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Abstract

Objectives: The role of social media as a source of timely and massive information
has become more apparent since the era of Web 2.0. Multiple studies illustrated
the use of information in social media to discover biomedical and health-related
knowledge. Most methods proposed in the literature employ traditional docu-
ment classification techniques that represent a document as a bag of words. These
techniques work well when documents are rich in text and conform to standard
English; however, they are not optimal for social media data where sparsity and
noise are norms. This paper aims to address the limitations posed by the traditional
bag-of-word based methods and propose to use heterogeneous features in combi-
nation with ensemble machine learning techniques to discover health-related in-
formation, which could prove to be useful to multiple biomedical applications,
especially those needing to discover health-related knowledge in large scale so-
cial media data. Furthermore, the proposed methodology could be generalized to
discover different types of information in various kinds of textual data.
Methodology: Social media data is characterized by an abundance of short social-
oriented messages that do not conform to standard languages, both grammatically
and syntactically. The problem of discovering health-related knowledge in social
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media data streams is then transformed into a text classification problem, where
a text is identified as positive if it is health-related and negative otherwise. We
first identify the limitations of the traditional methods which train machines with
N-Gram word features, then propose to overcome such limitations by utilizing
the collaboration of machine learning based classifiers, each of which is trained
to learn a semantically different aspect of the data. The parameter analysis for
tuning each classifier is also reported.
Data Sets: Three data sets are used in this research. The first data set comprises
of approximately 5,000 hand-labelled tweets, and is used for cross validation of
the classification models in the small scale experiment, and for training the clas-
sifiers in the real-world large scale experiment. The second data set is a random
sample of real-world Twitter data in the US. The third data set is a random sample
of real-world Facebook Timeline posts.
Evaluations: Two sets of evaluations are conducted to investigate the proposed
model’s ability to discover health-related information in the social media domain:
small scale and large scale evaluations. The small scale evaluation employs 10-
fold cross validation on the labelled data, and aims to tune parameters of the pro-
posed models, and to compare with the stage-of-the-art method. The large scale
evaluation tests the trained classification models on the native, real-world data
sets, and is needed to verify the ability of the proposed model to handle the mas-
sive heterogeneity in real-world social media.
Findings: The small scale experiment reveals that the proposed method is able
to mitigate the limitations in the well established techniques existing in the liter-
ature, resulting in performance improvement of 18.61% (F-measure). The large
scale experiment further reveals that the baseline fails to perform well on larger
data with higher degrees of heterogeneity, while the proposed method is able to
yield reasonably good performance and outperform the baseline by 46.62% (F-
Measure) on average.

Keywords: Social Media, Machine Learning, Classification

1. Introduction

Social media such as Twitter and Facebook are increasingly being used as
tools for real-time knowledge discovery relating to social events, emerging threats,
epidemics, and even product trends [1, 2]. For example, real time analysis of
Twitter users’ tweet content can be or is being used to detect earthquakes and

2



Type Abbr. Descrip�on

MNB Mul�nomial NaiveBayes

NB Bernoulli NaiveBayes

RF Random Forest

RIPPER Repeated Incremental Pruning to Produce Error 

Reduc�on

SVM Support Vector Machine

clean Whether to remove punctua�on and stopwords, 

and stem the message

N Max number of consecu�ve terms to form grams

stem Stemming (whether to apply Porter’s stemming 

algorithm to the message)

vocab Vocabularies

W Weigh�ng schemes (Binary, Frequency, TFIDF)

Z Number of topics 

C Maximum number of terms in a compound

MS Mul� Staging

RevMS Reverse Mul� Staging

VOTE Majority Vo�ng

WPA Weighted Probability Averaging

CB Combined Features

DC Dic�onary Based Compound Features 

NG N-Gram Features

ST Sen�ment Features

TD Topic Distribu�on Features

Classifica�on

Algorithm

Feature

Extrac�on

Parameter

Ensemble

Technique

Feature

Type

Table 1: List of Abbreviations.

provide warnings [3], to identify needs (e.g., medical emergencies, food and water
shortages) during recovery from natural disasters such as the Haiti Earthquake [4],
track emergence of specific syndromic characteristics of influenza-like illness [5],
and collect epidemic-related tweets [6].

The role of social media in biomedical domain has become significant in re-
cent years [7, 8, 9, 10, 11, 12, 13]. Researchers and physicians have utilized social
media data to 1) communicate and share information between patients and health
care decision makers and 2) develop large scale, dynamic disease surveillance
systems and 3) mining biomedical and health-related information.

An immediate and direct use of social media in the biomedical domain is a
means for patients and professionals to communicate and exchange information.
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Web 2.0 along with ubiquitous mobile computing devices allows individuals to
dynamically and seamlessly interact with each other in real time, regardless of
their locations. PatientsLikeMe1 is a social network for patients that improves
lives and a real-time research platform that advances medicine. On Patients-
LikeMe’s network, patients connect with others who have the same disease or
condition, allowing them to track and share their own experiences. Eijk et al. il-
lustrated the use of Online Health Communities (OHCs) for ParkinsonNet2, a so-
cial network for Parkinson disease patients whose participants (both patients and
professionals) use various types of OHCs to deliver patient-centered care [14].
Additionally, Twitter, Facebook, and other social blogging services provide con-
duits for patients and medical practitioners to collaborate, exchange, and dissem-
inate information through official broadcasting channels/webpages or discussion
groups[12, 10, 13, 11, 15].

Most popular social media providers such as Twitter and Facebook allow their
posts to be geo-located. These properties provide researchers in the healthcare
community the ability to monitor the medical related emergences. Culotta pro-
posed a methodology to study the predictability of Twitter data on future influenza
rates [16]. A correlation of 95% was observed between the tweets containing the
flu keywords and the actual national health statistics. A similar study was con-
ducted by Corley et al. who found a high correlation between the frequency of
the tweets (weekly) containing influenza keywords and the CDC3 influenza-like-
illness surveillance data [17]. Bodnar et al. compared different regression-based
models for disease detection using Twitter, and discovered that the SVM regres-
sion model gave the best correlation with the actual CDC disease report [18].
Heaivilin et al. introduced Twitter as a potential source for dental surveillance
and research [19]. The findings suggest that people who experience dental pain
usually turn to social network to seek comfort and advice from others who also
suffer from dental pain. In all such applications, systems are needed to automat-
ically, accurately, and efficiently identify and interpret health-related content in
short text “micro” messages.

Even though social media is high in noise due to the heterogeneity of the writ-
ing styles, formality, and creativity, such noise also bears undiscovered wisdom
of the crowd, and hence should not be regarded as a threat, but an opportunity for

1http://www.patientslikeme.com/
2http://www.parkinsonnet.info/
3http://www.cdc.gov/flu/
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discovering knowledge that can be useful in biomedical domains. Indeed litera-
ture illustrates rich research in mining biomedical and health related knowledge
in social media. Paul and Dredze utilized a modified Latent Dirichlet Alloca-
tion [20] model to identify 15 ailments along with descriptions and symptoms
in Twitter data [21, 22]. Cameron et al. proposed a web platform PREDOSE
(PREscription Drug abuse Online Surveillance and Epidemiology), which aims
to facilitate research in prescription-related drug abuse practices using social me-
dia [23]. Greene et al. studied the quality of communication of the content in
Facebook communities dedicated to diabetes. They classified each Facebook post
into one of the 5 categories: Advertisements, Providing Information, Request-
ing Information, Support, and Irrelevant, and found that roughly two third of the
information is about sharing diabetes management strategies [15]. Yang et al.
proposed a method utilizing association mining and Proportional Reporting Ra-
tios to discover the relationship between drugs and averse reactions from the user
contributed content in social media [24].

