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A B S T R A C T

Gamification aims to implement game features in non-game contexts, with the goal of increasing the motivation of in-
dividuals performing a specific task or set of tasks. The tasks themselves, can focus on cognitive behavior change (e.g.,
overcoming anxiety) or physical behavior change (e.g., overcoming a shoulder injury). Current gamification methods
primarily serve as guidelines and principles for the design of gamified applications. Moreover, these methods often over-
look the complexity of actually implementing the game features and do not consider the effects that game features have
on individuals' ability to perform a target task. A knowledge gap exists in understanding the tradeoffs between the com-
plexity of implementing a game feature and the impact it has on increasing individuals' motivation and performance on a
particular task or set of tasks. This paper presents a method for evaluating the complexity of implementing game features
and the physical effort required to perform the tasks of the application, with a specific focus on physically-interactive
gamified applications. Designers will gain a fundamental understanding of how the implementation of specific game fea-
tures, contributes toward the objective of the application. A case study is presented that focuses on physically-interactive
gamified applications in a virtual environment. Empirical results measuring the effects of game features on participants'
performance are presented, which provide evidence in support of the metrics proposed in this study. Knowledge gained
from this work will inform designers on how to manage their resources more efficiently and predict possible design issues
(e.g., not meeting the objective of the application) while creating gamification applications.

© 2016 Published by Elsevier Ltd.

1. Introduction

Gamification is an emerging area of research that is gaining in-
terest across a wide range of domains. The term is defined as “the
use (rather than the extension) of design (rather than game-based
technology or other game-related practices) elements (rather than
full-fledged games) characteristic for games (rather than play or play-
fulness) in non-game contexts (regardless of specific usage intentions,
contexts, or media of implementation)” (Deterding, Dixon, Khaled,
& Nacke, 2011, p. 10). Primarily, a gamified application implements
game features with the objective of increasing individuals' motivation
towards a target task or set of tasks. Deterding et al. define game fea-
tures as the “design elements that can be found in most (but not neces-
sarily all) games” (Deterding et al., 2011, p. 10).

Gamification researchers have started exploring the benefits of
physically-interactive applications. Physically-interactive applications
require individuals to use full body motions (e.g., jump, move side
to side, bend) to interact with the application. The purpose of these
applications is to motivate individuals to perform a target task,
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with the goal of meeting a certain objective(s). The objective can vary
depending on the context and the designers' intentions. In the educa-
tional context, physically-interactive learning environments have been
shown to improve students' motivation and learning (Yang, Chen, &
Chang, 2010). Similarly, in the health and wellness context, physi-
cally-interactive gamified applications have been shown to improve
the physical health of individuals (Biddiss & Irwin, 2010; McCallum,
2012; Read & Shorter, 2011).

Several motivational models and theories indicate that there ex-
ists a relationship between individuals' motivational levels, and their
ability to perform a task (Csikszentmihalyi, 1990; Fogg, 2009;
Oinas-Kukkonen & Harjumaa, 2008; Ryan & Deci, 2000). Several
factors can affect the simplicity of a task and the ability of individuals
to perform it. The physical effort required to perform a task is among
these factors (Fogg, 2009). In physically-interactive gamified applica-
tions, the addition of a game feature might affect the performance of
individuals by adding indirect tasks that are not aligned with the ob-
jective of the application. Therefore, gamified applications can have
a task or set of tasks that are directly aligned with the objective of
the application (target tasks), or that are not directly aligned (indirect
tasks). Fig. 1 shows a representation of how these elements interact
in a physically-interactive gamified application. Fig. 1 also illustrates
how a gamified application (e.g., Application A) implements differ

http://dx.doi.org/10.1016/j.chb.2017.01.036
0747-5632/© 2016 Published by Elsevier Ltd.
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Fig. 1. Physically-interactive gamified application representation.

ent game features ( from the set of game features: {F}), with the
objective of motivating individuals to perform a target task t (t from
the set of target tasks:{T}, where t ≥ 1). This target task is aligned
with an objective i (i ≥ 1). This means that by performing this target
task, the individual will meet the objective of the application. How-
ever, individuals' performance on a target task might be mediated by
the addition of an indirect task t’ (t’ from the set of indirect tasks:
{T’}, where ≥ 0). This indirect task may unintentionally result from
the implementation of a game feature. Therefore, the addition of a
game feature may affect the performance of an individual attempting
to complete a target task. Moreover, the effects of certain game fea-
tures on individuals' performance may be mediated by other features
that are implemented in the same application. In the gamification lit-
erature, studies that have implemented numerous game features have
only reported positive results for some of the game features employed
(Hamari, Koivisto, & Sarsa, 2014). Furthermore, few studies have ex-
plored the relationship between the physical effort required to perform
the target tasks and the indirect tasks of gamified applications. There-
fore, the effects of the additional effort required to perform an indi-
rect task and the impact that game features have on individuals' perfor-
mance are still unexplored. A better understanding of these relation-
ships and their effects on individuals' performance has the potential to
improve the design process of gamified applications.

Even though several studies have shown positive results in indi-
viduals' performance by introducing game features into their applica-
tions, a limited amount of research has analyzed the complexity of im-
plementing the game features (O’Donovan, Gain, & Marais, 2013).
Moreover, the wide availability of game features makes it harder for
designers to select and incorporate them into a single application. Con-
sequently, designing and implementing the right set of game features
requires designers to spend a significant amount of time and resources
(Bharathi, Singh, Tucker, & Nembhard, 2016). While several theo-
ries of motivation have been applied to guide the process of design-
ing gamified applications, they do not provide a systematic method
that quantifies neither the complexity of implementing the game fea-
tures (Oinas-Kukkonen & Harjumaa, 2008) nor individuals' perfor-
mance (Pedreira, Garcia, Brisaboa, & Piattini, 2015). A systematic
method that evaluates game features will enable designers to manage
their time and resources more efficiently, thus optimizing and reduc-
ing the cost of designing gamified applications.

Several studies have shown the positive results of implementing
gamified applications in a wide range of domains (e.g., education,
health and wellness, and marketing). However, researchers agree that
there is a need for more empirical studies that quantify the benefits of
gamification (Dicheva, Dichev, Agre, & Angelova, 2015; Hamari et
al., 2014; Lucassen & Jansen, 2014; McCallum, 2012; Pedreira et al.,

2015). Furthermore, a better understanding of the complexity of im-
plementing game features, their effects on individuals' performance,
and their relationship with the physical effort required to perform the
target tasks of gamified applications is needed. As McCallum states “
there is no magic formula for developing successful [gamified appli-
cation]” (McCallum, 2012, p. 92). Hence, the objective of this paper is
to present a systematic method that will help designers in the evalua-
tion and selection of game features. The method will quantitatively ex-
plore the relationship between the physical efforts required to perform
target tasks and indirect tasks in physically-interactive gamified appli-
cations. Additionally, the complexity of implementing game features
and their effects on individuals' performance will be analyzed. This in-
formation will enable designers to gain a fundamental understanding
of how game features contribute to individuals' performance. The re-
mainder of the paper is organized as follows. Section 2 presents the
pertinent literature on gamified applications and game features. Sec-
tion 3 outlines the proposed method. In Section 4, the method is ap-
plied to physically-interactive gamified applications in a virtual envi-
ronment, where quantitative results that support the proposed method
are presented. Furthermore, the effects of implementing a set of game
features on individuals' performance in gamified applications are dis-
cussed. The conclusion and proposal for future works are presented in
Section 5.

2. Literature review

2.1. Application of gamification in non-gaming contexts

Even though the concept of implementing game features to im-
prove non-game applications can be traced back to human-computer
interaction research of the early ‘80s (Malone, 1982), the use of the
term “gamification” is quite recent. Its first documented use was in
2008 (Deterding et al., 2011). However, it was not until after 2010 that
the term “gamification” experienced widespread adoption (Bharathi
et al., 2016; Dicheva et al., 2015; Hamari et al., 2014; Pedreira et
al., 2015). Several studies have shown the growing trend in gami-
fication research in fields such as education (Dicheva et al., 2015;
Li, Grossman, & Fitzmaurice, 2012; Linehan, Kirman, Lawson, &
Chan, 2011; Pedreira et al., 2015), health and wellness (Biddiss &
Irwin, 2010; McCallum, 2012; Read & Shorter, 2011), and marketing
(Lucassen & Jansen, 2014). Hamari et al. (2014) presented a review
of research on gamified applications. Their results suggest that gam-
ification research is becoming a popular research subject. Nonethe-
less, they also found that numerous studies were descriptive in na-
ture. Hence, there is a need for more empirical evidence in support of
the usefulness of gamified applications. Similarly, in their systematic
mapping of gamification research in the software engineering fields,
Pedreira et al. (2015) concluded that more research is needed that pro-
vides empirical results regarding the effects of gamification.

