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Abstract 

Early detection of Parkinson’s Disease (PD) is critically important as it can increase patient quality of life 

and save treatment cost. An innovative approach for early detection of PD is to use non-wearable sensors 

that are capable of capturing skeletal joint data. This paper evaluates the cost-effectiveness of this sensor-

based intervention considering the quality-adjusted life years (QALYs) and the associated costs. The 

results indicate that the intervention would be cost-effective if devices were deployed for community 

health screening in public places such as health fairs and pharmacies.  
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1. Introduction 
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that typically affects the elderly 

population. In the U.S., almost one million people live with PD and approximately 60,000 new cases are 

diagnosed each year (Parkinson’s Disease Foundation, 2015). PD has a tremendous impact on the 

populations’ quality of life and levies a heavy economic burden. Kowal et al. (2013) estimate the total 

annual cost of PD in the U.S. to be $8.1 billion in medical expenses and $6.3 billion in indirect costs such 

as reduced employment, travel to see a physician, adult day care, and home modifications. There is 

currently no cure for PD. Therapies, such as medication, surgery, diet changes, physical therapy, support 

groups, occupational therapy, and speech therapy, focus on treating the symptoms that undermine the 

patient’s quality of life (Giladi, Manor, Hilel, & Gurevich, 2014; Worth, 2013). PD is not homogeneous 

aswith patients have varying symptoms and different rates of progression, and early in the course of 

illness there are some disorders that may look like PD (e.g., multiple system atrophy, Lewy body 

dementia). A patient-centered approach that provides coordinated and interdisciplinary care offers the 

best outcome for PD. The National Parkinson’s Foundation (2014) has estimated that 6,400 people with 

PD die each year due to insufficient and uncoordinated care. This is also supported by studies that have 

shown that nearly 60% of individuals suffering from PD do not get the expert care that they need (Landro, 

2014).  

 

Some of the key signs of PD include tremor, rigidity, bradykinesia, gait disturbances, and postural 

instability (Bakheit, 1995; Gelb, Oliver, & Gilman, 1999). A recent study showed that essentially all PD 

patients consulted a physician because of motor symptoms. Typically, primary care physicians refer 

patients to neurologists if they suspect PD motor symptoms. Neurology specialists then interview 

patients, screen medical records, and conduct a series of examinations and tests to determine if someone 

has PD patient. It has been argued that standardized screening procedures focused on early motor 

symptoms could help detect individuals with high risk for PD (Gaenslen & Berg, 2010). In the pre-

diagnosis phase (≤ 2 years) mild motor signs including asymmetric bradykinesia and rest tremor are 

significant in PD (Walter et al., 2013). Moreover, motor asymmetry has been found to have a high 

sensitivity (88%), specificity (54%), and positive predictive values (85%) for the diagnosis of PD (Busse 

et al., 2012). Although motor signs have been typically used to assess PD, the populations’ access to 

current diagnosis methods is limited since the diagnosis of PD is costly and requires several visits to the 

specialist (Gaenslen & Berg, 2010; Pahwa & Lyons, 2010; Tucker et al., 2015).  

 

Several studies have focused on the cost-effectiveness of the different types of treatments that exist to 

manage the symptoms of PD. These treatments include pharmacological regimens (levodopa being the 
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most important) and for later disease, neurosurgical approaches (e.g., deep brain stimulation) (Dams et al., 

2011, 2013; Tomaszewski & Holloway, 2001). Interest in studying the economic burden of PD has been 

spurred by new reimbursement regulations, and the need for cost accounting when comparing different 

alternatives to improve health gains. Healthcare providers have been particularly interested in chronic 

diseases with high prevalence and high treatment costs such as various neurodegenerative diseases 

including PD. 

 

One of the potential mechanisms to improve PD diagnosis and its coverage may be the use of telehealth 

solutions with innovative technology such as smartphones, sensing bracelets, and motion sensors 

(Dhillon, Ramos, Wünsche, & Lutteroth, 2012). There is still, however, a need for more research that 

demonstrates the efficacy of these technologies from a practical perspective. Quantitative metrics are 

needed that demonstrate the value of these innovations in providing substantial health gains, given their 

costs.  

 

In this study, we present a cost-effectiveness analysis (CEA) to evaluate the implementation of a non-

wearable sensor based telehealth technology for early detection of PD based on patients’ motor patterns. 

Health gains in CEA were measured in terms of quality-adjusted life years (QALYs) and the costs 

associated with this intervention were estimated. The overall impact on society was calculated and a 

sensitivity analysis was conducted. 