This paper presents a novel machine learning based methodology that com-
bines multi-aspect learners to make collective decisions in order to discover health-
related information in the heterogeneous pool of social media. Such a system
could prove useful to multiple biomedical research and applications aiming to em-
ploy the power of large-scale, realtime social media. Social media posts/comments
are usually represented as short textual expressions. We formulate the problem as
a text classification problem, where the objective is to correctly classify health-
related content, given a large, dynamic stream of data. A message is said to be
health-related if at least one of these two following conditions is met:

• The message indicates its author has health issues; e.g. Fever, back pain,
headache... ugh!

• The message talks about someone else getting sick, or expresses health con-
cern; e.g. I completely understand, more than anyone! Try a warm bath too.
That always helped me w/ Pauly. & drinking water.

The health-related content-identification problem is transformed into the health-
related short text classification, where a system is given a short text message and
asked to determine whether it is health-related or not. Studies [25, 26, 27] show
that traditional text classification approaches which represent a document as a
“bag of words” are not well suited for processing short texts, as they do not pro-
vide sufficient word co-occurrence or shared semantics for effective similarity
measures. Specifically, traditional techniques such as N-gram feature extraction

5



limit the ability to recognize high-discriminative terms that include health-related
keywords and/or obtain meaning from the topical semantics of the entire text. We
propose and test the efficacy of ensemble methods wherein multiple base classi-
fiers that learn different aspects of the data are used together to make collective
decisions in order to enhance performance of health-related message classifica-
tion.

In an effort to mitigate the limitations of existing health-related text mining
methodologies, this work:

1. Proposes to use 5 heterogeneous feature types which represent different as-
pects of semantics for identification of health-related messages in social me-
dia. Parameter sensitivity is studied to find the best parameter configuration
and base classifier for each feature type.

2. Explores the use of different ensemble methods that allow base classifiers
trained with different feature types to make collective decisions.

3. Validates the proposed classification algorithms using empirical evaluation.
Additionally, we strengthen the reasons for choosing the proposed features
by showing how each feature type impacts the classification.

4. Evaluates the proposed classification algorithms on large scale, real world
datasets, and shows that our proposed solutions do not only perform well on
real-world data, but also generalize across multiple domains of social media
with minimum assumption on the specific social media characteristics.

The rest of the paper is organized as follows. Section 2 provides background
of the related works. Section 3 explains the characteristics of the dataset we use
in our experiments. Section 4 discusses our proposed methods, including feature
extraction along with analysis on parameter sensitivity and ensemble techniques
in detail. Section 5 describes the evaluation of our proposed methods against the
baseline on both small labelled data and large scale datasets. Section 6 concludes
the paper.

2. Related Works

The literature on text classification is extensive, hence we only discuss works
closely related to ours.

2.1. Automatic Identification of Health-related Information
Two approaches have been widely used to identify health-related content:

keyword based and learning based methods. The former requires a dictionary
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containing the relevant words. A message is identified as relevant if it contains
one or more keywords. Ginsberg et al. demonstrated that a regression model of
influenza-like illness can be estimated using the proportion of flu-related Google
search queries over the same period. They classified the query logs by detect-
ing the presence of flu-related keywords [28]. Their method was implemented
in Google Flu Trends4, a Google based service providing almost real-time esti-
mates of flu activity for a number of countries around the world. Culotta claimed
that Twitter data yielded better prediction on the actual flu rates than query logs,
and proposed a methodology to correlate the quantity of flu-related tweets, iden-
tified by flu-related keyword detection, with the actual influenza-like-illness rates
[29]. Corley et al. did a similar study on web blogs [17]. They identified flu-
related blog posts using keywords influenza and flu. Yang et al. proposed to use
association mining and the Proportional Reporting Ratios the mine relationship
between drugs and their averse reactions in social media, which basically employ
the co-occurrence frequency of the drug names and averse reactions [24]. They
identified content containing the averse drug reactions by detecting the presence
of the health-care keywords generated by applying Consumer Health Vocabulary
(CHV) [30]. The keyword matching based approaches are simple to implement
and do not consume much computing resources; however, such approaches do not
only fail to capture keywords unknown to the dictionary, they also fail to deal with
polysemy words.

Other widely used approaches transform identification problems into classifi-
cation problems and utilize machine learning based classifiers to classify the data
into classes. Traditional machine learning based approaches for text classification
first trains a learner with a collection of labelled documents, then uses the trained
learner to classify unlabelled documents. Learning based approaches solve the
term disambiguation problems posed by the keyword matching approaches as they
are able to learn some level of semantics of specific words from the surrounding
contexts in which they appear. Collier and Doan proposed an algorithm for de-
tecting disease-related tweets [5]. Specifically, the algorithm categorizes a tweet
into musculoskeletal, respiratory, gastrointestinal, hemorrhagic, dermatological,
or neurological related ailment. Their algorithm first 1) filters tweets that con-
tain syndromic keywords defined in the BioCaster public health ontology [31],
and then 2) classifies the filtered messages into one of the six predefined ailments
using binary uni-grams as features. Their problem is similar to ours, except that

4http://www.google.org/flutrends
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they aim to identify tweets corresponding to specific ailments; while we address
a broader range of messages related to health issues. For example, ‘having
a slight headache.’ would not fall into any ailment categories in their
proposed methodology as the message only describes a general symptom (i.e.
headache). In our work, we aim to capture such messages as well since a large
collective knowledge of small-signal messages could reveal significant insights
into the emerging trends [2]. Aramaki et al. proposed to use a Support Vector
Machine based classifier to detect flu-related tweets [32]. The machine is trained
with unigrams collected within the same proximity of the flu-related keywords.
Paul and Dredze address the same problem as ours and propose a machine learn-
ing based classification algorithm used for identifying health-related tweets [21].
Uni-gram, bi-gram, and tri-gram binary word features are used to train a linear
kernel SVM classifier. They further use the collected tweets to mine public health
information using a LDA-like technique [22]. The parameters of the classifier
are then tuned to obtain 90.04% precision and 32.0% recall, since classifiers with
higher precision are preferred in their task which is to collect high quality health-
related tweets. Besides using traditional binary N-gram features to train the clas-
sifier, which we point out later not to be sufficient and accurate enough for social
media settings, their classification model was built and tuned on a small dataset
of roughly 5 thousands Twitter messages. Our large scale experiments (see Sec-
tion 5.7) reveal that their method does not adopt very well when being used on
real-world, highly diversified data. Even though literature showed that N-gram
features are sufficient for text classification tasks, such features fall short when
dealing with document in social media domain.

2.2. Short Message Classification
The major differences between a short message or “microtext”, and a tradi-

tional document includes the length and the formality of language. Classification
algorithms that work for traditional documents may not succeed in the microtext
domain due to the lower dimension and higher noise characterizing the data. This
subsection explores literature on short text classification in addition to Section
2.1. Sriram et al. point out the limitation of bag-of-word strategies for tweet
classification, and propose 8F features, which primarily capture the information
about authors and reply-to users [33]. While authorship is proved to be a potential
source of information, our dataset (see Section 3) does not have such information
available. Caragea et al. propose the system EMERSE for classifying and aggre-
gating tweets and text messages about the Haiti earthquake disaster [4]. They train
a SVM classifier with the combination of 4 feature sets: uni-grams, uni-grams
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with Relief feature selection [34], abstractions [35], and topic words generated
by LDA [20]. Since the first 2 feature sets are N-gram based, they encounter sim-
ilar limitations as our baseline. The other two feature sets are based on groups of
terms, and would partially solve the disambiguation problem, but not the keyword
recognition problem.

