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A B S T R A C T

It is believed that anomalous mental states such as stress and anxiety not only cause suffering for the individuals, but also
lead to tragedies in some extreme cases. The ability to predict the mental state of an individual at both current and future
time periods could prove critical to healthcare practitioners. Currently, the practical way to predict an individual’s mental
state is through mental examinations that involve psychological experts performing the evaluations. However, such meth-
ods can be time and resource consuming, mitigating their broad applicability to a wide population. Furthermore, some
individuals may also be unaware of their mental states or may feel uncomfortable to express themselves during the evalu-
ations. Hence, their anomalous mental states could remain undetected for a prolonged period of time. The objective of this
work is to demonstrate the ability of using advanced machine learning based approaches to generate mathematical models
that predict current and future mental states of an individual. The problem of mental state prediction is transformed into
the time series forecasting problem, where an individual is represented as a multivariate time series stream of monitored
physical and behavioral attributes. A personalized mathematical model is then automatically generated to capture the de-
pendencies among these attributes, which is used for prediction of mental states for each individual. In particular, we first
illustrate the drawbacks of traditional multivariate time series forecasting methodologies such as vector autoregression.
Then, we show that such issues could be mitigated by using machine learning regression techniques which are modi-
fied for capturing temporal dependencies in time series data. A case study using the data from 150 human participants
illustrates that the proposed machine learning based forecasting methods are more suitable for high-dimensional psycho-
logical data than the traditional vector autoregressive model in terms of both magnitude of error and directional accuracy.
These results not only present a successful usage of machine learning techniques in psychological studies, but also serve
as a building block for multiple medical applications that could rely on an automated system to gauge individuals’ mental
states.

© 2016 Published by Elsevier Ltd.

1. Introduction

Major mental illnesses such as schizophrenia, bipolar disorder, and
chronic diseases do not just appear unexpectedly, but often gradu-
ally emit symptoms that can be externally observed in early stages
[1]. Such illnesses might be prevented or managed more effectively if
anomalous mental states are detected during the early stages of the dis-
ease, where special care and treatment could be provided. For exam-
ple, intervention and careful observation could be provided by med-
ical specialists to individuals who have high risk of mental health
problems. Given that assessment of individuals’ mental states from

⁎ Corresponding author at: 999 ICT Building, Mahidol University, Salaya,
Putthamonthon Sai 4, Nakhon Pathom 73170, Thailand.
Email address: suppawong.tua@mahidol.edu (S. Tuarob)

their appearance or behavior is still advanced psychological science
that has not yet been automated, most mental diagnosis solutions in-
volve active participation of patients and medical experts [2,3]. Al-
though solutions that involve screening tests exist, such solutions
would not be feasible for large populations due to financial and time
constraints. Furthermore, diagnosis-based methods sometimes end up
discouraging sick individuals from participating [4]. As a result, psy-
chological disruptions often remain undetected, or under-treated.

Oftentimes, an individual’s mental state has direct impact on his/
her behavioral outcomes, and vice versa. For example, a person may
experience intense stress after losing a job, which may later cause
him/her to consume extraordinary amounts of alcohol. Similarly, pos-
itive interactions with friends may decrease the level of one’s stress.
It is our conjecture that an individual’s mental state can be inferred
from his/her physical behaviors that can be objectively observed. A

http://dx.doi.org/10.1016/j.jbi.2017.02.010
1532-0464/© 2016 Published by Elsevier Ltd.
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trivial, illustrative example would be the ability to predict whether
someone is satisfied with life from his/her alcohol intake, hours of
sleep, and social interactions. The ability to model the interplay be-
tween behavioral and emotional attributes could also shed light onto
multiple psychological and healthcare applications. For example, a
recommendation model could be built from the history of a patient
who suffers from chronic stress to suggest proper actions to avoid
encountering situations that may trigger emotional instability. As an-
other example, a forecasting model could be generated to monitor an
individual’s emotional state using his/her observable behavioral attrib-
utes as signals.

Existing literature has studied emotional and behavioral develop-
ment at the aggregate level, where a mathematical model is devel-
oped to explain the phenomena for an entire population. While indi-
vidual-level studies exist, such works rely on the data collected from
specialized wearable devices that detect specific signals such as respi-
ratory inductive plethysmograph (RIP) and electrocardiogram (ECG)
[5,6]. As a result, their methodologies are limited to users who wear
such devices. In this paper, we pursue an individual-level approach,
where a mathematical model is built to predict and forecast mental
states for each individual using the personalized data that can be ex-
ternally observed. In this research, a set of mathematical models are
proposed for predicting individual mental states, using the informa-
tion observable from daily activities. First, we frame the problem as
a multivariate time series forecasting problem, where each individ-
ual is represented with a multivariate time series stream characteriz-
ing his/her quantifiable daily physical/behavioral statuses and activi-
ties. Each multivariate time series represents a set of attributes, each
of which carries a temporal stream of (typically daily) values. An at-
tribute is an individual measurable property of a phenomenon being
monitored or collected. Attributes can be divided into two categories:
observable and latent. An observable attribute quantifies the level of
an observable physical activity or behavior. Examples of observable
attributes include number of hours of sleep, number of drinks, and
length of the recent conversation. On the contrary, a latent attribute
quantifies the level of a specific dimension of an unobservable mental
state, such as stress, concern, anxiety, etc. While observable attributes
are relatively objective and can be easily observed by a third person
(or an external monitor), latent attributes can be difficult to observe
from outside without detailed evaluations from psychological experts
or well established self-evaluation methods (e.g., the ones used to col-
lect ground truth validation data in this work). Hence, the ability to
infer and predict these latent attributes from the observable informa-
tion could prove to be critical to multiple psychological-related ap-
plications, especially those involving the detection of mental anom-
alies. Multiple time series forecasting techniques are explored, includ-
ing traditional vector autoregressive and machine learning models. A
case study of 150 participants, whose observable and latent attributes
were collected across 60 days, is used to validate and compare the ef-
ficacy of the forecasting models.

The multivariate time series forecasting problem involves the
learning of historical multivariate information in order to predict the
future values of an attribute of interest. Although traditional statistical
based techniques for multivariate time series forecasting already exist
(such as vector autoregression (VAR), its variant that allows exoge-
nous variables (VARX), its periodic-aware variant Vector Autoregres-
sive Integrated Moving Average (VARIMA), and State Space mod-
els), and are used in psychological studies [7,8], these models are not
always applicable due to the following reasons:

1. They are not well designed to handle high-dimensional time se-
ries data [9]. The multivariate time series data used in this paper
is high-dimensional (i.e., having a large number of attributes), con-
sisting of at least dimensions, where l is the lag and 132 is

the number of attributes in our dataset. Such data could introduce
too many variables that not only over-consume computational re-
sources, but also induce false relationships among attributes that
may impede the forecasting performance. Though preprocessing
techniques exist that reduce the dimension (e.g., PCA) or select
a subset of attributes, to project the high-dimensional data onto a
lower dimensional one, such preprocessing techniques could elimi-
nate useful information, allowing the time series models to capture
the relationships from only partial data.

2. They have various assumptions regarding the characteristics of the
data (e.g., stationary, linear relationship, white noise only, inde-
pendency among attributes, etc. [10]). Our dataset is not always
well-formed due to having missing data and being sparse, so the
attributes are not guaranteed to be independent. These traditional
multivariate time series techniques often do not match the charac-
teristics of real-world data.
In the past decade, multiple machine learning algorithms have been

developed and optimized. Prevalent applications of machine learning
algorithms include classification, regression, and clustering. Though
different machine learning algorithms have different advantages and
disadvantages, some of these algorithms are known for the ability to
deal with high-dimensionality, non-linear relationships, and flexibility
in datasets (e.g., missing data and different data types including string
and nominal) [11]. In this paper, we propose to use machine learning
regression algorithms for the multivariate time series forecasting task.
A comparison study of applying machine learning algorithms on psy-
chological multivariate time series data that has high dimensionality
and non-linear relationships shows that the relationship between ob-
servable and some latent attributes of an individual can be modeled.
Furthermore, we find it is possible to infer or predict the values of la-
tent attributes using only the observable information.

1.1. Problem statement

Our goal is to generate person-specific individualized mathemati-
cal models capable of predicting particular latent attributes that rep-
resents individuals’ mental states, using only information that can be
objectively observed. Such a problem is framed within the multivari-
ate forecasting framework, in which a set of generalized algorithms is
developed to generate prediction models. Let be
the entire population, where represents an individual. Mathemati-
cally, an individual is represented as a sequence of n attribute
vectors (i.e. n data points), each of which has m attributes representing
the attribute values at a specific time period. The individual can be
represented with a matrix notation as:

In our setting, m is the number of attributes of a participant from
whom the data was collected for n time periods. Hence, the attribute

is the value of the attribute collected on the th time period. In
this paper, a time period is equivalent to one day, due to the nature of
the data collected.

