
An automated approach to quantifying functional interactions
by mining large-scale product specification data AQ1

¶
Sung Woo Kanga and Conrad Tuckerb AQ2

¶
aDepartment of Industrial Engineering, Penn State University, State College, PA, USA; bDepartment of
Engineering Design, Industrial Engineering, Penn State University, State College, PA, USA

ABSTRACT
The authors of this work hypothesise that the semantic relationship
between modules’ functional descriptions is correlated with
the functional interaction between the modules. A deeper
comprehension of the functional interactions between modules
enables designers to integrate complex systems during the early
stages of the product design process. Existing approaches that
measure functional interactions between modules rely on the
manual provision of designers’ expert analyses, which may be time
consuming and costly. The increased quantity and complexity of
products in the twenty-first century further exacerbates these
challenges. This work proposes an approach to automatically
quantify the functional interactions between modules, based on
their textual technical descriptions. Compared with manual
analyses by design experts who use traditional design structure
matrix approaches, the text-mining-driven methodology discovers
similar functional interactions, while maintaining comparable
accuracies. The case study presented in this work analyses an
automotive climate control system and compares the functional
interaction solutions achieved by a traditional design team with
those achieved following the methodology outlined in this paper.
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1. Introduction

To be successful in today’s global market, companies try to offer competitive and highly dif-
ferentiated products by analysing and developing product functions that satisfy customers’
needs (Umeda et al. 2005). A product’s function represents its operational purpose that
meets customers’ requirements (Umeda et al. 2005). This high-level product function,
which directly interfaces with the customer, can be composed of multiple modules that
perform each sub-function. A module performs a specific function by controlling the inter-
actions of the functions of components (Jose and Tollenaere 2005). Analysing a product’s
functional characteristics is the initial step of the design process and precedes the definition
of other aspects such the formandmaterial (Bohmand Stone 2004; Bryant et al. 2005; Stone,
Wood, and Crawford 1999; Umeda et al. 2005). Therefore, engineering designers need to
understand both the functional interactions between each module and how these inter-
actions impact the overall product. These functional interactions indicate the degree of
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modularity among the attached modules and enable the designers to create newmodules
for next-generation products by integrating/maintaining current modules within a product
family/product portfolio (Dahmus, Gonzalez-Zugasti, and Otto 2001; Gershenson, Prasad,
and Zhang 2003; Schilling 2000). To design a product, the designers must analyse the
degree of functional interactions between modules based on their expertise/domain
knowledge (Browning 2001; Danilovic and Browning 2007; Helmer, Yassine, and Meier
2010; Pimmler and Eppinger 1994; Sharman and Yassine 2004; Sosa, Eppinger, and
Rowles 2003, 2004; Yassine andBraha 2003). However, expertmanual analyses (e.g. analyses
by designers that quantify functional interactions between modules) may be a time-con-
suming and costly process (Liang, Tan, and Ma 2008; Mudambi and Schuff 2010; Rockwell
et al. 2008; Yanhong and Runhua 2007; Yoon and Park 2004). These challenges are
further exacerbated by the constant increase in product quantity and complexity, that
are primarily driven by customers’ increasing desires for customisable products (Alizon,
Shooter, and Simpson 2009; Christensen, Cook, and Hall 2005; Tucker and Kang 2012).
For example, at the start of the twentieth century, 92 modules were required to construct
a complete car. However, more than 3500 modules currently exist in a modern-day
vehicle (Ford Motor Company 1989; Groote 2005). Over 30,000 new consumer products
launched into the market each year (Christensen, Cook, and Hall 2005). Therefore, the com-
plexity of managing modular product designs and their inherent functional interactions
becomes cumbersome (Dahmus, Gonzalez-Zugasti, and Otto 2001).

This work measures the functional interactions between modules by analysing the
semantic relationships between the modules’ functional descriptions. The methodology
presented in this work quantifies the functional interactions between modules by employ-
ing text-mining algorithms that analyse modules’ functional descriptions, represented tex-
tually through technical manuals pertaining to each module. The authors of this work
hypothesise that the semantic relationship between modules’ functional descriptions is
correlated with the functional interaction between the modules. A statistical analysis
that compares the results of the text-mining methodology with experts’ manual analysis
of functional interactions (Browning 2001; Pimmler and Eppinger 1994; Pimmler 1994) is
presented. This text-mining-driven methodology achieves results in a timely and efficient
manner that are comparable to the designers’ manual analyses.

This paper is organised as follows. This section discusses the research motivation;
Section 2 describes works related to the research; Section 3 outlines the proposed meth-
odology; Section 4 presents an automotive climate system case study that demonstrates
the feasibility of the methodology; the results of the case study are discussed in Section 5;
and Section 6 provides the conclusion and future-related work.

2. Related works

The literature review begins by discussing the functional model used during the early
stages of the product development process (Section 2.1). Then, the literature regarding
semantic analyses in the engineering design fields is presented (Section 2.2). Section 2.3
reviews the formation of a module on the basis of functional interactions between
modules. In Section 2.4, the literature related to manual approaches for measuring func-
tional interactions articulates the need for an automated methodology that analyses
these interactions.
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2.1. Functional modelling in engineering design

A functional model in engineering design is a structured representation of standardised
functions and the flows between these functions within the formalised design space.
The functional model generates a chain of functions as a process connected by energy,
signal, and material flows – the essential requirements for operating each function,
hereby developing a conceptual product design (Baxter, Juster, and De Pennington
1994; Bonjour et al. 2009; Hirtz et al. 2002; Kurtoglu et al. 2009; Stone and Wood 2000).
The functions and flows are defined on a functional basis, which designers describe
with standardised technical terminology (Stone and Wood 2000).