3. Datasets

3 datasets are used in the experiments: a small Twitter dataset (TwitterA),
a large Twitter dataset (TwitterB), and a large Facebook dataset. TwitterA is a
labelled, almost balanced dataset and is mainly used to experiment and tuning the
configurations of the classifiers. The other large datasets have natural distribution
of the health-related messages, and are used to test the ability to generalize to real
world, large scale data of the proposed methods.

3.1. TwitterA Dataset
For consistency and scientific comparison, we use the same dataset as [21]

which consists of 5,128 manually labeled tweets. This dataset is used for the
small scale experiments employing the 10 fold cross validation protocol, and for
training classifiers for the large scale experiments. Since we want to minimize
the assumption about the properties of social text, all hashtags, retweets and user
information are removed and only textual content is kept. Future steps of our re-
search involve expanding the data sources to include other kinds of social media
(such as Facebook, Google+, blogs, etc.), which may not have hashtags and other
Twitter-like features, thus we focus on common features (such as textual infor-
mation and timestamps) to develop a generic algorithm. Each tweet is a tuple
of tweet ID and its textual content, and is labelled as either positive or negative.
A message is positive if it is health related, and negative otherwise. The dataset
contains 1,832 (35.73%) positive and 3,296 (64.27%) negative instances.

We note that although the size of the dataset may not completely capture the
noise and lexical diversity presented in social media, the hundreds of millions
tweets generated each day constrain the viability of established ground truth data
of substantial proportion. Examining the literature, comparable or smaller sizes of
manually labeled tweets are often used to validate the models proposed in many
reputable and high-impact works such as [3, 33, 36, 37]. Moreover, the dataset has
much higher distribution of positive samples than real-world data (i.e. 35.73% vs.
1.34% in real-world Twitter data, see Section 3.2). This would allow the classifiers
to learn more information about the positive class, which is of interest here.
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3.2. TwitterB Dataset
The TwitterB dataset comprises roughly 700 million public tweets in the United

States during the period of 18 months from April 2011 to September 2012. These
tweets were collected at random, hence representing a pseudo-uniform distribu-
tion of the overall tweets without biases to any topics. Only the tweet ID, time
stamp, and textual information of each tweet are extracted. The extracted in-
formation is stored in compressed text files, yielding the total size of 25GB. A
random sample of 10,000 tweets from this dataset was manually labelled by 5
graduate students. We found 134 (1.34%) health-related messages. Unlike the
TwitterA dataset, the TwitterB dataset has a natural distribution of health-related
messages and is used for the large scale experiment (Sec. 5.7).

3.3. Facebook Dataset
The Facebook dataset comprises 1,348,800 Timeline statuses and 3,541,772

associated comments of 113 participant Facebook users and their friends (a total
of 60,776 Facebook users). Each participant user was asked for permission to col-
lect their and their friends’ Timeline posts. All identification was removed prior to
storage. All the Facebook data will be destroyed upon acceptable progress of our
research. Each Timeline status message and comment is treated as an individual
message, from which the ID, timestamp, and textual information are extracted,
for consistency with the other datasets. The final Facebook data contains roughly
5 millions messages, yielding 155 MB of size. A random sample of 10,000 mes-
sages was manually labelled by 5 graduate students, which reveals 107 (1.07%)
health-related messages. Similar to the TwitterB dataset, this dataset is used for
the large scale experiment (Sec. 5.7).

4. Methodology

Even though Twitter and Facebook data is used to verify our model, the expan-
sion into diverse types of social media such as web blogs and Google+ provides
a broader foundation for public health surveillance. The need to accommodate
heterogeneous types of data means that it is important for us to design a method
that easily generalizes across data sources with different properties.

We propose to combine 5 heterogeneous base classifiers, selected from differ-
ent families of classification algorithms and shown to be state-of-the-art for text
classification, each of which is trained with a different feature type explained in
Section 4.2. For each feature type, 5 base classifiers listed in Section 4.1 are tried
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using 10-fold cross validation with different feature extraction parameter config-
urations. The base classifier and parameter configuration that yield the highest
F-measure is chosen for ensemble experiments outlined in Section 4.3.

4.1. Base Classification Algorithms
On each feature type, we employ 5 classification algorithms drawn from dif-

ferent classification families namely:

Random Forest (RF)[38] is a tree-based ensemble classifier consisting of many
decision trees. Random Forest is known for its resilient embedded feature selec-
tion algorithm, allowing it to feasibly learn from high-dimensional data such as
text data. We use 100 trees for each RF classifier as suggested by [39].

Support Vector Machine (SVM)[40] is a function based classifier built upon
the concept of decision planes that define decision boundaries. In our experiment
we use the linear kernel SVM with C = 1.0. SVM has long been known for supe-
rior performance in text classification with word features [41].

Repeated Incremental Pruning to Produce Error Reduction (RIPPER)[42]
is a rule-based classifier which implements a propositional rule learner. For each
RIPPER classifier, we set the number of folds to 3, and the minimum weight of
instances to 2.0.

Bernoulli NaiveBayes (NB)[43] is a simple probabilistic classifier implement-
ing Bayes’ theorem. NaiveBayes has been shown to perform superior in some
text classification tasks such as spam filtering [44].

Multinomial NaiveBayes (MNB)[45] implements the Naive Bayes algorithm for
multinomially distributed data, and is one of the two classic Naive Bayes vari-
ants used in text classification (where the data is typically represented as word
vector counts). McCallum and Nigamcite [46] found Multinomial NaiveBayes to
perform better than simple NaiveBayes, especially at larger vocabulary sizes.

We use LibSVM5 implementation for SVM, and Weka6 implementation for
the other classifiers.

5http://www.csie.ntu.edu.tw/ cjlin/libsvm/
6http://www.cs.waikato.ac.nz/ml/weka/
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4.2. Feature Sets
This section discusses the extraction of the 5 feature sets representing different

views of the dataset.

4.2.1. N-Gram Features (NG)
N-gram features have been used extensively in text classification to learn word

patterns in the training data. Let a document d be an ordered set of terms. An N-
gram is a sequence of contiguous N terms in d. Here we represent a document
with a union of its uni- to N -grams. Three different weighting schemes are ex-
plored: Binary, Frequency, and TF-IDF. Let S be the set of training documents,
V = ⟨v1, ..., vM⟩ be the vocabulary extracted from S, t be the test document, and
F (t) = ⟨f1, ..., fM⟩ be the feature vector of the test document t. We define the
weighting schemes as follows:

f bin
i =

{
1 if vi ∈ t and vi ∈ V
0 otherwise

ffreq
i = TF (vi, t)

f tfidf
i =

{
TF (vi,t)

Max(TF (w,t):w∈t) · log
|S|

1+|s∈S:vi∈s| if vi ∈ t

0 otherwise

Param. Description Possible Values
clean whether to remove punc-

tuation and lowercase
the message

T,F

stem whether to apply Porter’s
stemming algorithm to
the message

T,F

N Max number of consecu-
tive terms to form grams

1,2,3

W Weighting schemes binary, freq, tfidf

Table 2: Parameters for NG feature extraction

TF (w, d) is the number of occurrences of term w in document d. Since so-
cial media messages do not conform with standard English, we also study how
data cleaning and stemming have effects on the performance. Table 2 lists all the
configuration parameters and their possible values for the NG feature extraction.
Note, the features used in the baseline method proposed by Paul and Dredze [21]
uses the ⟨clean = F, stem = F,N = 3,W = binary⟩ configuration.
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4.2.2. Dictionary Based Compound Features (DC)
As mentioned in Section 2.1, two drawbacks of N-gram features are 1) words

with multiple meanings are treated the same (Ex. cold can be used in both
disease or temperature contexts) and 2) important keywords are treated as nor-
mal words (Ex. Xeroderma pigmentosum is a disease name, but may not
be identified as a discriminative feature by N-Gram approaches since it is a rare
disease and appears in only a few documents). Figueiredo et al. [47] propose
compound features (c-features) for text classification. A compound of C terms is
a group of C terms that occur in the same document. A compound with C = 2 is
a generalized definition of term co-occurrence. Like NG features, we represent a
document with the union of uni- to N -grams.