In the educational context, gamified applications are an emergent
paradigm that educators are implementing to enhance the learning
process (Dicheva et al., 2015). Several studies have reported that gam-
ification improves students' engagement and motivation in a variety of
learning activities (Anderson, Huttenlocher, Kleinberg, & Leskovec,
2014; Barata, Gama, Jorge, & Gonçalves, 2016; Caton & Greenhill,
2013). Dicheva et al. (2015) presented a systematic mapping study
of gamification research in education. They analyzed different studies
based on the design principles, game features, area of application, and
academic subjects covered. However, their results also suggest that
there is a need for more empirical studies on the effects of implement-
ing gamified applications on improving the learning process.
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Some of the studies that provide quantitative evidence in support
of gamification are commonly applied to e-learning environments. For
example, Li et al. (2012) presented a gamified tutorial system for
AutoCAD users. The participants that used the application reported
higher levels of engagement and joy. In their study, participants who
used the gamified application had faster completion times in a set
of testing tasks, when compared to the control group. However, the
authors attribute this improvement to the Content Unlocking feature
present in the application, which required participants to repeat some
segments of the tutorial. Therefore, the overall learning time spent
was substantially different between groups. Consequently, their re-
sults should be considered with a degree of caution (Li et al., 2012).
Similarly, the results by O'Donovan et al. (2013) suggest that with
the implementation of well-designed game features, they were able to
increase the material reviewed, class participation, and lecture atten-
dance of students. Additionally, they considered the time and mone-
tary cost of implementing this new gamified application. They con-
cluded that the positive results of gamified applications must be bal-
anced against the cost required to successfully implement it.

Several models and theories of motivation indicate that there ex-
ists a relationship between the ability of individuals to perform a task
and their motivational levels (Csikszentmihalyi, 1990; Fogg, 2009;
Oinas-Kukkonen & Harjumaa, 2008; Ryan & Deci, 2000). The Fogg's
Behavior Model analyzes the elements relevant to gamification that
motivate individuals to perform a task. The model states that for an
individual to perform a task, “he or she must (i) be sufficiently moti-
vated, (ii) have the ability to perform the task(s), and (iii) be triggered
to perform it” (Fogg, 2009, p. 40). Studies, such as the one presented
by Denny (2013), provide evidence in support of these models. Denny
(2013) presented an application in which an Achievement feature was
implemented in an online repository of multiple-choice questions. In
this application, students were responsible for generating and moder-
ating the learning process and providing peer feedback. The results
of the study suggest that the Achievement feature had a positive ef-
fect on the number of answers submitted and the number of days for
which students were active, compared to the control group. However,
the game feature did not have any significant effect on the number of
questions generated by the students. The author attributed these results
to the greater effort and time required to generate questions, compared
to the effort and time required to answer them (Denny, 2013). These
results are consistent with Fogg's Behavior Model, since if the sim-
plicity of a target task or the ability of individuals to perform it de-
creases, their motivational levels need to increase in order to main-
tain performance (Fogg, 2009). Several factors can affect the simplic-
ity of a task and the ability of individuals to perform it. The phys-
ical effort required to perform a task is among these factors (Fogg,
2009). In physically-interactive gamified applications, this factor can
play an important role. Yang et al. (2010) presented a physically-in-
teractive learning environment application that combined video cap-
ture and virtual reality technology. Moreover, the students interacted
with the application using full body motion. The results suggest that
students' long-term learning and motivation improved with the use of
the gamified application. However, the authors did not analyze the
physical effort required to perform the target tasks, nor the indirect
tasks related to the implementation of the game features. Additionally,
the complexity of implementing neither the system nor the individual
game features was considered.

In the health and wellness context, there are typically three types
of applications based on their objective: (i) ones that aim to improve
the physical health, (ii) ones that aim to improve cognitive health and
(iii) ones that aim to improve social and emotional well-being (e.g.,
Wii Fit, Brain Age, and Kinect Sports). Some studies have shown

that gamified applications help individuals improve compliance levels
and their quality of life (Jibb et al., 2012; Rose, Koenig, & Wiesbauer,
2013; Stinson et al., 2013). Moreover, a growing body of health and
wellness research is focusing on physically-interactive gamified appli-
cations, such as Active Games, with the objective of improving indi-
viduals' physical health (Sell, Lillie, & Taylor, 2008). Active Games
are physically-interactive gamified applications that require individ-
uals to apply full body motions (e.g., running, dancing, jumping) to
perform a target task or set of tasks, such as group exercises, virtual
sports or other physical activities (Mears & Hansen, 2009). Biddiss
and Irwin (2010) presented a comprehensive literature review of stud-
ies that implemented physically-interactive gamified applications to
encourage physical activity in children. Their results suggest that these
applications enable light to moderate physical activity. However, the
papers reviewed did not consider the effects of the different game
features on the activity level of children. Similarly, Gao and Chen
(2014) presented a literature review of physically-interactive gami-
fied application research with the objective of preventing obesity in
children. Their results suggest that these applications are desirable
tools for promoting physical activity in children. However, they high-
light that future research should study the effect of different game
features. Brauner, Calero Valdez, Schroeder, and Ziefle (2013) pre-
sented a physically-interactive gamified application aimed at increas-
ing physical fitness and creating health awareness for elderly people.
Their results suggest that the application improved the physical health
of participants. They analyzed factors such as age, gender, and person-
ality traits but did not consider the game features implemented. Even
though the field of gamification in health and wellness has its unique
challenges, such as those related to the ethics of clinical trials and their
approval process, researchers in the field agree that gamification will
be part of the health and wellness future (McCallum, 2012).

The majority of research highlights the potential benefits of cor-
rectly implementing well-designed game features for engaging in-
dividuals to perform a certain target task. Nonetheless, there is a
need for more empirical research on the effectiveness of gamification
(Dicheva et al., 2015; Hamari et al., 2014; McCallum, 2012; Pedreira
et al., 2015). Furthermore, the positive outcomes from the implemen-
tation of game features must be balanced against the cost required to
successfully implement them (O'Donovan et al., 2013). However, the
studies that have shown positive results toward gamification do not
take into consideration the complexity of implementing the game fea-
tures into their applications. There is a fundamental knowledge gap
in terms of the tradeoffs that exists between the complexity of im-
plementing game features, and the resulting impact they have on in-
creasing individuals' performance and motivation. Furthermore, in the
literature of physically-interactive gamified applications, few studies
have explored the relationship between the physical efforts required to
perform the tasks of an application. The objective of this paper is to
bridge this knowledge gap by presenting a method that quantitatively
evaluates the complexity of implementing game features and the phys-
ical effort required to perform indirect tasks related to the game fea-
tures. Knowledge gained from this work will inform designers on how
to manage their creative resources more efficiently and provide em-
pirical results on the effects of gamified applications on individuals'
performance.

2.2. Game design features

Gamification is the implementation of game features in non-game
contexts with the objective of increasing individuals' motivation to-
wards a target task (Deterding et al., 2011). Deterding et al. (2011)
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define game features as “the design elements that can be found in
most (but not necessarily all) games” (Deterding et al., 2011, p. 10).
Werbach and Hunter (2012, p. 82), proposed a classification of game
features as:

• “Dynamics- are the big-picture, aspects of the gamified systems that
you have to consider and manage but which you never directly enter
into the game”

• “Mechanics- are the basic processes that drive the action forward
and generate player engagement”

• “Components- are the specific instantiations of mechanics or dy-
namics”

Bharathi et al. (2016) applied a Sequential Minimal Optimization
algorithm with the objective of identifying the set of game features
common among successful and unsuccessful mobile task-driven appli-
cations. They analyzed 60 different applications and used their rank-
ing score on the Google Play™ store to measure the success of the
applications. They showed that with the use of 24 different game fea-
tures, they were able to predict if an application was successful or
not, based on their ranking score. Table 1, obtained from Bharathi et
al. (2016), shows the individual game features and their definitions
arranged in decreasing order of their coefficient obtained from the Se-
quential Minimal Optimization algorithm. Their results suggested that
there is a set of game features that are shared by successful applica-
tions (ranking 1 to 15) and another set of game features shared by
unsuccessful applications (ranking 16 to 24, gray background). How-
ever, the authors only evaluated if the game features were present or
not. Hence, how the game features were implemented was not consid-
ered in the analysis. This factor may affect the success or failure of

Table 1
Ranked game features and definition from Bharathi et al. (2016 p. 364).

