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ABSTRACT

An important part of the Engineering Design process is prototyping, where designers build and test their de-
signs. This process is typically iterative, time consuming, and manual in nature. For a given task, there are multiple
objects that can be used, each with different time units associated with accomplishing the task. Current methods
for reducing time spent during the prototyping process have focused primarily on optimizing designer to designer
interactions, as opposed to designer to tool interactions. Advancements in commercially-available sensing sys-
tems (e.g., the Kinect) and machine learning algorithms have opened the pathway towards real-time observation of
designer’s behavior in engineering workspaces during prototype construction. Towards this end, this work hypoth-
esizes that an object O being used for task i is distinguishable from object O being used for task j, where i is the
correct task and j is the incorrect task. The contributions of this work are i) the ability to recognize these objects in
a free roaming engineering workshop environment and ii) the ability to distinguish between the correct and incor-
rect use of objects used during a prototyping task. By distinguishing the difference between correct and incorrect
uses, incorrect behavior (which often results in wasted time and materials) can be detected and quickly corrected.
The method presented in this work learns as designers use objects, and infers the proper way to use them during
prototyping. In order to demonstrate the effectiveness of the proposed method, a case study is presented in which
participants in an engineering design workshop are asked to perform correct and incorrect tasks with a tool. The
participants’ movements are analyzed by an unsupervised clustering algorithm to determine if there is a statistical
difference between tasks being performed correctly and incorrectly. Clusters which are a plurality incorrect are
found to be significantly distinct for each node considered by the method, each with p << 0.001.

1 Introduction

The Engineering Design process is labor intensive and can involve many individuals working long hours across sev-

eral disciplines. For example, during the early stages, market researchers may perform focus groups to assess consumer

requirements, and those requirements are considered in terms of viability. Recent work allows designers to mine social net-

work streams and enable designers to rapidly capture desired product features [1, 2]. Later stages require designers to select

which requirements are suitable for ideation, a task which has had many proposed solutions [3–7]. The subsequent concept
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generation phase has been impacted by advancements in automation tools, with many methods available that can generate

concepts [8–10]. Next, design validation and assessment can be accomplished using semi-automated simulation techniques,

such as Computational Fluid Dynamics [11, 12]; however, this does not eliminate the need for physical prototyping. The

physical prototyping phase of design, where a designer builds the proposed design, is integral to the overall concept gener-

ation and eventual product creation process [13–16]. This process can be time consuming, iterative, and highly manual, so

reducing either time per iteration and number of iterations could reduce the time to market. Since physical prototyping is so

labor intensive, these reductions will ease the cost of labor in settings that are under increasing budgetary pressure [17, 18].

This increased efficiency benefits designers as well [19]. Just as there exists methods that assess and validate the feasibility of

design concepts (e.g., through CFD), methods are needed that assess and validate the efficiency of the physical prototyping

process that realizes those concepts.

Given a common objective, there are many different tools and many different ways designers can use these tools to

accomplish this objective, making this problem extremely complex. For example, designers working in teams to design a

shopping cart could use a wide range of materials (e.g. aluminum, PVC, steel) and objects (e.g. drill, hammer, saw) to create

a prototype. Furthermore, the variability in the expertise and design decisions by these designers could potentially influence

the quality and efficiency of the prototyping process. The prototyping phase can be decomposed into a series of sub-tasks

(for example, task 1 might be to cut a pipe, task 2 to hammer a section of the pipe, etc.), each with a correct and incorrect

(less efficient) method. Since prototyping can be an iterative process and is difficult to automate, making efficiency decisions

is key. In this work, efficiency is defined as choosing the suitable tool for a given task during the prototyping phase and

utilizing this tool in a manner that is consistent with other designers that have performed similar tasks in the past. This work

demonstrates how these decisions can be predicted based on designers’ body movements.

This paper is organized as follows. This section provides an introduction and motivation for this research. Section 2

reviews related research. Section 3 introduces the method. Section 4 presents a case study involving participants in an

engineering design workshop and demonstrates the feasibility of the methodology. Section 5 presents the results from the

case study and discusses the potential of assessment systems integration during the prototyping phase of design. Finally,

Sec. 6 concludes the paper.

2 Related Work

2.1 Automated Object Recognition

The prototyping phase of the engineering design process typically requires designers to interact with a set of design tools,

towards the creation of a prototype/set of prototypes. A prototyping task that is being performed is highly dependent on the

type of object being used and the designer(s) using that object, making an accurate identification of this object extremely

important. Automated object recognition has been successfully employed in a variety of applications. Two-dimensional

systems have employed Histograms of Oriented Gradients (HOGs [20]), or Oriented FAST and Rotated BRIEF (ORB [21])

for real-time reasoning on construction sites [22]. For Depth-enabled sensors, Bo et al. introduced a kernel descriptor based

on RGB-D data [23] along with a data set to evaluate models. Building on this, Ren et al. used these sensors to achieve scene
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labeling [24].