In product design, functional modelling is a crucial step in defining a product’s architec-
ture, wherein the architecture indicates the product’s functional structure through which
the product’s function is allocated to physical modules. Designers have created a func-
tional architecture for a next-generation product on the basis of a functional model and
the functional interactions between the candidate modules (Kurtoglu et al. 2009; San-
gelkar and McAdams 2013; Sen, Summers, and Mocko 2010). A quantitative functional
model that captures both the product functionality and customer requirements has
been proposed (Stone, Wood, and Crawford 1999). This model employs modular theory
and requires an assessment tool to build a product repository for grouping products
based on functionality and customer requirements.

Analysing the interdependency of a product’s functions can be performed independent
of the analysis of a product’s form (Kurtoglu et al. 2009; McAdams, Stone, and Wood 1999).
This allows designers to make an explicit connection between modules by measuring the
interdependency of functions. These connections are usually inherent in the product
development process. The functional model enables product development and manufac-
turing on a mass customised scale (Kahn, Castellion, and Griffin 2005).

A function dividing process (FDP) has been proposed to obtain sub-system-level (e.g.
module) functions from system-level (e.g. product) functions (Taura and Nagai 2013). A
FDP divides a system-level function in two ways: the decomposition-based dividing
process and the casual-connection-based dividing process. The causal-connection-based
dividing process addresses the functional interdependency among a group of modules,
wherein the functions of a module are similar to the adjacent functions of a product at
the same level. The decomposition-based dividing process addresses functional indepen-
dency when the product function is realised with the functions of each independent
module. The model generates new module functions by integrating existing sub-system
functions with a functional model.

In the context of systems engineering, the need for a standard design process has
arisen due to the international trade of system products and services. Therefore, EIA
632 has been established for standardising functions of systems (Martin 2000). The ISO/
IEC 15288 standard has been introduced in the engineering design community to
provide a common/comprehensive design framework for managing system development
projects (Arnold and Lawson 2004). However, as the quantity and diversity of modules
continue to increase, designers are presented with the challenge of searching through
the entire design space for novel design knowledge that can lead to next-generation
products.
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To overcome these challenges, the methodology presented in this paper, employs
semantic analysis techniques that discover functions from a large set of text data sets
that describe modules. Functional interactions between modules are then automatically
quantified in order to aid designers during next generation product design by informing
them of the modules that are tightly or loosely coupled.

2.2. Knowledge extraction via semantic analysis

Semantic analysis techniques that discover knowledge from large-scale textual data sets
have been proposed across a wide range of science and engineering disciplines. The util-
isation of these techniques in the science and engineering fields enables researchers to
access an immense number of textual data sets by mining statistically significant terms.
For example, Bollen, Mao, and Zeng (2011) have predicted changes in the stock market
by analysing the moods inherent in large-scale Twitter feeds. Eysenbach has quantified
the social impact of scholarly articles based on a semantic analysis of buzz on Twitter
(2011). Asur and Huberman (2010) have successfully predicted box office revenues by
mining information from tweets. Ginsberg et al. (2009) have presented a methodology
that tracks influenza epidemics in a population by analysing a large number of Google
search queries that were semantically related to the term ‘influenza’. Huang, Liu, and
Zhou (2010) identify complex phenotypes and demonstrate a disease-drug connectivity
map by analysing semantic relationships across multiple diseases query expression pro-
files . Tuarob et al. (2013) have retrieved health-related information from social media
data by analysing the semantics of heterogeneous features. Paul and Dredze (2014)
were able to identify ailments along with the terms that represent the symptoms of
each ailment by mining public health information from social network services such as
Twitter. These studies demonstrate that it is possible to automatically discover semantic
information that attains statistically significant correlations with ground truth data,
despite using minimal human supervision.

In the engineering design fields, semantic analysis techniques have been employed to
extract design knowledge from text-based product data, including customer feedback and
product technical descriptions, in order to design products that better meet customers’
needs (Ghani et al. 2006; Menon et al. 2003; Romanowski and Nagi 2004). Researchers
have extracted product functions from their functional descriptions, such as patents or
official manuals, through text-mining techniques (Ghani et al. 2006; Kang et al. 2013;
Tseng, Lin, and Lin 2007; Tucker and Kang 2012; Tuarob and Tucker 2014). Menon et al.
(2003) employed a vector space document representation technique to derive useful
product development information from customer reviews. Tuarob and Tucker (2015a,
2015b) proposed the method to identify lead users and product demand by mining
product attributes from a large scale of social media networks. Zhou, Jianxin Jiao, and
Linsey (2015) have extracted latent customer needs from customer product reviews
through semantic analysis, which identifies the hidden analogical reasoning of customers’
preferences. Gu et al. (2012) have employed a semantic reasoning tool to represent func-
tional knowledge as function-cell pairs, where the cell is defined as a conceptual structure
denoting the structure category that interacts with similar functions. Ghani et al. (2006)
have extracted semantics as product attributes on the basis of textual product descriptions
by employing a generative model with the expectation maximisation (EM) technique.

