sensors and their directionality in a given room can be optimized to

reduce costs and improve detection. Additionally, with improving sensor tech-

nology, the methodology can be extended to track more subtle body language.

Thus for future work, other representations of data on velocity and accelera-

tion and related attributes such as angular velocity and angular acceleration
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should be explored, as acceleration and velocity may have a negative impact

on accuracy. In addition, the selection of which joints to track needs to be

investigated further. The optimal selection of joints will avoid over or under

sampling of joint locations and thus improve accuracy and decrease computa-

tional costs. This will result in faster and more accurate evaluation of

emotional states of individual team members. Beyond different representa-

tions of the feature space, the class variable can be updated to reflect a broad

set of emotional states (e.g., low engagement, medium engagement and high

engagement, as opposed to a single state of engagement). Moreover, this meth-

odology opens the door for fine grained analysis of design team interactions,

their emotional states, their productivity and links therein during the design

process. Lastly, incorporating other means of quantifying design team interac-

tions and studying them with conjunction with the emotional state detection of

individual members may lead to a better understanding of design teams.
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