An attribute could be either observable or latent. An observable
attribute pertains to a quantity that can be directly observed by other

(1)
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human or machine observers, such as number of drinks consumed in a
single day, number of hours of exercise, number of friends in the re-
cent conversation, etc. A latent attribute is a more subjective and less
directly observable quantity estimated by either the individual him/
herself or evaluated by psychological experts. Such attributes often
represent feelings or mental states, such as an individual’s satisfaction
with life, an individual’s feeling of success, an individual’s satisfac-
tion with the weather, etc.

Each of the observable and latent attributes may be numeric or cat-
egorical. A numeric attribute is usually presented with a percentage
or a natural number, while the value of a categorical attribute has to
belong to a predefined class (such as education degree, day of week,
ethnicity, etc.).

Given an individual , our task is to build an individualized fore-
casting model that learns from the individual’s data (i.e.

) of the past n days, and predicts the value of the target attribute
of the next h days in advance (assuming that the current day is

the th day). The value h is also called the horizon or forecast hori-
zon throughout the paper. Note that, when the attribute is desig-
nated as a target attribute, it is also treated as an exogenous (external)
variable. That is, historical values of are not included in the predic-
tion model. The prediction at means that it is made for today’s
(current) value. Mathematically, given an individual , associated n
days of historical data, and a target attribute , we would like to find
a mathematical function that estimates the value of in
the next h days.

1.2. Main contributions

This paper has the following main contributions:

• We present a methodology to identify a suitable individual-level
prediction model to predict an individual’s mental state.

• We present a modification to traditional machine learning based re-
gression algorithms so that they can be used for forecasting seasonal
multivariate time series data. Specifically, the time-delay embedding
algorithm is applied to the feature space as a preprocessing step to
allow traditional machine learning algorithms to process the data in
a temporally dependent manner.

• We find the best multivariate time series model that captures the
temporal dependencies in the data by comparing the performance
between multiple machine learning algorithms from different fami-
lies and the traditional VARX model (baseline) that has been previ-
ously used to analyze attributes in psychological literature.

• We demonstrate with empirical evidence that latent attributes can be
predicted using only information from the observable attributes.

The remainder of this paper is organized as follows: Section 2 dis-
cusses some background of the related literature. Section 3 describes
the proposed machine learning based time series forecasting tech-
niques used in this paper, along with the methods used to investigate
the possibility of forecasting the latent attributes. Section 4 discusses
the case study, the ground truth validation dataset, results, and related
discussion. Section 5 discusses limitations and lists some of the poten-
tial applications that could build upon our work. Section 6 concludes
the paper.

2. Background and related works

Although the computational psychology literature includes stud-
ies of the development of and relationship between multiple mental
and physical attributes, most works have examined the phenomenon
of interest at the aggregate level as opposed to at an individual level.

Furthermore, these works tend to investigate relations (especially cor-
relations) among a few focus attributes. On the contrary, the input to
our proposed system comprises a large number of attributes that may
or may not have direct impact on each other. The ability to generate
a person-specific model would enable fine-grained prediction of indi-
vidual mental states, which could potentially give rise to multiple per-
sonalized emotion based applications such as monitoring and recom-
mendation systems. We aim to generate a person-specific model for
each individual using his/her historical objectively observable infor-
mation. In this section, relevant literature is discussed.

2.1. Predicting and monitoring behavioral and emotional attributes

The increasing health concern behooves the ability to monitor and
predict certain health attributes so that appropriate actions or treat-
ment can be provided in a proactive manner. Though diagnosis based
methods exist that involve health practitioners evaluating potential pa-
tients, efforts have been made in the literature to supplement such hu-
man-based methods with automated ones to reduce costs and increase
accuracy and consistency. In this work, our goal is to predict latent
emotional attributes from various observable signals. Hence, we dis-
cuss some of the relevant research with similar applications.

De Choudhury et al. proposed a method to detect depression in
Twitter [12]. A number of features are extracted from a Twitter mes-
sage including engagement, ego-network, emotion, linguistic style,
and user engagement. A Support Vector Machine classifier is trained
with these attributes to detect the level of depression in each Twit-
ter message. Their methodology applies beyond microblogging data,
but does not consider temporal change in the latent state. Hence their
method only estimates the current depression level, but is not capable
of predicting future states.

Litman and Forbes-Riley showed that acoustic-prosodic and lexi-
cal features can be used to automatically predict students’ emotions
in computer-human tutoring dialogues [13]. They examined emo-
tion prediction using a classification scheme developed for prior hu-
man-human tutoring studies (negative/positive/neutral), as well as us-
ing two simpler schemes proposed by other dialogue researchers (neg-
ative/non-negative, emotional/non-emotional). Their methods were
developed to handle transcribed (textual) data which is different from
ours (time series). Furthermore, their method only indicates three po-
larities of emotions (i.e. negative, positive, and neutral), while our
methods aim to quantify the level of a dimension of a mental state (i.e.
level of stress, anger, happiness, etc.).

Korhonen et al. presented TERVA, a system for long-term moni-
toring of wellness designed for home usage [14,15]. The system runs
on a laptop and is able to monitor physiological attributes such as
beat-to-beat heart rate, motor activity, blood pressure, weight, body
temperature, respiration, ballistocardiography, movements, and sleep
stages. In addition, self-assessments of daily well-being and activities
are stored by keeping a behavioral diary. The accuracy of the sys-
tem was reported to be 70–91%. This work had success in monitoring
some observable attributes without the supervision of human experts.
Though their methodology does not involve forecasting of mental
states, but only monitoring physical attributes, in our future work, we
could extend their system to build a monitoring system that collects
the daily routines and observable behavior. This collected observable
information can then be used to build a prediction model for target
latent attributes. Wang et al. used passively perceived signals from
smartphones such as accelerometer, microphone, light sensor, GPS/
Bluetooth, along with self-evaluation questionnaire to assess mental
health, academic performance, and behavioral trends of college stu-
dents as part of the StudentLife project [16]. They later used the same
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smartphone sensing data to assess students’ GPA [17] and hunger lev-
els [18]. In order to assess mental health (such as stress levels), their
methods still rely on self-report information which is not passively ob-
tained. Studies by Santosh Kumar’s research group have also investi-
gated the possibility to use sensed data such as ECG, respiration, skin
conductance, accelerometry, temperature, alcohol, etc., captured via
wearable devices to assess craving, stress, and mood [19,5,20]. While
their works involve prediction of some mental attributes, their meth-
ods are currently applicable to users who wear these specific devices,
while our works aim to use external, passive information that can be
observed without user engagement. Saeb et al. used logistic regression
to model depression using the sensing data from smartphones includ-
ing location, movement, and duration of home stay [21]. Our work
differs from theirs in three aspects: (1) our input data is routine be-
haviors that are externally observable, while their input data are spa-
tial and temporal sensor-based data, (2) our work aims to predict the
mental state of an individual which includes many dimensions of emo-
tion, while their work only targets the prediction of depression levels,
(3) their methodology created a single classifier that learns from the
information of all the test subjects, while ours generates a personal-
ized mental state predictor for each individual. However, since their
work has illustrated a successful applicability of using passive sen-
sor-based information for predicting a mental attribute, we could ex-
plore the possibility of incorporating such data into our models in the
future investigation.

2.2. Techniques for multivariate time series prediction and their
applications in healthcare domains

Many prediction problems have been translated into a time series
forecasting problem so that the temporal dimension could be incorpo-
rated into the prediction model. In this paper, the individual mental
state prediction problem is framed as a multivariate time series fore-
casting problem to also allow multiple attributes to be modeled to-
gether; hence, in this section, previous works in healthcare and bio-
medical informatics that utilized time series forecasting techniques are
discussed.

2.2.1. Vector autoregression based techniques for modeling mental
states

Vector Autoregression (VAR) [22] models, including regression
analyses, have been successfully used to capture linear interdependen-
cies among multiple univariate time series, and have been shown ef-
fective in forecasting tasks in financial [23,24], meteorology [25,26],
biomedical [27,28] domains, etc.

A VAR model describes the evolution of a set of m attributes over
the same sample period (t = 1, … , T) as a linear function of only their
past values. The attributes are collected in a vector , whose
ith element, , represents the time t observation of the th attribute.
For example, if the ith attribute is Number of Drinks, then is the
number of drinks that the individual had on day t.

A l-th order VAR, denoted , can be written as:

where c is a vector of constants (or intercepts), and is a time-in-
variant coefficient matrix. During the initialization process, these pa-
rameters can be set at random starting values, after which they will be
iteratively adjusted to minimize the error during the learning process
[29]. Informally, predicts the value of by modeling linear
relationship among the attributes observed in the past l days, where l
is the lag.

Latif et al. employed multivariate auto-regression to model a
two-channel set of electromyography (EMG) signals from the biceps
and triceps muscles [30]. The coefficients of the model are used to
define the direct transfer function (DTF), which later is used as fre-
quency domain features to train a Support Vector Machine classifier
to classify an EMG into either extension or flexion classes.

Goode et al. used the correlation and regression analyses to gen-
erate the “Stress Process” model that predicts longitudinal changes in
Alzheimer’s family caregivers [31]. Their model considers three psy-
chological attributes as input, namely appraisals, coping responses,
and social support. Their model was tested on 122 dementia caregivers
which revealed that benign appraisals of stressors, the use of approach
coping, and higher levels of social support were associated with more
positive health outcome over time.