4 S. W. KANG AND C. TUCKER

140

145

150

155

160

165

170

175

180

)



Tucker and Kang have extracted semantics as functions and behaviours of products from
textual descriptions in order to discover cross-domain knowledge among multiple product
domains (2012). Kang et al. (2013) have employed a text-mining technique that quantifies
functional similarities between end-of-life (EOL) product descriptions. Product modules
that exhibited low functional similarity were deemed strong candidates for EOL value cre-
ation. These modules were then combined to form a product with enhanced functional
capabilities made from EOL products.

Existing semantic-based techniques in the engineering literature have focused on
employing text-mining techniques either at the early stages of customer needs analyses
or at the end of life decision-making stages. This work hypothesises that semantic relation-
ships between modules’ functional descriptions are correlated with functional interactions
between the modules. This work demonstrates the feasibility of employing text-mining
algorithms to automatically quantify the functions of a module andmeasure the functional
correlations between modules. To quantify the functional interactions of each module, an
automatic interaction measurement (AIM) is proposed in this work that extracts functions
and converts those functions into a vector space on the basis of the semantic relationships
of each module.

2.3. Modularity based on functional interaction

Modules that make up a product interact with each other through relevant engineering
principles and knowledge (Batallas and Yassine 2006; Cascini and Russo 2007; Hong and
Park 2014; Jiao, Simpson, and Siddique 2007). Each interaction type (material, energy,
information, and spatial) between modules allows the product to operate its functions
in the correct manner (Sharman and Yassine 2004). Therefore, engineers assemble a
product with modules that share similar materials, energies, information, and even
shapes. Designers describe a product’s mechanisms in its official descriptions (e.g.
patent, textbook, and manual) with engineering terms or conceptually similar terms
that indicate the interactions and operation processes (Eckert, Martin, and Christopher
2005; Kim, Manley, and Yang 2006; Murphy et al. 2014). Hence, the official textual descrip-
tions of modules contain its functional descriptions and knowledge about the potential
interactions between other modules.

The research on modularity is derived from Suh’s design axiom, which establishes an
understanding of the interactions between modules (1984). A module is a group of com-
ponents having strong functional interactions that proceed to perform a specific function
(Fujita and Ishii 1997; Gershenson, Prasad, and Zhang 2003; Jose and Tollenaere 2005). It is
difficult to integrate a module with other modules existing within a product when there
are no functional interactions among them (Sharman and Yassine 2004). The definition
of modularity is further revised by considering interdependent/independent interactions
between modules (Gershenson, Prasad, and Zhang 2003; Gershenson, Prasad, and Zhang
2004). A module represents a unit of a product that independently performs a specific
function. Product design methodologies based on modularity use modules as the stan-
dard units to construct products to increase the efficiency of both the product design
and manufacturing processes (Huang and Kusiak 1998). For example, Volkswagen utilises
a platform which is modularised with a floor panel, chassis, etc. for their products (Theve-
not and Simpson 2006). The Ford Motor Company produces a climate control system to
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provide both heating and cooling for their customers by integrating 16 different modules
(Pimmler and Eppinger 1994). Huang and Kusiak (1998) designed a digital circuit module
containing end users’ needs as functions by integrating electric components. Modules
constitute a product and its functional interactions that achieve the product’s primary
function. Understanding the functional interactions between modules enables designers
to identify which modules can be integrated when creating new modules or enhancing
existing ones (Dahmus, Gonzalez-Zugasti, and Otto 2001; Gershenson, Prasad, and
Zhang 2003; Schilling 2000). A modular product is constructed with multiple modules
along with their functional interactions, as shown in Figure 1.

Each module performs a specific function(s), and these modules are connected to each
other with different levels of functional interactions, as shown in (Figure 1). Although the
identification of a functional interaction is an important factor for developing both
modules and products, quantifying the degree of functional interaction (e.g. the line thick-
ness in Figure 1) between modules has, until now, primarily relied extensively on manual
feedback, which can be costly and time consuming, especially as products become more
complex.

The methodology presented in this work automatically quantifies the degree of func-
tional interaction of each module on the basis of each module’s functional description.
This work supports designers by creating an automated algorithm that discovers which
modules can be integrated into a new module or which modules are not suitable for func-
tional modifications.

2.4. Functional interaction analysis through a design structure matrix

In the context of engineering design, many researchers have employed a design structure
matrix (DSM) to visualise the functional interactions among modules on the basis of
experts’ knowledge (Dahmus, Gonzalez-Zugasti, and Otto 2001; Jiao, Simpson, and Siddi-
que 2007; Pimmler and Eppinger 1994; Sosa, Eppinger, and Rowles 2003, 2004). Steward

