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This paper addresses two important fundamental areas in product family formulation that
have recently begun to receive great attention. First is the incorporation of market de-
mand that we address through a data mining approach where realistic customer prefer-
ence data are translated into performance design targets. Second is product architecture
reconfiguration that we model as a dynamic design entity. The dynamic approach to
product architecture optimization differs from conventional static approaches in that a
product architecture is not fixed at the initial stage of product design, but rather evolves
with fluctuations in customer performance preferences. The benefits of direct customer
input in product family design will be realized through the cell phone product family
example presented in this work. An optimal family of cell phones is created with modu-
larity decisions made analytically at the engineering level that maximize company
profit. �DOI: 10.1115/1.2838336�
Introduction

The increased performance expectations of consumers and the
olatility of today’s leading market segments have forced compa-
ies to reevaluate their business models. The mass customization
oncept has become the revolutionary strategy for companies to
etter meet customer needs by shifting away from traditional
roduct portfolios that satisfied only the average expectations of
ustomers to more customer-specific product variants �1�. Mass
ustomization, however, should be regulated so that customers do
ot become overwhelmed with an oversaturation of products to
hoose from �1�. The economic justifications of mass customiza-
ion typically rely on the cost saving benefits of economies of
cale that are due to the inventory reductions, uninterrupted manu-
acturing processes, etc. �2�.

Commonality among product variants is a widely acceptable
ethod of mitigating the inevitable cost increases of such highly

ifferentiated products. By designing product variants around a
hared and efficient product architecture, companies can reduce
anufacturing and design costs associated with product differen-

iation �3�. The absence of standard performance metrics, how-
ver, has hindered consensus in this field in determining the best
pproach to solving this problem �4�. Under this product family
esign paradigm, we introduce a method to analytically determine
he optimal product architecture configuration in the multiproduct
ierarchy by directly incorporating what customers want �i.e.,
reference, performance expectations, etc.� in the design and for-
ulation of a family of products. We propose an enterprise level

bjective that will serve as a generic model in applications dealing
ith product architecture design. The proposed enterprise profit

unction takes a new approach by linking customer performance
references using data mining techniques, with engineering design
apabilities in a dynamic setting. The term dynamic is used to
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describe the evolving product architecture that occurs due to the
fluctuations in customer preference as attributes are included/
excluded in the engineering model.

Currently, there exist module based and scale based methods of
assessing product architecture design �4�. In this paper, the engi-
neering design of the product architecture will be matched with
the enterprise targets, acquired through realistic customer survey
data, although the proposed framework is not limited to survey
method. The data can be acquired from existing company data-
bases. The primary focus is to present sufficient evidence of the
profit maximization benefits that exist with the linking of perfor-
mance targets in different product architectures, while still achiev-
ing desirable product performance. �Note that the focus is not how
to collect the preference data, rather how to identify desired at-
tributes in �large-scale� demand data, then link them with engi-
neering design.�

We will observe in our cell phone example presented in this
work that the benefits of sharing can be extracted directly from the
predictive data mining model, with changes in attribute combina-
tions and product architecture design. While module based prod-
uct family design benefits can be directly observed by the manu-
facturing cost savings associated with modular architectures, we
focus on observing the benefits of modularity through the fluctua-
tions in customer purchasing price as modular components are
selected/deselected among several architectures existing in the
product family.

Multilevel, multidisciplinary optimization has become an effec-
tive alternative to solve complex, large-scale system design prob-
lems that are conventionally solved by all-in-one �AIO� approach.
To link product design and product planning effectively, however,
traditional static formulation should be expanded to dynamic for-
mulations to model the changing product specifications and mar-
ket demand. In this paper, individual product architectures are
modeled using the hierarchical approach of analytical target set-
ting �ATS� �5� and analytical target cascading �ATC� �6� and are
further expanded to accommodate changing design variables and
component sharing information. �Note that the proposed method-
ology is not limited to analytical target cascading, rather it can be
combined with any generic multilevel optimization.�

The motivation of this research is to explain how multilevel

design optimization can be extended in a multiproduct setting to
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nclude the optimization of engineering designs for a product fam-
ly in an extremely volatile and competitive market space.

This paper is organized as follows. This section provides a brief
otivation and background. Section 2 describes previous works

losely related to the current research. Section 3 describes the
ethodology. Section 4 demonstrates the methodology through a

ell phone family design example. Section 5 presents the results
nd discussion. Section 6 concludes the paper.

Related Work
In recent years, significant interest has been paid to mass cus-

omization as it relates to product portfolio design as companies
ontinue to become more customer specific. de Weck and Chang
pproach the product portfolio problem by allowing sales volume
ensitivities and product variant performance to dictate the num-
er of optimal product architectures �7�. Gonzales-Zugasti et al.
sed an interactive implementation approach that first establishes
product architecture design, then its variants �8�. This approach

s engineering intensive with most of the product portfolio deci-
ions made by engineers, rather than target customers. Other ap-
roaches by Desai et al. �9� and Kim and Chhajed �10� incorporate
onsumers into the product portfolio decisions and partition the
onsumer market into two groups; high-end and low-end custom-
rs, and design product variants based on the performance and
uality expectations desired by each market.

Our approach gives the customer more control in the final out-
ome of a product by initially identifying a customer’s maximum
urchasing price, then allowing the engineering design level to
elect the quality and performance of the components included in
hat particular architecture. The predictive data mining approach
hat we incorporate in our methodology ensures that what cus-
omer wants are acquired directly from the customer, rather than
eing interpreted by enterprise decision makers. Along this line,
gard and Kusiak �11� employ data mining clustering techniques

o segment a customer data set into candidate target markets for
he design of product families. Association rule mining is then
sed to determine attribute patterns in the segmented data. Such
ata mining clustering techniques, however, still leave the enter-
rise decision maker with the daunting task of selecting the ap-
ropriate target market to pursue. Hence, decisions without initial
ngineering design validation may lead to an unsuccessful product
ortfolio. Data mining techniques are also investigated by Moon
t al. �12� in identifying functional requirements to be applied to a
redefined product architecture. Our approach to data mining fully
tilizes its predictive capabilities by directly cascading customer
ants to the engineering design of a product architecture. To al-

ow for a more intelligent product architecture design, we opt to
mit a predefined architecture, but rather start with an amorphous
oncept that quickly transforms into a customer ready product.
or example, the outer design of a product is a function of the
umber of components present in it, some of which are modular
nd others, made to individual product specification. The final
roduct architecture therefore will depend on customer specifica-
ions and engineering limitations. At this stage, product variants
an then be manufactured based on this architecture, or if infea-
ible, another architecture will be introduced. The summation of
easible product variants will comprise the optimal product fam-
ly. �The term feasible is used to signify an engineering design that
an be both manufactured and at the same time completely meets
ustomer expectations.�

Predictive Portfolio Design Methodology
The overall objective of this work is to establish an acceptable
ethod of analytically designing a family of products that maxi-
ize the overall company profit while concurrently meeting per-

ormance expectations. In this section, core components of the
redictive portfolio design methodology are described, where the

roduct family configuration changes are allowed.

41103-2 / Vol. 130, APRIL 2008
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3.1 Predictive Modeling

3.1.1 Data Mining Approach. The acquisition of marketing
data to determine patterns is vital to the overall stability and suc-
cess of a company. Stored data can be related to manufacturing
capabilities, consumer tendencies, distribution patterns, sales, etc.
�13� The importance of properly analyzing data may be the dis-
tinguishing factor between success and failure. To this end, auto-
mated analysis and discovery tools that are powerful enough to
analyze large data sets are becoming more popular.