Ciarrochi et al. used regression analysis to find the relationship be-
tween stress and three mental variables, namely depression, hopeless-
ness, and suicidal ideation in people with high emotional intelligence
(EI) [32]. The findings revealed that people with high emotional per-
ception tend to have higher levels of depression, hopelessness, and
suicidal ideation than others when experiencing the similar sets of sit-
uations that induce stress.

All the previous works discussed in this section assume that the re-
lationships among the attributes in the data are linear, while such an
assumption is relaxed in the current work. Furthermore, the data stud-
ied in previous works involve a small number of dimensions (less than
10), while the time series models in the current work are developed to
handle high-dimensional data.

2.2.2. Machine learning based techniques for modeling mental states
Computational psychology has recently become more advanced

and complex, requiring observational and experimental data from
multiple participants, times, and thematic scales to verify hypothe-
ses. This data grows not only in magnitude, but also in its dimen-
sion. While vector autoregressive models (and its variants VARX,
VARIMA, VARIMAX models) have been widely used for modeling
multivariate time series data, such models face the following draw-
backs that prevent them from being generalized to high-dimensional,
more complex data.

• They cannot model non-linear relationships among attributes.
Linear models are not well adapted to many real-world applica-
tions [33]. As studies have revealed that human brains can no longer
be modeled with a linear model [34], these vector autoregressive
models may not be suitable for investigation of psychological phe-
nomena. Although multiple computational psychology works have
shown successful usage of VAR based models to capture linear rela-
tionships among attributes [35–37], these works may have failed to
include necessary attributes that exhibit non-linear relationships.

• They have certain requirements of the data that must be met.
Darlington mentioned that certain requirements (such as complete-
ness, stationary, and independency) in the dataset must be met so
that VAR based models can be built [9]. Given that psychological
experimental data are often noisy, nonstationary, and not always in-
dependent, these requirements are rarely satisfied. Despite the in-
appropriate uses of VAR based models in computational psychol-
ogy works, multiple studies in various fields also discourage the use
of these VAR based models in multivariate time series forecasting
tasks [38,39].

• They are not suitable for high-dimensional time series data. A
VAR model of n attributes with the lag of l needs to keep track
of at least variables. This number of variables can be
handled in the case of small problems which involve only a few at-
tributes (i.e. n is small, typically fewer than 10). However, VAR
models can become very inefficient when dealing with high-dimen

(2)
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sional data such as ours. In the future, the system proposed in this
paper would have to handle many data points from multiple partic-
ipants. In the era of big data, where the Internet of Things (IoTs)
technology enables massive and heterogeneous data to be collected
and available for processing in real time, VAR based models may
not scale well in these real-time, data intensive applications.

Machine learning techniques have been widely investigated and
developed in the past decade. A wide range of applications that
emerge from such techniques make machine learning algorithms suit-
able and applicable for many problems that aim to discover knowl-
edge from data such as clustering, classification, and regression. Re-
cently, Bontempi proposed extensions to machine learning algorithms
to add the capability to model time series dependencies [40]. How-
ever, their methods only handle univariate time series data. Hegger et
al. proposed the time-delay embedding technique which modifies the
traditional feature space of machine learning algorithms so that history
of data can be taken into account, allowing the learners to capture tem-
poral dependency in multivariate time series data [41]. This time-de-
lay embedding technique was first implemented in the TISEAN1 pack-
age for nonlinear time series analysis; however, such a package only
processes univariate time series data. In this work, an extension is
made to one of their methods to handle time series data with more than
one dimension. Specifically, for a given lag of l time periods, an in-
stance is represented with the most recent sets of attribute values.
Hence, the size of the feature space would become . This
time-delay embedding modification to expand the feature space to in-
clude historical data would allow the regressor to generate a regres-
sion model that also takes previous information into account, allowing
temporal dependencies among multiple attributes to be modeled alto-
gether.

3. Methodology

In this paper, we propose to apply the time-delay embedding tech-
nique [41] which modifies the traditional feature space of machine
learning algorithms so that history of data can be taken into account,
allowing the learners to capture temporal dependency in multivari-
ate time series data. This chronology-capable feature space allows a
machine learning based regressor to learn the temporal relationship
among observable attributes and the target attribute, while optimizing
the prediction performance in a resource-efficient manner.

This section starts by describing our implementation framework,
including data preprocessing, feature engineering (time-delay embed-
ding), training and forecasting steps. The efficacy of the system is
tested against the well-known baseline VARX model. While a VAR
model treats all the attributes as endogenous (i.e., the status of each at-
tribute is relative to the specification of a particular model and causal
relations among the independent attribute), a VARX model treats the
target attribute as an exogenous variable (i.e., the value of the target at-
tribute is wholly causally independent from other variables in the sys-
tem) [42]. We treat the target attributes as exogenous because, in our
study, they are mental attributes, whose values are difficult to quan-
tify. Hence, the prediction models should not rely on the availability
of the past values of such latent mental attributes.

Then, we investigate the possibility of inferring the latent char-
acteristics of an individual person using only his/her observable in-
formation. The best configuration of the proposed time series fore-
casting methods are trained with three types of information: observ-
able information only (O), latent information only (U), and both (OU).

1 http://www.mpipks-dresden.mpg.de/tisean.

Then the performance is compared to make an empirical conclusion
on the ability to predict mental states from only the observable infor-
mation.

Fig. 1 outlines the methodology presented in this paper. First,
ground-truth data is acquired from participants. Since the raw data
is not well-formed, a data preprocessing layer is applied to ensure
that the data is in the proper multivariate time series format. The pre-
processed data is then converted (i.e. featurized) into the format that
machine learning algorithms can process. In this step, data points are
generated, each of which represents one day of participant’s data.
Then, the time-delay embedding technique is applied to allow an in-
stance of the training data to take temporal dependency into account.
Once the data is featurized, a number of advanced machine learning
based regression models are tested for their compatibility and ability
to model the data (Objective 1). Then, the best forecaster from Objec-
tive 1 is chosen to test the ability of the model to predict the latent at-
tributes using only observable attributes. The ability to generate such
a prediction model would then make it possible to implement a mental
health monitoring system that only passively observes patients’ daily
activities without interfering with their routines.

3.1. Data acquisition

Ground truth validation data for this investigation is collected from
human participants via a series of questionnaires conveniently acces-
sible on smartphone devices. The data is collected in bursts, where
each burst is a data collection period. Two consecutive bursts are sep-
arated by a break period. The questionnaires aim to quantify and mon-
itor each participant’s physical states, and establish the ground-truth
validation data for this study. In particular, the values of each indi-
vidual’s latent attributes were estimated using standard psychological
self-report questionnaire items (see references in Table 1). Example
questions are listed below:

• How many of the following [beer/glasses of wine/shots of liquor]
did you consume today?

• How many hours of sleep did you get last night?
• I am satisfied with my life today. (agreement rated)
• Did you enjoy the weather today?

Note that, while it is true that self-reported data can have biases
that result in inaccuracy in the ground-truth data, in this work, an as-
sumption is made that all participants answer the questions accurately
and honestly.

The questionnaires are chosen to quantify observable and latent at-
tributes that have been shown in previous psychological literature to
be effective and representative measures of mental and physical condi-
tions of human participants. A response to a questionnaire may result
in one or more values of attributes being collected. For example, the
response to the question How many hours of sleep did you
get last night? will result in a numeric value associated with
the attribute , which represents the number of hours of last
night’s sleep. Note that attributes with the suffix are daily attrib-
utes. Different questionnaires may be collected at different temporal
intervals. For example, How old are you? may be asked once
at the beginning of the data collection campaign, Did you exer-
cise today? may be asked once per day, and How long did
the conversation last? may be asked every time the partic-
ipant finishes a social interaction. Listed below are the different tem-
poral cadences at which specific questionnaires are issued:
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Fig. 1. The high-level diagram of the methodology.

• Once: The corresponding questionnaires are asked only once at the
beginning of the data collection campaign. Most of these inquiries
pertain to background information such as gender, age, number of
kids, employment status, etc.

• Pre-burst: The pre-burst questionnaires are distributed to each par-
ticipant at the beginning of each burst of data collection. These ques-
tions aim to gauge the general state, personality profile, and physical
health of each participant before each data collection period.

• Post-burst: The post-burst questionnaires are the same as the
pre-burst ones, and are used to measure changes in personality and
physical health of each participant during a data collection period.

• Daily: A participant is asked to respond to these daily questionnaires
once per day (evening). Most questions are designed to collect daily
routines, and gauge daily mental and physical health.

• Event-contingent: A participant is asked to respond to these
event-based questionnaires after each social interaction (conversa-
tions lasting longer than 5 min). These questions are designed to
keep track of certain properties of interaction events (e.g., number of
friends, how long, what time, purposes of the interaction, etc.). The
intent of these social related questionnaires is to investigate how so-
cial interactions contribute to mental and physical well-being.