Figure 1. A modular product consisting of modules.
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coined the term ‘DSM’, a matrix-based approach to analysing system design structures
(1981). The DSM’s row index and the column index are described as system elements rep-
resented as modules, with the cells of the matrix representing the interactions between
the elements. The initial stage of creating both matrices defines each element that is
the object of interaction. Pimmler represented these system elements as product
modules, proposing a taxonomy of functional interactions (spatial, energy, information,
and material) with a quantification scheme to facilitate the means by which experts
measure each interaction between modules (1994). Pimmler and Eppinger proposed a
module-based DSM taxonomy to reorganise design teams along the lines of the functional
interactions between modules (1994). Eppinger extended the DSM to integrate manufac-
turing systems by mapping both the functional interactions of power train modules and
the interactions of their manufacturing processes (1997). Sosa, Eppinger, and Rowles
(2003) identified new modular and integrative systems to develop complex products by
clustering the quantified interface between modules and systems. They extended the
research to analyse the functional misalignments of the product architecture and the
organisational structure in complex product development by clustering the functional
alignment of modules (Sosa, Eppinger, and Rowles 2004). Karniel and Reich proposed a
‘DSM net’ technique as a multi-level process model to create new products (2012). The
DSM net is composed of design and process activities capable of checking process
implementations on the basis of the functional interactions between modules. Existing
DSM methodologies that measure functional interactions between modules are based
on experts’ analyses. However, it may be difficult for these manual-analyses-based
approaches to quantify the functional interactions between modules because modern
engineering products, such as vehicles, require more complicated modules than did
earlier products. For example, approximately 3400 more modules are required for con-
structing vehicles today than at the start of the twentieth century (Ford Motor
Company 1989; Groote 2005). The methodology presented in this work automatically
quantifies the functional interactions across a wide range of modules, thereby reducing
the time and costs associated with manual analysis techniques.

In the early stages of the product design and development process, designers
have been supported by automatic approaches or platforms in each step, as shown in
Figure 2. Although designers are supported in each step by automated approaches or

Figure 2. The beginning phase of the new product development process (Arnold and Lawson 2004;
Bryant et al. 2005; Gamon et al. 2005; Helmer, Yassine, and Meier 2010; Huang and Mak 1999; Jiao
and Chen 2006; Martin 2000; Petiot and Grognet 2006; Pimmler and Eppinger 1994; Stone et al.
2008; Wei et al. 2009; Yang, Wei, and Yang 2009; Zhan, Loh, and Liu 2009; Zhang et al. 2012).
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platforms, Step 5 is still heavily reliant on manual processes. The objective of Step 5 is to
quantify the functional interactions between candidate modules for selecting appropriate
modules that satisfy both the design specifications and their interactions.

The methodology presented in Section 3 employs a topic model algorithm and a cosine
measure to quantify the functional interactions among modules, with the purpose of
moving towards automated methods that help to minimise the manual processes of
Step 5 in the engineering design process (Figure 2).

3. Methodology

The methodology quantifies the degree of functional interactions of each module based
on the module’s functional descriptions by employing a topic model technique from
natural language processing, thereby enabling designers to automatically model a pro-
duct’s functional architecture, and, as a result, minimise the manual analyses. This entire
process, outlined in Figure 3, is defined as the AIM.

Step 1 describes the function data-acquisition process for creating a database contain-
ing products’module information. In this work, the module descriptions are assumed to be
represented textually. Each function extracted from a module’s functional description is
converted into a vector space in Step 2. Step 3 quantifies the functional interactions
between the modules by measuring their vector similarities. Finally, the methodology
can automatically measure the degree of functional interactions between modules and
can serve as a guide for designers aiming to understand the complexities of the functional
interactions within modular products.

3.1. Create a database of modules

The first step in the methodology is to construct a database that consists of a product’s
modules and contains its functional descriptions. A module’s function data can be
acquired from textual descriptions, such as patents or official manuals (Brunetti and
Golob 2000; Sheldon 2009; Sheremetyeva, Nirenburg, and Nirenburg 1996; Umeda et al.
2005), as shown in Figure 4. It is assumed that each module has a unique identification
number (ID) that will be used to automatically search for and discover the functional inter-
actions between the modules.

A product’s database composed of each module’s functional descriptions is created, as
shown in Figure 4. Because engineering documents such as a functional description of a

Figure 3. Flow diagram of the AIM.
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module are laid out in a structured way, a paragraph of the description may contain one
topic, which can be regarded as a function in this research (Nagle 1996). The next section
describes how the text-mining algorithm extracts the functions from the modules’ textual
descriptions.

3.2. Extracting functions based on topic modelling

In the context of engineering design, official specifications, technical manuals, and patents
can be regarded as the functional descriptions that include topics that can be represented
as functions, as shown in Figure 4. Because a functional description is usually written in
natural language, it includes many terms that do not provide any important information.
Therefore, unnecessary terms such as linking verbs (e.g. is, and, etc.) are eliminated to
reduce noise (Munková Daša, Michal, and Martin 2014; Murphy et al. 2014). To extract func-
tions from the descriptions, this work employs natural language-processing techniques: a
part of speech tagger and the Latent Dirichlet Allocation (LDA) algorithm (Blei, Ng, and
Jordan 2003). Because functional terms mainly use verbs and nouns in functional descrip-
tions, a part-of speech (POS) tagger algorithm, which identifies verbs and nouns, is
employed in this work (Ahmed, Kim, and Wallace 2007; Toutanova and Manning 2000).
Once the POS tagger pre-processes the functional descriptions, LDA extracts topics (e.g.
functions) from the descriptions. LDA is a generative probabilistic model for compilations
of text corpora, which can be regarded as functional descriptions with infinite mixtures
over intrinsic topic groups (Blei, Ng, and Jordan 2003). Because each paragraph of the
description may describe each product’s function with terms, the LDA algorithm postu-
lates that the description is a finite mixture of the number of functions and that each
term’s establishment is due to one of the functions from the description (Sheldon
2009). LDA provides the mixing proportions of functions through a generative