These descriptors and methodologies take advantage of the ease with which 3D scenes are segmented, as well as their

ability to estimate the pose of an object. However, given the limited scope of training data available for 3D based recognition,

a 2D dimensional Convolutional Neural Network (CNN) is employed in this work. These were chosen because of their high

accuracy over large numbers of classes [25] as well as the abundance of 2D image training data (e.g., video data). Such

networks have been shown to perform well on large datasets in a competition setting [26, 27].

While these works consider the problem of object recognition in images, none consider objects in real-world contexts.

Rather, they apply image recognition technologies to various datasets and demonstrate their abilities in controlled environ-

ments. This work makes advances by employing one of these technologies in conjunction with a depth enabled sensor, and

uses that sensor to direct the attention of the image recognition technology, bridging the gap between static datasets and

real-world applications.

2.2 Virtual/Augmented Reality For Task Learning

In the past, Virtual and Augmented Reality (VR/AR) have been employed for task learning. Dunleavy and Dede per-

formed a literature review of instructional VR/AR systems across different fields [28]. Specifically in the engineering field,

different approaches using this technology have been studied. Kosmadoudi et al. reviewed the potential use of game ele-

ments in Computer Aided Design settings, including both user experience measurements and user engagement [29]. Since

many design tasks are 3-dimensional in nature, the utility of VR environments is clear. For example, Jezernick and Hren

proposed a tool which can be used to create virtual worlds on web platforms [30], and Bourtdot et al. proposed a more gen-

eral framework for working with CAD models in a virtual environment [31]. Verlinden and Horváth examined interactive

prototyping through AR in the form of hints for specific applications [32], and Fiorentino et al. [33] proposed an augmented

reality approach for manipulation of CAD designs. Notably, Vélaz et al. applied VR technology to the field of assembly

learning, with participants learning how to assemble a product in several different modes [34]. While this attempted to solve

a similar problem, it was primarily concerned with task completion, rather than assessment, and found that no improvement

was offered by virtual environments.

Of these works which focused on task learning, the application to an engineering design space were limited (with the

exception of [34]). The method presented in this paper will aid in task learning by learning and inferring a user’s intent.

The works which were more germane to engineering design focused on automating the design iteration process, rather than

the physical prototyping stage. Instead this work considers the prototyping work performed in the physical space. However,

once the design had been finalized and needed to be built, these methods were unable to provide any guidance for how to

properly approach the following stage. While VR and AR are helpful in the field of rapid prototyping, implementation of a

proposed design is still a manual one, thus there exists a knowledge gap in proper hands-on instruction for the prototyping

phase.
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2.3 Human Motion Modeling And Mining

The prototype stage of engineering design often includes manually and physically-involved processes. Therefore, in

addition to automatically recognizing objects in a design environment, it is important to automatically recognize humans

and how they move in a design environment. Human motion modeling has become more practical with the advent of

commercially available, 3D body tracking sensors. Bradski et al. was able to determine poses as well as conduct motion-

based music based on 2D video [35]. Using 2D video, Ribeiro and Santos-Victor were able to identify whether a human was

running, walking, fighting, active, or inactive [36].

The Depth capabilities of RGB-D sensors have been successfully used by many works as well. By using 2.5D video

data (that is, visible portions of scenes in a 3D space), Li et al. created a bag of words descriptor based on human poses,

towards recognizing a dictionary of activities [37]. Morato et al. employed several 2.5D sensors to accurately model human

motion [38], allowing humans and robots to move safely together in the same space, fostering better collaboration. Behoora

and Tucker use an RGB-D sensor to analyze the body language of design team members in order to quantify higher level

emotions such as boredom and interest [39]. In the context of engineering design, Tucker and Kumara have laid the foun-

dation towards a body language model that captures individuals’ body language data to model and predict the object that

they may be using [40]. However, two fundamental limitations of this approach are that i) the method relies on the avail-

ability of ground truth data in terms of what body patterns relate to the objects being used, which is typically unavailable

due to the real-time nature of design and ii) the method does not take into account the recognition of the objects themselves.

Therefore, without an understanding of the object being used or the context of the task being performed, human motion

modeling techniques alone may result in high false positives or false negatives. The work presented in this paper addresses

these limitations by using both supervised machine learning (to accurately identify objects in an engineering workshop) and

unsupervised learning (to detect anomalous human body language patters pertaining to a specific task).

While there has been ample work in the automatic detection of human body movement, existing works focus on achiev-

ing a high-level, semantically meaningful activity label, rather than what the body movement implies in the context of a

specific task. For example, in a given engineering design workshop, there may be several tasks that possess similar body

movement patterns. Additionally, existing methods typically model human motion in a supervised learning capacity. Thus

there exists a knowledge gap in this field, since each of these methods seeks to model the motion for recognition or prediction

purposes. The method presented in this paper uses an unsupervised method, as it is difficult to learn what the correct/incorrect

way of performing a task is given the numerous ways a task can be performed correctly/incorrectly.