Table 1 lists all the sets of questionnaires, each of which is in-
tended to quantify certain characteristics of a participant. Interested
readers are encouraged to consult [75] for further detail regarding this
survey. These sets of questionnaires can be categorized by their fre-
quencies of response, namely once (background information), burst
(pre/post burst visits), daily (daily information), and event-contin-
gent (interaction/conversation information). Each set of questionnaires
aims to quantify certain aspects of the participant. Each aspect is rep-
resented by a set of attributes. Response to each question will result
in a value of a raw attribute. A composite attribute is calculated by
combining certain relevant raw attributes. An example of a compos-
ite attribute includes the overall level of stress, which sums up the
individual levels of stress from interpersonal tensions, work/school,
home, finances, health/accident, other people’s (e.g., children’s)

events, and stress that is a result of being evaluated. Most of these
questionnaires have been approved and used extensively for self-quan-
tification of mental and physical characteristics (see references in
Table 1).

3.2. Data preprocessing

Concretely, the data collected from a participant must be converted
into the matrix format of multivariate time series data as illustrated in
Eq. (1) before further processing. From here on, it is assumed that a
time unit is one day, so that the th row of data represents the snapshot
of data corresponding to the th day. This data format would make sure
that both traditional and newly-developed forecasting techniques can
compatibly use the same data source, mitigating the bias (from data
preparation) when comparing these algorithms. The subsequent sub-
sections will describe how the raw data is preprocessed in this paper.

3.2.1. Heterogeneous data types and ranges
Different kinds of questions and response options were provided

to the participants. An answer to a question can be binary (e.g., true/
false), multiple choices, nominal values (e.g., day of week), non nega-
tive integer (e.g., number of friends), and ranged value (e.g., percent-
age). While most forecasting techniques only understand numeric at-
tributes, each of these data types must first be converted to appropriate
numeric values.

If the value is already numeric (either bounded, or unbounded),
then it remains the same. The unbounded number will not be an is-
sue, since a normalization will be applied to the data before feeding it
to the regression model. Hence, the values corresponding to each at-
tribute would eventually be ranged to [0, 1].

A value of each binary attribute (true or false) is replaced by either
0 or 1, based on the polarity. For example, true would be 1, and false
would be 0.

A multiple choice or nominal attribute is first converted to a se-
quence of binary attributes, where the above solution for binary attrib-
utes can be applied. For example, a value of attribute A could be one
of the days of week. A is first split into 7 sub-attributes:
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Table 1
Sets of questionnaires, each aiming to quantify particular observable and latent characteristics of the participant, along with their references (if any).

Group ID Name

#
Raw
Attr.

#
Com
Attr. Description Ref(s)

Once DemoA Demographics Visit 0 8 2 Background information such as gender, ethic, employment status, marital status, income
status, and zip code

DemoB Demographics Visit 2–4 2 0 Information pertaining to dentures and menopause regularity
DemoC Demographics Visit 4 21 1 Information about educational background, housing composition (especially children and

their ages), medication (gastrointestinal and cardiovascular), height, and weight
[43,44]

Burst CESD Center for
Epidemiologic Studies
Depression Scale

20 1 20 questions used to measure the overall level of depression [45]

BFI Big Five Inventory 10 5 10 questions for self-measuring personality (Neuroticism, Extraversion, Openness,
Agreeableness, and Conscientiousness)

[46]

CONTROL Control 9 1 Assessing sense of self-control and control over surrounding environments (relationship,
finances, health, work, leisure, life)

[47]

CVI Cardiovascular Health 8 2 Assessment of cardiovascular symptoms [48]
GII Gastrointestinal Health 12 2 Assessment of functional gastrointestinal disorders [48]
META Metacognition

Questionnaire
15 1 15 questions for self assessment of cognitive and neuropsychological impairment

(distraction, focus, forgetfulness, etc.)
[49,50]

LES Life Experiences 12 1 Assess of impacts of life changing events (i.e. relationship statuses, death of loved ones,
illness, injuries, work status, finances, family members’ well-being, pregnancy,
incarceration, increase in level of arguments, eating/sleeping habits, living condition,
stressful events)

[51,52]

SATIS Overall Satisfaction
with Life

6 1 Satisfaction with relationship, finances, health, work, leisure, and life [53,54]

SF36 Short Form 36-item
Health Survey
Questionnaire

36 8 36 questions to self-assess mental and physical health [55–57]

Daily LETQ Leisure Time
Questionnaire

3 1 Assessing level of today’s exercise (vigorous, moderate, mild) [58]

SLEEP Sleep 3 0 Assessing last night’s sleep quality [59]
WEATHER Weather Enjoyment 1 0 Assessing weather enjoyment
SE_d Self Esteem 1 0 Level of self-esteem [60]
CONTROL_d Perceived Control 1 0 Measuring the level of overall control over things [61]
SAT_d Satisfaction with Life

and Health overall
2 0 Assessing levels of satisfaction with life and health [53]

SHAME State Shame and Guilt
Scale

2 0 Assessing shame and guilt [62]

STRESS Perceived Stress Scale 11 2 Justifying overall level of stress originated from environment such as interpersonal
tensions, work/school, home, finances, health/accident, other people’s events, being
evaluated, etc.

[63,64]

FEELINGS Feeling States 27 6 27 Dimensions of feelings, i.e. Enthusiastic, Calm, Nervous, Sluggish, Happy, Peaceful,
Embarrassed, Sad, Alert, Satisfied, Upset, Bored, Proud, Relaxed, Depressed, Excited,
Content, Fatigued, Tense, Disappointed, Ashamed, Relieved, Angry, Grateful,
Conceited, Snobbish, and Successful

[65–68]

PRIDE State Pride Facets Scale 1 0 Today I felt successful [69]
TU Time Use 3 4 How much time did you spend on work/school, leisure, and other obligation [70,71]
HB Health Behaviors 9 2 Surveying health-related behaviors such as smoking, alcohol consumption, caffeine

intakes, brushing, flossing, meals, and snacks
[72]

EMOTION State Emotions 7 0 Physical pain, attitude towards physical and emotional health, and expectation for
tomorrow

Event
contingent

Context
variables

Event-contingent 15 0 Information about each interaction encountered, such as length, place, purpose, and
interactants’ information (age, gender, relationship, acquaintanceship)

Interpersonal
Grid

Event-contingent 4 0 Assessing interpersonal perceptions such as friendliness and dominance of self and others
in a conversation

[73]

Affect Grid Arbitrary 2 0 Assessing how you act (pleasant or unpleasant) and how you feel (sleepy or aroused) [65]
Emotion
Regulation

Event-contingent 2 0 Assessing the abilities to suppress and reappraise emotions during the conversation [74]

Interaction
Reflections

Event-contingent 7 2 Assessing empathy (understanding others’ feelings) and the ability to measure cost/
benefit from the conversation

State Emotions Event-contingent 5 0 Assessing current emotions, i.e. anger, sadness, pride, shame, and happiness

, and , each of which is a
binary attribute. Hence, if the original value is Monday, then the
sub-attribute would be 1, while the other sub-attributes become
0.

3.2.2. Heterogeneous data frequencies
As mentioned in Section 3.1, different attributes are collected at

different temporal cadences (i.e. once, pre-burst, post-burst, daily,

and event-contingent). While the values of each attribute must be
available every day (since it is assumed that a time unit = one day), all
attributes must be converted to daily attributes.

Since some attributes may be collected less or more than once
a day, these attributes must be normalized so that their values are
available on a daily basis. For attributes whose values are collected
less than daily (i.e. once, pre-burst, and post-burst), their values are
replicated on subsequent days, where applicable. For example, the
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pre-burst data is replicated on each day of the following data collec-
tion period, and the post-burst data is replicated on each day of the
next data collection burst. For attributes whose values are collected
more than once a day, their values corresponding to the same day are
aggregated (by summation if numeric, and median or mode if nomi-
nal). These aggregated values are then used to represent daily values
of the corresponding non-daily attributes.

3.2.3. Missing values
Participants are not forced to answer the questions. Hence, it is in-

evitable that some or all questions on particular days may be left unan-
swered, resulting in missing values. As some forecasting techniques
cannot handle missing values, they must be dealt with before further
processing.

While multiple schemes have been used to deal with missing at-
tribute values including using the default values (i.e., 0) and com-
pletely discarding the instances containing missing values [76], a
number of works in computational psychology have used interpolation
to deal with missing values [77,78]. Hence, in this work, the missing
values are cubic spline interpolated using the data available from the
same participant. We use Apache Commons Math2 implementation
which implements the cubic spline interpolation algorithm described
in [79]. If there is not enough data to interpolate the missing values,
then they are set to default values. Note that a nominal attribute is con-
verted to a series of numeric attributes before this step; hence, their
missing values can be interpolated.

3.2.4. Discontinuous data
The data corresponding to a participant is divided into three bursts,

resulting in three discontinuous chunks of multivariate time series
data. Since the forecasting models considered in this paper do not have
ensemble capability (where multiple learners, each of which may learn
each chunk of data, then make an ensemble prediction), these chunks
of data need to be appropriately concatenated to produce a smooth sin-
gle multivariate time series for each participant.

