Midterm I. Math 230. Spring 2005

4, October, 2006

Problem 1 Pick a point on the first line. Say, \(t = 0 \) yields \(A(0, 1, 0) \in L_1 \). Pick a point on the second line. Say, \(s = 0 \) yields \(B(1, 4, 0) \in L_2 \). Take any direction vector of either line, say, \(\vec{d} = (2, -3, 1) \) is the direction vector of the second line. Vectors \(\vec{d} \) and \(\vec{AB} \) are parallel to the plane of the two lines, but not to each other. Therefore, \(\vec{n} = \vec{d} \times \vec{AB} \) is orthogonal to the plane, and so can be taken as its normal vector. \(\vec{n} = \vec{d} \times \vec{AB} = \begin{vmatrix} i & j & k \\ 2 & -3 & 1 \\ 1 & 3 & 0 \end{vmatrix} = (-3, 1, 9). \)

To define a plane we also need some point on it, say, \(A(0, 1, 0) \), so the equation is \(-3(x - 0) + 1(y - 1) + 9(z - 0) = 0\), or just \(-3x + y + 9z - 1 = 0\).

Problem 2 \(z = \rho \cos(\phi) = 2\cos(t) = 2\sqrt{3} \)
\(r = \rho \sin(\phi) = 2\sin(t) = 2 \frac{\sqrt{3}}{2} = 1 \)
\(x = r \cos(\theta) = 1 \cos(\frac{\pi}{3}) = \frac{1}{2} \)
\(y = r \sin(\theta) = 1 \sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2} \)

So the answer to (a) is \((\sqrt{3}, \frac{\sqrt{3}}{2}, \frac{1}{2}) \).
\(\rho^2 \sin^2(\phi) = (\rho \sin(\phi))^2 = r^2 = x^2 + y^2 \)
\(\rho^2 \cos^2(\phi) = (\rho \cos(\phi))^2 = z^2 \)

So the answer to (b) is \(2(x^2 + y^2) - z^2 = 1. \)

Problem 3 \(\vec{T'}(t) = (e^t, -e^{-t}, \sqrt{2}) \)
\(|\vec{T'}(t)| = \sqrt{e^{2t} + e^{-2t} + 2} = \sqrt{(e^t + e^{-t})^2} = e^t + e^{-t} \)

Hence, the unit tangent vector \(\vec{T}(t) = \frac{1}{e^t + e^{-t}}(e^t, -e^{-t}, \sqrt{2}) \)

Its derivative can be found applying the product rule (derivative of a product of a scalar function and a vector function):
\[\vec{T}'(t) = \frac{1}{(e^t + e^{-t})^2} (e^t, -e^{-t}, \sqrt{2}) + \frac{1}{e^t + e^{-t}} (e^t, -e^{-t}, \sqrt{2})^{-1} (e^t, -e^{-t}, 0) = \left(\frac{-e^t e^{-t}}{(e^t + e^{-t})^2} \right) (e^t, -e^{-t}, \sqrt{2}) + \frac{1}{(e^t + e^{-t})^2} (e^{2t} + 1, 1 + e^{-2t}, 0) = (-e^{2t} + 1, 1 - e^{-2t}, -\sqrt{2e^t + \sqrt{2}e^{-t}}) + \frac{1}{(e^t + e^{-t})^2} (e^{2t} + 1, 1 + e^{-2t}, 0) = \frac{1}{(e^t + e^{-t})^2} (2, 2, -\sqrt{2e^t + \sqrt{2}e^{-t}}) \]

We need to normalize \(\vec{T}'(t) \) in order to find the unit normal vector. \(|\vec{T}'(t)| = \frac{1}{(e^t + e^{-t})^2} \sqrt{4 + 4 + 2(e^{2t} - e^{-t})^2} \), so the unit normal vector \(\vec{N}(t) = \frac{\vec{T}'(t)}{|\vec{T}'(t)|} = \frac{1}{\sqrt{4 + 4 + 2(e^{2t} - e^{-t})^2}} (2, 2, -\sqrt{2e^t + \sqrt{2}e^{-t}}) \)
Problem 4 $\mathbf{\tau}'(t) = \langle t, \sqrt{2t}, 1 \rangle$

