ANSWERS:
1. There are infinitely many correct answers for each part. A few examples are given.
 (a) e.g., \(y' = y^2 \) or \(y' = e^y \)
 (b) e.g., \(y'' = 0 \) or \(y'' + y' + y = 0 \)
2. \(y(t) = \sqrt{2e^t - 1} \)
3. (First move everything to the left-hand side of the equation and check to see that this is an exact equation.)
 Solution: \(-2x - e^{xy} + y^2 = C\)
4. The initial value problem is \(Q' = 8 - \frac{1}{50} Q, \quad Q(0) = 100. \)
 The solution is \(Q(t) = 400 - 300e^{\frac{t}{50}}. \)
 Finally, \(\lim_{t \to \infty} Q(t) = 400 \)
5. First rewrite the equation as \(y' - \frac{3}{t} y = 1, \ y(4) = -1. \)
 (a) The guaranteed solution interval is \((0, \infty)\).
 (b) \(y(t) = \frac{-t}{3} + \frac{t^3}{64} \)
6. (a) The equilibrium solutions are: \(y = -1 \) (stable), \(y = 1 \) (unstable), and \(y = 2 \) (stable).
7. (a) \(y(t) = C_1 e^{2t} \cos t + C_2 e^{2t} \sin t \)
 (b) \(y(t) = C_1 e^{-3t} + C_2 e^{-3t} \)
8. (a) \(y(t) = 3e^t - e^{2t} \)
 (b) \(\lim_{t \to \infty} y(t) = \lim_{t \to \infty} e^t (3 - e^{3t}) = -\infty \)
9. First substitute \(y_1(t) \) and \(y_2(t) \) into the equation to verify that they both satisfy it. This shows that both functions are indeed solutions of the given equation. Then calculate their Wronskian, \(W(y_1, y_2) = t^4 \neq 0 \) when \(t > 0 \). This shows that they are linearly independent. Therefore, the two functions do, in fact, form a fundamental set of solutions for the given equation.