Ranking Game features Definitions

1 Points “Numerical representation of game progression”
2 Avatars “Visual representations of players' characters”
3 Challenges “Puzzles or other tasks that require effort to solve”
4 Virtual Goods “Game assets with perceived or real money value”
5 Competition “Getting players to compete against one another”
6 Boss Fights “Especially hard challenges at the culmination of a

level”
7 Teams “Defined group of players working towards a

common goal”
8 Leaderboards “Visual displays of players progression and

achievements”
9 Gifting “Gives an opportunity to gift things such as lives/

points to other players”
10 Content

unlocking
“Unlocks new levels/new features when players reach
specific objectives”

11 Transactions “Buying, selling or trading with other human players
or automated players”

12 Turns “Sequential participation by alternating players”
13 Quests “Predefined challenges with objectives and rewards”
14 Cooperation “Getting players to work together to achieve a shared

goal”
15 Feedback “Information about how the player is doing”
16 Badges “Visual representations of achievements”
17 Win states “The state that defines winning the game”
18 Levels “Defined steps in player progression”
19 Rewards “Some benefits that go together for some action or

achievement in the game”
20 Collections “Set of items or badges to accumulate”
21 Resource

acquisition
“Obtaining useful or collectible item”

22 Chance “Involvement of luck from a random mechanism”
23 Social graph “Ability to track progress of friend and enables

interaction”
24 Achievements “A form of reward attached to performing specific

actions”

an application in motivating individuals to perform a target task.
Nonetheless, the importance of their work is that it can be used as a
starting point for the game feature selection process.

Moreover, the results presented by Dicheva et al. (2015) shows
that the most popular game features used in educational applications
were Points, Badges, and Leaderboards; followed by Levels, Virtual
Goods, and Avatars. Similarly, the results presented by Hamari et al.
(2014) shows that most of the gamified applications reviewed, im-
plemented Points, Badges, and Leaderboards. However, they also re-
vealed that the majority of studies that implemented numerous game
features reported positive results for only some of the game features
employed. Similarly, the results presented by Pedreira et al. (2015)
suggests that most of the studies analyzed, implemented game features
such as Points, Levels, and Badges. In more than half of the studies
they analyzed, the only game features applied were Points or Badges.
It can be seen that multiple studies have shown the use of a limited and
non-homogenous set of game features (Dicheva et al., 2015; Hamari
et al., 2014; Pedreira et al., 2015). While the game features of Leader-
board, Virtual Goods, and Avatar were present in some of the papers
related to gamification in the educational context reviewed by Dicheva
et al. (2015), they were not present in any of the papers analyzed by
Pedreira et al. (2015). Similarly, the game features of Quest and So-
cial Graph were present in some of the papers related to gamification
in the software engineering field reviewed by Pedreira et al. (2015),
but they were not present in any of the papers analyzed by Dicheva et
al. (2015). These results can be understood by the definition of game
features found in the literature (see Table 1). From these definitions,
it is clear that some game features are not mutually exclusive and oth-
ers would be impractical to apply in certain contexts. For example, the
game features of Competitions (“getting players to compete against
one another”) and Cooperation (“getting players to work together to
achieve a shared goal”) would be impractical to apply without the
option of multiple players. Moreover, the game features of Rewards
(“some benefits that go together for some action or achievement in the
game”) and Achievements (“a form of reward attached to performing
specific action”) are not mutually exclusive (see Table 1 for more de-
finitions).

As Dicheva et al. (2015) stated: “gamification has the potential to
improve learning if it is well designed and used correctly” (Dicheva
et al., 2015, p. 83). However, the wide availability of game fea-
tures and their interdependence makes it difficult for designers to cor-
rectly select and incorporate them (Bharathi et al., 2016). Furthermore,
no studies have demonstrated which game features have the greatest
impact on increasing individuals' motivation (Pedreira et al., 2015).
Hence, designers of gamified applications currently do not have a
systematic method for developing successful gamified applications
(McCallum, 2012). Even though the results presented by Bharathi et
al. (2016) suggests that some of the game features correlate to suc-
cessful applications, no empirical evidence suggest that this set of
game features will improve individuals' motivation to perform a tar-
get task. Furthermore, even though several theories have been pro-
posed to guide the design process of gamified applications, they do not
provide any quantitative nor systematic method (Oinas-Kukkonen &
Harjumaa, 2008). Therefore, the objective of this paper is to present
a systematic method that will guide designers in the evaluation and
selection of game features. The application of this method will allow
designers to gain a fundamental understanding of which features are
worth exploring. Furthermore, quantitative results of the effects of dif-
ferent game features on individuals' performance are presented. This
information will enable designers to gain a fundamental understanding
of how certain game features contribute to the target tasks of a gami-
fied application.
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3. Method

In this section, a method is presented that aims to quantitatively
explore the complexity of implementing game features and the physi-
cal effort required to perform tasks in physically-interactive gamified
applications. This method will guide designers towards the systematic
discovery of the game features that are worth exploring and incorpo-
rating into their applications. Fig. 2 presents the outline of the pro-
posed Feature Discovery Method that includes the Initial Features Se-
lection (3.1), Game Feature Complexity Analysis (3.2), and Key Fea-
tures Discovery (3.3). The Model Validation (3.4) section outlines the
procedure that will help validate the metrics and steps proposed in the
Feature Discovery Method. In this section, the research hypotheses
and their theoretical arguments are presented.

3.1. Initial Feature Selection

To help designers understand the set of game features that are prac-
tical to apply in their gamified applications, an Initial Feature Selec-
tion algorithm is proposed. The algorithm, illustrated in Fig. 3, can
be used as a starting point for the design of gamified applications.
The algorithm shows the relationships between game features and the
possible constraints imposed by the information technology systems
used. Each of the if-else rules and the clustering of non-mutually ex-
clusive game features presented in the algorithm, are based on their
definitions found in the literature (see Table 1, section 2.2). The algo-
rithm uses three binary variables as inputs. These variables are aimed
to capture the presence or absence of constraints imposed by the infor-
mation technology system. These constraints could prevent designers
from successfully implementing a game feature. The variables are de-
fined as follows:

1) α = 1, if the individuals will be allowed to play more than once;
otherwise α = 0.

2) β = 1, if the application will be connected to a network that will en-
able it to interact with other applications; otherwise β = 0.

3) λ = 1, if the individuals will be allowed to interact with multiple
players or an Artificial Intelligent system; otherwise λ = 0.
After defining these variables, designers can use them as input for

the algorithm shown in Fig. 3. As output, designers will obtain a sub-
set of game features that will be practical to implement in their gam-
ified application, based on the constraints imposed by the informa-
tion technology systems that will be used as a communication chan-
nel. For example, if the only constraint of the information technology
system is that it will not allow an individual to interact with another

player or Artificial Intelligent system (λ = 0, α = 1, and β = 1), then
the game features of Teams, Competition, Cooperation, Leaderboards,
Transaction, Gifting, Social Graphs, or Turns will not be practical
to implement since by definition, they require multiple players (e.g.,
Teams: “defined group of players working towards a common goal”,
Competitions: “getting players to compete against one another”, Co-
operation: “getting players to work together to achieve a shared goal”,
see Table 1, section 2.2 for other game feature definitions). After the
initial game features are selected, the complexity of implementing the
game features needs to be assessed. Subsequently, the physical effort
required to perform any indirect task related to the game features se-
lected needs to be analyzed. The Game Feature Complexity Analysis
is presented in section 3.2.