 

2. Telehealth Systems for Early Detection of Parkinson’s Disease 
 

2.1. Brief Description of Telehealth Diagnosis Systems 
Technological advancements in mobile computing and networking infrastructure have spurred the 

availability of low-cost, commercially available telehealth diagnosis systems that have the potential to 

connect patients with their healthcare providers in a timely and efficient manner (Li, 2013). While there is 

a wide range of systems available for telehealth diagnosis (Fouquet, Franco, Vuillerme, & Demongeot, 

2012; Gay & Leijdekkers, 2007; Lymberis, 2003; Suzuki, Tanaka, Minami, Yamada, & Miyata, 2013), 

several commonalities exist. A telehealth diagnosis system must be able to i) sense characteristics 

pertaining to a patient’s health, ii) communicate data to a processing entity, iii) discover knowledge based 

on the patient’s data, and iv) provide feedback to the patient and the healthcare provider. For example, 

wearable solutions such as armbands have been proposed to capture patient gait data for the modeling and 

prediction of Parkinson’s Disease (Huang et al., 2012).  

 



4 

Non-wearable sensors, such as the Microsoft Kinect, are capable of capturing comparable patient gait 

data, without the need for contact with the patients’ body, hereby expanding the environments and 

convenience of data capture (Mousavi Hondori & Khademi, 2014; Webster & Celik, 2014). The 

frequency of sensor data collection will depend on the objectives of the healthcare provider since non-

wearable sensors, such as the Microsoft Kinect, can capture human gait patterns at a rate of 30 Hz or 

approximately one sample every 33 milliseconds. Machine learning techniques can be employed to 

discover patterns existing within the collected data that help predict anomalies in patients’ health (Kumar, 

Nilsen, Abernethy, et al., 2013; Kumar, Nilsen, Pavel, & Srivastava, 2013).  

 

2.2. Microsoft Kinect Based Early Detection System for PD 

Tucker et al. (2015) have developed a Microsoft Kinect-based detection tool that can recognize gait 

abnormalities relevant to Parkinson’s Disease. This tool can serve as the basis for a telehealth system that 

provides decision support for early-stage PD diagnosis. This telehealth system is anticipated to consist of 

three steps as outlined in Figure 1.  

 

 

Figure 1: The overview of the sensor-based telehealth detection system 

 

Step 1 Sensor Data Acquisition is the usage of Microsoft Kinect to capture skeletal joint data from 

individuals at home or in a public place. To collect gait data, the Kinect is configured at an elevation of 3 

feet and 10 inches above the floor and the individual stands at a distance of 10 feet from the Kinect. A 

laptop or a tablet is connected to the Microsoft Kinect to save the collected data. A monitor is used to 

provide instructions (e.g., “Please start walking forward”) and warnings (e.g., “The whole body is not 

observable”) to the individual. Then, the individual comfortably walks towards the Kinect (forward) and 

walks away from the Kinect (backward) following the instructions in the monitor. During each walking, 

which may take 4-6 seconds depending on the individual, the Kinect collects 3D coordinates of the 20 

skeletal joints (e.g., left elbow, right wrist, etc.) on the individual every 33 milliseconds. The Kinect is 

capable of tracking skeletal joints non-invasively and independent of the outfit. A nursing assistant will 
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guide the individual during data collection if the telehealth system is deployed in a public space such as 

malls or churches.  

 

Step 2 Data Processing is data cleaning and processing. In this step, irrelevant/noisy data are removed 

from the initial data captured in Step 1 and then velocity and acceleration values of each skeletal joints 

areis generated. In addition, the ratio in each dimension from each pair of joints in the position, velocity, 

and acceleration data are also generated to normalize variations in human characteristics (e.g., size, 

height, and weight). Therefore, by initially tracking 20 skeletal joints, a total of 630 features (i.e., 20 

position features, 20 velocity features, 20 acceleration features, 190 position ratio features, 190 velocity 

ratio features, and 190 acceleration ratio features) are generated for each dimension (i.e., X, Y, and Z). 

These features are used as inputs for the machine learning algorithms that detects PD gait abnormalities in 

individuals. 

 

Step 3 Healthcare Decision Support employs machine learning methods on the generated set of features to 

reveal the gait abnormalities related to PD. According to Tucker et al. (2015) the most reliable machine 

learning method is J48 decision tree model with an accuracy of almost 75%. The telehealth system 

notifies the neurology specialist of the individual’s motor symptoms and the output of J48 decision tree 

model. This step can integrate the screening data with patient’s EHR and serve as a decision support 

system. Based on the neurology specialist’s final decision, the individual may be scheduled for a visit in 

the clinic. 

 

This intervention demonstrates the feasibility of telehealth system in enhancing patients’ health as a 

means of delivering remote screening outside of the traditional healthcare facility. Hence, this 

intervention might help to advance the early-stage diagnosis of PD whose main symptoms are manifested 

through motor signs. In this study, we investigate the cost-effectiveness of this sensor-based telehealth 

intervention. 