2.4 Activity Recognition and Feedback Systems

Automated Feedback Systems have been proposed across a wide range of fields. The feedback provided by these systems

come in many forms. However, the common thread among them is the ability to quickly provide clear feedback to users in

order to encourage behavioral change. Automatically providing feedback pertaining to an object’s use is typically performed

in robotics and in the field of activity recognition. Lopes and Santos-Victor used machine learning with observation to

determine different object uses, based on different types of grips, in order to provide context to an activity recognition
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Fig. 1: An outline of the method presented in this work

system [41]. Jiang et al. used spatial data about scenes to determine which objects were likely to be used, based on ease of

use and reachability measurements [42]. More recently, Koppula et al. used RGB-D to model activities as an ordered set

of sub-activities, and were able to detect which activities were being performed under supervised learning conditions [43].

However, their method relied on training data for activity recognition. Similarly, Yu et al. proposed a method of activity

recognition based on pose and temporal descriptors [44].

In the field of education, Weiling et al. found that students performed better in courses when given more evaluations

with automated feedback [45]. Chen proposed a system that automatically provides feedback to students for programming

assignments, encouraging them to fix mistakes, continue testing, or optimize their programs [46]. Calvo and Ellis pro-

posed a system based on computational linguistic principles that provided comments about writing style and content for an

assignment given to students [47].

While research in activity recognition and feedback is an active research area, the aforementioned methods rely on

labeled training data of activities, towards the goal of a semantically meaningful and nuanced activity labeling. These

methods assume that an interaction with an object is correct, and use this information towards predicting that label. Since

these systems do not evaluate the object use for correctness, the feedback provided is a function of what is known a priori

about correct or incorrect tasks. However, often the concept of correctness/incorrectness is not known a priori, since there

are numerous ways to perform a task. Therefore, the method presented in this work limits the assumptions made about

correct/incorrect task performance to that which is anomalous to the patterns observed by a wide range of designers that have

performed a similar task in the past during the prototyping process. Table 1 summarizes which knowledge gaps the method

will help to bridge. This work proposes an unsupervised model which can consider many modes of object use, and since

it is unsupervised, requires little to no domain knowledge. This will also allow the model to change over time as methods

evolve and new uses of objects present themselves. Additionally, training a model on every possible correct and incorrect

use of an object is intractable, and would present many challenges in generalizing or scaling to similar problems. Instead the

method in this work yields a model which can simply observe designer object use and learn to distinguish between correct

and incorrect behavior, referred to as Unsupervised Activity Analysis in Table 1.

3 Method

This work hypothesizes that an object O being used for task i is distinguishable from object O being used for task j,

where i is the correct task and j is the incorrect (and therefore less efficient) task in a sequence of tasks needed to complete

a prototype. To test this hypothesis, a depth enabled sensor is used (Sec. 3.1), whose data streams are processed (Sec. 3.2)
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Table 1: The contributions of selected related works, and where this work contributes

Work Object Re-
cognition

Activity
Recog-
nition

Object Use
Detection

Sup’d Act
Fdbk

Unsup’d
Act

Analysis

Krizhevsky
et al. [26]

Ribeiro &
Santos-

Victor [36]

Patel et
al. [48]

Tucker &
Ku-

mara [40]

This Work

so that objects can be recognized in the scene (Sec. 3.2.1). Section 3.3 describes the algorithm used to learn proper object

use and how this information is used to determine if an anomalous design decision is being made while performing a given

prototyping task. Finally, Sec. 3.4 discusses how this method will be evaluated.

3.1 Data Acquisition

3.1.1 Non-Human Data

An environment is considered to contain stationary and non-stationary objects. It is understood that objects at rest tend

to stay at rest, unless acted upon by a non-stationary object. In the context of engineering design prototyping, these non-

stationary objects are typically designers, or objects with which designers are interacting with. In this work, it is assumed

that two synchronized data streams are acquired to sense an environment: i) data pertaining to color and ii) data pertaining

to depth, as seen in Fig 2. Color data is represented by a matrix of pixels h×w in size, each pixel having a red, green, and

blue value. By combining these three values, the color sensed per pixel can be determined. For example, a pixel with a color

value of 255, 255, 255 represents the color white. This color data comprises one portion of the input to the object recognition

system outlined in Sec. 3.2.1. This method also assumes a data stream of depth pixels of equal dimensions, h×w. Each

depth pixel contains one value, signifying the distance from the sensor to that pixel. This data provides a 2.5 dimensional

representation of the surroundings, enabling fast and accurate object localization, and comprises part of the input to the

object recognition system described in Sec. 3.2.1. This object recognition analyzes the content of bounding boxes to identify

the object contained within them. To minimize false positives, it is important to ensure that these bounding boxes are likely

to contain an object. Often, these boxes are generated based on the content of the image in question, however, this method

proposes to use depth as the defining characteristic that generates these bounding boxes. This represents a large improvement

over other approaches, such as naively searching an entire image for each box of a given size or sizes, as this would result in

a large number of candidate boxes.
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Fig. 2: Top: the RGB image data gathered from a scene (in RGB order); bottom: the depth information given by the sensor
(in mm)

Depth data is also assumed to be a matrix of depth pixels. Each depth pixel contains just one value, corresponding to

depth from the sensor to that pixel. Depth data provides a 2.5 dimensional representation of the surroundings, but cannot be

relied upon alone for classification measures.