3.2. Game features complexity analysis

3.2.1. Game feature implementation complexity
The goal of measuring the implementation complexity of the dif-

ferent game features selected is for designers to gain a better under-
standing of the resources required to implement them. This informa-
tion will allow them to manage their resources more efficiently. The
method proposes the use of an Implementation Complexity metric to
measure the complexity of implementing a game feature. This met-
ric is based on the Information Flow metric proposed by Henry and
Selig (1990). The Information Flow and other analogous metrics have
been extensively used in the software literature to measure the com-
plexity of implementing, maintaining, and/or understanding differ-
ent applications (Jabangwe, Börstler, Šmite, & Wohlin, 2015; Mens,
2016; Phukan, Kalava, & Prabhu, 2005). The foundation behind In-
formation Flow is that the complexity of an application is a function
of (i) the internal complexity of its features (“intra-module complex-
ity”) and (ii) the complexity of the feature interactions (“inter-mod-
ule complexity”). The code size metric of Lines of Code is often used
to measure the intra-module complexity. The predominant definition
for Lines of Code is “a line of program text that is not a comment
or blank line, regardless of the number of statements or fragments
of statements on the line” (Aggarwal & Singh, 2005, p. 131). How-
ever, this metric is highly dependent on the designer coding capabil-
ities and the language used. Additionally, it cannot be applied to vi-
sual languages because the notion of Lines of Code is not meaningful
(Phukan et al., 2005). On the other hand, the inter-module complex-
ity, which considers the overall exchange of information between fea-
tures, does not depend on designers' coding abilities nor the language
used (Phukan et al., 2005). Therefore, the Implementation Complex-
ity metric proposed in this method will only consider the inter-mod-
ule complexity of a feature. Henry and Selig (1990) defined a con

Fig. 2. Method diagram.
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Fig. 3. Initial feature selection algorithm.

nection between two features (or a feature and a global data structure)
to exist if information is exchanged between them. To calculate the
Implementation Complexity metric, designers first need to identify the
information flow of the different features. There are four important
types of information flow, defined by Henry and Selig (1990) as fol-
lows:

1. Local Direct Flow out (LDFout): “If a feature evokes a second fea-
ture and passes information to it”

2. Local Direct Flow in (LDFin): “If the invoked feature returns a re-
sult to the caller”

3. Global Flow out (GFout): “If a feature updates information from a
global data structure”

4. Global Flow in (GFin): “If a feature evokes a global data structure
to retrieve information”
Once the different information flows have been identified, the Im-

plementation Complexity metric of a feature f can be calculated
as shown in Eq. (1).

Where,

• fan-inf is the sum of all Local Direct Flow in (LDFin) and Global
Flow in (GFin) for game feature f. Mathematically, this can be ex-
press as:

• fan-outf is the sum of all Local Direct Flow out (LDFout) and Global
Flow out (GFout) for game feature f. Mathematically, this can be ex-
press as:

A feature with a relatively high Implementation Complexity value
indicates a possible stress point in the system. This suggests that any
modification done to this feature would have the tendency to affect
other components of the application, therefore making it challenging
for designers to implement (Phukan et al., 2005). A gamified appli-
cation example is used to show the process of calculating the Imple-
mentation Complexity metric. Fig. 4 shows a data flow diagram of
an example application that is composed of three game features. In a
data flow diagram, the information flow is represented by the arrows

(1)

(2)

(3)
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Fig. 4. Data flow diagram of a gamified application example.

and their orientation. The information flows of Feature 1 have been la-
beled for visualization purposes.

Table 2 shows the calculation of the Implementation Complexity
(IC) metric for the gamified application example shown in Fig. 4. The
first column of Table 2 shows the feature's number from the exam-
ple application. The inter-module complexity for the game feature is
determined by the total information flows. In columns 2, 3, 5, and 6
of Table 2 the different information flows (LDFin, GFin, LDFout, and
GFout) of the features are shown. These can be identified by visually
inspecting Fig. 4. For illustration proposes, it was assumed that Fea-
ture 1 evokes the Global Data Structure 1 to retrieve information, up-
dates information from the Global Data Structure 2, and evokes Fea-
ture 2 to pass information to it (see labels on Fig. 4). Therefore, Fea-
ture 1 has LDFin = 0, GFin = 1, LDFout = 1, and GFout = 1 (see Table
2). The calculated fan-in and fan-out using Eqs. (2) and (3) are shown
in columns 4 and 7, respectively. Finally, the calculated Implementa-
tion Complexity (IC) values for the game features are shown in col-
umn 8. In this example, Feature 1 has a fan-in of 1 and a fan-out of
2. Following Eq. (1), it is clear to show that the Implementation Com-
plexity of Feature 1 is 3 (see Table 2). The second part of the Game
Feature Complexity Analysis section relates to the evaluation of the
physical effort required to perform the indirect tasks resulting from
implementing game features. The following section presents the met-
ric proposed in this method to capture the physical effort required to
perform the indirect tasks of an application.

3.2.2. Game feature Physical Complexity
The method employs body movement data to evaluate the physi-

cal effort required to accomplish a task. Human skeletal data inferred

Table 2
Implementation Complexity from the gamified application shown in Fig. 4.

Feature No. LDFin GFin Fan-In LDFout GFout Fan-out IC

1 0 1 1 1 1 2 3
2 0 1 1 0 0 0 1
3 1 0 1 0 1 1 2

from individuals' body movement patterns is becoming more adopted
by researchers. This is mainly because of the increased availability of
motion capture technologies (Behoora & Tucker, 2015; Han, Reily,
Hoff, & Zhang, 2016, pp. 1–21). Therefore, researchers can now eas-
ily plot three-dimensional coordinates of an individuals' joints with the
use of non-wearable infrared sensors (Behoora & Tucker, 2015). The
method proposed in this study implements an off the shelf, low-cost
infrared sensor (e.g., Microsoft Kinect, or Asus Xtion Live) to acquire
participants' skeletal data. The sensors can collect X, Y, and Z dis-
tance coordinate data from a reference point, for k joints. However,
depending on the sensor used, the number of joints tracked can vary
(Behoora & Tucker, 2015). Fig. 5, part A, shows a representation of
a human skeletal system with X, Y, and Z distance coordinate data
points of the joint representing the right hand. The values of these co-
ordinates measure the relative distance from a reference point, which
in this example is located at the vertex of the three axes (shown as
a dotted circle). The physical effort required to perform any indirect
task resulting from the implementation of a game feature will be mea-
sured using participants' skeletal data. Similarly, the physical effort re-
quired to perform the target tasks of a physically-interactive applica-
tion can be measured using this type of data as well. The method pro-
poses the use of a Physical Complexity metric to evaluate the physical
effort required to perform the different tasks of the application (indi-
rect tasks and target tasks). The Physical Complexity metric of a task
t (PCt) can be calculated as the sum of the Euclidian distance from
the joints' positions while at rest (Xrest

j, Yrest
j, Zrest

j) to the joints'
positions needed to perform the task t (X t

j, Yt
j, Z t

j), of all joints
j = 1 to k, as shown in Eq. (4). The task t can be from the set of in-
direct tasks {T'} or the set of target tasks {T}. In this study, an in-
dividual is considered to be in resting position when he/she is stand

Fig. 5. Representation of a human skeletal joint system.
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ing up with his/her arms close to the body (e.g., part A, Fig. 5).

Designers can use sensors to collect human skeletal data from a
pilot test of the application. With this data, the position of the par-
ticipants' joints while at rest (see part A, Fig. 5) and while perform-
ing a task (see part B and C, Fig. 5) can be mapped and represented
in a three-dimensional coordinate system. The coordinate data of the
joints' positions can then be used to measure the Physical Complex-
ity metric, as shown in Eq. (4). Fig. 5, part B and C illustrate a rep-
resentation of a human skeletal system while performing a task of ex-
tending the arm to collect a star. The task shown in part B requires a
different level of physical effort to perform than the task in part C. In
this example, the coordinates of the node that represent the right-hand
side while at rest, as shown in part A Fig. 5, are Xrest = 1m, Yrest = 1m,
and Zrest = 1m (for this example, the joint coordinates are given as dis-
tance in meters [m] from the reference point X = 0, Y = 0, Z = 0). Ad-
ditionally, the coordinates of the node that represent the right-hand
side while performing the task on part B Fig. 5 (t = B), are XB = 3m,
YB = 2m, and ZB = 2m. Similarly, for part C (t = C), the coordinates are
XC = 4m, YC = 3m, and ZC = 3m. Using Eq. (4) it can be shown that
the Physical Complexity metric of the task in part C (PCC = 4.1m) is
greater compared to the one in part B (PCB = 2.44m). This suggests
that a greater physical effort is needed to perform the task in part C
since the location of the star requires individuals to move a greater dis-
tance. Moreover, since the Physical Complexity metric will be used
to compare the differences in the physical effort required to perform
tasks within the same application, it is robust against the distance units
used. This is under the assumption that the same sensor is used to col-
lect all the participants' skeletal data.