 

3. Cost-Effectiveness Analysis 
Cost-effectiveness analysis (CEA) evaluates the health benefits over the costs involved to obtain such 

benefits (Jamison et al., 2006). Although costs might not be the only criterion for guiding the allocation of 

resources, CEA provides a fair and comprehensive way to compare different interventions based on their 

potential to increase people’s health relative to the costs. Hence, CEA has been used in practice to inform 

different health policy making levels as it integrates life expectancy, treatment cost and the change in 

health-related quality of life due to an intervention (Lubowitz & Appleby, 2011). The integration of these 
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elements provides an appropriate baseline for comparisons in the resource allocation process in healthcare 

(Weinstein, Siegel, Gold, Kamlet, & Russell, 1996).  

 

Typically, health gains in CEA are measured in terms of quality-adjusted life years (QALYs). This metric 

has been used consistently for over four decades. Zeckhauser & Shepard (1976) used the term QALY for 

the first time to propose a metric that combines duration and quality of life. Pliskin et al. (1980) 

demonstrated that QALY maximization based on the utility theory is justifiable under two conditions; 

utility independence between health status and life of years, and risk neutrality with respect to life of 

years. The estimation of QALY incorporates a measure of quality of life (Q) also known as health-related 

quality of life status (HRQoL). This value typically ranges from 0 to 1 where 0 represents the worst 

possible health state and 1 represents a maximum or perfect health status.  

 

Currently, QALYs are used in most economic assessments conducted by agencies that encourage the 

cost-effectiveness factors as fundamental component of their decision-making processes (Sassi, 2006). 

Mathematically, the number of QALYs lived by a person can be expressed as follows: 

 

����	��	��		
	�� = 1 ∗ �,										0 ≤ � ≤ 1. (1) 

 

The expected quality-adjusted life or quality-adjusted life expectancy (QALE) at a certain age a of disease 

is formulated as: 

 

���� = � ��
���
���

, (2) 

 

where L is the residual life expectancy of the individual at age a, and t is the number of years that the 

individual is expected to be attached to the corresponding Q. Typically, discounting factors are used to 

calibrate the utility of QALY. In other words, discounting translatesing future QALYs into a present 

value. The discounted QALE can be calculated as follows: 

 

��������	�	���� = 	� ��
 1 + �"�#�

���
���

		, (3) 

 

where r is the discount rate or normalization factor to evaluate health using present value. Typically, a 

discount rate of 3-5% is in line with the Global Burden of Disease (GBD) and practical guidelines 
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(Brouwer, Hout, & Rutten, 2000). In order to compare the impact of health interventions, the pre-

intervention QALY and post-intervention QALY must be compared. This metric gives an estimate of the 

QALYs gained as a result of the health intervention. Thus: 

 

�����	gained = � ��*
 1 + �"�#�

���+

���
− � ��

 1 + �"�#�
���
���

		, (4) 

where Qi is the vector related to the health status quality of life weights predicted after the health 

intervention for each time step t. 

 

The cost-effectiveness of two interventions is compared by incremental cost-effectiveness ratio (ICER), 

estimated as: 

 

-.�/ = .* − .0
�����* − �����0	, (5) 

 

where .* and  .0 are the costs of interventions � and 1 wheraes	�����* and �����0 are the 

�����	2���	� by interventions � and 1. ICER represents the additional cost per extra QALY gained by 

an intervention compared with another.  

 

Although these calculations are straightforward, the main challenge is to accurately obtain an estimate of 

the parameter Q (Rowen & Brazier, 2011). There are mainly two different ways to obtain Q: direct and 

indirect valuation. In direct valuation, such as the time trade-off (TTO) and the standard gamble (SG), 

individuals are asked to imagine themselves in different health states and think about the trade-off of 

sacrificing years of life or what risk in death (percentage) they would be willing to take in order to 

achieve a full health state. Since measuring patients’ preferences using this type of methods is difficult 

and time-consuming, indirect valuation methods (also called generic preference based methods) are 

generally preferred. Such methods involve using pre-scored generic preference-based measures in which 

health states are described using standardized utility questionnaires (Dolan, 2008; Thorrington & Eames, 

2015; Whitehead & Ali, 2010). 

 

In practice, a range of generic preference-based instruments to approximate Q for different health states 

are used. Valuation instruments such as the EQ-5D (Dolan, Gudex, Kind, Williams, & others, 1995; 

Williams, 1995), SF-36 (Brazier, Roberts, & Deverill, 2002; Ware Jr & Sherbourne, 1992), SF-12 

(Lundberg, Johannesson, Isacson, & Borgquist, 1999; Ware Jr & Sherbourne, 1992), SF-6D (Brazier et 
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al., 2002), and QWB-SA (Kaplan, Anderson, & Ganiats, 1993; Kaplan, Bush, & Berry, 1976) have been 

found to provide a good estimate of quality of life for different health states. These instruments typically 

consider different dimensions, such as physical, social, mental, pain, and depression, to account for the 

factors affecting health as a whole. 