Figure 4. Process for extracting the functional descriptions from textual data. Notes: tx represents the
textual terms of a product’s functional description (D). D represents a product’s functional description,
which is composed of the functional description of each module (e.g. D = {d1,d2,… dn}). di represents
each module’s functional description. Ff is the f

th paragraph of a functional description (di). S represents
the total number of functions of the module that has the most functions.
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probabilistic model on the basis of the Dirichlet distribution, as shown in the following
equation:

p(tx|di) =
∑s

f=1

p(tx|Ff )p(Ff |di), (1)

where tx represents the textual terms of a product’s functional description D = {d1, d2,…
dn}. di represents each module’s functional description. Ff is the fth function of a product’s
functional description (D). S represents the total number of functions of the module with
the most functions. The total number of functions (S) is the same as the number of para-
graphs (specifications) in the functional description of the module that has the most
functions.

From the set of modules of a product, each function is sequentially extracted with topic
probabilities from the entire functional description (D = {d1, d2,… dn}), as shown in Table 1,
that is, Function 1 p(F1|D),… , Function S p(FS|D). These functions represent abstracts of
each functional description in terms of contextual semantics. From Equation (1), p(Ff|di)
measures the probability of function (Ff) being a topic of a technical description (di). To
compare the functional interaction between modules, each functional probability of the
ith module (p(Ff|di)) represents the functional descriptive vector in matrix form, as
shown in Table 1.

3.3. Quantifying functional interactions

To search for functional interactions across textual data sets, the cosine measure has been
employed using the LDA results. The cosine measure is employed in this work to quantify
the degree of functional interaction between each module. The functional interaction
between modules can be quantified by inputting the functional descriptive vectors
from Table 1 into the cosine measure. For instance, the functional interaction between
the functional vector ‘Battery charger’ and ‘Battery’ can be quantified with the following
equation:

cos(Vi=1|Vi=2) = Vi=1 · Vi=2

||Vi=1|| ||Vi=2|| , (2)

where

Vi=1 · Vi=2 =
∑s

f=1

p(Ff |d1)p(Ff |d2) (3)

||Vi=1|| =
��������������∑s

f=1

p(Ff |d1)2
√

(4)

Table 1. Quantified functional data set.
ID(i) Module name Function 1 Function 2 … Function S

1 Battery charger p(F1|d1) p(F2|d1) … p(FS|d1)
2 Battery p(F1|d2) p(F2|d2) … p(FS|d2)
..
. ..

. ..
. ..

. ..
. ..

.

n … p(F1|dn) p(F2|dn) … p(FS|dn)
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||Vi=2|| =
��������������∑s

f=1

p(Ff |d2)2
√

(5)

Each variable Vi = 1 and Vi = 2 represents a vector coordinate of the Battery charger’s (i = 1)
and Battery’s (i = 2) functions in Table 1. The cosine measure is 1 when the angle between
the two vectors is 0 degrees, while the cosine measure is 0 when the angle between the
two vectors is 90 degrees. Therefore, the functional interaction increases when the cosine
metric between the functional descriptive vectors is close to 1, whereas 0 means that there
are no interactions between the functions. Modules that have strong functional inter-
actions with one another can be integrated into a new module, while modules with low
functional interactions may be independently updated/enhanced with minimal impact
on the other modules (Browning 2001; Hirtz et al. 2002). In this work, if the cosine
measure between the functional descriptive vectors results in a value of 1, it is assumed

Figure 5. Algorithm flow of the AIM.
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that the corresponding modules are identical. Sophisticated engineering products,
ranging from automobiles to aircrafts, may include multiple identical modules in one
system. For instance, most cars have two headlights that perform independently of one
another. Because the interactions between one headlight and another module (e.g.
wheel) would result in the same cosine similarity value, regardless of whether it is the
right headlight or the left headlight, directly searching functional interactions across iden-
tical modules is redundant and therefore not considered in the methodology.

In the early stages of the product development process, designers consider functional
interactions between different modules for functional architecture modelling. Figure 5
presents the algorithmic flow of the AIM. The AIM imports data sets from a database
and then cleanses the textual data by employing the POS tagger. LDA extracts functions
from the POS results, and then the cosine measure quantifies the functional interactions
across the modules on the basis of the LDA results.

In contrast to traditional DSM approaches, the methodology outlined in this work ana-
lyses functional interactions in an automated manner, with minimal manual input from
designers. This is particularly important as the number of modules and functional inter-
actions increase in complex products. To evaluate the AIM, the next section introduces
a DSM study as a case study for comparing the interaction analysis.

4. Application

The case study analyses an automotive climate control system that combines 16 modules
that have 120 functional interactions. The case study is introduced to verify the feasibility
of the AIM presented in Section 3 by comparing it to manual analyses performed by design
experts. Pimmler and Eppinger extracted functional interactions between the automotive
climate control system’s modules through a taxonomy of functional interactions and a
manual quantification process, as shown in Table 2 (1994). Their study analysed
modules with four different interaction types (spatial, energy, information, and material)
based on five different scores (Required/Desired/Indifferent/Undesired/Detrimental)
(Pimmler and Eppinger 1994). Functional interactions are quantified by four different
generic relationship types with values of −2, −1, 0, 1, and 2, as shown in Table 2. In
Pimmler and Eppinger’s study, a DSM was generated by conducting interviews with
experts from the Ford Motor Company; the original DSM is described in the appendix
(1994). Although the manual DSM analysis provides reliable outputs, it may be difficult
to extract functional interactions, as the quantity and complexity of modules continues
to increase in today’s twenty-first century product space.