Finally, each x, y, z value is voxelized. This will arrange all points in a 3 dimensional grid according to their nearest

coordinate. These coordinates are spaced out according to the margin of error of the sensor. This voxel distance d can be

found in the documentation of any structured depth sensor, and serves as a sensitivity for this method. This eliminates sensor

noise by changing the location of each point to the closest grid location, and reduces data volume by discarding points which

are too close together without losing information. This data structure provides a 2.5D description of everything in view of

the sensor, including color and depth, which will be used to analyze how a designer behaves in a given engineering design

workspace. This work makes two assumptions about the body language exhibited by designers during a specific task. The

first is that engineering tasks are performed on a workspace (e.g., table in Fig. 3) that is approximately half as tall as the

designer. The second is that activities performed above the workspace (e.g., with the hands) are not necessarily influenced

by nodes (e.g., feet) below the workspace.

3.1.2 Human Skeletal Data

Object use is characterized by human motion with respect to object position. In order to measure human motion, body

node positions are acquired. Body node data is represented by a matrix of xyz values for each node in a human body, for

each detected human, as shown in Fig. 3. For example in Fig 3, the rows in the tab represent the successive positions of the

right hand node that are captured at each time interval. There are a wide range of sensing systems capable of capturing this

data, such as OpenNI and Kinect. These values represent the location in a 2.5D space whose origin is the sensor, where x

is the horizontal offset from the sensor, y is the vertical offset and z is the depth offset. For example, a position of the right

hand node at the 20th instance (i.e. row 20 in Fig. 3) of (1,1,1) indicates that an individual’s right hand is lifted above their

head, where the values (1,1,1) represent 1 meter to the right (x), 1 meter above (y) and 1 meter back (z) from the sensing

system. In subsequent sections, depending on an object that a person has in their hand, this may be indicative of the process
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of swinging an object. This data also contains node orientation data (i.e., ow, ox, oy, oz in Fig. 3). These four variables

relating to node orientation are referred to as a quaternion and compactly represent an orientation of each node with respect

to the parent node (for example, left wrist is the parent of left hand). These values represent both an angle of rotation and

direction (such as rotated 90 degrees clockwise about the x-axis). These quaternions encode an orientation similar to Euler

angles (that is, roll, pitch and yaw), without gimbal lock, a common problem of ambiguity when using Euler angles. Given

that the sensing system is stationary and there exists variability in the size and relative position of individuals, a subsequent

normalization step is needed in order to minimize bias in object-designer associations.

3.2 Data Pre-Processing

Given that the hypothesis of this work is that an object O being used for task i is distinguishable from object O being

used for task j, where i is the correct task and j is the incorrect (and less efficient) task, the objective of the pre-processing

step is to remove noise pertaining to the identification of objects and tasks. In order to detect anomalous task performance,

it is necessary to determine which activity is being performed by the designer. An activity is defined by two attributes:

the designer motion profile M and the identified object O, which is being used to perform an activity. These two attributes

〈M,O〉 define the activity being performed, with the first, corresponding to the feature space, defined by the second. In other

words, each activity is defined by the combination of the object being used and the motion of the designer performing the

action. Towards this end, the object detection and recognition section and size normalization will enable accurate detection

and classification of tasks.

3.2.1 Object Detection and Recognition

Since this method is concerned with evaluating activities with respect to the objects being used, a highly accurate and

reliable object recognition system must be employed. To accomplish this, a convolutional neural network is employed. This

network requires two inputs: the first is the image of the scene, as described in Sec. 3.1.1. The other is a list of bounding

boxes which may contain an object. In some settings, these boxes will be programmatically generated and proposed, which is

a time consuming process. This method automatically segments these boxes based on the depth data provided by the sensor.

To isolate the area around a skeletal node, Algorithm 1 is proposed. This fill-based algorithm includes a stopping criteria

to prevent an entire body from being filled (as can occur, since the body is continuous). The rationale for this algorithm is

that most tools are hand held [49], thus great effort should be taken to only identify regions closely associated with the hand.

This ensures that an accurate classification can be made, while preserving spatial information, such as “the right hand holds

a hammer”.