In engineering product design and development, such powerful
analysis can translate into lucrative project endeavors. A limiting
factor in the manufacturing aspect of product design, however, is
from the cost and functionality constraints placed by the pursued
product market. A successful product portfolio requires that engi-
neering capabilities are strongly matched with customer require-
ments. This can be a somewhat daunting task since traditional
product design is a sequential process that starts with customer
wants and linearly progresses until a final product is designed
�13�.

Our approach to product design hopes to alleviate some of the
burdens of late stage design failures by making the customer-
manufacturing relationship an iterative process, wherein a custom-
er’s preference is realized and updated with each manufacturing
change in the desired architecture. To address the customer satis-
faction aspect of product design, customer data can be acquired
through a customer survey process and transformed into meaning-
ful engineering design information �see Fig. 1�.

By collecting customer data, data mining can determine rela-
tionships between inputs that were once unobservable �14�. There
are several methods in which data mining tools can accomplish
this task, but for the purpose of our research, we will focus on the
Naïve Bayes approach in predicting a customer’s maximum pur-
chasing price �MaxPrice� that would yield the most efficient and
profitable product portfolio. One should note that the concept of
MaxPice is a time invariant metric that represents the customer’s
willingness to pay for a particular product at an instant in time.
Cook proposes an S model to quantitatively determine the value
added by the introduction of new product features �15�. Unlike
conjoint analysis and similar methods �16�, the data mining pre-
dictive approach employed in our work extracts previously un-
known knowledge without requiring attribute ranking and com-
plex matrix inverse operations by classifying attribute
combinations based on the Naïve Bayes model expounded on in
the next section.

3.1.2 Naïve Bayesian Model. The Naïve Bayes algorithm
builds a predictive model based on supporting evidence from a
fraction of the customer survey data, used to train the computer
learning model �18�. Applied to a customer’s maximum purchas-
ing price, the Naïve Bayesian model can be posed as follows:

Given N elements in a set of customer attributes ai�A. The
dependent class variable MaxPrice��� has outcomes conditional
on customer attributes ai , . . . ,aN �17� p�� �a1 , . . . ,aN�
= p��� · p�a1 , . . . ,aN ��� / p�a1 , . . . ,aN�→Probability of
MaxPrice���, given certain input attribute�s� �18� Since the de-
nominator of the above equation is independent of MaxPrice���
and the input attributes are known a priori, the denominator is
essentially constant and can therefore be ignored �17�.

Using the definition of conditional probability �19�,

p���a1, . . . ,aN� = p��� · p�a1, . . . ,aN��� �1�

=p��� · p�a1��� · p�a2, . . . ,aN��,a1� �2�

=p��� · p�a1��� · p�a2��,a1� · p�a3, . . . ,aN��,a1,a2� �3�

=p��� · p�a1��� · p�a2��,a1� · p�a3��,a1,a2�
· p�a4, . . . ,aN��,a1,a2,a3� �4�

Transactions of the ASME
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The fundamental basis of the Naïve Bayesian model is the as-
umption of conditional independence of each input attribute, i.e.,
ttribute ai is independent of aj where i� j �17�. This is a valid
ssumption for our cell phone case study that will be expounded
n later. For example, we make the assumption that the probabil-
ty that a cell phone is a flip design, given a MaxPrice of $200 is
ndependent of the probability that a cell phone has a battery life
f 5 h, given the same MaxPrice of $200.

The assumption of independence enables us to express the con-
itional distribution of MaxPrice��� �20�

p��,a1, . . . ,aN� = p����
l=k

n

p�ai��� �5�

A machine learning approach known as Supervised Learning
21� attempts to estimate the parameters of the developed Naïve
ayesian model. The assumption of attribute independence allows
s to estimate the class variable �MaxPrice�, prior to testing our
odel. The Naïve Bayes classifier combines the probability model
ith a decision rule; in most cases, a most probable hypothesis

ule known as maximum a posteriori probability �MAP� �17� is
omputed, which determines the maximum likelihood of a given
lass. The function is modeled as follows �20�:

classify�a1, . . . ,aN� = arg max� p����
i=k

n

p��i��� �6�

here � takes on a value in the set �, i.e., the value of MaxPrice
ust match a numerical value of one of the elements in the Max-
rice set.
Similarly, �i takes on a value in the set ai, i.e., attribute value i

akes on a value of an element that exists in the overall attribute
et, where arg max is the likelihood estimator of MaxPrice. Prior
nowledge of the attribute distribution is assumed and a point
stimate of the class variable can be obtained �22�. Based on the
osterior distribution, the class variable � is estimated as the sta-
istical mode or in other words, the most recurring �22�. The Naïve
ayes classifier using the maximum a posteriori �20� decision rule

s a valid approach in our study of customer predictive prefer-

Fig. 1 Overall predictive product portfolio
nces, as the model takes into account a priori �23� preference of

ournal of Mechanical Design

aded 24 Mar 2008 to 128.174.192.2. Redistribution subject to ASME
attributes. The robustness of the classifier validates the assumption
of attribute independence and correctly predicts the class variable
MaxPrice �17�. The following simple example illustrates the pre-
dictive strengths of the Naïve Bayes classifier in determining pre-
viously unknown knowledge from a given customer data set.

In the following example data set �Table 1�, we have ten unique
customer responses represented by each row. The three attribute
types �Phone Type, Connectivity, Feature� are mutually exclusive
and comprise of binary selections. For example, the first attribute
Phone Type can assume one of two values, �Flip or Shell�, etc.
The objective is to determine what combination of attributes
would result in a particular class variable prediction, i.e., purchase
a phone �Yes or No�. Let us assume that we are trying to classify
a cell phone design that has the following attributes �Flip phone,
Bluetooth, MP3�. Note that this attribute combination does not
exist in our example data set �Table 1� and such a classification
would therefore be considered as new, previously unknown
knowledge �24�. To determine the class �Purchase Phone=Yes or
No� that such an attribute combination would fall under, we apply
the conditional probability rule explained in Eq. �5�. The condi-
tional probabilities of each attribute are presented in Table 2 and
the subsequent classification presented in the following calcula-
tions.

rmulation „adapted from D2K manual †14‡…

Table 1 Sample customer response data

Customer

Attribute Selections Class Variable

Phone Type Connectivity Feature Purchase Phone

1 Flip Wifi MP3 NO
2 Shell Bluetooth Camera YES
3 Shell Wifi MP3 NO
4 Shell Bluetooth MP3 NO
5 Flip Wifi Camera NO
6 Flip Wifi MP3 YES
7 Shell Bluetooth MP3 YES
8 Flip Bluetooth Camera NO
9 Flip Wifi MP3 YES

10 Flip Wifi Camera NO
fo
APRIL 2008, Vol. 130 / 041103-3
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p�YES�Flip Phone,Bluetooth,MP3�

= p�YES� · p�Flip Phone�YES�

· p�Bluetooth�YES� · p�MP3�YES�

=
4

10

2

4

2

4

3

4
= 0.075 �7�

p�NO�Flip Phone,Bluetooth,MP3�

= p�NO� · p�Flip Phone�NO�

· p�Bluetooth�NO� · p�MP3�NO�

=
6

10

4

6

2

6

3

6
= 0.067 �8�

The maximum likelihood function utilized by the Naïve Bayes
odel selects the class variable with the maximum likelihood of

ccurring, which in this case would be Purchase Phone=YES
ith a probability of 0.075. In other words, this new combination
f cell phone attributes has the potential of appealing to the con-
umer market and would therefore be a candidate cell phone de-
ign. Such powerful insights have the potential to significantly
nhance the product family formulation process as attribute com-
inations can be analyzed and optimized to achieve a more effi-
ient product development strategy.