Table 2. Interaction types and quantification of the DSM (Pimmler and Eppinger 1994).
Type Interaction values

Spatial Needs for adjacency or orientation between two modules.
Required(+2)/Desired(+1)/Indifferent(0)/Undesired(−1)/Detrimental(−2)

Energy Needs for energy transfer/exchange two modules.
Required(+2)/Desired(+1)/Indifferent(0)/Undesired(−1)/Detrimental(−2)

Information Needs for data or signal exchange between two modules.
Required(+2)/Desired(+1)/Indifferent(0)/Undesired(−1)/Detrimental(−2)

Material Needs for material exchange between two modules.
Required(+2)/Desired(+1)/Indifferent(0)/Undesired(−1)/Detrimental(−2)
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The methodology presented in this work mitigates this challenge by automatically ana-
lysing functional interactions on the basis of modules’ functional descriptions. To verify the
feasibility of the methodology, this case study compares the interactions from the AIM to
those of the DSM generated by manual expert feedback that has been thoroughly studied
in the engineering design community (Browning 2001; Pimmler and Eppinger 1994).

Sosa, Eppinger, and Rowles (2003, 2004) have proposed the ‘design interface strength’
to measure the degree of the overall functional interactions between modules on the basis
of each interaction type and its scale value from Pimmler and Eppinger’s research shown in
Table 2.

The interaction scale ranges from 0 (e.g. all values of each generic interaction are 0 or a
negative value) to 8 (e.g. all values of each generic interaction are 2) by integrating the four
generic interaction types: spatial |2| + energy |2| + information |2| + material |2| for a
maximum of 8. To distinguish modules in the system, Sosa, Eppinger, and Rowles
(2004) categorised the strength of the functional interactions into ‘low’ (less than 4) and
‘high’ (greater than 4).

In this paper, because the interactions are measured on a {0, 1} scale, the interaction
values of the DSM need to be normalised to the same scale. The manually analysed inter-
action values of the automotive control system are normalised to a {0, 1} scale, as shown in
Table 3.

In Table 3, ‘M’ stands for the module, module 1 represents the radiator, module 2 rep-
resents the engine-fan, module 3 represents the heater core, module 4 represents the
heater hoses, module 5 represents the condenser, module 6 represents the compressor,
module 7 represents the evaporator case, module 8 represents the evaporator core,
module 9 represents the accumulator, module 10 represents the refrigerator controls,
module 11 represents the air controls, module 12 represents the sensors, module 13 rep-
resents the command distribution, module 14 represents the actuator, module 15 rep-
resents the blower controller, and module 16 represents the blower-motor.

Referring to Sosa, Eppinger, and Rowles (2004), interactions can be divided into high or
low values on the basis of the average value across the scale. Therefore, each degree of
interaction is divided into high (H) and low values (L) in this paper, based on whether a
functional interaction is greater or less than 0.5 (given a scale from 0 to 1).

Table 3. Normalised DSM functional interactions on the basis of a manual analysis.
M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 .50 .00 .00 .50 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
2 .00 .00 .50 .00 .00 .00 .00 .00 .00 .00 .13 .00 .00 .00
3 .13 .00 .00 .25 .00 .00 .00 .00 .00 .00 .00 .00 .25
4 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
5 .50 .00 .50 .00 .00 .00 .00 .00 .00 .00 .00
6 .00 .50 .38 .25 .25 .00 .13 .00 .00 .00
7 .25 .00 .00 .00 .00 .00 .25 .25 .50
8 .38 .00 .00 .00 .00 .00 .00 .25
9 .13 .00 .00 .00 .00 .00 .00
10 .25 .00 .13 .00 .00 .00
11 .25 .13 .25 .25 .00
12 .13 .00 .00 .00
13 .13 .13 .13
14 .00 .00
15 .50
16
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Table 4 describes the transformed functional interactions, which are based on the func-
tional interaction degrees from Table 3. The automotive climate control system was ana-
lysed by design experts, whereas this work automatically quantifies the degree of
interactions by automatically analysing the functional descriptions based on the LDA
algorithm (Ramage and Rosen 2009).

4.1. Create a database of the automotive climate control systems’ modules

To perform the experiment, this research follows each step of the AIM (referring to Figure 3
of Section 3). Each module’s functional description has been collected from Daly’s docu-
ment as shown in Figure 6 (2006).

Table 4. Transformed functional interactions on the basis of the normalised interactions.
Module 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 H L L H L L L L L L L L L L L
2 L L H L L L L L L L L L L L
3 L L L L L L L L L L L L L
4 L L L L L L L L L L L L
5 H L H L L L L L L L L
6 L H L L L L L L L L
7 L L L L L L L L H
8 L L L L L L L L
9 L L L L L L L
10 L L L L L L
11 L L L L L
12 L L L L
13 L L L
14 L L
15 H
16

Figure 6. Functional description extraction process from textual data. Notes: D represents the automo-
tive climate control system’s functional description, which is composed of the functional description of
each module (e.g. D = {d1, d2,… d16}). di represents each module’s functional description. tx represents
the textual terms of the automotive climate control system’s functional description (D). Ff is the fth
paragraph of a functional description (di). S represents total number of functions of the module that
has the most functions (e.g. S = 10 from d8; the other descriptions have less than 10 paragraphs).
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On the basis of the data-collection process, the automotive climate control system’s
database, composed of each module’s functional descriptions, is created, as shown in
Table 5.