The accuracy of the Physical Complexity metric on capturing the
physical effort required to perform a task will depend on two fac-
tors. First, the set of joints involved in the body movements required
to perform the task, and secondly, the subset of these joints that are
successfully tracked. Therefore, the body movements required to per-
form the tasks of an application needs to be assessed before select-
ing a tracking sensor. This is important since the number of joints
tracked will vary depending on the sensor used. However, studies have
shown that with a subset of joints (see Table 3), activities that re-
quire full body movements, such as running, walking, jumping, danc-
ing, playing soccer, and doing Yoga, can be accurately character-
ized (Chan, Loh, & Rahim, 2016; Shen, Yang, & Liao, 2011; Xiao,
Nait-Charif, & Zhang, 2008, pp. 144–153). Therefore, to evaluate the
physical effort required to perform the tasks of physically-interactive

Table 3
Set of body joints used to track full body motion, from Chan et al., 2016.

Body joints

1 Head 9 Right wrist
2 Neck 10 Left toe
3 Pelvis 11 Left ankle
4 Left wrist 12 Left knee
5 Left elbow 13 Right knee
6 Left shoulder 14 Right ankle
7 Right shoulder 15 Right toe
8 Right elbow

gamified applications designers need to select a sensor that is capa-
ble of tracking at least the joints listed in Table 3. If more joints than
the ones listed in Table 3 are tracked, the accuracy of the Physical
Complexity metric on capturing the physical effort required to per-
form a task can only improve (see Mathematical Proof, Appendix A).
The Physical Complexity metric will provide designers with valuable
information about the physical efforts required to perform the target
tasks and indirect tasks of an application. This information can be
used to gain a fundamental understanding of how certain game fea-
tures affects the individuals' performance. With the Implementation
Complexity and the Physical Complexity metrics designers can make
a better decision of what features are worth exploring. In the next sec-
tion, a decision-making process is presented to aid designers of physi-
cally-interactive gamified applications in the evaluation and selection
of features.

3.3. Key Features Discovery

The data of the Implementation Complexity and the Physical Com-
plexity metrics will allow designers to systematically discover what
features are worth exploring. From an implementation point of view,
designers should focus on implementing the game features that are
less complex to implement. Additionally, designers need to minimize
the physical effort required to perform any indirect task related to the
implementation of a game feature. Therefore, designers are faced with
a minimization problem, in which the objective function is to mini-
mize the Implementation Complexity and the Physical Complexity of
a game feature f from the set of game features {F} under considera-
tion. Eq. (5) shows a mathematical representation of this problem that
can aid designers in this decision. The metrics are normalized to a
range of [0–1] in order to calculate the Discovery metric of a game
feature f ( . Therefore, Discovery metric values could range from
[0–2].

Where,

• ICf: The Implementation Complexity metric of the game feature f ε
F, as defined in section 3.2.1

• ICmax: The maximum value of Implementation Complexity metric
from the set F

• ICmin: The minimum value of Implementation Complexity metric
from the set F

• PCt’:The Physical Complexity metric of the indirect task t’ that re-
lates to the game feature f, as defined in section 3.2.2

• PCmax: The maximum value of Physical Complexity from the set of
indirect tasks T′

• PCmin: The minimum value of Physical Complexity from the set of
indirect tasks T′

• : Discovery metric of the game feature f ε F
The Discovery metric values can be ranked in ascending order and

used as a criterion to quantify which game features are worth explor-
ing. A low Discovery metric value suggests that a game feature is
less complex to implement and that the indirect task related to it will
require less physical effort to perform in comparison with the other
game features under consideration. This new systematic method for

(4)

(5)
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evaluating game features in physically-interactive gamified applica-
tions provides quantitative information that can help designers in de-
ciding which game features are worth implementing. Knowledge
gained from implementing this new method will inform designers on
how to manage their creative resources more efficiently and how to
optimize the design process.

3.4. Model validation

This section presents the procedure and statistical hypotheses tests
that will provide quantitative evidence to validate the metrics pro-
posed in the previous sections. In this study, an alpha value of 0.05
will be used to test the significance of the results. The purpose of phys-
ically-interactive gamified applications is to motivate individuals to
perform a target task or set of tasks with the goal of meeting certain
objectives. In these applications, the target tasks are designed such
that by successfully performing them, individuals will meet the objec-
tive of the applications (e.g., objective: improve the physical fitness
of individuals, target tasks: perform jumping jack, pushups, etc.). Due
to this relationship, individuals' performance on a target task has been
used as a proxy for measuring individuals' performance on meeting the
objective of the application (e.g., measuring attendance, participation,
and quiz grades as a proxy for improved learning, see section 2.1).
This method proposes to measure participants' performance on the tar-
get tasks of an application as a proxy for their performance on meeting
the applications' objective. The participants' performance on the tar-
get tasks is measured as the deviation from the target body position.
An Intensity of Mistake metric for a target task t ( is proposed as
shown in Eq. (6).

Where,

• Xpt
j, Ypt

j, and Zpt
j: the participants' j joint position coordinates while

performing a target task t, for
• Xt

j, Yt
j, and Zt

j: the participants' j joint position coordinates needed
to successfully perform a target task t, for

• : the total time that the position of a joint j, while performing
the target task t, deviated from the joint position needed to success-
fully perform it, for

Based on several motivational model and theories, the Physical
Complexity metric proposed in this method should be correlated with
participants' performance (see section 2.1). Hence, the Discovery met-
ric, that is a function of the Physical Complexity metric, should be cor-
related to participants' performance as well. Therefore, the hypotheses
that the correlation between the Intensity of Mistake (IM) and Physical
Complexity (PC) values for the indirect tasks and target tasks are sta-
tistically significantly different than 0 will be tested. These hypotheses
can be express as:

1)
Ho:

2)

Ho:

Furthermore, to provide empirical evidence to support the results
presented by Bharathi et al. (2016), two different applications are used
in the case study presented in the next section. Hence, evidence to sup-
port that there is a significant difference in performance between par-
ticipants that interacted with applications that implemented different
sets of game features needs to be provided. Therefore, the hypothesis
that the mean Intensity of Mistake of individuals that interacted with
application A ( ) is significantly different than the one of individ-
uals that interacted with application B ( ), will be tested. Given
that application A implemented a different set of game features than
application B. This hypothesis can be express as:

3)

4. Case study

This section presents the implementation of the method proposed
in section 3 in a set of physically-interactive gamified applications,
which only differ in the set of game features used. The purpose of the
applications is to motivate individuals to perform certain body mo-
tions (e.g., jump, bend, extend arm) in order to perform a set of target
tasks. The target tasks were to pass through a series of obstacles with
minimal contact. Similar to the popular American game show “Hole
in the Wall” (Ludia, 2011). The objective of the applications is to mo-
tivate individuals to perform certain physical activities in order to im-
prove their physical health. Moreover, the applications were played in
a virtual environment, with participants using full body motion to in-
teract with the virtual environment. Hence, these physically-interac-
tive gamified applications fall within the definition of Active Games
(Mears & Hansen, 2009).

After an initial evaluation of the type of movements individuals
were going to be required to perform, the Microsoft Kinect sensor was
found to be suitable for this study. The Microsoft Kinect was used to
capture participants' skeletal data in a non-invasive manner. The sen-
sor is capable of tracking the set of joints shown in Table 3, plus the
pelvic joints (k = 17). The Microsoft Kinect provides coordinate data
of individuals' joints as a distance in meters from a fixed reference
point (Behoora & Tucker, 2015). The applications were tested on 71
different participants in a controlled environment in the Design Analy-
sis Technology Advancement (D.A.T.A.) Laboratory at the Pennsyl-
vania State University. The subjects were undergraduate students from
the Pennsylvania State University. Their ages ranged from 18 to 23
years old, with a mean of 20 years, and a standard deviation of 1.2
years. From the set of participants, 63 were males, and 8 were fe-
males. The objective and the experimental procedure were presented
to participants. Subsequently, participants were asked to complete an
informed consent document and an online pre-experiment question-
naire that assessed their interest and experience with virtual environ-
ments. Finally, participants were randomly assigned to one of the two
applications and informed about the objective and how to interact with
the gamified application. Due to technical difficulties in the data col-
lection process, only the data from 68 participants were analyzed.