 

Willingness-to-pay threshold represents the maximum amount that society is willing to pay to gain on 

additional QALY. Generally, an intervention is considered as cost-effective if its ICER (cost per QALY) 

is below the willingness-to-pay threshold (King, Tsevat, Lave, & Roberts, 2005; Ryen & Svensson, 2015; 

Shiroiwa et al., 2010; Torrance et al., 1996). Even though the concept of thresholds is used by healthcare 

decision makers in practice, explicitly setting them is politically sensitive (Zwart-van Rijkom, Leufkens, 

Busschbach, Broekmans, & Rutten, 2000). Moreover, not using explicit thresholds can be considered 

attractive by decision makers as it gives them room for other considerations rather than tangible value per 

cost (Eichler, Kong, Gerth, Mavros, & Jönsson, 2004). Nevertheless, the thresholds can be inferred from 

past allocation decisions. In the United Kingdom, for instance, an incremental cost-effectiveness of 

£20,000 – 30,000 per QALY (approximately US$30,000 – 50,000) is typically used (Devlin & Parkin, 

2004; McCabe, Claxton, & Culyer, 2008), whereas in the United States the threshold is US$50,000 – 

100,000 per QALY. A justification for these thresholds can be found in Shiroiwa et al. (2010). In practice, 

most decision makers in the U.S. agree that interventions that cost less than US$50,000 – 60,000 per 

QALY provide good value for society.  

 

In summary, CEAs enhance consistency, comparability, and coherence of impact assessment among 

different health studies. Therefore, a more informed health policy discussion can improve people’s health 

and reduce existing disparities while accounting for cost-effectiveness factors. Finally, it must be 

understood that CEAs should not be used as strict guidelines for resource allocation. There may be other 

ethical considerations to implement interventions that do not achieve the typically used cost-effectiveness 

thresholds (Owens, Qaseem, Chou, & Shekelle, 2011). In this study, we used CEA to assess a healthcare 

intervention that uses telehealth technology to support early detection of Parkinson’s Disease. 

 

3.1. Potential QALYs Gained from Early Detection of PD 

Due to the progressive nature of PD, the symptoms and their severity worsen over time. There are 

different rating scale tools to describe the symptom progression of PD. Most of these tools combine the 

severity of movement symptoms and the impact of the disease on the individual’s daily activities. The 

Hoehn and Yahr scale (Hoehn & Yahr, 1998) has been widely used to classify PD patients into five 
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different stages depending on the severity of dysfunction based on the deterioration in gait and balance. 

Some of the main characteristics of the Hoehn and Yahr stages are presented in Table 1. 

 

 

Table 1: Hoehn and Yahr stages and characteristics 

HY Stages Characteristics 

Stage 1 Unilateral involvement only; no functional disability 

Stage 2 Bilateral involvement without impairment of balance; minimal functional disability 

Stage 3 Mild to moderate bilateral disease; some postural instability; physically independent 

Stage 4 Severe disabling disease; still able to walk or stand unassisted 

Stage 5 Wheelchair-bound or bedridden unless assisted  

 

Zhao et al. (2010) estimated the progression in PD by analyzing the transit time from one stage to another 

using the Hoehn and Yahr (HY) scale. They obtained medical records of almost 700 patients from the 

movement disorder database of the National Neuroscience Institute in Singapore. Using Kaplan-Meier 

survival analysis, they investigated the time taken for patients to progress from one HY stage to the next 

one. The results of the study indicated that the median times to transit from Stage 1 to 2 and 2 to 3 are 20 

and 87 months, respectively. Additionally, the transit times in more advanced stages were 24 and 26 

months to move from Stage 3 to 4 and 4 to 5, respectively (Table 2). Therefore, the overall mean time 

from disease onset to Stage 5 was about 13 years (based on life expectancy of 79 and onset at age 64.9). 

This value is similar to that found in other studies. According to Hoehn & Yahr (1998) the median delays 

before reaching Stages 4 and 5 are 9 and 14 years, respectively.  