This example is a simplified version of the actual customer
reference data utilized in this work, which comprises of a cus-
omer data set of 100,000 and a wider array of attributes. Despite
uch a large data set, the final Naïve Bayes predictive results took
ess than 300 s to generate running on an Intel Pentium IV desk-
op �3.2 GHz�.

3.1.3 Data Mining Using Data to Knowledge (D2K). The term
nowledge Discovery in Databases �KDD� describes the entire
rocess of extracting data from large-scale databases �14�. The
rocess begins with the acquisition of realistic customer prefer-
nce data through a comprehensive online survey that is posed to
apture the product performance expectations of customers �25�.
he results of this survey will be used by an innovative data
ining tool know as Data to Knowledge �D2K� that classifies the

esults and maps �classifies� the data into one of several pre-
efined classes �14�. The process from data extraction to predic-
ive model is as follows �Fig. 1�.

Step 1: Data Acquisition: Importing the raw data from a data-
ase �e.g., SQL Server�. Customer preference data can be acquired
n several ways: In many instances, customer preference data exist
n large databases and is known to the enterprise decision maker
hrough customer behavior tracking methods �24� �credit card pur-
hases, coupons promotions, etc�. Another approach to acquiring
uch data is through an interactive online survey. In our example

Table 2 Conditional probabili

Conditional Probabilities

P�Phone Type=Flip � Purchase Phone=YES�
P�Connectivity=Bluetooth � Purchase Phone=YES�
P�Feature=MP3 � Purchase Phone=YES�
P�Phone Type=Flip � Purchase Phone=NO�
P�Connectivity=Bluetooth � Purchase Phone=NO�
P�Feature=MP3 � Purchase Phone=NO�
web survey was designed and created using webtools interactive

41103-4 / Vol. 130, APRIL 2008
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software2, wherein users could automatically fill out and submit
the survey results. The webtools software is configured so as to
automatically save the results of the web survey in a CSV file
format in EXCEL, which can be then directly extracted and used for
analysis purposes such as data mining supervised machine learn-
ing. Each row in the survey raw data results represents a submis-
sion by a particular unique customer/individual, with the associ-
ated attributes stored in the corresponding columns.

The fundamental strength of data mining as opposed to other
customer survey analysis tools such as conjoint analysis is the
ability to analyze large data sets in an efficient manner. To reveal
these strengths, the initial customer response data are extrapolated
to simulate the response behavior of a data set of 100,000 custom-
ers. This raw data set of 100,000 customers is used in our data
mining analysis and subsequent product demand predictions. It is
important to note that the demand prediction is an instant in time.
Time varying stochastic behavior of demand and price are topics
for later works.

Step 2: Data Selection and Cleaning: The stage where irrel-
evant or noisy data are identified and removed and relevant data
are extracted from the raw data �26�.

Step 3: Data Transformation: This phase involves the transfor-
mation of data into acceptable forms for the data mining process.
Here, irrelevant attributes are eliminated to improve the model’s
predictive power. Data transformations can include binning, nor-
malizing, missing value imputation, outlier removal, etc. �27�.

Step 4: Data Mining/Pattern Discovery: First, a particular algo-
rithm is selected and for the predictive analysis for our cell phone
architecture design, we have opted to use a Naïve Bayes model.

Step 5: Interpretation and Evaluation: Typically, D2K uses 2 /3
of the raw data to train the machine and the remaining 1 /3 to test
the model developed. The N-fold cross validation technique se-
lects and compares several test models with one another and se-
lects the appropriate model that best predicts the class variable
�14�.

The predictive model will enable a seamless translation of cus-
tomer data into tangible design targets for the engineering design
level. Selection or deselection of attributes to observe the effects
on the class variable �MaxPrice� can be formulated as a mixed
integer programming problem �28�, where our objective is to
search through a combination of attributes that would yield the
MaxPrice and market share percentages needed to maximize the
overall profit of the company.

The visual representation in Fig. 2 is the D2K graphical user
interface output that enables the user to manually select/deselect
attributes that influence the MaxPrice prediction. The square box
enclosing each attribute indicates which attributes are active in the
predictive model. Only one parameter value per attribute can be
active at once due to the Naïve Bayes assumption of attribute

2

alculations for each attribute

Class Prediction

Purchase
Phone=YES

�4 occurrences�
Phone=NO

�6 occurrences�

2 /4
2 /4
3 /4

4 /6
2 /6
3 /6
ty c
www.webtools.uiuc.edu
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ndependence. The Naïve Bayesian prediction of MaxPrice has a
ercentage value associated with each MaxPrice prediction, which
ranslates into the percentage of customers with the same Max-
rice prediction. If none of the attributes is selected, then the
axPrice prediction is calculated solely on the initial state of

nformation, i.e., the surveyed customers and their overall
references.

The active attributes in the prediction of MaxPrice are set as
argets at the engineering design sublevel, while the MaxPrice is
sed to determine the enterprise profit for product variant i. In
rder to ensure an optimal product that satisfies customer wants,
ustomer targets cascaded down to the engineering sublevel are
eighted more than any other objective in the engineering sub-

evel, such as cost minimization.
The iterative process of trying to match customer targets with

he engineering capabilities yields an optimal product that is both
rofitable and is desired by customers. The overall process from
2K’s Naïve Bayes prediction of MaxPrice to product design and
evelopment using multilevel optimization �analytical target set-
ing �5� and analytical target cascading �29� are utilized in our
pproach� in the engineering level is illustrated in Fig. 1.

Commonality is achieved by the linking of component variables
mong architectures. Our methodology suggests that commonality
ecisions be made on the primary basis of how they affect cus-
omer preferences and ultimately, enterprise profit. The

cconnell/Stigler relationship between unit cost and output sug-
ests that diseconomies of scale may mitigate the cost-savings
enefit that commonality provides to the manufacturing process as
utput increases exponentially �30,31�. Therefore, the benefits of
ommonality and modularity will focus less on the manufacturing
ost savings, but rather on overall company profit. The reason for
his performance metric shift is due to the ambiguities that exist
hen product manufacturing cost is the primary reason for justi-

ying sharing decisions. Such cost minimization commonality de-
isions may have adverse effects on the satisfaction of intended
ustomers who may suffer due to the performance sacrifices in an

Fig. 2 D2K Naïve Bayes prediction of maxim
associated market share �i
ttempt to reduce cost. Future research aspirations include incor-

ournal of Mechanical Design
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porating the entire supply chain process into the product family
cost model to better understand the effects of downstream pro-
cesses in enterprise decision making.