4.2. Extracting functions from the functional descriptions

The collected descriptions have been preprocessed by the POS tagger to extract nouns
and verbs before performing LDA (Table 6). Both the preprocessing and function extrac-
tion processes are taken into account in step 2 of the methodology (Figure 3). These
natural language-processing techniques are based on the Stanford Natural Language Pro-
cessing platform (Ramage and Rosen 2009).

The AIM presented in this work measures the degrees of functional interactions
between modules on the basis of functional descriptions. Given the functional descrip-
tions of the 16 modules, the evaporator core (module 8) has the most functions among
all the modules: S = 10, referring to variable S in Equation (1).

Therefore, 10 functions (e.g. heat, absorbs, transfers, coolant, air, energy, provides,
temperature, exchanger, and accumulator) are extracted from the preprocessed automo-
tive climate control system’s entire functional description (D) by LDA, as shown in Table 7.

After each term representing the function of the climate control system is extracted,
LDA quantifies the probabilities of each function being a topic of each module’s technical
description. Each functional probability (p(Ff|di)) of the climate control systems’ modules
represents the functional descriptive vector in matrix form, as shown in Table 8.

Quantifying the functional interactions between components is the final step (Step 3 in
Figure 3 of Section 3) of the methodology presented in this research. The next section
describes 120 interactions that are quantified by the AIM on the basis of the values

Table 5. A database containing functions of each module of the climate control system.
ID(i) Module Functional description (di)

1 Radiator The radiator dissipates excess engine heat,…
2 Engine-fan The engine-fan draws outside air into the engine,…
3 Heater-core The heater-core transfers heat energy via forced,…
..
. ..

. ..
.

16 Blower-motor The blower-motor moves fresh or vehicle interior air,…

Table 7. Extracted functions from the automotive climate control system.
F1 = heat F2 = absorbs F3 = transfers F4 = coolant … F10 = accumulator

P(Ff|D) 0.14257 0.09431 0.09209 0.08999 … 0.00421

Table 6. Pre-process functional descriptions by the POS tagger.

ID (I = 1–16) Module
Description

: Pre-process by the POS tagger (n: noun, v: verb)

1 Radiator The radiator dissipates excess engine heat,…
: Radiator (n) dissipates (v) engine (n) heat (n),…

2 Engine-fan The engine-fan draws outside air into the,…
: Engine-fan (n) draws (v) air (n),…

..

. ..
. ..

.

16 Blower-motor The blower-motor moves fresh air or,…
: Blower-motor (n) moves (v) air (n),…
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from the LDA results. To verify the feasibility of the AIM, these interactions are compared
with those of the manually analysed DSM (Table 4) on the basis of the statistical verifica-
tion models presented in Section 5.

5. Results and discussion

The manually analysed DSM has been shown to be effective for analysing interactions
between objects by providing designers with valuable results. Therefore, comparable
results of the manually analysed DSM and the AIM presented in this work will demonstrate
the feasibility of quantifying functional interactions in an automated manner so that
designers can focus more on idea generation, rather than on functional mapping.

The degrees of the functional interactions are then quantified by the cosine measure
(Equation (2)). The quantified interactions of each module are presented in Table 9.
Each module (e.g. 1–16) represents the same modules presented in Table 4.

The interaction values from the AIM are transformed to binary values (high or low) using
the same scale as the manual process, as shown in Table 10. Because the functional inter-
action degrees (i.e. manual analysis and the AIM) have been transformed to the same scale,
a paired t-test and a confusion matrix are generated to provide statistical evidence of the
similarity of the results from the AIM (Table 10) and the manual analysis (Table 4).

5.1. Statistical verification: paired t-test

Because a manual DSM has been shown to be effective for analysing functional inter-
actions, a paired t-test is performed to determine whether there is a statistically significant

Table 8. Quantified functional data set for each module’s description.
ID (i = 1 to 16) Module F1 = heat F2 = absorbs F3 = transfers F4 = coolant … F10 = accumulator

1 Radiator 0.03615 0.01503 0.09474 0 0.10043
2 Engine-fan 0.01274 0.10572 0.08347 0 … 0.02443
..
. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