 

To estimate the quality of life of (Q) for different HY stages, we used the EQ-5D instrument, which is a 

feasible and valid tool for such purpose in PD (Schrag, Selai, Jahanshahi, & Quinn, 2000). This 

instrument includes questions on mobility, self-care, usual activities, pain/discomfort, and 

anxiety/depression with three response options for each (1: no problem, 2: moderate problem, and 3: 

severe problem). A final score is derived from these five questions where the maximum score of 1 

indicates the best health state. Schrag et al. (2000) provided the average EQ-5D scores for each HY stages 

based on a survey of ninety-seven PD patients under treatment (Table 2). We estimated the EQ-5D scores 

of untreated PD patients based on the symptoms. Since typically treatments are not offered in Stage 1, 

EQ-5D scores are not expected to differ between treated and untreated patients in this stage. Table 2 

summarizes the transition time and quality of life of (Q) treated versus untreated PD patients.  
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Table 2: Q of treated vs. untreated PD patients by HY stage 

HY  

Stage 

Median duration 

(months)  

(Zhao et al., 2010)  

Cumulative 

duration (months) 

Treated Q based on  

the EQ-5D 

 (Schrag et al., 2000) 

Untreated Q based 

on the EQ-5D
2 

Stage 1 20 20 0.90 0.90 

Stage 2 87 107 0.60 0.40 

Stage 3 24 131 0.30 0.25 

Stage 4 26 157 0.20 0.20 

Stage 5 83 165 01 0 
1at the end of the stage, 2estimated based on symptoms, 3estimated based on life expectancy of 79 years and onset at 
age 64.9 

 

Some patients may not be diagnosed by a neurologist based on standard clinical criteria (Gelb et al., 

1999) until they reach Stages 2 or 3 (Muslimović, Post, Speelman, & Schmand, 2007; Post, Speelman, 

Haan, & CARPA-Study Group, 2008; Velseboer et al., 2013). The telehealth intervention explained in 

Section 2.2 is expected to detect PD patients in Stage 1. The potential QALYs gained due to early 

detection of such patients, who would be otherwise diagnosed in Stages 2 or 3, are shown in Figure 2. 

Since PD treatment typically does not occur in Stage 1, we would expect a QALY gain only in Stages 2 

and 3.  

 

Figure 2: QALYs gained by early-diagnosed PD patients 
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The mathematical formulation to estimate the impact of the intervention is based on the area analysis and 

can be expressed as follows: 

3 [5 6" − 2 6"]�6
8

�
, (6) 

 

where f(x) is the function of health representing the Q of a PD patient under treatment and g(x) represents 

the Q of an untreated PD patient. For the purpose of this study, we assumed a linear change in Q between 

two consecutive HY stages, thereby f(x) and g(x) are linear fit functions of EQ-5D values in Table 2. In 

this case, a represents the initial period and b represents the end period of evaluation. Thus, 5 6" =
−0.0034486 + 0.968966 and 2 6" = −0.005747x + 1.014943 for Stage 2. Similarly, 5 6" =
−0.0125x + 1.9375 and 2 6" = −0.00625x + 1.06875 for Stage 3. 

 

A typical Stage 2 diagnosis is expected to be obtained at 63.5 months (20 + 87/2) on average (Table 2). 

Similarly, a Stage 3 diagnosis is expected to occur at 119 months (107 + 24/2) on average. The 

following calculations show the QALYs lost by such patients. 

 

To estimate the average QALYs lost by a PD patient that is diagnosed in Stage 2, the area analysis should 

consider for 43.5 months, starting from a=20 till b=63.5. From the area analysis, the QALYs lost by a 

patient that is diagnosed in Stage 2 (∆QALY1) is computed as:  

 

E [−0.003448x	 + 	0.968966 −  	−0.005747x	 + 	1.014943"]�6FG.H
IJ

12 = 2.175
12 = 0.1813. 

 

Similarly, the average QALYs lost by a Stage 3 diagnosed patient (∆QALY2) is computed for 99 months, 

starting from a=20 until b=119, as follows: 

 

E [−0.0034486	 + 	0.968966 −  −0.0057476	 + 	1.014943"]�6KJL
IJ

12
+ E [−0.0125x	 + 	1.9375	 −	 −0.00625x	 + 	1.06875"]�6KKM

KJL
12 = 8.7

12 + 1.95
12

= 0.7250 + 0.1625 = 0.8875. 
 

According to the results, PD patients diagnosed in Stages 2 and 3 could gain 0.1813 and 0.8875 QALYs, 

respectively, if they were detected in Stage 1.  
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To estimate the average QALY gain of an early-stage diagnosed PD patient, we needed the prevalence of 

HY stages when patients are first diagnosed by a neurologist. We have identified three studies that survey 

the HY stages in which the patients are first diagnosed with PD (Muslimović et al., 2007; Post et al., 

2008; Velseboer et al., 2013). Although the exact percentage of patients diagnosed within each HY stage 

varies across these studies, they all are consistent in reporting that the diagnosis occurs most frequently in 

Stage 2, followed by Stages 1 and 3. Thus, to get a single estimate of such distribution, we obtained the 

average of the results reported in these studies (Table 3).  