3.2 Product Portfolio Optimization at Product Family Su-
persystem Level. The primary product portfolio objective of
launching product architectures is achieved through a finite launch
of product architectures deemed most profitable by the enterprise
system level objective. The profit maximizing objective is realized
through an iterative process of acquiring the MaxPrice a customer
is willing to pay for a particular product �determined by a cus-
tomer predictive model�, and the cost derived from the component
selection process that defines that particular product. The overall
maximum profit ��overall� is used as the metric for this selection
process, where profitoverall is the summation of the individual
product profits that would yield the maximum overall company
profit. The product portfolio limit used in our case study is as-
sumed to be the maximum number of product variants in the
manufacturing process that would allow the process to still remain
efficient, i.e., the point of inflection before capacity and distribu-
tion capabilities are unmanageable by a company.

The flow diagram in Fig. 3 illustrates the iterative process of
product portfolio development and the product family mathemati-
cal model is summarized as follows.

Minimize

− �
j=1

k

xj · �variant�j� �9�

where �variant�j� is the profit of variant �j�, xj the binary discrete
variable selecting or deselecting particular product variant
��variantj

� where � j=1
k xj �K, k the total feasible product architec-

tures that can be designed, K the product portfolio limit �number
of architectures in the product family�,

Subject to

customer purchasing price „MaxPrice… and
um
h1: xj = �0,1	 f � �1, . . . ,k	 �10�

APRIL 2008, Vol. 130 / 041103-5
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g1: �
j=1

k

xj − K � 0 �11�

Product portfolio limit K is a finite number meaning that a
ompany cannot produce every possible combination of architec-
ures, which would be an impractical real life target.

3.3 Enterprise System Level. The Naïve Bayes predictive
odel allows for a customer’s MaxPrice value to be used in de-

ermining the maximum variantj profit ��variantj
�, where profitj for

particular product is determined by

�variant�j	
= MaxPrice�j	 − costj �12�

here MaxPricej is the Naïve Bayesian prediction based on cer-
ain input attributes. The MaxPrice can be partitioned during the
ustomer survey to N number of price preference choices to reflect
he objective of the enterprise decision maker. i= �1, . . . ,N�. The
ost probable �as defined by Eq. �6�, class variable is used in
rofit calculation in Eq. �12�� costj is the engineering sublevel
esponse for the cost needed to produce a product desired by the
ustomers, based on the Naïve Bayes prediction.

The mathematical model at the enterprise level is summarized
s follows. �The norm notation indicates 
 · 
= 
 · 
2

2, i.e., squared
-2 norm.�
Minimize

− �variantj
+ 
TC − Rent
 + �R + �y �13�

Subject to

h1: �variant − D · MaxPrice�j	 − cost�j	 = 0 �14�

h2: �
i=1

m

�
j=1

n

ai,j − m = 0 �15�

h3: D − market demandvariantj
= 0 �16�

h4: �
i=1

N

	i − 1 = 0 �17�

g1: 
Reng − RengL

 − �R � 0 �18�

g2: 
y − yL
 − �y � 0 �19�

h2: Given an m
n matrix of attributes, equality constraint h2
estricts the parameter value of each attribute to only one per row

Fig. 3 Data flow of product portfolio formulation
ue to the Naïve Bayesian assumption of attribute independence.�

41103-6 / Vol. 130, APRIL 2008
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where �variantj
is the profit of product variant j; TC the product

variant target component predicted by Naïve Bayes customer
model; Rent the engineering response component cascaded up to
the enterprise level; Rent=Rent�xent ,Reng�, meaning that the enter-
prise level response is a function of system variables and the
response of the engineering subsystem level; y the linking vari-
ables at the enterprise level, the linking variable concept applied
to product family design represent shared attributes or compo-
nents that exist among product variants; yL the target values for
linking variable at the engineering subsystem level cascaded up to
enterprise level; �R the deviation tolerance between customer
component targets and engineering response; �y the deviation tol-
erance between linking variables.

3.4 Engineering Design Subsystem Level. The engineering
design subsystem level is defined as the stage in product design
wherein engineering design objectives and constraints are formu-
lated to produce a product/variant that satisfies the enterprise level
objective �6�.

3.4.1 Analytical Target Setting [5]. The multiobjective formu-
lation of the engineering design sublevel focuses primarily on
designing an architecture �around which product variants are de-
signed� at product launch that will satisfy customer wants, pre-
dicted by the Naïve Bayesian model, while simultaneously mini-
mizing the overall cost of the product. Meeting what customer
wants is weighted more due to the obvious reasons; a cheaper
product will not automatically translate into an attractive product
if customer wants are not satisfied. The mathematical model at the
engineering design level is summarized as follows:

Minimize

costj + 
RengU
− Reng
 + 
yj − yj

U
 �20�

where costj is the cost of product variant �j�; RengU
the response

from the enterprise system level, cascaded down to the engineer-
ing level �at the enterprise system level mathematical formulation,
RengU

is simply Reng�; Reng the response from the engineering sub-
level, i.e., Reng=Reng�xeng,yeng�, meaning that the response of the
engineering design sublevel is a function of local design variables
and also sharing linking variables �Reng at the engineering sub-
system level will become RengL

at the enterprise system level�; yj

the linking variables at the engineering design level; yj
U the target

value for linking variables from the upper enterprise level cas-
caded down to engineering level,

Subject to

h1: cost − �
i=1

J

xiqi = 0 �21�

design constraints: gj�xeng� � 0 �22�

where xi is the binary discrete variable selecting or deselecting
particular product variant component �qvariant�; qi the product vari-
ant component �discrete or continuous variable�: discrete compo-
nent variable is purchased from a manufacturer with predefined
performance and cost attributes and continuous component vari-
able is company manufactured with changing specifications to
cater to dynamic architecture design; J the total available compo-
nents in the engineering product design.

The engineering design subsystem level objective is modeled as
a mixed integer nonlinear programming problem with discrete
variables that dictate the component selection process and con-
tinuous variables for the engineering designed components. A
branch and bound algorithm is used to achieve an optimal solution
�28�. Since there are both discrete and continuous variables in our
mathematical model, the branch and bound algorithm attempts to
find an optimal solution by first solving the relaxation problem
�i.e., integer restrictions are relaxed�, which is simply a nonlinear

optimization problem �28�. In the subsequent solution, if all the
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iscrete variables take integer values, then the mixed integer prob-
em is solved and an optimal solution is reached �28�. For each
iscrete variable that does not take on an integer value, the algo-
ithm takes this variable and divides the problem �branches� into
wo new nonlinear programming problems. This process is con-
inued until a global optimum is achieved.

Application

4.1 Product Portfolio Formulation: Cellular Phone Prod-
ct Family. To demonstrate the effectiveness of our approach, we
ill apply the proposed methodology to a realistic cell phone
arket to determine the optimal family of cellular architectures

hat would satisfy a captured market demand. We begin by intro-
ucing a customer survey questionnaire �Table 3� that is modeled
o realistically capture the true essence of what the customer
ants, acquired through realistic customer survey data, although

he proposed framework is not limited to survey method. The data
an be acquired from existing company databases. Performance
etrics determined by the customer prediction will be set as tar-

ets at the engineering level.
From the results of the survey, a model can now be developed

hat will predict the maximum purchasing price that a customer is
illing to pay based on certain attributes. The D2K software helps

o develop this model with the transformation of the customer raw
ata. MaxPrice can then be used in a sensitivity analysis to deter-
ine the profit for a particular product design, given certain se-

ected attributes. The attributes selected are used as targets in the
ngineering level.