4.1. Initial game features selection

For this study, the information technology system used did not al-
low participants to play the game more than once (α = 0). Further-
more, it was not connected to any network that allowed the system to
interact with other similar applications (β = 0), nor did it allow partic

(6)
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ipants to interact with other players or Artificial Intelligent systems
(λ = 0). These conditions were set for this study in order to minimize
the resources required to implement the applications. Following the al-
gorithm shown in Fig. 3 (see section 3.1), it can be shown that due to
the constraints of the information technology system used, the set of
game features that could be practical to implement were: (i) Avatar,
(ii) Boss Fight, (iii) Chance, (iv) Win State, (v) Feedback/Points,
(vi) Achievements/Rewards/Badges/Collection, and (vii) Challenges/
Content Unlocking/Resource Acquisition/Quest. From the three sets
of features that were not mutually exclusive, Points, Achievements,
and Content Unlocking were the most suited for the applications
used in this study. Additionally, in order to provide empirical evi-
dence to support the results presented by Bharathi et al. (2016), the
seven initial features selected were divided into two applications: A)
with 4 features that were common in successful applications, and B)
with 3 that were common in unsuccessful applications (see Table
1, section 2.2). The goal of the applications was to motivate indi-
viduals to perform certain body motions (e.g., jump, bend, extend
arm) in order to perform a set of 12 different target tasks. The tar-
get tasks were to pass through an obstacle with minimal contact.

Table 4
Game features implemented by the applications.

Application A) Application B)

Points- The score measurement
of an individual was shown in
the top left corner of his/her
visual field.
Avatar- The individuals were
given the option to change the
color of the avatar that will
represent them in the virtual
environment.
Content Unlocking- Coins were
placed throughout the games in
different locations. If more than
21 were collected the individual
was allowed to change the
gaming environment
background.
Boss Fight-At the end of the
application there was a very
difficult section named “Boss
Fight”.

Win States- At the end of the application, the
individuals were told if they had won or lost
based on a threshold score level.
Chance-The individuals were given the
opportunity to assign a virtual environment
background at random.
Achievements- There were three possible
achievements individuals could accomplish
shown at the beginning of the application. They
were: (i) Lucky Strike: Get through 3 obstacles
in a row without touching, (ii) Hops: Jump
while going through an obstacle, (iii)
Contortionist: Pass every obstacle flawlessly.

The applications were divided into 12 different sections. Each section
contained a unique target task. Moreover, the two applications shared
the same target tasks (obstacle avoidance) and only differed on the set
of the game features implemented. A total of 37 subjects played the
application A and 31 played the application B. The list of game fea-
tures and a brief description of how they were implemented in each
application is shown in Table 4. The sections of the applications that
implemented the feature of Boss Fight were not analyzed since a dif-
ferent set of target tasks were implemented which would have affected
the comparison analysis between the two applications.

4.2. Game Feature Complexity Analysis

4.2.1. Game feature implementation complexity
The applications were created using Unity (version 5.4). Unity is a

cross-platform game engine widely used to develop game applications
for computers, consoles, mobile devices, and websites (www.unity3d.
com). From the set of initial game features selected, the Implemen-
tation Complexity was calculated following the procedure in section
3.2.1. The first step to calculate the Implementation Complexity met-
ric is to identify the information flows. A data flow diagram was cre-
ated to help visualize the information flows of each of the applications.
Fig. 6 shows the diagram of application A and B, respectively. Fig.
6 part A shows the information flows of the game features of Points,
Avatar, and Content Unlocking. While part B shows the information
flows of the game features of Win State, Chance, and Achievements.
Additionally, the obstacles in each application were composed by a set
of cubes. Lastly, the game features were integrated via a Game Con-
troller module in both applications.

Table 5 shows the different information flows and the calculated
fan-in and fan-out. Moreover, the calculated Implementation Com-
plexity (IC) values for each of the game features implemented in both
applications are shown. It can be seen that the game feature of Con-
tent Unlocking had the highest Implementation Complexity value. The
Content Unlocking feature retrieved information from the global data
structures that contain the coins collected and the background envi-
ronments information. This represents two different Global Flow in
(GFin = 2) that results in a fan-in of 2 (see Eq. (2)). Lastly, the game
feature of Content Unlocking passes information to the Game Con-
troller module. This represents one Local Direct Flow out (LDFout = 1)
(see Fig. 6, Part A). This resulted in a fan-out of 1 (see

Fig. 6. Data flow diagram of applications A and B.
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Table 5
Implementation complexity of applications A and B.

Features LDFin GFin Fan-In LDFout GFout Fan-out IC

Application A game features IC
Avatar 0 1 1 1 0 1 2
Points 0 1 1 1 0 1 2
Content Unlocking 0 2 2 1 0 1 3
Application B game features IC
Win State 0 1 1 1 0 1 2
Chance 0 1 1 1 0 1 2
Achievements 0 1 1 1 0 1 2

Eq. (3)). Following Eq. (1) it can be shown that the Implementation
Complexity of the Content Unlocking feature was 3.

4.2.2. Physical Complexity
The Physical Complexity metric was calculated using human

skeletal data collected from a pilot test of the applications, following
section 3.2.2. From the game features implemented, only the Content
Unlocking feature added an indirect task to the section of application
A. Additionally, the distribution of the coins needed to implement the
game feature of Content Unlocking was different for each of the sec-
tions of application A. This resulted in a Physical Complexity value
for the indirect tasks of the Content Unlocking feature that varied de-
pending on the sections of the application A. The features of Points,
Avatar, Win State, and Chance did not add any indirect tasks. The
tasks related to the game feature of Achievements were aligned with
the target tasks of the application (see Table 4). Hence, it did not add
any indirect tasks. Therefore, only the Physical Complexity metric of
the target tasks (obstacle avoidance) was calculated in each section for
application B. Since two applications with 12 different sections that
contained a unique target task were implemented, a total of 24 mea-
surements of Physical Complexity were calculated. Table 6, shows the
Physical Complexity values for each of the obstacles that represented
a target task (PC Obstacle), the Physical Complexity of the indirect
tasks related to the Content Unlocking feature (PC Content Unlock-
ing), and the total Physical Complexity of each applications sections
measured in meters.

Fig. 7, part A, shows a representation of the body joints of an in-
dividual in the resting position. While part B shows the body joints
of an individual while performing the target task (obstacle avoidance)
of section 4. This image is from application A, showing a red color
Avatar and a “beach” background environment. Following Eq. (4), the
Physical Complexity for the target task shown in Fig. 7 part B can
be calculated. For example, the Euclidian distance between the co-
ordinate of the pelvis (shown in yellow) while at rest (Xrest = 0.1m,
Yrest = 0.5m, Zrest = 0m) and while correctly performing the task

Table 6
Physical complexity of applications A and B.

Section No. PC obstacle PC content unlocking Application A Application B

1 3.68 1.34 5.01 3.68
2 4.01 1.22 5.22 4.01
3 3.66 1.24 4.90 3.66
4 3.56 1.73 5.29 3.56
5 10.13 1.48 11.61 10.13
6 11.70 1.02 12.72 11.70
7 7.00 1.73 8.73 7.00
8 6.95 0.75 7.71 6.95
9 14.37 0.84 15.21 14.37
10 17.58 1.56 19.14 17.58
11 6.23 1.91 8.14 6.23
12 5.90 1.05 6.95 5.90

Fig. 7. Representation of the body joints tracked.

(Xt = 0.1m, Yt = 0.2m, Zt = 0.1m) was 0.31m. Adding the Euclidian
distances for all the 17 joints (see Eq. (4)) a Physical Complexity value
of 3.56m is obtained (see Table 6).

4.3. Key Features Discovery

To gain a better understanding of which of the initial game fea-
tures selected are worth exploring, the Implementation Complexity
and Physical Complexity metrics were analyzed. For each feature, the
Discovery metric was calculated following Eq. (5) (see section 3.3).
Table 8, presents the values for the Discovery metric for each of the
game features implemented. The Implementation Complexity (IC) is
as shown in Table 5. Furthermore, the Content Unlocking feature was
the only one that added indirect tasks to the application. On average,
the addition of the Content Unlocking feature increased the Physical
Complexity (PC) value of the sections of Application A by 1.32m. The
Implementation Complexity and Physical Complexity metrics were
normalized following Eq. (5). The Discovery metric suggests that the
Content Unlocking feature should not be explored first since it had
the highest Implementation Complexity value and was the only fea-
ture that added indirect tasks.