The sequence of days of week is preserved to allow the predic-
tion models to take weekly activities into account. For example, some
learners are able to predict that the set of situations that happen on a
Friday would likely happen again on the next Friday. For each par-
ticipant, the bursts of data are concatenated while preserving the se-
quence of the days of week. For example, if the first burst of data col-
lection ends on Friday, while the beginning day of the second burst
is Wednesday, then the last three days of the data of the first burst
(i.e., Wednesday, Thursday, and Friday) are discarded. Note that, we
choose to discard such data, rather than interpolate the gap, to mini-
mize the use of synthetic data.

3.3. Feature space modification

The proposed machine learning based multivariate time series fore-
casting methodology in this work relies on the use of base machine
learning regressors to train on the history of multi-variate time series
data. However, traditional machine learners treat an instance (daily
data) independently, which makes sense since most types of data
points in traditional machine learning literature are assumed to be in-
dependent (e.g., images, documents, emails, etc.). However, in this
work, each data point represents a snapshot of attribute values of a
participant collected on each day, which can be dependent on the val-
ues of prior days, in terms of both seasonality and activity decay/
growth. An example of seasonality would be that a participant may
habitually drink heavily on Fridays, moderately on weekends, and not

2 http://commons.apache.org/proper/commons-math/.

at all on the other week days. Hence, if such a participant happens to
drink heavily on a work day, then the learner should be skeptical about
possible mental anomalies. An example of activity decay would be the
level of fever which can reduce in its magnitude in subsequent days.
An example of activity growth would be the accumulative stress from
final exams, which tends to gradually increase as the final exam week
draws near.

In order to take the seasonality and activity decay/growth into ac-
count, an instance of data must incorporate the temporal relationship
between the data point at a given day and the data points of the previ-
ous days. The number of previous days that a data point is relating to
is referred to as lag. Equivalently, the th data point with lag l is the
data point representing the set of attributes whose values are collected
at the th day, along with the previous l days. A data point with lag 0
only represents current (today’s) values of attributes.

Here, the time-delay embedding algorithm is applied to the feature
space by expanding the slots for previous data associated with the par-
ticipant . Mathematically, let the instance represents the data
snapshot of the th day:

Then the time-delay embedded version of such an instance with
lag = , is defined as:

For each attribute , the feature space also includes its previous l
values.

For example, Table 2 illustrates an example of a participant’s par-
tial daily data during a period of seven days. Each data point has four
attributes (m = 4). The snapshot that represents the 5th day of the data
is then mathematically expressed as:

After applying the time-delay embedding algorithm with the lag of
three days (l = 3), the above data point would incorporate the values
of the previous three days, thus becoming:

Table 2
Example of a participant’s partial data, collected during a 7-day period. SLPHRS_d de-
notes the number of hours of last night’s sleep. MILEX_d denotes the number of to-
day’s mild exercises. EATS_d denotes how many times the participant eats snacks to-
day. DrinkTOT_d denotes the total number of drinks the participant consumes today.

Day SLPHRS_d MILEX_d EATS_d DrinkTOT_d

1 7 5 3 1
2 7 8 5 1
3 8 2 4 4
4 8 0 4 3
5 6 2 5 3
6 6 4 4 2
7 6 3 5 1

(3)

(4)
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where is a vector that represents the participant’s 5th day of
data along with his/her previous three days’ data. Once the feature
space is modified according to the rules above, a regressor can then
learn and predict using the conventional machine learning regression
methodology.

3.4. Objective 1: Model selection

In this work, we present a machine learning based forecasting
methodology for multivariate time series data. We claim that such
methodology is built upon machine learning algorithms, some of
which are known to handle high dimensionality and non-linear rela-
tionships quite effectively [11]. In this paper, such claims are tested by
comparing the forecasting efficacy of our proposed methods with the
traditional VARX model.

Many time series forecasting techniques have been proposed for a
wide range of forecasting problems. In this paper, 10 time series fore-
casting models are considered, including a variant of traditional vector
autoregression (VARX) and multiple machine learning based regres-
sion techniques from different families such as function based, tree
based, and lazy learning based methods. These models are listed in
Table 3, along with their references. Note that, though Random For-
est (RF) was originally designed for classification problems, here, the
range of the class variable is discretized so that such an algorithm can
be adopted for regression problems [93].

The objective is carried out in two stages: partial and comprehen-
sive. In the partial stage, all forecasting models listed in Table 3 are
trained with partial, dimension reduced data, and tested against each
other. Participants with incomplete (missing) information are disre-
garded, and the remaining data is projected onto a lower dimension
space (i.e. 10 dimensions) using the Principal Component Analysis al-
gorithm [94]. Note that preprocessing the data with dimensional re-
duction techniques could eliminate necessary information that could
have been captured by the time series models; however, in this stage,
the dimension of the data is reduced to allow fair comparison between
the VARX model and the machine learning based models. In partic-
ular, this dimension reduction is carried out because the VARX tech-
nique cannot handle data with large dimension.3 Only complete data is
chosen to ensure that the models are not tested on their ability to han-
dle missing values. The goal of the partial stage is to identify the best
forecasting models, in terms of prediction accuracy, applicable with
the dataset used in this paper.

The comprehensive stage selects top forecasting models from the
partial stage, then runs them on full data, with missing values and
complete dimensionality. The goal of this stage is to find the best
model for each target attribute, and for analysis of the results in the
Objective 2.

3 In our experiments, Matlab would hang or throw error messages when VARX is
used to model more than 10 attributes of data.

Table 3
List of forecasting models considered, along with their references.

Acronym Model name Algorithm type

VARX Vector Autoregression [22] Regression
SVMR Support Vector Machines for Regression

[80,81]
Machine Learning: Function
Based

SLR Simple Linear Regression [82] Machine Learning:
Regression Based

RF Regression by Discretization using
Random Forest [83,84]

Machine Learning: Tree
Based

RBFN Radial Basis Function Networks for
Regression [85]

Machine Learning: Function
Based

MPR Multi-layer Perceptron for Regression
[86]

Machine Learning: Function
Based

M5P M5 Model Tree with Continuous Class
Learner [87,88]

Machine Learning: Tree
Based

LWL Locally Weighted Learning [89,90] Machine Learning: Lazy
Learning Based

LR Linear Regression [82] Machine Learning: Function
Based

IBK K-nearest Neighbors [91] Machine Learning: Lazy
Learning Based

GPR Gaussian Processes for Regression [92] Machine Learning: Function
Based

3.5. Objective 2: Predicting latent attributes

This paper investigates the potential to generate a personalized
forecaster that predicts the latent attributes (i.e., feelings and mental
statuses that constitute a mental state) for each individual with only
observable information. These latent attributes are difficult to quantify
merely via external observation; hence, the ability to infer and forecast
them could prove to be valuable in multiple computational psychol-
ogy-related applications. The best forecaster from the Objective 1 is
selected for the analysis in this objective. We prepare three types of
training data: observable only (O), latent only (U), and both (OU). The
forecaster is trained with each of these source types, then the forecast-
ing performance of the select latent attributes is compared. We first
investigate the impact of different data sources on the forecasting per-
formance. Then, the lag parameter is varied to study what would be
the appropriate amount of the history of data that the learner should
keep track of.

4. Case study

For each participant , and each target attribute , a forecasting
model is trained with the history of data of for the lag l days to pre-
dict the value of on the next h days in the future. The history of is
treated as an external variable. That is, it is not included in the training
data and its historical data is not used. Target attributes are made ex-
ternal variables because it is an assumption in this work that these at-
tributes are not easily quantified through simple external observation.
Hence, the ability to estimate these latent attributes accurately would
be more valuable than simply predicting other observable attributes.

4.1. Ground truth validation data

The ground-truth validation data was drawn from the Intraindi-
vidual Study of Affect, Health, and Interpersonal Behavior [75]. The
data collection campaign was conducted with 150 participants from
the Pennsylvania State University community, ages range from 18
to 90 years (mean = 47.10, standard deviation = 18.76). 51% of the
participants are women, and 49% are men. 91% are Caucasian, 4%
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African American, 1% Asian American, 2% Other, 2% mixed (Asian,
Hispanic/Latino, or American Indian + Caucasian), with 93% self-re-
porting as heterosexual, 6% Bisexual/Gay/Lesbian, and 1% declining
to answer. Participants had, on average, 1.5 children (standard devia-
tion 1.41, min 0, max 6).

The data was collected in three bursts, each of which lasted for
21 days. On average, there was a 4.5 month break between the first
and second bursts, and 3.5 month break between the second and third
bursts. Each participant was required to participate in a pre-burst as-
sessment and training session that provided an overview of the pro-
ject and instructions to use the mobile app to respond to the ques-
tionnaires. Furthermore, each participant was also required to partici-
pate in a post-burst assessment session where they completed another
set of questionnaires. Fig. 2 illustrates the three bursts of data collec-
tion process. Table 4 breaks down the numbers of attributes from the
dataset collected at different temporal cadences, classified by their ob-
servability. For further details about the data acquisition procedure,
please refer to the iSAHIB project [75].