4.2 Enterprise System Level

4.2.1 Cell Phone System Profit Optimization. The Naïve
ayesian model developed by D2K allows the user to select/
eselect attributes and observe the change in MaxPrice and the
arket share associated with each. As can be seen in Fig. 2, a
P3 phone architecture is used as a starting point with customer

ttributes including �5 h Battery life �32�, Cost Objective, Screen
ize Priority, Wifi Connectivity �33�, and Shell Phone Design�.
These attribute targets are then cascaded down to the engineer-

ng sublevel to determine whether or not such a product design is
easible. The MaxPrice prediction is used at the enterprise level in
alculating the profit��� for this particular MP3 phone. Math-
matically, this is represented as

Minimize

− �MP3 variant1
+ 
Tbattery life − Rbattery lifeent


 + 
TWifient
− RWifient




+ 
Tshell − Rshellent

 + �battery life + �Wifi + �shell �23�

In the cell phone case study, Rbattery lifeent
is considered as a

inking variable at the engineering design level. Thus, a deviation
onstraint g1 is added in the constraint set.

Subject to

h1: �MP3 variant − D�MaxPrice�MP3 	 − cost�MP3 	� = 0 �24�

Table 3 Customer survey q

urvey questions

hat feature would you most like your cellular phone to have?
hat is more important to you?
hat type of cell phone design do you like?
hat type of connectivity would you prefer your phone to have?
hat is the minimum talk time you require before a recharge?
hat is more important to you?
hat is the maximum price you would be willing to pay for the features

escribed
1 1 1

ournal of Mechanical Design
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h2: MaxPrice�MP31	 − $200 = 0 �25�

h3: �
i=1

m

�
j=1

n

ai,j − m = 0 �26�

h4: �
i=1

K

	i − 100% = 0 �27�

h5: 	i � �51%,23%,22%,3%,1%	 �28�

h6: MaxPricei = �200,120,160,80,40	 �29�

g1: 
Rbattery lifeent
− Rbattery lifeengL


 − �battery life � 0 �30�

g2: 
RWifient
− RWifiengL


 − �Wifi � 0 �31�

g3: 
Rshellent
− RshellengL


 − �shell � 0 �32�

g4: D − D0 � 0 �33�

where �MP3variantj
is the profit �in $� of MP3 variant with specific

design features; Tbattery life the battery life �hours� target predicted
by customer Naïve Bayes model; Rbattery life the battery life re-
sponse cascaded up from engineering sublevel; TWifi the connec-
tivity �bluetooth, wifi, or infrared� target predicted by customer
Naïve Bayes model; RWifi the connectivity response cascaded up
from engineering sublevel; Tshell the shell design target predicted
by customer Naïve Bayes model; Rshell the shell design response
cascaded up from engineering sublevel; y the linking variables at
the enterprise level, the linking variable concept applied to prod-
uct family design represent shared attributes or components that
exist among product variants. y the target values for linking vari-
able at the engineering subsystem level cascaded up to enterprise
level; �battery life the deviation tolerance between customer compo-
nent targets and engineering response; �Wifi the deviation toler-
ance between customer component targets and engineering re-
sponse; �shell the deviation tolerance between customer
component targets and engineering response.

Here, D0=100,000 �represents the total market population of
cell phone consumers� and K is 5 �product Portfolio limit that
would enable manufacturing process to remain efficient�. The
table of demand information for a given class variable prediction
is given in Table 4, where D=8395 represents the demand for a
$200 phone based on the Naïve Bayesian model in Eq. �6�. One of
the values of MaxPrice will be selected for each attribute combi-
nation �customer predicted preference� so long as it is more prob-
able than any other class variable of MaxPrice �see Eq. �6��.

4.3 Engineering Subsystem Level

4.3.1 Cell Phone Subsystem. The engineering subsystem level
comprises of a multiobjective function of cost minimization while

tions and response options

Survey answer choices

MP3, camera, internet, games, SMSText, just talk
Weight, size, or cost of cell phone
Flip phone design, shell phone design
Bluetooh, WiFi, infrared, none
3 hours, 5 hours, 7 hours
Display screen size, display resolution

just $40, $80, $120, 160, $200
ues

you
simultaneously minimizing the deviation between customer de-
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ign targets and engineering response. During the first iteration in
he product portfolio optimization, linking variables are nonexist-
nt due to the fact that only one optimal cell phone design exists
n the product portfolio set.

The basic mathematical formulation of successive cell phone
ariants is similar to perturbations occurring with each successive
roduct variant �Fig. 4�, depending on the customer targets.

Minimize

costMP3 variant1
+ 
Rbattery lifeU

− Pbattery life
 + 
RWifiU − RWifi


+ 
RshellU − Rshell
 �34�
Subject to the following:
In screen resolution constraints,

h1: �A1 � LCDlength � LCDwidth� − LCDres = 0 �35�

h2: �A2 � LCDlength � LCDwidth� − costLCD = 0 �36�

h3: �A3 � LCDlength � LCDwidth� − weightLCD = 0 �37�

h4: �A4 � LCDlength � LCDwidth� − powerLCD = 0 �38�

h5: �A5 � OLEDlength � OLEDwidth� − OLEDres = 0 �39�

h6: �A6 � OLEDlength � OLEDwidth� − costOLED = 0 �40�

able 4 Demand information based on the Naïve Bayesiann
redictive model

axPrice Customer demand �D� at given price

200 8395
160 16,001
120 21,796
80 12,908
40 7899

Fig. 4 Optimal product portfolio example.
can generate product variants that make u

=5 products….
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h7: �A7 � OLEDlength � OLEDwidth� − weightOLED = 0 �41�

h8: �A8 � OLEDlength � OLEDwidth� − powerOLED = 0 �42�
In battery design constraints,

h9: capNIMH − �NIMHconst1 � �VNIMH��

− THours � �
i=1

N

Pcomponenti
= 0 �43�

h10: capLION − �LIONconst1 � �VLION�� − Thours � �
i=1

N

Pcomponenti
= 0

�44�

h11: batterytalk time − �NIMH � ��0.0053 � �capacityNIMH��

+ 0.0269� + �LION � ��0.0061 � �capacityLION�� + 0.1667���

= 0 �45�

h12: ��NIMHconst2 � �LNIMH � WNIMH � TNIMH�� − costNIMH� = 0

�46�

h13: ��LIONconst2 � �LLION � WLION � TLION�� − costLION� = 0

�47�

h14: ��NIMHconst3 � �LNIMH � WNIMH � TNIMH�� − WgNIMH� = 0

�48�

h15: ��LIONconst3 � �LLION � WLION � TLION�� − WgLION� = 0

�49�

g1: �NIMH � LNIMH + LION � LLION� − 0.60 � �shell � Lshell

+ flip � Lshell� � 0 �50�

strates how just two product architectures
family of products „product portfolio of K
Illu
p a
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g2: �NIMH � WNIMH + LION � WLION� − 0.95 � �shell � Wshell