16 Blower-motor 0 0 0.00045 0.02899 … 0

Table 9. Functional interaction by the AIM.
M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 .41 .47 .00 .75 .00 .00 .35 .00 .00 .00 .00 .14 .00 .00 .00
2 .00 .00 .22 .00 .08 .00 .00 .02 .28 .00 .00 .00 .01 .18
3 .28 .73 .40 .44 .93 .14 .01 .00 .00 .12 .00 .01 .28
4 .08 .00 .54 .03 .00 .01 .00 .00 .00 .00 .01 .00
5 .58 .08 .58 .21 .01 .01 .00 .13 .00 .01 .01
6 .00 .37 .36 .35 .00 .00 .00 .00 .01 .00
7 .41 .03 .21 .20 .00 .10 .40 .41 .50
8 .13 .01 .00 .00 .09 .00 .00 .39
9 .14 .00 .00 .00 .04 .01 .03
10 .01 .00 .01 .17 .42 .01
11 .32 .45 .00 .01 .08
12 .00 .00 .00 .00
13 .00 .36 .00
14 .34 .78
15 .01
16
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difference between the baseline results (e.g. manual DSM results) and the results gener-
ated by the AIM. This is achieved by comparing the degrees of functional interactions
quantified using the proposed model (Table 10) and the manual DSM (Table 4). The
paired t-test’s null hypothesis assumes that the mean difference of paired values is
0. The paired values are the degrees of the functional interactions of each module from
the manual DSM (Table 4) and the AIM (Table 10) results. The values from each analysis
are paired if they have the same indices in both tables (the row and column indices of
Tables 4 and 10 represent the same modules). The paired t-test is performed for 120
paired values (excluding values of identical row-column indices) to statistically determine
whether the proposed automated and manual DSM results are significantly different. If the
test does not reject the null hypothesis, the AIM can be regarded as a valid model for ana-
lysing the functional interactions for this case study. Based on the paired t-test results (N =
120), the mean difference of the t-test is 0. The results of this analysis indicate that the null
hypothesis is not rejected, with a t-value of 0.00, a p-value of 1.000, and an α of 0.05.
Because the null hypothesis is strongly supported by having p-value (1.000) greater
than α (0.05), there is no significant difference between the functional interactions of
each module from the proposed automated approach and the manual DSM. This test stat-
istically verifies that the AIM provides functional interactions similar to the manually ana-
lysed interactions.

5.2. Statistical verification: confusion matrix

The confusion matrix (Table 11) shows that the AIM has 94% accuracy when benchmarked
against the manual DSM generation; of a total of 120 instances, 114 (low: 110, high: 4)
instances from the predictive model (the AIM) are matched with the actual model

Table 10. Transformed functional interactions from the AIM results.
Module 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 L L L H L L L L L L L L L L L
2 L L L L L L L L L L L L L L
3 L H L L H L L L L L L L L
4 L L H L L L L L L L L L
5 H L H L L L L L L L L
6 L L L L L L L L L L
7 L L L L L L L L H
8 L L L L L L L L
9 L L L L L L L
10 L L L L L L
11 L L L L L
12 L L L L
13 L L L
14 L H
15 L
16

Table 11. Confusion matrix: DSM vs. the AIM.
Predictive class (the AIM)

L (Low) H (High)

Actual class (DSM) L (Low) 110 2
H (High) 4 4
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(DSM). In this case study, the AIM analyses low interactions among the modules with 98%
precision and 96% recall.

Low interaction can be regarded as a functional independence (modularity) that affects
how designers construct a system architecture with unique modules. These modules can
be assembled for serving their own independent functions within the system. However,
the AIM analyses high interactions among the modules with 50% precision and 67%
recall, thereby providing designers with insufficient information regarding how modules
should be integrated when creating a newmodule for next-generation products. Although
the AIM presented in this work performed less accurately for extracting high interactions
between modules, it discovers functionally detachable modules and guides designers in
terms of which modules can be potentially detached, revised, or enhanced, with
minimal impact on other sub-systems.

A text-mining technique may provide a more efficient means of quantifying functional
interactions (especially for low functional interactions) between modules when compared
with a manually generated DSM analysis, because the number of modules continues to
increase along with their functional descriptions. To support designers with an analysis
that is compatible with experts’manual analyses, the methodology needs to be improved
for extracting high functional interactions in future work.

6. Conclusions and future work

This work includes an extensive literature review of research in the engineering design and
text-mining fields. The literature review has shown that engineering design method-
ologies continue to introduce more automated approaches that support designers at
both the customer needs and end-of-life product stages of the design process. Semantic
analyses have been employed in the engineering design field to discover design infor-
mation from customer reviews and functional descriptions. This work hypothesises that
semantic relationships between modules’ functional descriptions are correlated with func-
tional interactions between the modules. To support designers in integrating/maintaining
modules during the concept generation process, this work automatically measures the
functional interactions between modules. By employing the LDA algorithm and the
cosine metric, the methodology presented in this work discovers functional interactions
between modules on the basis of semantic relationships between textual data sets that
describe the modules’ functions. Furthermore, the AIM has been validated using a case
study involving a DSM analysis of an automotive climate system. The case study is con-
ducted on a limited data set. The results achieved indicate the methodology’s working
prospects and scope. The authors would like to emphasise that this work explores a cor-
relation (not a causal relationship) between modules’ functional descriptions andmodules’
functional interactions.

The functional interactions between modules allow designers to efficiently create a pro-
duct’s architecture by integrating the modules’ functions (Fixson 2007; Gershenson,
Prasad, and Zhang 2003; Huang and Kusiak 1998; Sosa, Eppinger, and Rowles 2003). Func-
tional interactions typically indicate the degree of modularity among modules at the
beginning of the product development process, thereby enabling designers to make
decisions such as to extend, upgrade, or maintain existing modules. The AIM algorithm
presented in this work performed less accurately for extracting high interactions
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between modules than deriving low interactions. Thus, improving the methodology to
accurately extract high functional interactions from functional descriptions may enable
designers to discover modules that can be integrated during the creation of new
modules for next-generation products.
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