As an example of the collected attributes, Fig. 3 plots the ranges
of the Positive Affect ( ) attribute against ages of all the
150 participants (without temporal relations). Each line/color is corre-
sponding to a participant. There are roughly 60 dots in each line, each
of which represents the positive affect level measured in a day. Each
attribute leads to a new dimension in the time series data for each par-
ticipant. From Fig. 3, the majority of the participants have the ages
around 45–60. Each participant also has a wide fluctuation of the pos-
itive affect levels during the data collection, urging a natural curiosity
to investigate further into the temporal relationship across different at-
tributes to explain such phenomena.

4.2. Selected target attributes

Table 5 lists the six target attributes used as test cases in this re-
search. These attributes are all latent attributes that are commonly used
in psychological studies (see references in Table 1). These 6 attrib-
utes are chosen as representative target attributes, that represent dif-
ferent aspects of a participant’s mental state. Note that if a composite
attribute is chosen as the target attribute, then all the sub (raw) attrib-
utes used to produce it are not taken into the feature space to avoid the
causality and dependency biases.

4.3. Implementation

Listed below are the major implementations by the authors of this
paper during this paper (using Java as the main programming lan-
guage):

1. Data import, cleaning, pre-processing, and conversion to the com-
patible multivariate time series data structure.

2. The time-delay embedding algorithm that flattens multi-variate
time series data onto a delay dependent feature space, with control
parameter lag (l).

3. A wrapper that enables each base learner to incrementally learn
new instances without having to retrain the whole model from
scratch. This is useful when conducting the leave-one-out sliding
evaluation protocol in which the current validation data is fed back
to the forecaster’s training data to make the next prediction, until
no ground truth data is available.

4. Experimental framework, including batch commands, result log-
ging, and computation of evaluation statistics.

The experiments in this paper use the Matlab implementation of
the VARX model,4 and Weka’s implementation of all other base ma-
chine learning classification and regression algorithms.5 Note that,
though Weka,6 a software package that implements a collection of ma-
chine learning algorithms, also offers a forecasting package, such a
package would not facilitate our study for the following reasons:

1. If the user wants to model the dependency among multiple attrib-
utes, these attributes must be set as target attributes. The tool would
then generate a multivariate model for each target attribute. In our
setting that involves modeling hundreds of attributes, it would be
computationally expensive to generate a model for each of them.

2. The tool does not offer leave-one-out sliding evaluation protocol.
Though the user could set apart a certain portion of the training
data for testing, the tool does not feed some of already-tested data
to the training data. In our evaluations, we would like to feed
the already-tested data back to the training data to predict further
not-yet-tested values to see whether the error could be reduced by
having more training data.
For these reasons, it was more efficient to implement our own mul-

tivariate time series framework for flexibility and future development
purposes. The source code will be made available to others for re-
search purposes (upon request).

4.4. Forecasting evaluation protocol

Leave-one-out sliding evaluation protocol is used to validate the
forecasting models. Such an evaluation protocol is widely used to
evaluate time series forecasting models in previous literature [95]. For
each participant , each target attribute , lag l, and a given day i, the
personalized forecasting model learns the history of the data from day

to , then makes the prediction for the target value of the next
h days. In the experiment, the predictions are made for each of the 150
individuals’ most recent 14 values in the time series (roughly the latter
half of the data in the 3rd burst), then the statistics of the predictions
corresponding to all the individual participants are averaged.

4.5. Forecasting evaluation metrics

Five metrics are used to compare and quantify the forecastability
of each model, including directional accuracy (DAC), mean average
error (MAE), mean average percentage error (MAPE), mean square
error (MSE), and root mean square error (RMSE). Such metrics have
been successfully used to measure forecastability in multiple forecast-
ing-related works [96,97].

4.6. Objective 1: Model selection

This section reports the results from comparing multiple forecast-
ing models in order to select the best one for further experiments.

4.6.1. Stage 1: Partial comparison
The analysis of three chosen attributes are shown (in Table 6).

Note that the training times are not reported because the objective of
the partial comparison focuses on the prediction accuracy of the mod-
els, rather than the efficiency in terms of running time. Each regres

4 http://www.mathworks.com/help/econ/vgxvarx.html.
5 http://www.cs.waikato.ac.nz/ml/weka/.
6 http://www.cs.waikato.ac.nz/ml/weka/.
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Fig. 2. Illustration of the three bursts during which the data was collected.

Table 4
Data associated with different attributes are collected at different frequencies.

Attribute type Frequency

Once Pre-burst Post-burst Daily Arbitrary

Observable 43 50 50 55 50
Unobservable 0 102 102 60 24

sor is trained with dimension-reduced data using the Principal Com-
ponent Analysis technique. It is apparent that the performance of ma-
chine learning based methods (especially Random Forest) outperform
the baseline VARX model on all the three chosen attributes. It is inter-
esting to see that the traditional VARX method that has been widely
used for multivariate time series forecasting performs worse than the
machine learning based algorithms. This could be not only because the
data has more dimensions than the VARX model can effectively han-
dle, but also because the relationship between the attributes may not
be linear.

4.6.2. Stage 2: Comprehensive comparison
In this section, the top eight regressors are chosen to test on the full

data, without dimensionality reduction.
Table 7 lists the forecasting performance of top forecasting mod-

els from Stage 1, on the six select attributes. Italic/bold figures are
the best (lowest error, highest directional accuracy) evaluation scores
among all the forecasting models. It is evident that Random Forest
forecasters yield the lowest error (as measured by MAE, MAPE, MSE,
and RMSE). This finding is also consistent with results from Stage
1, where all the forecasters were trained/tested on dimension reduced,
partial data. Random Forest has been shown successful in many clas-
sification tasks [98–101], due to its ability to deal with unbalanced
data, avoid over-fitting, and automatically select useful features. In
terms of directional accuracy (DAC), Random Forest performs the
best only for the attributes and , while
Radial Basis Function Networks for Regression (RBFN) outperforms
the other on the remaining four target attributes. However, Random
Forest stands the second best in most of such attributes. Also, the DAC
differences between the RBFN and the Random Forest are only mar-
ginal. Hence, in terms of forecasting performance, we believe the fore-
casters implementing the Random Forest algorithm are the most suit-
able ones for our dataset.

It may be the case that good performance comes at the cost of
learning time. Though the training times of Random Forest are not
as large as those of Linear Regression (LR) and Multi-layer Percep-
tron for Regression (MPR), due to not having built-in feature selection
mechanism, they are still quite computationally expensive compared
to other relatively good models, such as RBFN and M5P. This com-
putational resource consumption is due to internal configuration of

the Random Forest, which builds 300 atomic decision trees to make
ensemble decisions. However, since the training process can be done
off-line, we will stick with Random Forest for the analysis in the Ob-
jective 2. In future works, another implementation of Random Forest,
Fast Random Forest,7 which claims to improve upon the implementa-
tion used in this paper (speed is one of the major improvements) could
be explored.

Fig. 4 (Left) shows sample forecasting results of the actual val-
ues of a sample individual on the attribute Satisfaction in Life (

). The forecasting model used here is based on the Ran-
dom Forest algorithm, with the lag of 3 days ( ). The prediction
horizons vary from 0 to 3. Note that means the forecasting
model is predicting today’s value of the target attribute. This particular
example illustrates that the prediction accuracy decreases as the model
predicts the values further ahead in the future. Fig. 4 (Right) shows
the absolute errors calculated from the predictions in the left figure.
It is interesting to note that the absolute error decreases as the model
predicts more recent values. This is because as the forecaster proceeds
to predict the value in the next period, the current values are fed back
to the training data, resulting in incrementally more historical data to
learn from.

4.7. Objective 2: Predicting latent attributes

In this objective, we investigate whether it is possible to predict the
latent attributes (target attributes) using only the observable informa-
tion as training data. First the impact of different training data sources
(i.e. observable only, latent only, and both) is investigated. Then we
study the effect of different lags on the forecasting performance.

4.7.1. Impact of different sources of information
The ability to predict and forecast latent attributes using the infor-

mation from only observable attributes could prove crucial to multi-
ple applications in mental and emotional anomaly detection. For each
participant, a Random Forest forecaster is trained with each of the
three data source modes: observable only (O), latent only (U), and
both (OU). Recall that O-based, U-based, and OU-based forecasters
are trained with only objectively and externally observable informa-
tion, only subjective latent information, and both, respectively. For
each source mode, the lags are varied between 1, 3, 5, and 7. The re-
sults from all the participants and lags are averaged for presentation
and interpretation.

Fig. 5 plots the mean absolute error (MAE) of the prediction at
different horizons on the six selected latent attributes. The forecast-
ers trained with only observable information (blue-circle) perform the

7 https://code.google.com/p/fast-random-forest/.
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Fig. 3. Distribution of the Positive Affect ( ) attribute of the 150 participants. The Y axis marks the level (0–100), and the X axis represents ages in years of the partici-
pants. Each line/color is corresponding to a participant. Each dot represents a daily positive effect level. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Table 5
List of select target attributes along with their references. Refer to Table 1 for the com-
prehensive description of each attribute.