3.2.2 Size Normalization

Because designers may be at different locations relative to the sensor, and because of varying heights, an additional nor-

malization step is needed. This will allow for better learning, and will reduce misclassification due to acceptable anomalies

such as individuals who are too tall or too short, or individuals who decide to use an object at a different location relative to
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Algorithm 1: Bounding Box Algorithm
Data: A list of Node locations J, depth matrix D
Result: A list of Bounding Boxes, Boxes
begin

Boxes←− []
for j ∈ j do

Q←− []
let sensitivity = sensitivity of the sensor
push j onto Q
// Calculate bounding line
r = Parent node of J
// for example, the parent of hand is wrist

s =− rx− jx
ry− jy

line = line defined by slope s intersecting r
// slope of line perpendicular to line connecting j and r
let distance(p,line) be distance between point p and line
while Q is not empty do

p = pop(Q)
Push p onto P
for n ∈ neighbors(p) do

if |D[n]−D[p]|< sensitivity&&distance(p, line)≥ 1 then
push n onto Q

end
end

end
Box = [maxx(P),maxy(P),minx(P),miny(P)]
push Box onto Boxes

end
end

the sensor. To accomplish this normalization, each node location is subtracted from the location of the designer’s head node

(see Fig 3). This serves to re-center the space, so that anomalies due to unusual placement in the workspace can be ignored,

as these do not represent an incorrect task. Next, these new node distances from the head are divided by an empirically

derived factor representing designer height. This factor is defined by the distance between two nodes which best correlates

with designer height. This allows the method to successfully avoid anomalies caused by designers being of unusual height,

either short or tall.

3.3 Unsupervised Learning

3.3.1 Auto-encoder

Given a feature vector M = 〈m1, · · ·mp〉where mi represents a node dimension (x, y, z, ow, ox, oy, oz), that is captured for

a time interval t1, . . . , tm, the goal of an auto-encoder is to transform this data from a p dimensional space to a q dimensional

space and, in the process, discover inherent relationships between the dimensions. This is notably different from other

unsupervised techniques, which can only discover relationships across samples, so the use of an auto-encoder is key to

this method. While the node data exhibits temporal characteristics (for example, the position of hand node x at time t3 is

related to the position of hand node x at time t2), the unsupervised learning algorithm takes as input the normalized data
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without a temporal component and assumes temporal independence of samples. In order to avoid arbitrary specification of

temporal window size, independence is assumed, with the inherent patterns existing within the data set and discovered by

the auto-encoder itself.

To analyze node location of skeletal data, first an auto-encoder is used, a common first step in unsupervised learning

tasks [50]. An auto-encoder has two major components (each a neural network), the encoder and the decoder. The encoder

works by changing the dimension of the data through a series of layers, which transforms the input into a new representation

as output. The decoder then accepts this same output as input, and processes the output in to a faithful representation of

the original input. These models attempt to minimize difference between the input and the output. In other words, an

auto-encoder minimizes the loss L according to Eq. (1).

L = M−D(E(M)) (1)

where M is the motion profile adjusted for height and head position from Sec. 3.2.2, E is the encoding network, whose input

is the data M, and D is the decoding network, whose input is the encoded data E(M), and whose output should be close to

M after training. In this method, 80% of the motion data is provided as training input to the auto-encoder (one instance of

a 5 fold cross validation). Since no label is provided along with this data, this is not a supervised learning task. After an

auto-encoder has been trained, this innermost representation (that is, the output of the encoder), M′ = 〈m′1, · · ·m′q〉, where m′i

represents a transformation of mi, can be used for clustering.

3.3.2 Gaussian Mixture Model Clustering

Next, a Gaussian Mixture Model (GMM) is used to cluster the transformed node vector M′. A GMM will model a

set of data as a combination of Gaussian distributions, whose parameters are learned. This is the most common method of

clustering when the number of clusters is unknown. For example, n number of designers using the same object for s tasks

where some designers are performing the task correctly and some are not, would result in more than one cluster. For each

vector M in the testing set of the size-normalized information from Sec. 3.2.2, the data cluster is given by Eq. (2).

C = GMM(E(M)) (2)

where M is the motion profile adjusted for height and head position from Sec. 3.2.2, E is the encoding network, whose input

is the data M, GMM is the trained Gaussian Mixture Model, and C is the cluster to which the vector M belongs.

The GMM output provides several different clusters that describe groups of designers that exhibit similar motion char-

acteristics while performing certain tasks during the engineering prototyping process. Given these clusters, it would then be

evident what clusters of motions by designers exhibit anomalous patterns, and what others do not. Since the tasks that can be
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Fig. 3: A student beginning the “hammer screw” task in the engineering lab. For the two types of tasks (hammering a screw
and a nail), this method determines if the tool they are using is efficient.

performed in an engineering workshop are known to designers, some clusters may contain more than one activity. Similarly,

activities may span many clusters, therefore these clusters, whose residents were found to have similar movements, must be

evaluated against the ground truth.