+ flip � Wflip� � 0 �51�

g3: �NIMH � TNIMH + LION � TLION� − 0.45 � �shell � Tshell

+ flip � Tflip� � 0 �52�
�To enhance the overall flow of the paper, several variable

ames are abbreviated �L=Length, W=Width, T=Thickness,
g=Weight, V=Volume, Cap=Capacity, P=Power consump-

ion, etc.��
In cell phone outer casing design constraints

h16: �shellconst1 � Lshell � Wshell � Tshell� − costshell = 0 �53�

h17: �flipconst1 � Lflip � Wflip � Tflip� − costflip = 0 �54�

h18: �shellconst2 � Lshell � Wshell � Tshell� − Wgshell = 0 �55�

h19: �flipconst2 � Lflip � Wflip � Tflip� − Wgflip = 0 �56�

g4: LLCD − �0.60 � shell � Lshell + 0.60 � flip � Lflip� � 0

�57�

g5: �0.30 � shell � Lshell + 0.30 � flip � Lflip� − LLCD � 0

�58�

g6: wLCD − 0.90 � �shell � Wshell + flip � Wflip� � 0 �59�

g7: 0.7 � �shell � Wshell + flip � Wflip� − WLCD � 0 �60�

g8: LOLED − �0.60 � shell � Lshell + 0.60 � flip � Lflip� � 0

�61�

g9: �0.30 � shell � Lshell + 0.30 � flip � Lflip� − LOLED � 0

�62�

g10: WOLED − 0.90 � �shell � Wshell + flip � Wflip� � 0 �63�

g11: 0.7 � �shell � widthshell + flip � widthflip� − OLEDwidth � 0

�64�

Table 5 Possible sha

Component D

Internal memory �RAM� 32 Mbytes RAM
Internal memory �RAM� 64 Mbytes RAM
External memory Memory stick pr
External memory Memory stick du
Hard drive 1 Gbytes storag
Hard drive 2 Gbytes storag
Phone design Shell pho
Phone design Flip phon
Battery type Lithium polymer �
Battery type Lithium ion �34
Connectivity Bluetooth conn
Connectivity Wifi discr
Connectivity Infra red dis
Auto codec Micropho
Auto codec Earpiece
Auto codec Auto jac
Auto codec External spe
Display type TFT LCD �
Display type OLED �3
In design objectives,

ournal of Mechanical Design
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h20: total cost − �
i=1

N

component�i�cost = 0 �65�

h21: total weight − �
i=1

N

component�i�weight = 0 �66�

Table 5 identifies the possible shared components of each indi-
vidual MP3 capable phone. Sharing decision are influenced by
customer performance expectations and engineering capabilities.
Certain components are purchased directly from a manufacturer
and would therefore have fixed performance specifications, while
other components can be manufactured by the company to meet
customer needs.

4.4 Optimization Study. With a methodological approach to
product architecture formulation, enterprise decision makers can
have a validation tool to justify product portfolio formulation and
launch decisions. We begin by predefining a finite number of
unique architectures that will constitute our optimal product fam-
ily. For our study, a product portfolio of five product variants will
be set as our maximum manufacturing ability. It is assumed in this
case study that a product portfolio greater than five will begin to
result in diseconomies of scale and ultimately, reduced profit �30�.

Predictive product performance targets are acquired through our
data mining process and used to set our initial starting point val-
ues at the enterprise level as targets for the engineering subsystem
level, i.e., �MP3, 5 h Battery Life, Cost Objective, Screensize,
Wifi Connectivity, Shell Design�. For this particular cell phone
design, we get an engineering product design cost of $98.3 /unit.
The cost response from the engineering design level is then cas-
caded up to the enterprise level where the MaxPrice is used to
calculate the predicted profit ��variant�. With a predicted MaxPrice
of $200 and an associated demand �D� of $8395, we arrive at a
projected profit of $853,448. The particular product design, how-
ever, fails to meet the battery life target of 5 h, instead designing
a cell phone with a battery life of only 4.5 h.

The customer focused objective of matching predicted perfor-
mance expectations and the engineering design objective of de-
signing the lowest cost product are competing objectives. The
enterprise profit calculations presented in this work are the pro-
jected profit calculations for a given product launch, based on a
particular phone design and how closely it matches customer per-

component variables

ription Design Options

screte choice variable Manufacturer
screte choice variable Manufacturer
iscrete choice variable Manufacturer
iscrete choice variable Manufacturer
screte choice variable Manufacturer
screte choice variable Manufacturer
esign variables Engineeringdesign
esign variables Engineeringdesign
battery design variables Engineeringdesign
ttery design variables Engineeringdesign
ion discrete variable Manufacturer
choice variable Manufacturer
te choice variable Manufacturer
iscrete variable Manufacturer
crete variable Manufacturer
screte variable Manufacturer
r discrete variable Manufacturer
discrete variable Manufacturer
iscrete variable Manufacturer
red

esc

di
di

o d
o d
e di
e di
ne d
e d
34�
� ba
ect
ete
cre

ne d
dis

k di
ake
35�
5� d
formance expectations �which may consequently affect the prod-
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ct demand�. We make the argument that it is better to launch a
roduct that has lower projected profits �but fully satisfies cus-
omer expectations� than to launch a product with a higher pro-
ected profit margin �but fails to satisfy customer wants�. Failure
o satisfy customer wants would adversely affect the actual de-

and for that product and decrease the actual enterprise profit as
ustomers switch to alternative products that more closely satisfy
heir performance expectations. The disparity between projected
ersus actual profit calculations is therefore highly dependent on
roduct performance.

4.4.1 Optimal Product Portfolio Model. Mathematically, this
ptimization process is translated to

Minimize

�
j=1

k

− xj�Dj · ��variant�j� − � · �
i=0

N

�i �67�

variant�j� is the profit for variant �j�; xj the binary discrete variable
electing or deselecting particular product variant ��variant�j��
here � j=1

k xj �K, where K is the optimal product portfolio limit
f 5 for our example and k symbolizes the nine studied MP3
rchitectures; Dj, the demand for a given product design �, the
eighted value for penalty term �i; �i, the tolerance deviation

erm for particular customer target �i�; N, the total number of
hared components.

The comparative analysis can now begin where we use the
bove calculated profit �$853,448� as our base. We will first de-
ermine the profits of the first five product variants that can be
easibly designed with the MP3 technology. For each successive
teration, we will compare the newly calculated profit of variantj
o that of each varianti�i=1,. . .,K� existing in our feasible product
amily set. If the newly calculated product variant profit is greater
han any of the variant profits in our set, we will discard the least
rofitable and replace it with variantj.

Depending on the number of possible combinations of the pre-
ictive model, either an exhaustive search approach or a tree
ranching algorithm can be used. For the MP3 Architecture, nine
ombinations are analyzed with a battery life of 3 h as our pri-
ary sharing component.

Results and Discussion
To determine our optimal product portfolio of five architectures,

he nine combinations of MP3 capable cell phones were analyzed
Table 6� to determine the profit margins of each product variant.
he optimization results reveal that variant1 fails to satisfy cus-

omer targets on one of the performance metrics, i.e., deviation
etween customer battery life target and engineering battery
anufacturing capabilities 
Tbattery life−Rbattery life
 is greater than

olerance �battery life and is therefore deemed less profitable with
he incorporation of the penalty term described in Eq. �67�.