Name Description

CONTROL_d Perceived Control. (Did you have control over the things that
happened to you today?) [61]

NegAffect_d Net affect of negative emotional attributes such as nervousness,
disappointment, boredom, etc. [65–68]

PHYHEALTH_d Perception of physical health
PosAffect_d Net affect of positive emotional attributes such as pride, calm,

happiness, etc. [65–68]
SATHEALTH_d Satisfaction with health [53,54]
SATLIFE_d Satisfaction with life [53,54]

best, as they achieve the lowest absolute error at every horizon for
all the select attributes. Note that since each select latent attribute can
take a value from [0–100], the magnitude of error can be thought of as
percentage error (in the absolute sense). The magnitudes of error vary
across different latent attributes. For instance, the forecasts for the
attribute have the absolute error fluctuating around
[8.5–9], while those of are fluctuating around [6.0–6.1].
Regardless, the errors are considered small and acceptable, suggesting
that observable daily routine and behavior information can constitute
good predictors for mental and emotion states, as evident in our case
study. Surprisingly, the forecasters trained only with latent informa-
tion (magenta-square lines) perform the worst. This suggests that the
mental attributes could be the causal effects of the physical ones, mak-
ing the relationship among latent attributes rather loose. In short, in-
dividuals exist in real contexts. It is interesting to note that the error
magnitudes of the prediction of the forecasters trained with only la-
tent information significantly and constantly decrease as the horizon
increases, despite the intuition that further prediction should be less
accurate. Regardless of which, the magnitudes of errors of these la-
tent-only forecasters are quite large, compared to the observable-only
ones. The forecasters trained with both observable and latent informa-
tion perform somewhere in between. This is reasonable because, while
the observable information is proven most useful, adding the latent
information could taint the learned model, impeding the overall fore-
casting accuracy. Though Random Forest has a built-in feature selec-
tion mechanism, the effect of the addition of this less useful informa-
tion may not be completely eliminated.

Fig. 6 shows the average directional accuracy of the forecasting of
the select six latent attributes. Recall that directional accuracy quan-
tifies the accuracy of the predicted polarity change (i.e., greater or
less than the current value) of a particular attribute. Unlike the perfor-
mance in terms of error magnitudes, where the observable-only fore-
casters all outperform other forecasters, the directional accuracy re

Table 6
Comparison of the forecasting results of the three sample target attributes on the select
forecasting models with lag and forecasting horizon . The models are trained
with partial training data (i.e. using dimension-reduced data with no missing values).
DAC denotes directional accuracy, MAE denotes mean average error, MAPE denotes
mean average percentage error, MSE denotes mean square error, and RMSE denotes root
mean square error.

Target
attribute

Reg.
model DAC MAE

MAPE
(%) MSE RMSE

NegAffect VARX 0.5257 16.5378 28.4516 459.9315 18.2033
SVMR 0.6327 6.3261 15.0258 84.4304 7.8731
SLR 0.6749 6.3707 16.2492 79.7906 7.7339
RF 0.6893 6.0867 16.9891 72.3964 7.4043
RBFN 0.6862 6.6261 17.3026 87.6746 8.0549
MPR 0.6348 8.1201 18.9394 137.1940 10.3114
M5P 0.6646 6.3734 15.1783 80.4128 7.7991
LWL 0.6759 6.5596 15.5309 88.7314 8.1442
LR 0.6512 6.4480 15.2470 80.8905 7.8626
Ibk 0.5874 7.5983 16.5657 118.1801 9.4736
GPR 0.6564 6.1359 15.4226 74.1160 7.4966

PosAffect VARX 0.5535 26.3600 71.0436 1095.0173 30.2500
SVMR 0.6461 6.5107 15.4641 85.3383 8.2210
SLR 0.6667 6.4836 16.5372 79.3142 8.0352
RF 0.6842 5.8792 14.7563 66.5746 7.3716
RBFN 0.6759 6.6577 17.3851 83.5140 8.1976
MPR 0.6235 8.4115 19.6191 144.4885 10.6435
M5P 0.6595 6.3026 15.0097 74.6272 7.8280
LWL 0.6584 6.6242 15.6839 84.2575 8.1982
LR 0.6533 6.3524 15.0209 74.7017 7.8534
IBk 0.5710 7.6001 16.5697 117.0639 9.5517
GPR 0.6615 6.1047 15.3441 72.4103 7.6512

Control VARX 0.5288 29.4296 79.3165 1428.1814 33.4424
SVMR 0.6759 8.6540 20.5549 162.4305 10.8847
SLR 0.6759 8.4926 21.6613 149.1373 10.5181
RF 0.6739 8.0625 20.8032 130.8079 9.9277
RBFN 0.6656 8.8722 23.1677 156.0613 10.8053
MPR 0.6183 11.1605 26.0310 285.8279 14.7689
M5P 0.6718 8.5195 20.2893 150.1819 10.6231
LWL 0.6708 9.0107 21.3344 184.7712 11.4806
LR 0.6749 8.5829 20.2951 152.7628 10.6900
IBk 0.5885 10.0613 21.9355 216.7923 12.6711
GPR 0.6770 8.4783 21.3100 144.5252 10.4939

sults indicate a mixed conclusion. The observable-only forecasters
perform better than others on the attribute , and on-par
with the combined forecasters on the attributes

, and . The di-
rectional accuracy of the observable only forecaster is worst on the
attribute . However, the observable only forecasters per-
form best when used to forecast most of the mental states up to three
days in advance.

In sum, we trained the Random Forest forecaster with three sources
of information: observable only, latent only, and both. The re
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Table 7
Average forecasting results of all the 150 participants using full data ( and
) of forecasting models on the select six attributes. DAC denotes directional accuracy,
MAE denotes mean average error, MAPE denotes mean average percentage error, MSE
denotes mean square error, RMSE denotes root mean square error, and TrainTime de-
notes model training time.

Attribute Model DAC MAE MAPE MSE RMSE

Train
time
(ms)

CONTROL_d LR 0.6132 10.86 25.73 251.82 14.10 2272.28
MPR 0.5936 11.24 26.36 268.82 14.64 2017.06
GPR 0.6368 10.29 23.31 242.02 12.80 27.45
M5P 0.6584 9.27 22.80 178.22 11.82 374.15
RBFN 0.6749 8.47 22.71 145.26 10.40 40.15
J48 0.6492 10.09 27.42 211.61 12.72 127.64
RF 0.6872 8.12 21.56 134.05 10.04 458.31
SMVR 0.6348 10.40 23.49 247.13 12.98 34.27

PHYHEALTH_d LR 0.5730 14.27 40.62 401.74 17.98 4355.01
MPR 0.5710 12.96 38.82 340.00 16.39 2832.36
GPR 0.5905 11.66 36.41 308.97 14.60 26.70
M5P 0.6101 10.77 32.32 249.47 13.75 310.00
RBFN 0.6492 10.44 35.83 261.73 12.81 38.87
J48 0.6142 10.67 34.57 241.46 13.25 103.60
RF 0.6440 9.11 31.22 174.03 11.24 389.56
SMVR 0.5957 11.59 36.36 300.03 14.55 33.53

SATHEALTH_d LR 0.6060 11.14 25.27 268.70 14.12 2873.44
MPR 0.5638 11.35 26.62 273.51 14.17 2816.51
GPR 0.5916 10.15 23.53 260.39 12.55 26.80
M5P 0.6101 9.51 23.33 200.62 11.85 378.33
RBFN 0.6152 9.60 24.28 184.27 11.24 40.54
J48 0.6173 10.42 25.90 226.58 12.84 121.99
RF 0.6286 8.37 20.94 140.32 10.02 451.94
SMVR 0.5936 10.21 23.67 262.68 12.63 33.87

NegAffect_d LR 0.6276 8.22 83.94 139.99 10.40 1840.27
MPR 0.6080 8.32 74.46 138.72 10.51 1862.34
GPR 0.6481 7.72 74.31 176.24 9.74 24.26
M5P 0.6502 6.96 70.73 98.93 8.67 340.22
RBFN 0.6965 6.38 68.68 84.84 7.79 40.31
J48 0.6615 7.30 68.39 108.83 9.07 135.65
RF 0.6883 6.06 65.63 72.38 7.35 504.95
SMVR 0.6440 7.81 75.87 182.38 9.85 32.46

PosAffect_d LR 0.6039 8.95 22.00 169.22 11.42 7912.66
MPR 0.5854 8.88 21.21 148.73 11.05 3642.25
GPR 0.6029 8.02 18.41 166.55 9.96 27.98
M5P 0.6451 7.29 17.19 106.12 9.17 383.06
RBFN 0.6944 6.49 16.62 79.13 7.99 39.32
J48 0.6183 7.68 19.31 111.20 9.52 128.10
RF 0.6883 5.87 14.83 66.12 7.36 509.24
SMVR 0.6008 8.09 18.56 169.12 10.04 36.81

SATLIFE_d LR 0.6163 10.02 26.21 221.13 12.72 2350.12
MPR 0.5751 10.93 25.48 243.56 13.69 2095.35
GPR 0.6327 9.29 23.27 222.05 11.73 28.49
M5P 0.6502 8.51 26.04 156.80 10.83 377.62
RBFN 0.6842 7.91 24.46 129.36 9.73 39.49
J48 0.6461 9.12 25.87 173.91 11.46 139.99
RF 0.6811 7.26 22.09 113.20 9.14 466.79
SMVR 0.6307 9.46 23.49 234.20 11.90 35.24

sults in terms of error magnitudes indicate a singular conclusion that
it is possible to build a predictor for mental states that observe only
physical actions and daily routines. This observable-only predictor not
only yields good prediction results on its own, but its prediction per-
formance (in terms of magnitudes of error) is also even better than the
forecaster trained with both observable and latent information. How-
ever, some of the observable information used in this paper can still be
cumbersome to capture in an automated manner (note that all observ-
able information in the dataset were collected by having the partic-
ipants manually respond to the questionnaires). These observable at-
tributes include number of sleep hours and number of drinks. In the
next immediate step, this observable information would still be in-
put to the forecaster manually either by human observers or the test

subjects themselves, while we continue to investigate the possibility of
obtaining this observable information in an automated, sensor-based
manner.