3.4 Evaluation

These clusters are evaluated for their cluster accuracy, and significance. To test the validity of the hypothesis, clusters that

exhibit (i.e. argmax) anomalous activity patterns, are evaluated for significant statistical independence from other clusters. To

do this, a two-sample Kolmogorov-Smirnov test is performed, which is a test of whether two distributions are significantly

different, and yields a significance value indicating the likelihood that these are statistically significantly different [51]. This

ensures that these outlying transformed skeletal nodes (M′) are statistically significant after being detected by the GMM

model. The null hypothesis H0 being tested states that cluster i containing correct task performance and cluster j containing

anomalous task performance are not statistically distinguishable. Thus, the alternate hypothesis, H1 is that cluster i is

distinguishable from cluster j. Knowledge gained from testing this hypothesis will inform designers of the efficient and

inefficient approaches to performing a specific task during the physical prototyping process, as well as the best object for

that task.

4 Case Study

A case study is presented in this section which evaluates the feasibility of the method presented in this paper. This study

was conducted in accordance with the Pennsylvania State University IRB guidelines. 36 participants from an introductory

Engineering Design class were provided with class credit and entered into a raffle.

4.1 Data Acquisition

4.1.1 Non-Human Data

This work utilized a Kinect 2 sensor as the primary sensor for the environmental data acquisition step. The Kinect 2

color images are 1920× 1080 resolution, while the depth images are 512 × 424. The sensor was placed in an engineering

design workshop that is typically used to design and create physical prototypes, as seen in Fig. 3. The sensor was placed 1
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meter from the edge of the table on which participants would be working. The sensitivity of the sensor is 1mm.

4.1.2 Human Skeletal Data

The Kinect 2 is able to track 26 nodes, which were used for the unsupervised learning step (please see Sec. 3.3 of the

method). Using a hammer, participants were asked to hammer three objects, a small nail, a larger nail, and a screw, into a

piece of wood. They were instructed to hammer each of these objects into the wood until they were completely hammered or

they felt they could not continue. The purpose of using a screw was to ensure that participants would need to hammer harder

and in an unusual way, so that this model can be validated. Participants were not instructed to use the hammer in an unusual

way so as to minimize bias that would be created by informing them of the task differences (e.g., hammering a screw with

a hammer). As discussed previously, this method will distinguish between data for the correct task (hammering a nail), and

data for the incorrect task (hammering a screw). The student in Fig. 3 is performing the hammer screw activity. This image

shows the student attempting to line up the screw with the wood, in preparation to hammer it in to the wood (an incorrect

and inefficient method of putting a screw in wood). After the sensor data acquisition was completed, participants were asked

to take a short survey to ascertain their experience level with engineering, robotics, AI systems, as well as personal details

such as height and area of study. Three of these participants’ data was discarded due to collection errors.

4.2 Data Pre-processing

4.2.1 Object Detection and Recognition

Since this method requires a definitive identification of any object being used, the ability of the system to identify objects

needs to be verified. The CNN was trained on 21 objects which fit three criteria. First, these objects must be available and

annotated with bounding boxes from Imagenet. Second, these objects must have a sufficient number of samples available.

The smallest class in the PASCAL object challenge contained 200 instances, so this served as the minimum. Finally, the

object must be found in an engineering design environment. After these removals, 21 classes remained. Of these classes,

Hammer, Scissors, Screwdriver and Goggles were available for testing the detection and recognition system. A model based

on the design proposed by Krizhevsky et al. is trained for this task [26]. If objects are to be used in activity detection, they

must be identified in a participant’s hand. Of the 21 objects that were available, 4 objects were tested in a participant’s hand.

The precision, recall and F1 of these objects can be seen in Table 2.

While these results are not accurate enough to claim that this system is reliable under all circumstances, the in-hand

object system does function very accurately under controlled conditions. When a participant is asked to hold an object out

away from their body against an unobtrusive background, the object is recognized nearly every time. Since the processing

time of this system is approximately two seconds, this involves a participant standing still with an object for just two seconds

prior to beginning use. So, while this system does not yet function reliably enough under real-world conditions, by employing

this pre-condition before use, an accurate identification can be made, and the system can be confident in proceeding with this

measurement. While this may slow down the process, it needs only happen once per user, and the alternative may be lack of

access to the space, or using an improper tool for the task at hand. The results under these conditions can be seen in Table 3.
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Table 2: Top-3 Precision and Recall of objects in hand.