Compound features address the disambiguation problem, since they can iden-
tify different sets of term used in different scenarios. However, such features
would not be able to address the keyword recognition problem as they cannot
interpret the meaning of each term. Another problem of using full compound fea-
tures is that the feature set can grow very large once all possible compounds are
enumerated.

Param. Description Possible Values
stem whether to apply Porter’s

stemming algorithm to
the message

T,F

vocab Vocabularies used disease, symp-
tom, anatomy,
all

N Max number of consecu-
tive terms to form grams

1,2,3

C Maximum number of
terms in a compound

1,2

W Weighting schemes binary, freq, tfidf

Table 3: Parameters for DC feature extraction

To overcome these challenges, we propose a feature selection strategy for the
compound feature extraction, which we call Dictionary-based Compound features
(DC). Our DC feature extraction algorithm first generates all possible compounds
from a document. Next, a compound that contains at least one term defined in
the dictionary is kept. In our experiment we use 3 vocabularies: disease, symp-
tom, and anatomy. We obtain such vocabularies from the Gemina project 7. The

7http://gemina.igs.umaryland.edu
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disease and symptom vocabularies contain human disease and symptom names
respectively, and are used due to the fact that there is a high chance that authors
of the messages use these terms to identify their own or others’ health conditions
(i.e. ‘I think I’m havin an asthma attack....wtf am I tweeting?’ and ‘feeling better.
still have a bit of a headache though.’). The anatomy vocabulary contains words
used to name physical parts of a human body, and is used because the existence of
body organ words may help disambiguating health-related terms (i.e. ‘i’ll throw
pillows from my couch here...my knees are burning’. In this example, burning can
mean either very hot or painful. The presence of the word knees may help identify
that burning actually has the latter meaning.). Table 3 lists all the configuration
parameters and their possible values.

4.2.3. Topic Distribution Features (TD)
The intuition behind topic modeling is that an author has a set of topics in

mind when writing a document. A topic is defined as a distribution of terms.
The author then chooses a set of terms from the topics to compose the document.
With such assumption, the whole document can be represented using a mixture
of different topics. Topic modeling has also been successfully used to reduce the
dimension of a document (where the number of dimensions is equal to the num-
ber of topics). Topic modeling strategies have also been applied in a variety of
applications such as citation recommendation [48], document annotation [49, 50],
and text classification [4, 51, 52]. We employ the Latent Dirichlet Allocation al-
gorithm for modelling topics in our work. We briefly describe the algorithm here
for quick reference.

Latent Dirichlet Allocation
In text mining, the Latent Dirichlet Allocation (LDA) [20] is a generative model
that allows a document to be represented with a mixture of topics. Past literature
such as [53, 54, 55, 27] demonstrates successful usage of LDA to model topics
from given corpora. The basic intuition of LDA for topic modeling is that an au-
thor has a set of topics in mind when writing a document. A topic is defined as
a distribution of terms. The author then chooses a set of terms from the topics to
compose the document. With such assumption, the whole document can be rep-
resented using a mixture of different topics. LDA serves as a means to trace back
the topics in the author’s mind before the document is written. Mathematically,
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the LDA model is described as follows:

P (wi|d) =
|Z|∑
j=1

P (wi|zi = j) · P (zi = j|d). (1)

P (wi|d) is the probability of term wi being in document d. zi is the latent (hidden)
topic. |Z| is the number of all topics, which needs to be predetermined. P (wi|zi =
j) is the probability of term wi being in topic j. P (zi = j|d) is the probability of
picking a term from topic j in the document d.

Essentially, the aim of LDA model is to find P (z|d), the topic distribution of
document d, with each topic described by the distribution over all terms P (w|z).

After the topics are modeled, we can assign a distribution of topics to a given
document using a technique called inference[56]. A document then can be rep-
resented by a vector of numbers, each of which represents the probability of the
document belonging to a topic:

Infer(d, Z) = ⟨z1, z2, ..., zQ⟩; |Z| = Q, (2)

where Z is a set of topics, d is a document, and zi is a probability of the document
d falling into topic i.

Here we use topic distribution to represent a document. Since a topic is repre-
sented by a group of weighted terms, one can think of a set of topics as a form of
compound features, where the weighted terms in a topic represent the components
in a compound, and hence we hypothesize that using topic distribution as features
can address the term disambiguation problem. For example, the term cold may
be the top terms in two topics; one is temperature-related, and the other sickness-
related.

Param. Description Possible Val-
ues

clean Whether to remove punctua-
tion and stopwords, stem the
message

T,F

Z Number of topics 50, 100, 200,
400, 600, 800,
1000

Table 4: Parameters for TD feature extraction

In our work, we model topics from the training documents using LDA algo-
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rithm implemented in MALLET8, a MAchine Learning for Language Toolkit, with
3,000 maximum iterations and using Gibbs sampling. We obtain the topic distri-
bution for each test document using the inference algorithm proposed by [56].
Table 4 lists all the configuration parameters for TD feature extraction.

4.2.4. Sentiment Features (ST)

Grp Feature Name Description
Phys num diseasewords Number of disease terms

ratio num diseasewords Ratio of disease terms to all terms
num symptomwords Number of symptom terms
ratio num symptomwords Ratio of symptom terms to all terms
num anatomywords Number of anatomy terms
ratio num anatomywords Ratio of anatomy terms to all terms
num healthwords Number of health-related words
ratio num healthwords Ratio of health-related words to all terms

Emo. positive emotion Positive Emotional Level (1-5)
negative emotion Negative Emotion Level (1-5)
num pos emoticons Num positive emoticons, e.g. :), (:])
num neg emoticons Num negative emoticons, e.g. :(, =(

Table 5: Features used in ST feature extraction, divided into two groups: physical and emotional
based.

Our proposed sentiment features can be divided into two groups: physical and
emotional based. The physical based ST features quantify the explicit illness by
measuring frequency of health related keywords in each document. We use the
same sets of vocabularies as in Section 4.2.2 for health-related keywords. The
emotional based features measure the level of positive and negative emotions in
the message, using the SentiStrength algorithm proposed by Thelwall et al. [37].
Table 5 lists all the features.

Our physical based ST features also serve as a dimension reduction of the
DC features (with C = 1). Hence, such features have the potential to address
the keyword recognition problem as they capture the frequency of highly relevant
keywords. We also aim to investigate whether emotional based ST features can
be discriminative as social messages are contaminated with emotions. All the
configuration parameters are listed in Table 6.

8http://mallet.cs.umass.edu/
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Param. Description Possible Values
stem Whether to apply Porter’s

stemming algorithm to
the message

T,F

N Max number of consecu-
tive terms to form grams

1,2,3

type Types of features to in-
clude

physical, emo-
tional, both

Table 6: Parameters for ST feature extraction

4.2.5. Combined Features (CB)
Having a classifier that learns all the aspects of the data may be helpful when

combined with other one-aspect classifiers. We create such an overall classifier
by training a base classifier with combined features generated by merging all the
four feature sets discussed above into a single feature set.