4.7.2. Impact of different lags
It is often a natural question when implementing a time series fore-

caster: how much history does the forecaster need to take into ac-
count to achieve the optimal forecasting performance? In this section,
the observable-only forecaster, which implements the Random For-
est algorithm, is trained with observable information with different
lags of , and 7 days. Mean absolute error and directional accu-
racy are measured from the average forecasting results of the horizons
0, 1, 2, … , 7. Table 8 lists the results for all the select six attributes.

In terms of mean absolute error, the lag of one day yields the best
performance on and , the lag of five days
on , and , and the lag of
seven days on . Even though there is no single dominant
consensus on the best lag that would yield the minimum error for
all the attributes, the results illustrate that different attributes are de-
pendent on different lengths of past data. For example, the most re-
cent information is already good enough to determine the states of

and , which represent the level of perceived
control over surrounding environments and the level of satisfaction
in life, respectively. While, more information is needed in the case
of , and . In some cases
where the attributes tend to exhibit seasonality (e.g., ) a
lag of one week (7 days) would be the optimal. This particular case of

is quite intuitive since an individual may experience de-
pression-induced events (meetings, homework dues, etc.) on a weekly
basis.

It is, however, interesting to note that the lag of one day yields a
dominant result in terms of directional accuracy. This suggests that
the relational mental states in the next time period can be best pre-
dicted using the information in the most recent time period. The Ran-
dom Forest forecaster yields the directional accuracy of roughly 68%
on average. This means that, it can predict whether a particular mental
attribute will be higher or lower than the current day with the accuracy
of 68%. Though this number is not high enough to implement in the
real system, this is a preliminary investigation that can be built upon.

5. Limitations and potential applications

Although the preliminary results suggest the potential of using
the proposed machine learning based time-series models to develop a
mental state prediction system from temporal, completely observable
information, there is room for improvement that requires further study
and research.

1. Currently, the ground-truth mental state data is collected from stan-
dard self-evaluation reports, which may raise doubts about subjec-
tivity and bias. Hence, future evaluation should include opinions
from psychological domain experts and objective evidence such as
brain signals [102].

2. Though a forecasting model is built for each individual, the under-
lying machine learning algorithms still remain static across the en-
tire population. That is, a forecaster that implements the same ma-
chine learning algorithm is generated for each individual. A variant
of the methodology where the most appropriate machine learning
algorithm is automatically selected for each individual, as part of
the model selection process, could be investigated as future work.
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Fig. 4. (Left) Comparison of example forecasting results by RF with different horizons (i.e. ) against the actual values of the attribute of a participant. (Right)
Comparison of absolute error of each horizon (i.e. ).

3. The data collected from 150 participants may not be sufficient to be
conclusive. Fig. 4 (right) not only shows that prediction error de-
creases as more historical data is available, but also suggests that
more data points and higher frequency of data collection would in-
crease the predictive accuracy.
The ability to identify and forecast one’s mental states could prove

useful not only in psychological applications already mentioned
above, but also in other emergent and commercialization platforms.
Some of the applications that could potentially be built upon this work
include:

1. Tragedy prevention. It is believed that mental anomalies may be
the root causes of many tragedies and incidents [103–105]. For ex-
ample, a recent plane crash was the collateral damage of a suicide
incident committed by a co-pilot who was believed to have men-
tal problems.8 Lim et al. reported that 94.5% of suicidal incidents
in Korea are caused by mental anomalies, especially stress [106].
Such suicides and suicide attempts not only cause sentimental dam-
age to those living, but also impose financial burdens to the society.
Approximately, $34.6 billion a year is spent on combined medical
and work loss costs in the United States.9 In addition to suicidal
behaviors, mental anomalies can cause violence that often results
in fatalities, including homicides. Neustatter described 7 different
motives for murder, all of which involve mental distortion [107]. In
more common scenarios, life changing events or critical incidents
often leave mental strain on one’s mind that results in unhappi-
ness or, in some cases, chronic mental diseases. Future works could
extend our work presented here by allowing the machine learn-
ing forecasters to learn from historical information of the people
who have been diagnosed with such severe mental diseases. The
trained models could then be used to estimate the chances of such
tragedies, and enable appropriate prevention and intervention.

2. Personalized medicine. Although personalized medicine that pro-
vides treatment specific to each individual genome has been im-
plemented [108], psychological practitioners could use our algo-
rithms along with other auxiliary information such as social net-
works [109] to generate a mental profile for each mental patient so
that personalized psychotherapeutic treatment could be designed.

3. Product recommendation. Another dimension of possible appli-
cations would be recommendation systems that suggest products

8 http://www.cnn.com/2015/04/02/europe/france-germanwings-plane-crash-main/
.
9 http://www.cdc.gov/violenceprevention/suicide/consequences.html.

(songs, drinks, movies, etc.) based on users current emotions.
While a number of research works have explored the use of
user-generated content (such as social media, web-blogs, and prod-
uct reviews) to infer customers’ preferences towards particular
products/product features[110–112], limited works have investi-
gated utilizing users’ mental states for such a purpose. Collabora-
tive filtering techniques could be applied to cluster similar users
so that an ensemble learning method could be used to make more
accurate recommendations for each group of users based on their
emotional profiles.

6. Conclusion and future direction

The research reported in this paper illustrates an emotion and men-
tal state prediction framework that uses machine learning algorithms
to analyze a set of psychological multivariate time series data. The
problem is framed as a multivariate time series forecasting problem, in
which multiple forecasting models are compared using standard fore-
casting evaluation protocols. The selected models comprise the tra-
ditional vector autoregression (VARX) and multiple variants of ma-
chine learning based regression algorithms modified for multivariate
time series data. The first set of experiments shows that the Random
Forest based forecaster was best suited for the dataset. In the second
batch of the experiments, it was empirically shown that some of the
latent attributes could be effectively predicted using only the observ-
able information. These results not only provided primary, promising
initial progress towards our ultimate goal, but also pointed out there
is ample of room for improvement. Future research could include col-
lecting more data and investigating automatic methods to collect par-
ticipants’ information (e.g. using Microsoft Kinect10 or a wearable ac-
celerometer to detect movements, and the Apple Health app11 to detect
sleep pattern and other physical information). We could also investi-
gate cases where data is passively sensed by smartphones and sensor
beds. It would also be interesting to see if collaborative filtering tech-
niques could be used to infer the mental state of a target user by learn-
ing auxiliary information from other similar users.
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Fig. 5. Comparison of average mean absolute error (MAE) with error bars showing standard errors, produced by Random Forest forecasters trained with different information sources
(i.e. OU = both observable and latent information, O = only observable information, U = only latent information) at each horizon (days ahead of prediction). Each prediction is an
average of prediction using different lags (i.e. lags = 1, 3, 5, and 7). Each attribute value has a range of .
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Fig. 6. Comparison of directional accuracy (DAC), range between , produced by Random Forest forecaster trained with different information sources (i.e. OU = both observable
and latent information, O = only observable information, U = only latent information) at each horizon (days ahead of prediction). Each prediction is an average of prediction using
different lags (i.e. lags = 1, 3, 5, and 7).

Table 8
Comparison of the forecasting performance between Random Forest forecasters trained with data of different lags (i.e. ) on the select latent attributes. The predictions of
each horizon (i.e. 0–7) are averaged.

Attribute Mean Absolute Error (MAE) Directional Accuracy (DAC)

L1 L3 L5 L7 L1 L3 L5 L7

CONTROL_d 8.04343 8.10174 8.06407 8.09793 0.69186 0.68839 0.68703 0.68645
NegAffect_d 6.05397 6.07227 6.02823 6.00741 0.68670 0.68319 0.68530 0.68313
PHYHEALTH_d 8.80460 8.80975 8.78863 8.81821 0.66009 0.65672 0.65697 0.65696
PosAffect_d 6.07272 6.07991 6.06503 6.09752 0.68090 0.67917 0.67681 0.67753
SATHEALTH_d 8.23313 8.23469 8.19631 8.21561 0.61994 0.61706 0.61709 0.61722
SATLIFE_d 7.42245 7.43354 7.42356 7.43150 0.68136 0.67634 0.67763 0.67958
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