Class Precision Recall F1

Screwdriver 0.463 0.886 0.608

Goggles 1.0 0.470 0.639

Scissors 0.6 0.125 0.207

Hammer 0.662 0.681 0.672

Table 3: Top-3 Precision and Recall of hand held object classes held out to the side away from the body

Class Precision Recall F1

Screwdriver 0.619 0.929 0.743

Scissors 1.000 0.111 0.200

Hammer 0.702 0.961 0.811

Fig. 4: The transformed skeletons of the shortest and tallest participants in the study

Table 4: Correlation across surveyed participants between node distances and height

Node Pair Correlation

Right Hip to Spine Middle 0.913

Right Hip to Head 0.906

Right Hip to Spine Shoulder 0.905

4.2.2 Size Normalization

At each frame, the x, y and z values of a participant’s head node is subtracted from each x y and z value. Additionally,

each distance is divided by the distance between two nodes, derived empirically from this case study. Finally, the lower

nodes are discarded since they are occluded by the desk. For each of these nodes, the following information was recorded:

x, y, z positions in space, relative to the sensor (3 elements) and an orientation quaternion for the node, relative to its parent

node (4 elements). These 7 attributes combine to form a vector of 84 (7 attributes for each of the 12 upper body nodes

tracked) elements in length. The raw positions of two skeletons can be seen in Fig. 4. The large variation in size and position
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motivates the normalization proposed in Sec. 3.3. To accomplish this, each location is first expressed with respect to the

position of a participant’s head. Next, because each participant may be a different size, the average distance between every

pair of nodes in the participant is correlated to participant height, as shown in Table 4.

Since the distance between the right hip and mid spine is shown to correlate best with participant height, each relative

position was divided by this distance, to ensure that all raw position values were adjusted for both difference in participant

position and participant size. The entire transformed skeleton in 2D, shown in Fig. 4 on the right. This has greatly reduced

the variation in both size and position of two participants.

4.3 Unsupervised Learning

4.3.1 Auto-encoder

The encoder and decoder of the auto-encoder used in this method consisted of four dense layers, of size 100, 200, 100,

and 84 (the input size). While this did not change the dimensionality of the data, the data was transformed to become more

context aware. That is, the data is now transformed by a machine which has been trained on all of the other data, so that the

output of this auto-encoder is an encoded version of the input. This assists, in an unsupervised way, with discovering and

encoding relationships between two features (for example, hand and wrist height are highly dependent), as well as learning

patterns across samples (for example, heads are almost always oriented upwards towards the sensor, or downwards towards

the table).

4.3.2 Gaussian Mixture Model

A DPGMM was used for this data with an upper bound of 200 clusters was set, but due to the nature of DPGMMs, this

number is not necessarily reached, rather this serves as a stopping condition, which was not met, meaning that the number of

clusters was sufficient to describe the data. The results of this clustering can be seen in Fig. 5. Along the x-axis each cluster

is shown, while the y-axis shows the number of points belonging to each cluster. Each color represents a different activity,

as labeled by the ground truth. The homogeneity measure of this clustering is 0.432. However, this method is primarily

concerned with the clusters which are predominantly red (the Screw activity), which are referred to as outlying clusters.
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These clusters have a high probability of being an improper use of the tool, as defined by the ground truth. Since even

improper use of an object may appear to be normal at a given moment, it is important to focus on when an identification can

be made with high probability that a task is being done improperly. For example, a feedback system might provide feedback

if too many irregular instances are detected in a short period. In other words, this figure shows for each detected cluster how

many of each activity was assigned to this cluster by the model.

4.4 Evaluation

Figure 6 shows the distributions of the distance from the sensor for each node, across the testing set. The Y axis is the

distance of the joint from the sensor, while the X axis gives the name of the joint. The left hand side of each plot represents

the distribution of non-outlying clusters, while the right hand side represents the distribution of outlying clusters, for each

node type, listed along the X axis. These show that the distributions are significantly different, with each distribution having

p << 0.05 according to the two sample Kolmogorov Smirnov tests. These p-values can be seen in Table 5. This table shows

each of the 12 nodes whose raw data is tested across cluster types (the head is omitted as it is always the origin). This test

measures the probability (p-value) that the two one dimensional (that is, euclidean distance from sensor) distributions are the

same. Note that not all nodes are included in this result, as lower body nodes were removed as noise, since the participant’s

lower body was occluded by the workspace table during the task in question. This p-value will enable a rejection of the null

hypothesis H0 if the value is low.

5 Results and Discussion

5.1 Object Detection and Recognition

These results indicate that the segmentation portion of this method is the current weak point, although an accurate

identification of an object with 6 degrees of freedom may never be possible. For example, a system which identifies soda

brand of a can of soda will never be able to identify the brand based on the bottom of the can. Similarly, many tools look

similar from certain perspectives, given occlusion conditions and inaccuracies of the sensor which may interfere with either
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Table 5: A two sample Kolmogorov Smirnov test of distance distributions

Node p-value Node p-value

Left Elbow 2.62e-238 Right Elbow 2.41e-55

Left Hand 1.98e-323 Right Hand 2.70e-171

Top Spine 0.00e+00 Neck 0.00e+00

Left Shldr 0.00e+00 Right Shldr 1.36e-195

Right Wrist 2.97e-52 Left Wrist 2.85e-317

Spine Base 1.86e-168 Mid Spine 2.59e-162

the segmentation or identification portion of the sensor. One common problem encountered is that participants seem to face

their tool towards the sensor, making identification of the tool unlikely since a hammer is very hard to identify looking from

the top down. By adding in the condition that a participant must hold out the tool for identification beforehand, an accurate

identification can be had nearly every time, without interfering with normal use of the object.