4.3. Ensemble Methods
In this subsection, we explain the motivation for combining base classifiers

and discuss the choices of ensemble methods.

4.3.1. Preliminary Study and Observations
We replicated the feature set used by Paul and Dredze [21] on the original

dataset and 10-fold cross validated it with a SVM classifier, which yields preci-
sion of 76.68%, recall of 47.63%, and F-measure of 58.76% (we later use these
classification results as a baseline). In post-hoc examination we observed that
many of the misclassifications had the following characteristics:

Keyword Recognition Problem. Messages containing highly discriminative health-
related words such as swine, chill, burn, etc. are classified as non-health
related. E.g. yep he’s fine...was only a mild case of the swine :)

Term Disambiguation Problem. Messages containing highly discriminative health-
related words used in a non-health-related context are classified as health-
related. E.g. This is sick , it’s snowing again. :— It’s like i am living in
Russia.

Additionally, we trained 4 classifiers based on DC, TD, ST, and DC-TD-ST
(combined) feature sets (See Section 4.2), respectively, and examined the classi-
fication results. The magnitude of overlaps between the misses (false positives
+ false negatives) produced by the classifier trained with the baseline feature set
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FP ∩ TN FN ∩ TP Misses ∩ Hits
DC 4.58% 2.63% 7.21%
TD 6.73% 4.09% 10.82%
ST 6.63% 2.63% 9.26%
DC-TD-ST 5.17% 4.78% 9.95%

Table 7: Overlaps between misclassifications (misses) of the baseline and correct classifications
(hits) of the classifiers trained with proposed feature sets.

and the hits (true positives + true negatives) produced by the DC (7.21%), TD
(9.26%), ST (10.82%), DC-TD-ST (9.95%) based classifiers as seen in Table 7
suggests that the addition of these features may potentially increase overall per-
formance of social media message classification.

4.3.2. Choices of Ensemble Methods
The 5 base classifiers trained with different feature types are combined using

standard ensemble methods listed below:

Majority Voting (VOTE) Each classifier outputs either a ‘yes’ or ‘no’. The final
outcome is the majority vote of all the classifiers.

Weighted Probability Averaging (WPA) Each classifier is given a weight, where
the sum of all weights is 1. Each classifier outputs a probability estimate of
the positive class. The final output is the weighted average of all the classi-
fiers.

Multi Staging (MS) Classifiers operate in order. If a classifier says ‘yes’, the
final output is yes; otherwise the instance in passed to the next classifier to
decide.

Reverse Multi Staging (RevMS) Similar to the MS technique, except that an in-
stance is passed to the next classifier if the prior classifier says ‘yes’.

For the VOTE, MS, and RevMS methods, each base classifier classifies an instance
as positive if the probability estimate is equal to or greater than the probability
cutoff, and negative otherwise. For the WPA method, an instance is classified as
positive if the final probability estimate is equal to or greater than the probability
cutoff, and negative otherwise. We use 10-fold cross validation to validate the
classification performance. A validation set of 10% is held-out of each training
fold for setting probability cutoff and selecting the weights for WPA based classi-
fiers.
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5. Experiment, Results, and Discussion

5.1. Training Base Classifiers
For each feature type, all the parameter configurations are 10-fold cross vali-

dated on the dataset TwitterA using the 5 different base classifiers listed in Section
4.1. The parameters and probability cutoff are tuned with the 10% validation data
held-out of each training fold . In order to tune the probability cutoff, we scan
through different cutoff values with an increment of 0.01, and choose the one that
results in the best F1 when tested with the held-out data. Note that this opera-
tion can be cheaply carried out, since the probability score of each test instance
is already pre-computed. The best combination of the parameter configuration
and base classifier in terms of F-measure is chosen. Parameter sensitivity is also
investigated. The performance of the best configuration of each feature type sum-
marized in Table 8.

5.1.1. NG Based Classifier
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Figure 1: Parameter comparison of NG feature extraction as the maximum size of grams (N).

SVM is chosen for the NG feature type with configuration ⟨clean = T, stem =
T,N = 2,W = tfidf⟩, with F-measure of 68.19%. To study the parameter sen-
sitivity of the NG feature extraction, we investigate 1) the effects of document
preprocessing and 2) how different weighting schemes affect the performance (F-
measure) of the SVM classifier. Figure 1 shows the results as a function of the
maximum size of grams (N ). Figure 1(a) compares the performance of the fea-
ture sets with different clean and stem parameters. According to the results,
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cleaning and stemming the data lead to higher quality of the feature sets. Fig-
ure 1(b) compares the results of NG feature extraction with different weighting
schemes. It is clearly seen that features with TFIDF weight outperform the other
weighting schemes.

5.1.2. DC Based Classifier
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Figure 2: Parameter comparison of DC feature extraction as the function of maximum gram size
(N).

A SVM classifier with the configuration ⟨stem = true, vocab = all, N =
1, C = 2,W = tfidf⟩ yields the best F-measure (56.47%). Figure 2 shows the
parameter sensitivity analysis (F-measure) as functions of the maximum size of
grams (N) on the SVM classifier. Figure 2(a) compares the performances when
different vocabularies are used. It is evident that combining all the three vo-
cabularies yields the best results. Note that the symptom vocabulary gives the
best results among individual vocabulary sets, this is because a large number of
sickness-related tweets only talk about symptoms (headache, stomachache, sore
throat, etc.) without mentioning the causing disease names. Figure 2(b) compares
the results achieved with different weighting schemes. First point to note, the per-
formances of all the weighting schemes decrease as N increases. This is because
compounds with bigger grams tend to generate sparse and idiosyncratic features.
Similar to the NG features, the TFIDF weighting scheme outperforms the others.

5.1.3. TD Based Classifier
Our results show that the configuration ⟨clean = F,Z = 200⟩ with a Random

Forest classifier yields the best F-measure (54.50%). As part of the parameter im-
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Figure 3: Parameter comparison of TD feature extraction as the function of number of topics (Z).

pact on the RF classifier, we vary the number of topics, and also model topics from
both ‘cleaned’ and ‘uncleaned’ datasets. Figure 3 shows that the optimum number
of topics is 200. Too few topics may lead to broad topics, hence low discrimina-
tive power; whereas, too many topics can result in spurious, meaningless topics
consisting of idiosyncratic word combinations. An unexpected research finding is
that uncleaned data gives a better performance, contrasting with the analysis of
the NG, DC, and ST features which agree that cleaning the data in the preprocess
step helps remove noise and boost the performance.

5.1.4. ST Based Classifier
A RIPPER classifier with the configuration ⟨stem = T,N = 2, type = both⟩

yields the best F-measure (51.08%). Figure 4 shows the results from varying
type and stem parameters as a function of the maximum size of grams (N )
when tested with a RIPPER classifier. From Figure 4(a), it is interesting to see that
the emotional-based features do not significantly help to increase the performance.
This is because most Twitter users who tweet about their sicknesses do not always
express negative feelings. Oftentimes, they make the messages sound humorous
by adding positive emotions or use positive tones, e.g. GWS ya bang :P T
Oh no I’m sick! Gotta use some rest :) LOL.
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Figure 4: Parameter comparison of ST feature extraction as the function of maximum gram size
(N).

5.1.5. CB Based Classifier
The combined features include all the previous 4 feature types generated with

the chosen configurations mentioned earlier. The 5 base classifiers are tried and
SVM is found to perform the best with F-measure of 68.47%.