 

Table 3: The HY stages of newly diagnosed PD patients 

HY 

Stage 

Muslimović et al., 

2007 

Velseboer et al., 

2013 

Post et al., 

2008
 

Average 

Prevalence 

Stage 1 34.7% 40.3% 41.0% 38.7% 

Stage 2 50.5% 48.1% 47.0% 48.5% 

Stage 3 14.7% 11.6% 12.0% 12.8% 

Cohort size 95 patients 129 patients 131 patients - 

 

By using a weighted average based on the prevalence, we estimated that early-stage diagnosis by the 

proposed telehealth intervention is expected to add 0.3285 QALYs to a PD patient, on average: 

  

 0.485 × 0.1813 + 0.128 × 0.8875"
 0.485 + 0.128" = 0.3285.  

 

3.2. Overall Impact on the Society 

People over 60 were selected as the target population because the prevalence of PD rapidly increases after 

the age of 60 (Eeden et al., 2003; Kowal et al., 2013). In order to estimate the proposed health 

intervention’s overall impact on the society, data with respect to the target population and diagnosis 

parameters were needed (Table 4).  
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Table 4: Data for estimating overall impact on society 

Parameters  Value and Source 

Population parameters  

  Population of people 60+ 67,018,905 (U.S. Census Bureau, 2015) 

  Households with one or more people 60+  44,964,354 (U.S. Census Bureau, 2015) 

  Annual PD diagnoses 60,000 (Parkinson’s Disease Foundation, 2015) 

  % of 60+ PD diagnoses 95% (Eeden et al., 2003; Kowal et al., 2013) 

Diagnosis mechanism parameters  

  Coverage (reachability) 80% (estimation) 

  Accuracy of detection 75% (Tucker et al., 2015) 

 

Approximately 60,000 people are diagnosed with PD each year in the U.S. (Parkinson’s Disease 

Foundation, 2015), with only about 5% of the cases being under the age of 60 (Eeden et al., 2003; Kowal 

et al., 2013). Thus, it is estimated that 57,000 of the diagnoses are within our target population (i.e. 

population of people 60 or older). Aiming to reach 80% of the target population with 75% detection 

accuracy, it can be estimated that about 34,200 out of the 57,000 cases will be detected in Stage 1 by the 

proposed telehealth intervention. Currently diagnosis may be delayed and less than four out of ten are 

obtained in Stage 1 (Table 3). Based on the prevalence rates in Table 3, the numbers of early-stage 

diagnosed patients who would otherwise be detected in Stages 2 and 3 are 16,597 (34,200 × 0.484) and 

4,374 (34,200 × 0.128), respectively. Thus, the total number of early-stage diagnoses by the telehealth is 

20,971. In terms of QALYs, the early-stage diagnosis of patients creates 6,890 QALYs (16,597 ×
0.1813 + 4,374 × 0.8875) for society.  

 

3.3. Cost per QALY 
In the previous sections, the incremental difference in QALYs due to early-stage diagnosis of a patient by 

the telehealth intervention and the overall impact on the society were estimated. In this section, the cost-

effectiveness of the intervention iswas determined. The cost of this telehealth diagnosis intervention will 

mostly depend on the implementation setting to make the diagnosis available for the target population. 

We considered two alternative implementation settings: household-level and community-level. At the 

most granular level, the proposed telehealth system could be available at the household-level; the number 

of households with one or more people 60 years and over is 44,964,354 (U.S. Census Bureau, 2015). A 

more realistic implementation setting may be to install the telehealth systems in public places that reach 

larger groups of people (e.g., pharmacies, malls, churches, and other religious locations, etc.). In such 

cases, the number of telehealth systems needed to reach the target population decreases substantially. 
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Costs related to telehealth intervention include telehealth device costs, annual operating costs, and 

personnel cost. The telehealth device costs include the costs of Microsoft Kinect, adapter for Windows 

PC, monitor, and laptop. Annual operating costs represent yearly data transmission and maintenance 

costs. The personnel costs represent annual salary paid to a nursing assistant who is responsible forof 

administrating the data collection in public spaces (note: the personnel cost is excluded in household-level 

implementation). We relied on U.S. market prices, publicly available sources, and previous telehealth 

studies to estimate the costs associated with the proposed telehealth intervention (Table 5). The detailed 

calculations regarding to costs and screening capacity are given in the Appendix. 