Each subsequent product variant uses a battery life of 3 h,
hich may initially seem less profitable due to the changes in the
aïve Bayes predictions of MaxPrice �Figs. 2 and 4�. After an

ngineering design validation, however, we see that such architec-
ures would be cheaper to manufacture and would yield the high-
st profit margins while satisfying customer wants. �Note: An en-
ineering response is an evaluation of technical capabilities by the
ngineering team in determining the feasibility of such a product.
he relevance to battery life is that certain product concepts may
ave unattainable battery life expectations.�

The optimal product portfolio �Fig. 4� given this approach will
herefore be architectures �3,5,6,7,9	, yielding a total company
rofit of

�overall = $848,902 + $881,596 + $967,996 + $1,024,232

+ $930,769 = $4.65 Million �68�

he multilevel optimization solution �adopting the ATC method-

41103-10 / Vol. 130, APRIL 2008
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ology �17�� took approximately 500 s per product variant running
on an Intel Pentium IV desktop �3.2 GHz�. The model was devel-
oped in the Matlab �36� environment with TOMLAB �31� used in
the optimization sequence.

The cost-savings benefit of manufacturing can be realized when
a product manufacturing process has minimal number of interrup-
tions. Thus the more components that a product shares with vari-
ants, the higher the probability that this may translate into lower
overall company operating costs. Sharing decisions focused solely
on manufacturing process cost savings can, however, have adverse
effects on customer preferences and ultimately their willingness to
pay as seen in the following example. Four out of the nine product
architectures share a flip phone design �Tables 6 and 7�. Although
it would be more desirable for all architectures to share the same
type of design �flip or shell�, it is clearly observed that such a
decision would not yield the most profitable product portfolio. For
example, sharing a shell phone design for 5 architectures would
mean selecting architectures �1,2,4,6,8	, which would yield a
maximum profit of

�overall = $853,448 + $774,642 + $807,336 + $967,996

+ $632,093 = $4.03 Million �69�

Even without penalizing variant1 for failing to satisfy the cus-
tomer battery target of 5 h �actual engineering response=4.5 h�,
we see that a sharing decision of a shell phone design would yield
a less profitable product portfolio. The solution to product portfo-
lio optimization is multifaceted requiring input from different spe-
cializations across different boundaries. Such powerful insights
will help enterprise decision makers understand the intricate link
that exists between what customer wants and engineering design
capabilities.

6 Conclusion
The emergence of a customer driven need for product differen-

tiation has lead companies to re-evaluate current design and
manufacturing processes �37�. Consequently, analytical tech-
niques are required to alleviate the costs associated with product
differentiation. The greatest challenge is to develop an optimal
product architecture for a family of products in a dynamic market
space. To overcome this challenge, we have successfully demon-
strated how data mining techniques can help analytically develop
a product family by encompassing customer requirements directly
with engineering capabilities using ATS �5� and ATC �6�. Modu-
larity and component sharing decisions can now be expanded be-
yond manufacturing cost savings to include consumer price sen-
sitivity to product architecture changes. The dynamic product
architecture concept utilized in this work has the benefit of con-
tinuously changing architecture design variables throughout the
product design phase to cater to customer preference require-
ments. A product portfolio is achieved, which not only maximizes
profit but simultaneously satisfies what the customer wants. The
validity of this method enables us to expand and include multi-
stage problems, especially focusing on a changing market space.

The cell phone analysis systematically attains a feasible product
portfolio by simultaneously focusing on changing demand due to
a particular product design choice. The model places emphasis on
deterministic �and in later works stochastic� methods in product
architecture formulation. The long term goal is to provide decision
makers in industry with a useful tool that helps mitigate the asso-
ciated risks involved in product portfolio formation and product
launch decisions. Such a tool has the potential to drastically re-
duce errors associated with ad hoc product portfolio methodolo-
gies or disjointed expertise between the business and engineering
teams. The manufacturing benefits of product architecture design
and product portfolio formulation will be incorporated in later
models to reflect a wider scope of product design. Careful atten-
tion will be paid to the efficiency at which the algorithm of choice

will converge to an optimal solution. An exhaustive search algo-
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ortfolio given maximum five architectures

P3 Phone7
solution

MP3 Phone8
solution

MP3 Phone9
solution Units

1 1 1 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

0 1 0 —

120.0 80.0 120.0 mm

40.0 40.0 40.0 mm

12.0 17.4 12.0 mm

29.4 28.4 29.4 g

13.2 12.8 13.2 $

1 0 1 —

100.0 100.0 100.0 mm

45.0 45.0 45.0 mm

12.0 18.1 12.0 mm
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Table 6 Optimal Product Family Results „Part 1…. Highlighted architectures represent the most profitable product p
allowed in the portfolio.

Variable
description

Component
source

MP3 Phone1
solution

MP3 Phone2
solution

MP3 Phone3
solution

MP3 Phone4
solution

MP3 Phone5
solution

MP3 Phone6
solution

M

32 Mbytes
discrete variable

Manufacturer 1 0 1 1 1 1 1

Manufacturer 2 0 0 0 0 0 0

Manufacturer 3 0 0 0 0 0 0

64 Mbytes
discrete variable

Manufacturer 1 0 0 0 0 0 0

Manufacturer 2 1 0 0 0 0 0

Manufacturer 3 0 0 0 0 0 0

Memory stick pro
discrete variable

Manufacturer 1 0 0 0 0 0 0

Manufacturer 2 0 0 0 0 0 0

Manufacturer 3 0 0 0 0 0 0

Memory stick duo
discrete variable

Manufacturer 1 0 0 0 0 0 0

Manufacturer 2 0 0 0 0 0 0

Manufacturer 3 0 0 0 0 0 0

1 Mbytes storage
discrete variable

Manufacturer 1 0 0 0 0 0 0

Manufacturer 2 1 0 0 0 0 0

Manufacturer 3 0 0 0 0 0 0

2 Mbytes storage
discrete variable

Manufacturer 1 0 0 0 0 0 0

Manufacturer 2 0 0 0 0 0 0

Manufacturer 3 0 0 0 0 0 0

Shell phone discrete
variable

Engineering
design

1 1 0 1 0 1

Phone length Engineering
design

85.0 80.0 120.0 80.0 120.0 80.0

Phone width Engineering
design

48.4 40.0 40.0 40.0 40.0 40.0

Phone thickness Engineering
design

19.1 17.7 16.3 17.7 16.3 16.5

Phone weight Engineering
design

40.0 28.9 40.0 28.9 40.0 27.0

Phone cost Engineering
design

18.0 13.0 18.0 13.0 18.0 12.1

Flip phone discrete
variable

Engineering
design

0 0 1 0 1 0

Phone length Engineering
design

100.0 100.0 100.0 100.0 100 0.135.1

Phone width Engineering
design

45.0 68.0 45.0 68.0 45.0 45.0

Phone thickness Engineering
design

18.1 12.0 12.0 12.0 12.0 12.0
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P3 Phone7
solution

MP3 Phone8
solution

MP3 Phone9
solution Units

26.5 40.0 26.5 g

7.9 12.0 7.9 s

0 0 0 —

50.0 50.0 50.0 g

80.0 70.0 80.0 mm

60.0 50.4 25.5 mm

11.1 15.1 26.1 mm

20.2 20.2 20.2 $

1002.6 986.8 972.6 mAh

1 1 1 $

12.29 12.62 12.91 g

72.00 48.00 63.58 mm

42.75 38.00 42.74 mm

4.52 7.83 5.38 mm

11.19 11.48 11.74 $

464.47 464.47 464.47 mAh

3.00 3.00 3.00 h

0 0 0 —

0 0 0 —

0 1 1 —
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Table 6 „Continued.…