$|\mathbf{\tau}'(t)| = \sqrt{2t^2 + 2t + 1} = t + 1$, as far as $1 \leq t \leq 3$, so $t + 1 \geq 0$. Finally,

$L = \int_1^3 |\mathbf{\tau}'(t)| dt = \int_1^3 (t + 1) dt = \left(\frac{t^2}{2} + t\right) \bigg|_1^3 = \left(\frac{3^2}{2} + 3\right) - \left(\frac{1^2}{2} + 1\right) = 6$

Problem 5 $\mathbf{\tau}(t) = \mathbf{\tau}(0) + \int_0^t \mathbf{\tau}'(u) du = \langle 0, 1, 2 \rangle + \langle (-\sin(u), \cos(u), u^2 - u) \rangle \bigg|_0^t = \langle 0, 1, 2 \rangle + \langle (-\sin(t), \cos(t), t^2 - t) - \langle 0, 1, 0 \rangle \rangle = \langle -\sin(t), \cos(t), t^2 - t + 2 \rangle$

$\mathbf{\tau}(t) = \mathbf{\tau}(0) + \int_0^t \mathbf{\tau}'(u) du = \langle 0, 1, 2 \rangle + \langle (\cos(u), \sin(u), u^2 - u^2 + 2u) \rangle \bigg|_0^t = \langle 1, 0, 0 \rangle + \langle (\cos(t), \sin(t), t^2 - t^2 + 2t) - \langle 1, 0, 0 \rangle \rangle = \langle \cos(t), \sin(t), \frac{t^2}{2} - \frac{t^2}{2} + 2t \rangle$

$|\mathbf{\tau}(1)| = |\langle -\sin(1), \cos(1), 1^2 - 1 + 2 \rangle| = \sqrt{(-\sin(1))^2 + (\cos(1))^2 + (2)^2} = \sqrt{5}$

Problem 6 We did not cover this material

Problem 7 We did not cover this material

Problem 8 Extensive computations. Idea: substitute one equation into the other. $x + y + x^2 + 3y^2 = 4$, or $(x + 1/2)^2 + 3(y + 1/6)^2 = 13/3$. This projection onto the xy-coordinate plane is an ellipse, which can be parametrized by t. Then find the tangent vector (i.e. the derivative of the vector function, describing this parametrization). Finally, substitute the value of t yielding $(1, -1, 4)$. This value of t can be found from the parametrization of the ellipse mentioned above, i.e. from the first coordinate. $t = \cos^{-1}(...)$.

Problem 9 True: a, e (check the dot product), h (think of the volume of the corresponding parallelepiped), i

False: b (because they may lie on one line), c, d (in our definition curvature is always nonnegative), f (the center is $(2, -3, 5)$), j (f_{xy} means the opposite, but you do not need to know that for the exam)

Statement g makes no sense, because this is a cross product of a vector with a scalar.

Problem 10 The question is in effect to find the tangential component of the acceleration. $\mathbf{\tau}'(t) = \mathbf{\tau}''(t) = \langle \frac{1}{2}, 2t, 2t \rangle$

$\mathbf{\tau}'(t) = \mathbf{\tau}'(t) = \langle \frac{1}{2}, 2, 2 \rangle$

$\text{proj}_{\mathbf{\tau}'(t)} \mathbf{\omega}(t) = \frac{\mathbf{\omega}(t) \cdot \mathbf{\tau}'(t)}{|\mathbf{\tau}'(t)|^2} \mathbf{\tau}'(t) = \frac{\frac{1}{2} + 4t + 4t^2}{\frac{1}{4} + 4t^2 + 4t^2} \langle \frac{1}{2}, 2t, 2t \rangle = \frac{4t^2 - 1}{8t^2 + 1} \langle \frac{1}{2}, 2, 2 \rangle$

Problem 11 We did not cover this material