 

Table 5: Data related to the cost of telehealth intervention  

Parameters  Value and Source 

Telehealth device costs  

  Microsoft Kinect $100 (market price) 

  Adapter for Windows PC $40 (market price) 

  Monitor $200 (market price) 

  Laptop $800 (market price) 

Annual operating costs  

  Data transmission and maintenance costs $200 (Kilinc & Milburn, 2016; Milburn, Hewitt, Griffin, & 

Savelsbergh, 2014) 

Personnel Cost  

  Nursing assistant salary  $26,820 (Bureau of Labor Statistics, 2015) 

 

For household-level implementation, it was estimated that the cost of one early-stage diagnosis is 

$2,298,536. This estimation leads to a cost-effectiveness of $6,996,136 per QALY (2,298,536 0.3285⁄ ), 

substantially above the typically used cost-effectiveness thresholds. Thus, the household-level 

implementation is not attractive from a cost-effectiveness perspective and was not furthered analyzed. On 

the other hand, the cost per early-stage diagnosis was calculated as $10,285 for community-level 

implementation. Thus, the telehealth intervention costs $31,305 per QALY (10,285 0.3285⁄ ) and 

becomes cost-effective if implemented in public spaces. Community-level implementation with moderate 

reachability (80% of the target population) and detection accuracy levels (75%) was considered as the 

base case in the sensitivity analysis.  

 

3.4. Sensitivity Analysis 
One of the main drawbacks of using high-level estimations is that some of the parameters used are subject 

to significant uncertainty. In this regard, sensitivity analysis on those parameters provides a clearer vision 

of how robust the results are in terms of cost-effectiveness are. While economic models are useful to 

approximate the estimation of impact under given conditions, uncertainty cannot be removed. One-way 
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sensitivity analysis is intended to provide an assessment of the impact of changes in the parameters and 

how those changes can have an impact on the model’s conclusions. Additionally, sensitivity analysis can 

help the researcher to identify what are the key drivers of the model’s results. 

 

In Section 3.1 we found that, on average, an early-stage diagnosed PD individual could gain 0.3285 

QALYs if properly treated. A sensitivity analysis was conducted to account for the uncertainty that could 

be present when estimating QALYs (Figure 3). The base case considered a cost per early-stage diagnosis 

of $10,285, which under the current estimations is translated to $31,305 per QALY. This value is just 

over the threshold for interventions considered to be very cost-effective ($25,000). For this case study, an 

intervention with a cost per early-stage diagnosis of $10,285 is very cost-effective for values of QALYs 

gained of 0.4 and above, reaches the typical cost-effectiveness for ranges of QALYs gained between 0.2 

and 0.4, and becomes ineffective for values of QALYs gained of 0.1 or below. According to these results, 

the intervention is robustly cost-effective under the uncertainty or errors of estimation of QALYs gained. 

The same figure includes the sensitivity of the cost per early-stage diagnosis.  

 

 

Figure 3: Cost-effectiveness sensitivity 

 

In addition to the base cost ($10,285 per early-stage diagnosis), we define two more levels of cost per 

early-stage diagnosis: worse cost ($20,570 per early-stage diagnosis); and extreme cost ($30,855 per 

early-stage diagnosis). If the cost per early-stage diagnosis were double the initial estimate (i.e., $20,570 

per early-stage diagnosis), then in order for the intervention to be very cost-effective, the QALYs gained 

must be 0.8 or above. To be cost-effective under the typical threshold, the QALYs gained must be 
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between 0.4 and 0.8. Finally, the intervention is ineffective if the QALYs gained are 0.2 or below. For an 

extreme cost per early-stage diagnosis of $30,855, the intervention will be very cost-effective if the 

QALYs gained are 1.2 or above, typically cost-effective for a range of QALYs gained between 0.6 and 

1.2, and ineffective for values of QALYs gained below 0.3. These results also show that the intervention 

is robust in terms of cost-effectiveness. Even though the cost per early-stage diagnosis is three times the 

initial estimate, the intervention will still be cost-effective under the base case estimate of QALYs gained 

(0.3285). Under the estimates for the QALYs gained, the cost per early-stage diagnosis could increase up 

to $32,850 to maintain the cost per QALY below the maximum cost-effectiveness threshold of 100,000 

$/QALY. 

 

A tornado diagram is presented in Figure 4 to show how sensitive the cost-effectiveness of the 

intervention is given a ±20% change on various relevant parameters including cost per early-stage 

diagnosis, cost per telehealth system, data collection duration, QALYs gained, and accuracy of the 

diagnosis tool. The parameters cost per early-stage diagnosis, cost per telehealth system, and data 

collection duration have the same impact. If one of these parameters decreases by 20%, the cost per 

QALY decreases to 25,044. On the other hand, if one of these parameters increases by 20%, the cost per 

QALY increases to 37,566. A sensitivity for the parameters QALYs gained and accuracy shows that if 

one of these increases by 20%, the cost-effectiveness becomes 26.088 $/QALY. Additionally, if the 

QALYs gained or accuracy is decreased by 20%, the cost-effectiveness becomes 39,132 $/QALY. Under 

a ±20% one-way sensitivity for the parameters shown, the intervention remains to be cost effective (< 

50,000 $/QALY). Thus, the intervention is fairly robust. 