The distribution of the coins needed to implement the game feature
of Content Unlocking varied by section. Hence, the Physical Com-
plexity value for the indirect tasks related to this game feature var-
ied by section. This affected the Physical Complexity metric of each
section of application A differently (see Table 6). Therefore, the Dis-
covery metrics of Content Unlocking was analyzed conditioned on
the sections. The Physical Complexity value for the indirect task of
each section (PC Content Unlocking, see Table 6), and the normalized
Implementation Complexity value for the Content Unlocking feature
(Normalized IC, see Table 7) were used to calculate the Discovery
metric values conditioned on the sections, shown in Table 8.

Fig. 8 shows a Pareto Chart of the Discovery metric for the Con-
tent Unlocking feature conditioned by the sections. It illustrates that
in some sections, the Discovery metric is greater than in others (e.g.,
11 and 9). Furthermore, the Discovery metric for the Content Unlock-
ing feature for sections 8, 9,6,12 and 2 accounted for less than 20%
of the overall accumulative Discovery metric values. This suggests
that the Content Unlocking feature should be considered to be imple-
mented as in these sections. Additionally, since the normalized Im-
plementation Complexity value of the Content Unlocking feature was
equal to one (see Table 7), the Discovery metric for the Content Un
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Table 7
Game feature discovery metric.

Application Features IC PC
Normalized
IC

Normalized
PC

Discovery
metric

A Avatar 2 0 0.00 0.00 0.00
Points 2 0 0.00 0.00 0.00
Content
Unlocking

3 1.32 1.00 1.00 2.00

B Win State 2 0 0.00 0.00 0.00
Chance 2 0 0.00 0.00 0.00
Achievements 2 0 0.00 0.00 0.00

Table 8
Discovery metric for the Content Unlocking feature conditioned by section.

Section No. Discovery metric

1 0.51
2 0.40
3 0.42
4 0.85
5 0.63
6 0.23
7 0.85
8 0.00
9 0.07
10 0.70
11 1.00
12 0.26

Fig. 8. Pareto chart of the Content Unlocking features discovery metric by section.

locking feature conditioned by the sections directly relates to the Phys-
ical Complexity values of the sections.

4.4. Method validation

In this section, quantitative results of individuals' performance
are presented in order to provide supporting evidence for the pro-
posed method. The participants' performance was measured by the
Intensity of Mistake metric shown in Eq. (6) (see section 3.4). The
Wilcoxon-test conducted on the answers provided for the first ques-
tion of the pre-experiment questionnaire (“How interested are you in
interacting in virtual environments?”, on a 1–5 liker scale) suggests
no statistically significant difference in response between participants
that played applications A and B at an alpha level of 0.05. Addition-
ally, all the participants were given the same reward (food, beverages,
and the opportunity to use an immersed virtual reality system) to be
part of the experiment. Based on these results and the relative homo-
geneous large sample size, the assumption that there was not a signifi-
cant difference between the initial motivation levels of the participants
was made.

4.4.1. Physical Complexity analysis
In this study, the Physical Complexity values for the indirect tasks

ranged from 0m (in the case of application B) to1.91m (section 11,
Application A). The Physical Complexity for the target tasks ranged
from the 3.56m–17.58m (see Table 6, section 4.2.2). While the Inten-
sity of Mistake values ranged from 0 points (no mistakes) to 6000
points (the individual performed a completely different task than the
target task). Fig. 9 shows several Box-plots of the distribution of the
Intensity of Mistake (IM) conditioned on the Physical Complexity
(PC) values of the indirect tasks and target tasks. In Fig. 9 the Phys-
ical Complexity values were rounded to 0 decimal points for visu-
alization proposes. The plots suggest that Intensity of Mistake and
Physical Complexity of the tasks are positively correlated. To test
the hypothesis that the correlation between Intensity of Mistake and
the Physical Complexity of the indirect tasks was statistically sig-
nificantly greater than 0 (see section 3.4, hypothesis 1) a Pearson's
product-moment correlation test was conducted in R.v.3.3.0 (Best &
Roberts, 1975). The test shows that the correlation is statistically sig-
nificant at an alpha level of 0.05 (t = 2.79, r = 0.069). Additionally,
the hypothesis that the correlation between Intensity of Mistake and
the Physical Complexity of the target tasks was significantly greater
than 0 (see section 3.4, hypothesis 2) was tested. Similarly, the results

Fig. 9. Box-plots of the distribution of IM given the PC of the indirect tasks and target tasks.
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show that the correlation was statistically significant at an alpha level
of 0.05 (t = 33.9, r = 0.643).

These results suggest a significant correlation between individu-
al's performance and the physical effort required to perform the dif-
ferent tasks of the applications. The figures show that the individuals
performed better when the Physical Complexity values of the indirect
tasks and target tasks were small. These results support the Discovery
metric proposed in this study (see section 3.3) and present quantita-
tive evidence that supports the principle of simplicity shown in sev-
eral of the models and theories applied to gamified applications (see
section 2.1). Additionally, these results are in line with Fogg's Behav-
ioral Model “behavior activation threshold” concept. This threshold
suggests that if an individual does not possess the ability to perform a
task, no matter the stimuli presented to them, they won't be able to per-
form it (Fogg, 2009). This threshold can be observed in Fig. 9, where
the performance of participants does not change significantly until the
Physical Complexity value of the target tasks exceeds 7m.

4.4.2. Application analysis
To provide empirical evidence to support the results presented

by Bharathi et al. (2016), the initial features selected were divided
into two different applications (see section 4.1). Application A im-
plemented the features that were common across successful applica-
tions, while application B implemented the features that were common
across unsuccessful applications. To test the hypothesis that there was
a significant difference in performance between participants that in-
teract with application A vs application B, a two-sided t-test was per-
formed (see section 3.4, hypothesis 3). The t-test suggests that the dif-
ference in the average Intensity of Mistake between participants that
interacted with application A vs application B was statistically sig-
nificant at an alpha level of 0.05 (t = 2.82). The results suggest that
individuals that interacted with Application A on average, performed
worse than the ones that interacted with Application B ( =1141
points, = 934 points). This can be attributed to the fact that the
physical effort required to perform the sections of application A were
greater than the ones on application B. This can be seen in

Table 6 were the Physical Complexity values for the sections of ap-
plication A are greater than application B, due to the addition of the
indirect tasks product of the Content Unlocking feature.

Since the Physical Complexity values of the indirect tasks related
to the Content Unlocking feature varied by section, the participants'
performance was analyzed conditioned on the sections. Fig. 10 shows
the main effects of the application type and sections on the average In-
tensity of Mistake. From these effect plots, it is clear that on average,
participants performed better in sections: 1, 2, 3, 4, 7, 8, 11, and 12
than in sections: 5, 6, 9, and 10. This can be attributed to the physical
effort required to perform the target task in those sections. The Phys-
ical Complexity values for the target task of sections 5, 6, 9, and 10
ranged from 10.13m to 17.58m. While for the other sections it ranged
from 3.56m to 7m (see Table 6, section 4.2.2). Additionally, in Fig. 10,
some interaction effects between the application type and the section
can be observed. In some sections, the average Intensity of Mistake
decreases when moving from application A to B (e.g., section 5, 9, 11,
and 12), while for others sections it seems to increase (e.g., section 2,
6, and 8).

To test the hypothesis that there is a significant difference in per-
formance between participants that interact with application A vs ap-
plication B when conditioned by the sections, a series of two-sided
t-tests were conducted (Ho: IMA|s = IMB|s; Ha: IMA|s ≠ IMB|s, for s ε
Sections {1–12}). Table 9 shows the t-statistics of these tests along-
side the average Intensity of Mistake for each application conditioned
by section. These results suggest that participants that interacted with
Application A, on average performed statistically significantly worse
compared to participants that interacted with application B on sec-
tions 1, 3, 5, 11, and 12. Even though the average Intensity of Mis-
take for application A for section 2 and 8 is lower than application B,
it was not statistically significant at an alpha level of 0.05. Nonethe-
less, the results suggest that participants who interacted with Applica-
tion A on average performed statistically significantly better on sec-
tion 6 compared to participants that interacted with application B.
These results can be attributed to the interaction between the physi-
cal effort required to perform the target task and the indirect task on

Fig. 10. Interaction plot of the average Intensity of Mistake given Application (A vs B) and Sections (1–12).
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Table 9
T-test conditioned by section.