5.2. Small Scale Experiments
We evaluate each ensemble method using 10-fold cross validation on the la-

belled dataset TwitterA, using standard precision, recall, and F-measure (F1) as
the evaluation metrics [57]. Unlike existing approaches in the literature [21] in
which the quality of the retrieved data is more important than the amount, we aim
to apply our algorithm in disease surveillance situations where the ability to detect
non-obvious health-related messages (e.g. “I’m not feeling good today, and prolly
can’t go to class.”) is also important. Hence, we treat both precision and recall
as having equal importance, and F-measure is used to mainly compare the results
from each method.

The weight vectors used in the WPA method, the orderings of base classifiers
used in the MS and RevMS methods, and the probability cutoff are tuned using
10% held-out data of the training set (the other 90% is used to train the base
classifiers).

We compare our proposed methods with the baseline features used in related
works trained with a SVM classifier tuned to achieve the best F-measure. Table
8 lists the results (in terms of precision, recall, F-measure, and F-measure im-
provement over the baseline) of each ensemble strategy, along with other base
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Classifier Pr % Re % F1 % ∆F1 %  σ (F1) ATT (s)
p-value

(McNemar's Test)

Significant 

(McNemar's Test

, α = 0.05)

p-value

(5x2 CV t  Test)

Significant

(5x2 CV t  Test

, α = 0.05)

Baseline 76.68 47.63 58.76 0.00 0.0290 493.60 - - - -

NG 75.65 62.06 68.19 9.43 0.0292 124.10 0.16214 NO 0.20255 NO

DC 73.77 45.74 56.47 -2.29 0.0221 31.40 0.04331 YES 0.02746 YES

TD 70.48 44.43 54.50 -4.26 0.0149 23.7 0.00019 YES 0.10096 NO

ST 55.87 47.05 51.08 -7.68 0.0220 1.1 <0.00001 YES 0.01225 YES

CB 85.07 57.29 68.47 9.71 0.0276 1252.60 0.02361 YES 0.00087 YES

VOTE 77.32 65.24 70.77 12.01 0.0258 1947.77 0.11580 NO 0.00062 YES

WPA 80.45 74.52 77.37 18.61 0.0290 1969.65 0.00639 YES 0.00174 YES

MS 56.51 91.93 69.99 11.23 0.0287 1976.42 0.00011 YES 0.39846 NO

RevMS 90.08 37.96 53.41 -5.35 0.0461 1946.23 0.02195 YES 0.71431 NO

Table 8: 10 fold classification performance of the baseline, proposed base and ensemble classifiers,
along with average training time and results from the tests of statistical significance on the dataset
TwitterA. Pr %, Re %, and F1 % denote percentage precision, recall, and F-measure respectively.
σ (F1) denotes the standard deviation of the F-measure of the 10 fold cross validation. ATT (s)
denotes average training time in seconds.

classifiers and the baseline classifier.
The best performance in terms of F-measure is yielded by the WPA ensemble

method. This method gives some weight to all the base classifiers learning differ-
ent aspects of the dataset. The MS method gives the best recall of 91.93%. The
RevMS yields the best precision of 90.08%. Since we treat precision and recall
as equal important, we conclude that the WPA ensemble method works best for
our task. This might be because the WPA method allows all the base classifiers
to make partial quantitative contribution to the final decision, hence allowing the
different semantic aspects of the data to be effectively combined, as opposed to
the other ensemble methods whose some base classifiers may be ignored. These
results agree with a prior study of ensemble classification by Kittler et al. which
found that the sum rule (which is a special case of the WPA with equal weights)
outperformed other ensemble methods (i.e. multi-staging, product, maximum,
median, and minimum rules) on the identity verification and the handwritten digit
recognition tasks [58].

5.3. Tests of Statistical Significance
Two tests of statistical significance are performed to understand the statisti-

cal difference between each proposed method and the baseline: McNemar’s Chi-
Square Test [59] and 5x2 CV Paired t Test [60]. These two tests are chosen due to
the reported low type I error by Dietterich when used to compare two supervised
classification learning models [60]. Here, the null hypothesis is that each pro-
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posed model is identical to the baseline model, which is rejected if the calculated
p-value is smaller than the significance level α = 0.05.

5.3.1. McNemar’s Chi-Square Test
To apply McNemar’s test [61], the data S from the dataset TwitterA is ran-

domly divided into a training set R (90%) and the test set T (10%). The baseline
and each of the proposed models are trained using the data from R, and tested
on the data from T . For each proposed algorithm fA, the classified results are
recorded in a contingency table against the baseline fB:

Number of test instances misclassi-
fied by both fA and fB (n00)

Number of test instances misclassi-
fied by fA, but not fB (n01)

Number of test instances misclassi-
fied by fB, but not fA (n10)

Number of test instances misclassi-
fied by neither fA nor fB (n11)

Under the null hypothesis the two algorithms should have the same error rate
(i.e. n01 = n10). McNemar’s test is based on a χ2 test with 1 degree of freedom
and is calculated as follows:

χ2 =
(|n01 − n10| − 1)2

n01 + n10

(3)

The above equation incorporates a continuity correction term (i.e. the -1 in the
numerator) to account for the fact that the statistic is discrete while χ2 distribution
is continuous [60].

5.3.2. 5x2 CV Paired t Test
McNemar’s test has a drawback when dealing with small datasets: it does not

measure the variability in choosing the training sets, which can significantly affect
the performance of the classification models. To mitigate such an issue, Dietterich
proposed the 5x2 cross validation paired t test which performs five replications of
two-fold cross validation. In each replication, the dataset TwitterA is randomly
divided into two equal subsets, S1 and S2. For each proposed model fA and the
baseline fB, the models are trained on each set and tested with the other set. This
produces four error estimates: p(1)A and p

(1)
B (trained on S1 and tested on S2) and

p
(2)
A and p

(2)
B (trained on S2 and tested on S1). Let p(1) = p

(1)
A −p

(1)
B , p(2) = p

(2)
A −p

(2)
B ,

and p̄ = (p(1) + p(2))/2, the estimated variance s2 is defined as:

s2 = (p(1) − p̄)2 + (p(2) − p̄)2 (4)
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The 5x2 CV t̃ statistic is defined as follows:

t̃ =
p
(1)
1√

1
5

∑5
i=1 s

2
i

(5)

Where s2i is the calculated s2 of the replication i, and p
(1)
1 is the p(1) of the first

replication. Under the null hypothesis, t̃ has approximately a t distribution with 5
degrees of freedom [60].

5.3.3. Analysis of Statistical Significance Tests
The p-values of the McNemar’s Chi-square and 5x2 CV paired t tests are

reported in Table 8, along with the significance interpretations using α = 0.05
(i.e. YES or NO). Both tests agree that the performance of DC, ST, CB, and WPA
models are statistically significantly different from the baseline. It is interesting
to see that the NG method is not reported significantly different from the baseline
by both tests. This may be because both the methods rely on the N-gram features,
which result in similar classification results.

5.4. Misclassification Analysis
100 false positive and 100 false negative instances misclassified by the best

proposed method (i.e. WPA), are randomly selected and analyzed to determine
the sources of classification error. We found that the false positive samples can be
classified into one of the three categories based on their characteristics, as listed
below:

1. The health-related keywords are presented but used in the non-health
related context. (59%) E.g.:

• my laptop is kinda choking every 2 secs! gonna
install UBUNTU 1.10! any tip or suggestion?

