AE 597D Sustainable Building Methods

T, Th 9:05-11 107 Engineering B

Instructor: David Riley Associate Professor driley@engr.psu.edu 220 Engineering A Office Hours T, TH, 10:00-12:00 pm TH 1:00 – 2:00 pm or by appt.

Course Goals

This course introduces students to concepts of sustainability and green design as as applied in building construction. The goal of this course is to help students develop the vocabulary and skills to become productive contributors to sustainable building project teams.

Objectives

Through participation in this course, students will:

- Gain a working vocabulary and familiarity with "green" technologies including water treatment, recycling, day lighting, and energy reducing strategies in buildings.
- Become familiar with the LEEDS rating system for green buildings, and examine lessons learned on green projects through case studies.
- Be able to participate in a debate on sustainability and green building design
- Gain a detailed understanding of a chosen "green" material and building technology through independent research projects.

Required Text:"Patterns: Sustainable Design"Essays on the art and science of engineeringfor SustainabilityBuro Happold Consulting Engineerswww.burohappold.com.Additional course Handouts will be provided as necessary

Course Format

This course will combine lectures, in class exercises and discussion, and guest lectures. Students are expected to attend class and be prepared for discussion.

Submissions

All submission for this course will be via email. Group assignments must be submitted as a single document. Late penalties of 15% /day will be assessed on all submissions. Late work will not be accepted after it has been discussed in class.

On-Line Course Materials

We will be using ANGEL in this course, Penn State's online course management system. All students are required to create and maintain an account on ANGEL for this course. ANGEL: https://cms.psu.edu

Grading

You will be evaluated on your class participation, in-class and take-home exercises, two midterms, a group project, and a final exam.

Class Participation	10%
Field Trip Attendance	10%
Negotiation / Debate Exercises	20%
Sustainable Materials Presentation	25%
Database Research	25%

Date		Subject	Notes	Reading	
Part 1 – Sustainable Technologies and Materials					
8/27	1	Introduction and Preview			
8/29	2	Buildings and the Environment		Building Better	
9/3	3	Strategies and Metrics of Sustainability		Patterns 1-10, 52-59	
9/5	4	Sustainable Materials and Technologies	Decking Debate	Role of Structural Eng.	
9/10	5	Water Treatment	NMEC	Patterns 41-44	
9/12	6	Tania Slaweki: PSU Living Machine			
9/17	7	Julian Woods Community Visit	Waste minimization/recycling		
9/19	8	Composting and Recycling	P1 Proposal Due		
9/24	9	Renewable Energy / Wind Power			
Part 2 – Green Building Design and Construction					
9/26	10	Green Design: Building Case Study			
10/1	11	USGBC and LEED Rating System			
10/3	12	US Green Building Conference	Washington DC	4:00am Departure	
10/7	14	Paul Zeigler 3:35 260 Willard			
10/8	15	Conference and Lecture Discussion	P1 Design Due Wed. 9th	No class 10/10	
10/15		Fall Break			
10/17	16	Micro-Turbine Case Study	Dan Kerr, McClure		
10/22	17	Site visit to PSU Visitor's Center Sustainable Site Design	Rick Riccardo / Paul Zeigler		
10/24	18	Role of CFD / Energy Modeling		Patterns: 18-24	
10/29	19	Andy Lau: Energy Modeling	Energy 10 Case Study		
???		Field Trip to Cambria DEP Building	Fri. Oct. 25 or Mon. Oct 28		
10/31	20	Building Green Teams	Rick Riccardo, PSU-OPP		
11/6		(wed) PACE Roundtable	Penn Stater		
11/7	21	Roundtable Summary	Materials display due		
Part 3 – Natural and Indigenous Building Methods					
11/12	22	Material Presentations	P1 Final Assembly Due		
11/14	23	Plastered Strawbale Construction	Loadbearing Strawbale		
11/19	24	Field trip to strawbale home			
11/21	25	Applications in Housing	Tribal Housing Solution		
11/26	26	Adobe, Rammed Earth, BamBOO			
12/3	27	Applied Sustainable Design	Group Discussion		
12/5	28	Student Research Presentations			
12/10	29	Student Research Presentation			
12/12	30	Achieving Sustainability: Course summary and feedback		Patterns 59-62	

Course Outcome Expectations

Expected Outcome	Emphasis in
	this course
(a) an ability to apply knowledge of mathematics, science, and engineering.	1
(b) an ability to design and conduct experiments, as well as to analyze and	1
interpret data.	
(c) an ability to design a system, component, or process to meet desired	2
needs.	
(d) an ability to function on multi-disciplinary teams.	2
(e) an ability to identify, formulate, and solve engineering problems.	1
(f) an understanding of professional and ethical responsibility.	2
(g) an ability to communicate effectively.	2
(h) the broad education necessary to understand the impact of engineering	3
solutions in a global and societal context.	
(i) a recognition of the need for, and an ability to engage in life-long	2
learning.	
(j) a knowledge of contemporary issues.	3
(k) an ability to use the techniques, skills, and modern engineering tools	1
necessary for engineering practice.	

Emphasis: 3 – Strong, 2 – Moderate, 1 – Little, blank – Nothing specific expected