Section t-statistic Average IMA Average IMB

1 2.371∗ 959.51 518.92
2 −1.042 232.63 364.69
3 2.153∗ 297.99 139.73
4 1.828 34.48 0.00
5 3.439∗ 2179.32 1412.61
6 −2.137∗ 1763.28 2268.77
7 1.823 887.07 562.70
8 −0.369 111.47 164.12
9 1.922 3007.91 2523.98
10 0.457 3034.32 2904.98
11 2.861∗ 802.88 253.20
12 2.89∗ 381.74 98.72

∗ Statistical significance at an alpha level of 0.05.

these sections. Table 6 (see section 4.2.2) shows that the indirect tasks
related to the Content Unlocking feature have a higher Physical Com-
plexity value for sections 1, 3, 5, 11, and 12 (1.34m, 1.24m, 1.48m,
1.91m, 1.05m, respectively) than for section 6 (1.02 m). Moreover,
Fig. 8 shows that sections 2, 6, 8, 9, and 12 accounted for less than
20% of the overall accumulative Physical Complexity values of appli-
cation A. However, the Physical Complexity value of the target tasks
of sections 5 and 6 are higher than for sections 1, 3, 11, and 12 (see
Table 6, section 4.2.2). These results suggest that the effects of the ad-
ditional physical effort required to perform the indirect tasks related to
the Content Unlocking feature may be mediated by the physical effort
required to perform the target tasks of the applications. These results
are in line with Fogg's Behavioral Model. The model states that there
exist a relationship between individuals' motivation and ability to per-
form a task (Fogg, 2009). If the ability of an individual to perform a
task or the simplicity of the task is reduced, while his/her motivation
level does not change, the performance of the individual will deterio-
rate. Furthermore, the effects of the additional indirect tasks related to
the Content Unlocking feature did not have a significant negative ef-
fect at an alpha level of 0.05 on the performance of participants on 7
out of the 12 sections. These results suggest that the game features of
Points and Avatar mitigated the negative effect of the additional indi-
rect tasks on the performance of individuals. These results are in line
with previous studies that have shown positive results by implement-
ing the game features of Points and Avatar (see section 2.2). Addition-
ally, it provides empirical evidence to support the results presented by
Bharathi et al. (2016).

4.4.3. Summary of results
In summary, the results show that:

1. Individuals' performance is strongly correlated to the physical ef-
fort required to perform a target task.

2. There exist threshold levels of physical effort for which individu-
als' performance on a target task will decrease significantly.

3. Individuals' performance on a target task can be negatively affected
by an indirect task resulting from the implementation of a game
feature.

4. The effect of a game feature on individuals' performance will de-
pend on the physical effort required to perform any indirect task
related to its implementation as well as the physical effort required
to perform the target task of the application.

5. The game features of Points and Avatar have a positive effect on
the performance of individual in comparison with the game fea-
tures of Win State, Chance, and Achievements.

6. The game features of Points and Avatar mitigated the negative ef-
fects of the additional indirect tasks, product of the Content Un-
locking feature, on the individuals' performance.
By applying the proposed method, a better understanding of the ef-

fects of game features and the physical effort required to perform them
was gained. The results suggest a strong correlation between partici-
pants' performance and the physical effort required to perform the tar-
get tasks and indirect tasks of the physically-interactive gamified ap-
plications analyzed. These results provide quantitative evidence that
supports the principle of simplicity which is present in several of the
models and theories of gamified application (see section 2.2). More-
over, the results provide quantitative data in support of the proposed
method. This method can help designers to quantitatively evaluate the
effect that game features have on individuals' performance. Further-
more, the results of the case study suggest that effects of game fea-
tures on participants' performance will depend on the physical effort
required to perform the indirect tasks related to the game feature, and
the target tasks of the application. This knowledge can inform design-
ers on how to manage their creative resources more efficiently.

5. Conclusion and future work

This study presented a method that quantitatively explores the
complexity of both implementing and performing game features in
physically-interactive gamified applications. This method will help
designers to gain a fundamental understanding of the effects of game
features on individuals' performance. The method provides a system-
atic approach for analyzing game features that are worth exploring and
implementing in physically-interactive gamified applications. An ini-
tial game feature selection algorithm based on previous studies was
proposed. This algorithm will allow designers to gain a better under-
standing of which game features are practical to implement based on
the constraints of the information technology systems used for their
applications. Furthermore, the complexity of implementing game fea-
tures and the physical effort required to perform indirect tasks re-
lated to game features are used to assess which features are worth
exploring. The method was tested on a physically-interactive gami-
fied application in a virtual environment. The objective of the appli-
cations is to motivate individuals to perform certain physical activi-
ties in order to improve their physical health. The target tasks of the
gamified applications were to pass through a series of obstacles with
minimal contact. In this study, the Microsoft Kinect was used to ac-
quire human skeletal data. This data was used to measure the physi-
cal effort required to perform the target tasks of the application, and
the indirect tasks of the applications. A Physical Complexity metric
was presented that allows designers to capture the physical effort re-
quired to perform a task in a physically-interactive gamified applica-
tion. Quantitative results of the effect of well known game features
on the performance of individuals for applications in a virtual envi-
ronment were presented. This expanded the current body of knowl-
edge gamification that was in need of more empirical results on the
usefulness of gamified applications in improving user engagement and
performance. The results suggest that the physical effort required to
perform indirect tasks and target tasks have a significant effect on
participant's performance. These results support the method proposed
that focused on minimizing the physical effort needed to perform any
indirect task related to the implementation of a game feature. More-
over, the results suggest that the effects of game features on indi-
viduals' performance will be mediated by the physical effort required
to perform the indirect tasks and the target tasks of the application.
It provided quantitative results supporting the principle of simplic-
ity, the relationship between individuals' performance and the physical
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effort required to perform a task, and the “behavior activation thresh-
old” present in Fogg's Behavioral Model. Additionally, the results sug-
gested that the implementation of the game features of Points and
Avatar had a positive effect on individuals' performance. These results
provide empirical evidence that supports the finding of the previous
research, such as Bharathi et al. (2016) that found this set of features
in successful driven applications. Similarly, the findings of Dicheva
et al. (2015), Pedreira et al. (2015), and Hamari et al. (2014) found
that in the field gamification research the features of Points and Avatar
have been shown to have positive results on improving individual en-
gagement. The Physical Complexity metric proposed in this method
was significantly correlated with the participants' performance, show-
ing that with this metric individual's performance in physically-inter-
active gamified applications can be predicted. Nonetheless, the use
of other variables alongside the Physical Complexity metric might be
needed to improve performance predictions. One of the limitations of
this study was that information about the physical fitness of the partic-
ipants was not collected prior to the experiments, which could have af-
fected their performance. Furthermore, participants' performance was
assumed to be related to their motivational levels. However, the phys-
ical fitness of the participants might be an important mediator vari-
able in this relationship. Future works should explore other variables
that might play an important role in predicting individuals' perfor-
mance (e.g., physical fitness conditions and personality traits). Simi-
larly, other metrics that allow the individuals' motivational level to be
measured should be considered. Nonetheless, this method can be ap-
plied to existing physically-interactive gamified applications to under-
stand their weaknesses and strengths of their design and to provide ar-
guments for their results. This method will help to inform designers
on how to manage their creative resources more efficiently and guide
them in the selection of game features to implement.
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Appendix A.

Mathematical Proof

Under the assumptions:

1) Task λ that requires the individual to perform a full body motion
(e.g., jumping, bending, walking) can be accurately represented by
the set of joints presented in Table 3 (this assumption is based on
previous studies, see section 3.2.2)

2) The sensor 1 and 2 use the same distance unit.
Under the conditions:

1) Tracking sensor 1 (S1) is capable of only tracking the set of joints
shown in Table 3, (set K)

2) Tracking sensor 2 (S2) is capable of tracking the joints shown in
Table 3 plus 2 more joints, (set D, where D = K , and E:{join-
t16,joint17})
It can be proven that the Physical Complexity metric of game fea-

ture λ using tracking sensor 2 ( can be greater or equal than

the Physical Complexity metric of game feature λ using tracking sen-
sor 1 . Therefore:

Proof:
From Eq. (4):

For simplicity let's rewrite the equations as:

Under assumption 2:

Since:

Under assumption 1:

Then:
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If assumption 1 is violated:

Then:

This shows that under assumption 1 and 2 if a sensor that is capa-
ble of tracking more joints than the one listed in Table 3, the accuracy
of the Physical Complexity can only be greater than in the case that a
sensor that is capable of tracking only the joints shown in Table 3 is
used.
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