Note that is type of error is also one of the two main weaknesses posed by
the baseline. Even though error of this type is still produced by the proposed
WPA method, the magnitude is much smaller.

2. The message provides health related information in a sub context, but
the super context is non-health related. (21%) E.g.:

• I got some facebook heat for my seemingly progressive
breast cancer statement. seems to me that people
DO want and end to 2nd Base
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3. The message is mislabelled. (20%) Some health related messages are mis-
labelled as non-health related. This can happen due to both accidents and
misunderstanding of the labellers. E.g.

• Rain, sick, in bed sounds good til work

Analyzing the 100 false negative samples, we also found that the error can be
classified into four categories:

1. The health-related information is small, hence may produce weak sig-
nals, compared to the surrounding context. (39%) E.g.:

• I’m going to have my tuition at 10.30 & I am sick.
Well, it isn’t that i love studying. It’s just
that the $ is given. I HAVE TO GO!

Though the word sick can imply that the poster is sick. However, such a
word has also extensively been used in other non-health related context that
the classifier may treat such a word as a weak signal. Especially when the
health related content is among non-health related content, the signal can be
impeded by the surrounding context.

2. The message mentions health related content which can be identified
from an uncommon keyword. (29%) E.g.:

• KFMA Day in the Old Pueblo...might have a serious
sunburn tomorrow. But Switchfoot is here! :)

This problem would have been corrected by the DC features if the keyword
is known to the vocabulary. Note that sunburn is a type of skin inflamma-
tion; however, the vocabulary that we use to generate the DC features do
not contain such a word. As a result, the classifier may not be aware that
sunburn implies health-related information.

3. The message is mislabelled. (23%) E.g.:

• Hey pregnant chick smoking in front of the burrito
place, just how do you find a brand classy enough
for ya? This example message is not health related, but was la-
belled as positive.

4. Other. (9%) We are not able to find common characteristics among these
misclassified messages.
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5.5. Importance of Each Feature Type
Our results show that the WPA method, wherein each base classifier is given

some decision weight, yields the best performance. This section further attempts
to assess the importance of each base classifier when making collaborative deci-
sions. We analyse the results of the WPA classifier from the first fold of the 10
fold cross validation performed in Section 5.2. The best performance is yielded
by the weight vector ⟨NG = 0.1, DC = 0.2, TD = 0.1, ST = 0.1, CB = 0.5⟩
with 74.76% precision, 68.93% recall, and 71.88% F-measure. The CB classifier
is given most weight due to having the most extensive view of the data. The DC
classifier is given a twice higher weight compared to TD and ST classifiers since it
addresses both the problems posed by the baseline, while the others address only
one problem.

5.6. Effect of Proposed Feature Sets
Each of our feature set reflects a different view of the dataset–the NG fea-

tures reflect the word patterns used in each document, the MC features capture the
semantics of the health related terms by capturing the usage of terms appearing
together in the same document, the TD features extract topical semantics of the
document, and the ST features capture the sentiment semantics of document in
terms of level of illness and emotional variants. According to the results in Table
8, combining all the proposed feature sets results in a better classification. This is
because classifiers trained with different views of the dataset can catch the errors
of the others. In this subsection, we investigate how each of our proposed feature
types increases the information learned by the baseline features.

Feature Set Pre % Rec % F % ∆ F %
Baseline 76.68 47.63 58.76 0.00
Baseline-NG 62.96 61.32 62.13 3.37
Baseline-DC 66.96 68.74 67.84 9.08
Baseline-TD 65.44 64.26 64.85 6.09
Baseline-ST 67.41 66.05 66.72 7.96

Table 9: Performance impact of each proposed feature set on the baseline feature set.

We generate another 4 feature sets, each of which is a combination of the
baseline feature set and one of our NG, DC, TD, ST feature sets. We train a SVM
classifier with each of the combined feature sets, and run a 10-fold cross validation
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on the dataset. We compare the results with the classifier trained solely with the
baseline feature set. Table 9 lists the results.

The impact (∆ F) of the NG features is not significant since the baseline and
our NG features are both N-gram based; hence, they provide redundant informa-
tion to the classifier. The DC features have the most impact on the performance,
because it addresses both the drawbacks of N-gram features, hence allowing the
classifier to learn a different perspective of the dataset. The TD features capture
the topics associated with a document. However, since a topic is defined as a
distribution of terms, which is similar to N-gram features (where a term is given
a weight), the impact of TD features is not as dominant as that of the DC fea-
tures. The ST features capture both health-related keywords used and emotion in
a document. Since these properties are not captured in the baseline feature set,
combining the ST features with the baseline allows the classifier to learn more
information as expected.

Feature Type
Num

Features
McNemar χ

2
 Score

p-value

(McNemar's 

Test)

Significant

McNemar's Test, 

α =0.05)

NG 41831 - - -

DC 23549 6.5693 0.010375 YES

TD 200 21.3384 0.000004 YES

ST 14 51.4894 < 0.000001 YES

CB 65594 1.7349 0.187781 NO

Table 10: Number of features and significance test results using the McNemar’s method of each
feature type with respect to the NG features

Additionally, Table 10 lists the significance test results of each non-NG base
classifiers with respect to the NG based classifier, using the McNemar χ2 test
outlined in Section 5.3.1. Here, the null hypothesis states that the performance of
each non-NG based classifier is the same as the NG based classifier. According to
Table 10, DC, TD, and ST base classifiers are shown to be statistically significant
from the NG based classifier with the significance level α = 0.05, suggesting that
the proposed base classifiers learn significantly different aspects of the data that,
when combined together, result in a better performance than using the NG feature
alone.

Note that the classification of the CB based classifier does not seem to be sta-
tistically significantly different from the NG based classifier, according to Table
10. This is consistent with the classification performance in Table 8 which re-
ports that the classification performance (in terms of F1) of both the NG and CB
based classifiers are roughly the same, while it may be intuitive that a classifier
that learns all the aspects of the data should perform much better than individual
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experts. An explanation for this phenomenon might be the fact that the feature
space of the NG features (64% of the combined feature space) is much larger than
those of other feature types. This huge amount of NG features could impede the
significance of other feature types when altogether learned by a base classifier.
This opens a pathforward to investigate feature selection techniques, which we
consider for our future work.

5.7. Large Scale Experiment

Feature Base Classifier # Features Training Time

Baseline SVM 210,191 05:18

NG SVM 67,531 03:24

DC SVM 26,602 00:41

TD Random Forest 200 00:21

ST RIPPER 14 00:01

CB SVM 94,347 21:28

Table 11: Summary of the base classifier, number of features, and training time (formatted as
minutes:seconds) used for each proposed feature type and the baseline features.

Pr % Re % F1 % ∆F1 % Pr % Re % F1 % ∆F1 %

Baseline 9.96 65.36 17.29 0.00 8.43 61.58 14.83 0.00

NG 28.35 49.51 36.05 18.76 28.32 45.49 34.91 20.09

DC 58.32 24.83 34.83 17.54 66.60 31.24 42.53 27.70

TD 56.57 19.82 29.36 12.07 57.74 17.98 27.42 12.60

ST 27.45 44.61 33.99 16.70 41.60 39.18 40.35 25.53

CB 24.99 74.28 37.40 20.11 26.44 70.21 38.42 23.59

VOTE 22.50 59.46 32.65 15.36 33.05 65.42 43.91 29.09

WPA 62.57 64.44 63.49 46.20 60.36 63.46 61.87 47.04

MS 51.72 29.77 37.79 20.50 44.21 36.13 39.76 24.94

RevMS 30.55 19.87 24.08 6.79 36.94 34.74 35.80 20.98

Twi!erB Facebook

Table 12: Large scale classification results by our proposed methods against the baseline on a
sample of 10,000 messages from each of TwitterB and Facebook datasets.