 

Figure 4: Cost-effectiveness tornado sensitivity for relevant parameters 
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4. Discussion 
The burden of PD has impacted the populations’ quality of life as well as its financial structure. One of 

the main remaining challenges for this disease is the ability to provide accurate mechanisms to allow its 

detection in earlier stages, something that will be even more important as disease-modifying regimens are 

discovered. Innovative healthcare technologies, such as the sensor-based telehealth system discussed in 

this study, can provide both health gains and economic benefits.  

 

The lack of public funding to cover the health population needs has made cost-effectiveness analysis a 

relevant tool in the resource allocation processes. Technology advancements have impacted our ability to 

increase healthcare access, improve accuracy in medical treatments, and in some cases, reduce costs while 

achieving better health outcomes, among others. Both researchers and practitioners have started to look 

for opportunities in using existing technology to support medical decision to improve care and reduce 

healthcare costs. To increase the credibility and adoption of these innovative existing technologies, 

however, analyses that demonstrate their efficiency and effectiveness are needed. In this sense, CEA 

provides a “fair” mechanism to evaluate quantitatively whether these interventions provide substantial 

health gains given the costs involved, and compare different interventions to achieve the maximum health 

gains given the limited resources available. CEA may be seen, however, as a part of the roadmap for 

prioritizing healthcare interventions and not as a strict guideline. It is important to understand that some 

other considerations, typically difficult to quantify, might also be relevant when allocating resources that 

aim to improve the overall population’s health. 

 

A number of limitations exist in our study. First, our model did not account for discounting of cost items 

or health gains since a 1-year time horizon is used. Second, we assumed a simple linear deterioration of Q 

between HY stages due to lack of information in the literature. Third, we did not model PD-specific 

mortality rates and side effects. More comprehensive frameworks, such as Markov models mapping HY 

stages, are needed to account for such measures. Moreover, the CEA, as discussed in the literature, does 

not consider certain ethical and technical issues that may arise from screening of individuals in public 

spaces. Alternatives include implementing screening tools at community health fairs, in pharmacies, at 

annual physical exams, and even in the work place. The proposed telehealth system maintains patient 

privacy by only collecting the 3D unidentifiable skeleton data. Furthermore, the data collection does not 

require physical contact with the patient and the sensor can track skeletal joints, independent of the attire 

worn by the patient. This provides for patient convenience for screening.  
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5. Conclusions 
Understanding the potential impact that an intervention has on the population is relevant for a proper 

allocation of resources. In this study, an intervention to support an earlier detection of Parkinson’s 

Disease using a non-wearable sensor-based telehealth system was found to be cost-effective. The 

proposed intervention was estimated to have a cost-effectiveness of 31,305 $/QALY that is under the 

commonly accepted threshold used in the U.S. Moreover, according to the sensitivity analysis, the cost 

structure of the intervention is fairly robust, and hence, under various scenarios of different parameters, 

the intervention will still reach the typically used cost-effectiveness thresholds. An important 

consideration that might impact the practical attractiveness of these types of interventions is the setting in 

which they are expected to be implemented.  
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Appendix 
Using the cost data shown in Table 5, we estimate the annual cost per telehealth system as $28,160 for 

community-level implementation and $1,340 for household-level implementation. Assuming to reach 

80% of the target population, the number of households in which a telehealth system is needed is 

35,971,483 (44,964,354 × 0.8). Thus, the total cost of the intervention is $48,201,787,488 for household-

level implementation, which leads to an early-stage diagnosis cost of $2,298,535 

($48,201,787,488 20,971⁄ ). To calculate the total cost of the intervention for community-level 

implementation, we need to estimate the screening capacity of a telehealth system in a public setting. The 

average data collection duration is assumed to be 15 minutes (Tucker et al., 2015). Considering one hour 

for travel time to and from the screening location (e.g., a mall), we assume a nursing assistant can 

administer 28 screenings in a day ( 7 × 60" 15⁄ ). This gives an annual screening capacity of 7000 for 

each telehealth system deployed in a public setting. To reach 80% of the target population (53,615,124 =
67,018,905 × 0.8), 7,659 telehealth systems are needed (53,615,124 7000⁄ ). Thus, the total cost of the 

intervention is $215,685,985 (7,659 × 28,160) for community-level implementation, which leads to an 

early-stage diagnosis cost of $10,285 (215,685,985 20,971⁄ ). In this scenario, the cost per screening is 

$4.02 (215,685,985 53,615,124⁄ ). 

 


