1. Find the critical numbers of $f(x) = 3x^3 + 17x^2 - 8x$.

a) $x = 0$ and -8

b) $x = -4$ and $\frac{2}{9}$

c) $x = \frac{4}{9}$ and 3

d) $x = -\frac{32}{9}$ and 17

e) $x = \frac{2}{9}$ and -8

2. The graph of the second derivative f'' of a function f is shown. Find the x-coordinates of the inflection points.

a) 6 and 9

b) 5 and 8

c) 3 and 6

d) 4 and 8

e) 3 and 9

3. Find the open interval in $(0, 2\pi)$ on which $f(x) = 3x + 10\cos x$ is concave upward.

a) $\left(0, \frac{\pi}{2}\right)$

b) $(\pi, 2\pi)$

c) $\left(\frac{3\pi}{2}, 2\pi\right)$

d) $\left(\frac{5\pi}{4}, \frac{7\pi}{4}\right)$

e) $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$

4. Find $\lim_{x \to \infty} (\sqrt{x^2 + 7x} - \sqrt{x^2 + 11x})$.

a) 9

b) -4

c) -2

d) 18

e) $\sqrt{7} - \sqrt{11}$

5. Which one of the following statements is correct?

a) The graph of $y = 8x^2 - x^4$ is decreasing on $(-2, 0)$.

b) The graph of $y = 8x^2 - x^4$ is increasing on $(-\infty, \infty)$.

c) The graph of $y = 8x^2 - x^4$ is increasing on $(-\infty, 0)$.

d) The graph of $y = 8x^2 - x^4$ is decreasing on $(-2, 2)$.

e) The graph of $y = 8x^2 - x^4$ is decreasing on $(0, 2)$.

6. Find the sum of two positive numbers such that the product of the two numbers is 225 and the sum is a minimum.

a) 78

b) 50

c) 34

d) 30

e) 25

7. Find the absolute maximum value of $y = \sqrt{49 - x^2}$ on the interval $[-7, 7]$.

a) 7

b) 8

c) 0

d) 6

e) 14

8. Find the exact value(s) of the numbers c that satisfy the conclusion of the Mean Value Theorem for the function $f(x) = x^3 - 5x$ for the interval $[-5, 5]$.

a) $\pm \frac{\sqrt{3}}{5}$

b) $\pm \frac{5\sqrt{3}}{3}$

c) $\frac{\sqrt{3}}{3}$

d) ± 3

e) ± 5

9. How many real roots does the equation $x^5 - 6x + c = 0$ have in the interval $[-1, 1]$?

a) no real roots

b) three real roots

c) at most one real root

d) two real roots

e) at least 5 real roots
10. Find \(\lim_{x \to \infty} \frac{\sqrt{x^2 + 8x}}{8x + 5} \).

a) 0
b) \infty
c) \frac{5}{8}
d) \frac{1}{5}
e) \frac{1}{8}

11. Find the slant asymptote of \(f(x) = \frac{x^4 + 4}{x^3} \).

a) \(y = x \)
b) \(y = x^2 \)
c) \(y = 1 \)
d) \(y = x + 4 \)
e) \(y = 4 \)

12. Find the point in the line \(y = 2x + 9 \) that is closest to the origin.

a) \(\left(-\frac{9}{2}, 0 \right) \)
b) \((-4, 1) \)
c) \((2, 13) \)
d) \(\left(-\frac{18}{5}, 0 \right) \)
e) \(\left(-\frac{18}{5}, \frac{9}{5} \right) \)

13. Suppose oil spills from a ruptured tanker and spreads in a circular pattern. If the radius of the oil spill increases at a constant rate of 1 m/s, how fast is the area of the spill increasing when the radius is 48 m?

a) \(202\pi \text{ m}^2/\text{s} \)
b) \(101\pi \text{ m}^2/\text{s} \)
c) \(192\pi \text{ m}^2/\text{s} \)
d) \(96\pi \text{ m}^2/\text{s} \)
e) \(288\pi \text{ m}^2/\text{s} \)

14. A plane flying horizontally at an altitude of 1 mile and a speed of 450 mi/h passes directly over a radar station. Find the rate at which the distance from the plane to the station is increasing when it is 10 miles away from the station.

a) \(50\sqrt{99} \text{ mi/h} \)
b) \(45\sqrt{99} \text{ mi/h} \)
c) \(50\sqrt{101} \text{ mi/h} \)
d) 540 mi/h
e) 517 mi/h

15. Find the linear approximation of the function \(g(x) = \sqrt{1 + x} \) at \(a = 0 \).

a) \(\sqrt{1 + x} \approx \frac{1}{7}x + 1 \)
b) \(\sqrt{1 + x} \approx 7x - 1 \)
c) \(\sqrt{1 + x} \approx 7x + 1 \)
d) \(\sqrt{1 + x} \approx x + 7 \)
e) \(\sqrt{1 + x} \approx \frac{1}{7}x - 1 \)

16. Find the differential of the function \(y = x^4 + 2x \).

a) \(dy = (4x^4 + 2)dx \)
b) \(dy = (x^3 + 2)dx \)
c) \(dy = (4x^3 + 2)dx \)
d) \(dy = (4x - 2)dx \)
e) \(dy = (x^4 + 2x)dx \)

17. The altitude of a triangle is increasing at a rate of 4 cm/min while the area of the triangle is increasing at a rate of 5 cm²/min. At what rate is the base of the triangle changing when the altitude is 2 cm and the area is 92 cm²?

18. Find the largest possible volume of the box with a square base and an open top whose total surface area is 1200 cm².