Variable
description

Component
source

MP3 Phone1
solution

MP3 Phone2
solution

MP3 Phone3
solution

MP3 Phone4
solution

MP3 Phone5
solution

MP3 Phone6
solution

M

Phone weight Engineering
design

40.0 40.0 28.5 40.0 26.5 35.7

Phone cost Engineering
design

12.0 12.0 7.9 12.0 7.9 10.7

Nickel metal hydride
battery discrete
variable

Engineering
design

0 0 0 0 0 0

Battery weight Engineering
design

42.4 49.2 50.0 50.0 50.0 50.0

Battery length Engineering
design

46.2 51.1 36.6 59.7 72.5 38.2

Battery width Engineering
design

54.7 34.2 48.6 37.0 32.3 60.0

Battery thickness Engineering
design

17.9 30.0 30.0 24.1 22.7 23.3

Battery cost Engineering
design

17.1 19.9 20.2 20.2 20.2 20.2

Battery capacity Engineering
design

803.9 958.9 962.6 976.8 962.6 1016.8

Lithium ion battery
discrete variable

Engineering
design

1 1 1 1 1 1

Battery weight Engineering
design

17.76 12.82 13.11 12.82 13.11 12.00

Battery length Engineering
design

51.00 48.00 72.00 48.00 72.00 48.00

Battery width Engineering
design

45.97 38.00 42.75 38.00 42.75 38.00

Battery thickness Engineering
design

8.58 7.96 4.52 7.96 4.82 7.45

Battery cost Engineering
design

16.16 11.67 11.93 11.67 11.93 10.92

Battery capacity Engineering
design

706.77 464.47 464.47 464.47 464.47 464.47

Cell phone talk time Engineering
design

4.48 3.00 3.00 3.00 3.00 3.00

Bluethooth discrete
variable

Manufacturer 1 0 0 0 1 1 0

WIFI discrete
variable

Manufacturer 1 1 1 1 0 0 0

Intre red discrete
variable

Manufacturer 1 0 0 0 0 0 0
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ortfolio given maximum five architectures

P3 Phone7
Solution

MP3 Phone8
Solution

MP3 Phone9
Solution Units

1 1 1 —

0 0 0 —

1 0 1 —

0 0 0 —

0 1 0 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

1 1 1 —

1 1 1 —

30.00 24.00 30.00 mm

31.50 28.00 31.50 mm

13929.30 9905.28 13929.30 pixels

4.73 3.36 4.73 $

37.80 26.88 37.80 g

9.45 6.72 9.45 mAh

0 0 0 —

31.75 33.21 30.00 mm

31.50 28.00 33.33 mm

19620.00 18245.00 19520.00 pixels

8.00 7.44 8.00 $

30.00 27.90 30.00 g
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Table 7 Optimal Product Family Results „Part 2…. Highlighted architectures represent the most profitable product p
allowed in the portfolio.

Variable
description

Component
Source

MP3 Phone1
Solution

MP3 Phone2
Solution

MP3 Phone3
Solution

MP3 Phone4
Solution

MP3 Phone5
Solution

MP3 Phone6
Solution

M

Microphone discrete
variable

Manufacturer 1 1 1 1 1 1 1

Manufacturer 2 0 0 0 0 0 0

EarPiece discrete
variable

Manufacturer 1 0 0 1 0 1 0

Manufacturer 2 0 0 0 0 0 0

Manufacturer 3 1 1 0 1 0 1

Audio jack discrete
variable

Manufacturer 1 0 0 0 0 0 0

Manufacturer 2 0 0 0 0 0 0

External speaker
discrete variable

Manufacturer 1 0 0 0 0 0 0

Manufacturer 2 1 0 0 0 0 0

Manufacturer 3 1 1 1 1 1 1

LCD discrete
variable

Engineering
design

1 1 1 1 1 1

Length of LCD discrete
variable

Engineering
design

25.50 24.00 30.00 24.00 30.00 24.00

Width of LCD Engineering
design

34.94 26.00 31.50 28.00 31.50 28.00

Display resolution Engineering
design

13131.32 8905.28 13929.30 9905.28 13929.30 9905.28

LCD manufacturing
cost

Engineering
design

4.45 3.36 4.73 3.38 4.73 3.36

LCD unit weight Engineering
design

35.63 26.88 37.60 26.88 37.870 26.88

LCD power
consumption

Engineering
design

6.91 6.72 9.45 6.72 9.45 6.72

OLED discrete
variable

Engineering
design

0 0 0 0 0 0

Length of OLED Engineering
design

25.50 35.33 30.00 25.57 30.00 33.41

Width of OLED Engineering
design

39.22 28.09 31.50 36.00 31.50 28.00

Display resolution Engineering
design

19620.00 19473.58 18540.90 18050.00 18540.90 18352.50

OLED manufacturing
cost

Engineering
design

8.00 7.94 7.56 7.38 7.56 7.48

OLED unit weight Engineering
design

30.00 29.78 28.35 27.61 28.35 28.06
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P3 Phone7
Solution

MP3 Phone8
Solution

MP3 Phone9
Solution Units

30.00 27.90 30.00 MhA

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

1 1 1 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

0 0 0 —

73.04 80.60 73.80 $

116.07 116.33 125.19 g
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Table 7 „Continued.…

Variable
description

Component
Source

MP3 Phone1
Solution

MP3 Phone2
Solution

MP3 Phone3
Solution

MP3 Phone4
Solution

MP3 Phone5
Solution

MP3 Phone6
Solution

M

OLED power
consumption

Engineering
design

30.00 29.78 28.35 27.61 28.35 26.06

1 MegaPixel camera
discrete variable

Manufacturer 1 0 0 0 0 0 0

Manufacturer 2 0 0 0 0 0 0

2 MegaPixel camera
discrete variable

Manufacturer 1 0 0 0 0 0 0

Manufacturer 2 0 0 0 0 0 0

MP3 module discrete
variable

Manufacturer 1 0 0 0 0 0 0

Manufacturer 2 0 1 1 1 1 1

Manufacturer 3 0 0 0 0 0 0

Manufacturer 4 0 0 0 0 0 0

Internet module
discrete variable

Manufacturer 1 0 0 0 0 0 0

Manufacturer 2 0 0 0 0 0 0

Graphics module for
games: discrete
variable

Manufacturer 1 0 0 0 0 0 0

Manufacturer 2 0 0 0 0 0 0

Manufacturer 3 0 0 0 0 0 0

SMS text message
technology discrete
variable

Manufacturer 1 0 0 0 0 0 0

Total architecture
cost

Engineering
solution

98.34 84.46 81.05 82.96 79.58 75.68

Total architecture
weight

Engineering
solution

141.82 121.29 129.69 117.39 125.79 105.83
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ithm or a branch and bound algorithm will help to ensure a global
ptimum for the maximum attainable profit for a family of archi-
ectures.
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omenclature
K � product portfolio limit �maximum number of

existing products at launch�
TC � variant target component predicted by Naïve

Bayes customer model
RE � engineering design response

�feasible/infeasible�
y � linking variable at the engineering sub-system

level cascaded up to enterprise level
�i � attribute selection �can assume a range of

values�
� � the maximum price �MaxPrice� a customer is

willing to pay for a particular product design
� � projected profit of a feasible product design

based on engineering design and predicted
demand

�R � deviation tolerance between customer perfor-
mance targets and engineering response

�y � deviation tolerance between linking variables
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