While this does not perfectly identify objects during all types of use, this is an important first step towards an accurate

identification of objects as participants interact with them. Notable in these results is the high F1 score for the screwdriver,

despite the small size of the visible portion protruding from the hand. This may be in part due to the preponderance of

screwdrivers in hands present in the training set. Future work might consider amassing a large enough training set of objects

in hands to help improve the recognition for many types of objects. It is also worth noting that the goggles experiment was

not a successful one, due to goggles’ failure to show up on an IR based 2.5D sensor. Since goggles are transparent, they

failed to reliably alter the IR beams that provide the depth measurements, thus the only detections of goggles came when

the goggles were on the head of the participant. Still, the proposed segmentation algorithm performed well, given the sensor

irregularities. In particular, longer thinner objects often had issues where the object would be mapped to the hand node

rather than the the hand holding the object. However, holding the body in a more structured pose was shown by this work to

counteract these problems.

5.2 Activity Recognition

The design of the tasks was to provoke inefficient behavior, without instructing the participants to behave inefficiently.

Indeed it is possible to hammer a screw, though not effectively. Additionally, this can introduce many other issues as well,

such as splitting a board, or being unable to complete the task (indeed, many participants were unable to complete the task

and were allowed to give up). At the same time, these actions needed to be natural, while still being incorrect. Overall the

clustering was a success since the homogeneity of these clusters is quite high. Even more encouraging is that the screw

activities have very high residencies in several clusters. Since it is possible to behave correctly at a given point in time even

while doing an incorrect task, having several clusters that are entirely incorrect provides a good starting point for developing

an automated method of differentiating correct from incorrect activities. In other words, cluster 6 is approximately 90%

incorrect, meaning that if an activity is in cluster 6, there is a 90% probability that it is being done improperly. Moving
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forward, the judgment could be made to provide feedback to participants if they are currently falling into one of these highly

incorrect clusters. It is also notable that the waving task also exhibited these same characteristics, although the sample size

was much smaller for this class. In particular, clusters 8, 36, and 51 are almost entirely waving instances, suggesting that

this method may have broader applications in activity recognition. In contrast, the picking up a hammer activity seems to

be much more spread out. This is probably due to the fact that each task required an individual picking up task within it

(each nail and screw needed to be picked up, and this was not distinguished since these actions are part of the larger task).

In contrast, the largest cluster, 15, has many incorrect datapoints in it, as well as correct ones. This demonstrates that it is

possible to appear to be correct at certain moments during an incorrect task, further emphasizing the need to rely on clusters

which are mostly incorrect.

In inspecting the distribution of distances from the sensor for each node (see Fig. 6) for these anomalous clusters, it

is clear that these anomalous clusters are indeed statistically distinct from the non-anomalous clusters. In fact, the highest

p-value according to the two sample KS tests is 2.97 ∗ 10−52 (see Table 5). All of these are substantially lower than even

0.001, the lowest threshold in common use. Furthermore, the head, neck, and spine distributions each had a p value of 0.

Likewise, the hands, which were used in the hammering task given to the participants, also boasted extremely low numbers.

The combination of these two aspects suggest a possible use in ensuring safety as well, since distinguishing a different head

and hand posture would be requirements for determining if an activity is being performed safely (for example, assisting

participants in keeping their tools far from their heads).

6 Conclusions and Future Work

This work proposed a novel method of recognizing when an inefficient activity is being performed. By leveraging

the human sensing capabilities of a 2.5D sensor, it analyzed body position data over the course of time. The 2.5D sensor

also enabled a highly accurate classification of objects to be made by solving a long standing issue of object localization

in a scene. This enabled an over 90% accurate detection of several classes of objects, while minimizing the risks of false

positives. Given these recognitions, an unsupervised model was proposed that was able to differentiate between correct use

of tools for a task and incorrect use of tools for a task. These differences were found to be statistically significant with

p < 0.001.

Future work might consider how to use this as an automated process scheduling method, so that each appropriate

tool and activity can be matched and laid out automatically, prior to beginning the prototyping phase. The evaluation

methodology proposed here may also be used for other types of activity evaluation, including ensuring designer safety, as

well as determining if an activity is likely to result in success. This may also lead to an automated teaching tool which

could instruct designers in the best way to complete a task. Integrating this with downstream CAD software might allow

determinations for a given design such as equipment or facilities required, number of workers, as well as parallelizable

tasks. Future work should also consider how best to provide feedback when an anomaly is identified in an automatic and

meaningful way. This problem is challenging as it requires deriving not only a classification of inefficiency, but insight into

how the participant could behave more efficiently. Another approach might consider altering this system to analyze how new

Dering JCISE-16-2066 17



products are used. This would have applications in the field of ergonomics, as well as product design. And by monitoring

the use of objects by expert craftsmen, an ideal use model could be generated and used for instruction.
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