This subsection addresses three obvious questions:

1. Is smaller dataset like TwitterA large and diverse enough to reflect the char-
acteristics of social media, which is full of lexical diversity and noise?

29



0.001

0.01

0.1

1

A
p

r-
1

1

M
a

y
-1

1

Ju
n

-1
1

Ju
l-

1
1

A
u

g
-1

1

S
e

p
-1

1

O
ct

-1
1

N
o

v
-1

1

D
e

c-
1

1

Ja
n

-1
2

F
e

b
-1

2

M
a

r-
1

2

A
p

r-
1

2

M
a

y
-1

2

Ju
n

-1
2

Ju
l-

1
2

A
u

g
-1

2

S
e

p
-1

2

H
e

a
lt

h
-r

e
la

te
d

 S
p

e
ci

m
e

n
s 

(N
o

rm
a

li
ze

d
)

Baseline (Tweet) Baseline (FB) WPA (Tweet) WPA (FB)

Figure 5: A compete run of our best method (WPA) against the baseline on both the TwitterB and
Facebook datasets captured during the period of 18 months from April 2011 to September 2012.

2. Are our proposed heterogeneous features able to gain insight from such a
small dataset to capture the characteristics of much larger, real-world data?

3. Are our methods generalizable to other kinds of social media?

To address the above questions, we conduct another set of experiments on
real-world, large scale datasets such as TwitterB and Facebook (Section 3). Each
feature type is used to trained a base classifier as outlined in Section 4.1, using
90% of the data of the TwitterA dataset (another 10% held-out data is used to tune
the parameters when combining the base classifiers). Table 11 summarized the
base classifiers trained with the proposed feature types and the baseline feature,
including the number of features and training time.

A random sample of 10,000 messages are drawn from each the TwitterB and
Facebook datasets, and manually labelled by 5 graduate students. The sample data
of the TwitterB dataset contains 134 (1.34%) health-related messages. The sample
data of the Facebook dataset contains 107 (1.07%) health-related messages. It is
not surprising to see a lower percentage of health-related messages in the Face-
book dataset, since most Facebook messages are comments to existing main posts.
These comments, when treated individually, may not be able to express true se-
mantics without presented with the accompanied comments and the original posts.
Hence a Facebook message may have health-related semantics (especially those
comments to a health-related post), but may be classified otherwise when inter-
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preted individually. Figure 6 provides an example of a Facebook Timeline post
and its accompanied comments. As shown in the figure, if each message is treated
individually, then only the original post and comment #1 would be classified as
health-related; however, when treated as a whole conversation, all the messages
should be classified as health-related since they discuss the same topic (about the
original poster getting the swine flu).

Original Post

Comment 1

Comment 2

Comment 3

Comment 4

Comment 5

Comment 6

Figure 6: A sample Facebook Timeline post and its accompanied comments.

The baseline classifier, our base classifiers, and our proposed ensemble clas-
sifiers are used to classify these samples. Table 12 lists the results in terms of
precision, recall, F1, and F-measure improvement over the baseline (∆ F1). The
red/bold numbers are the highest number in the columns.

There are four points to note:
First, it is important to note that the performance in terms of F-measure of the

baseline classifier drops significantly (66.72% drop in precision and 41.47% drop
in F1), compared to that of the 10-fold validation results in Table 8. This is be-
cause the baseline classifier is trained with a binary-based N-grams features on a
small dataset of roughly 5,000 messages. The binary features allow the classifier
to take into account only the presence of terms without considering the impor-
tance of them. The obvious drawback of such scheme is that terms with high
discriminative power such as flu, cold, headache, etc. would be treated the same
as common terms (e.g. tomorrow, the, when) and terms with low discriminative
power (i.e. terms that do not imply health-related meaning such as Xbox, iPhone,
water, etc). When testing such a classifier on a much larger and diverse data, it is
expected to see a rise in recall and a drop in precision. Our NG features, though
also based on N-grams, remedy both the problems by cleaning the messages (re-
moving common stopwords and stemming terms) and utilizing TF-IDF weights
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to represent each term. Cleaning messages allow the classifier to ignore the com-
mon terms. Learning TF-IDF weights enable the classifier to recognize terms with
highly discriminative power. Hence, the magnitude of performance reduction of
the large scale performance (47.3% drop in precision, 12.55% drop in recall, and
32.14% drop in F1) of our NG classifier is relatively smaller compared to that of
the baseline.

Second, it is worth noting that the baseline classifier tend to produce relatively
high false positive rate, due to the very low precision (9.96%) and high recall
rate (65.36%). To support this claim, we run the baseline classifier and our best
method (WPA) on the whole TwitterB and Facebook datasets. The TwitterB data is
processed on a server with a 16-core Intel Xenon E5630 (2.5 GHz) processer and
32GB available RAM. The process was run using 40 threads (roughly 14 day’s
of data per thread) and was finished within 30 hours. The Facebook data was
processed on a server with an 8-core Intel Xenon E5420 (2.50 GHz) processor
and 16GB of available RAM. The process was run using 30 threads (roughly 48
day’s of data per thread) and was finished in 24 hours. Table 12 plot the normal-
ized results (grouped by months) from April 2011 to August 2012 in log scale.
According to the large scale results in Table 12, the baseline classifier tends to
favor positive classes, and hence detect health-related messages at a higher pro-
portion than our WPA method in both TwitterB and Facebook datasets. According
to the results from the large scale performance evaluation shown in Table 12, our
WPA methods yields comparable recall rate with that of the baseline, but much
higher precision, we conclude that the higher quantity of health-related messages
detected by the baseline are mostly false positives.

Third, even though the performance of all methods tend to decrease when eval-
uated with large scale data, our WPA method still yields reasonable good perfor-
mance with small performance degrade (17.88% drop in precision, 10.08% drop
in recall, and 13.88% drop in F1). Our WPA method outperforms the baseline by
46.20% in terms of F-measure on the TwitterB dataset and 47.04% on the Face-
book dataset. We note also that, when combining base classifiers using the WPA
method, a prominent increase in the performance is observed in both TwitterB and
Facebook datasets. This advocates our assumption earlier that a proper ensemble
of individual classifiers that learn different aspects of the data could improve the
efficacy of the classification.

Fourth, the large scale evaluation of all the methods on both the datasets are
similar. This suggests that the textual information of both social media sources is
similar in nature. Hence, a classifier trained with a data source could be expected
to perform reasonably equally to other social media domains as to the one it is
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trained with. On another hand, this also suggests that our proposed methods can
easily generalize to other domains of social media.

6. Conclusions and Future Work

We investigate using 5 heterogeneous feature sets representing different views
of the data on machine learning ensemble methods for health-related short text
classification problem. We analyse the parameter sensitivity of the feature extrac-
tion algorithms in order to obtain the best possible features from each feature type.
We study the mutual effects of the feature sets by combining the base classifiers,
each of which is trained with a different feature type, using standard ensemble
methods. We are able to outperform the baseline by 18.61% in the small scale
evaluation and 46.62% on average in the large scale evaluation, using the weighted
probability averaging method. Our results are very promising and reaffirm our as-
sumption that the limitation of the N-gram features on the social media domain
can be reduced by combining classifiers that learn different characteristics of the
data. Future works could seek to improve the classification algorithm [62, 63]
and to employ semi-supervised methods such as the co-training technique [64] to
expand the training data with unlabeled data.
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