TECHNICAL REPORT II

Aubert Ndjolba | Structural Option

PENN COLLEGE OF TECHNOLOGY
Pro-Con Structural Study of Alternate Floor Systems
Faculty advisor: Dr. Boothby
Date: 10/19/11
Table of Contents:

Executive Summary...3
Building Introduction...4
Structural Overview..5
 Foundation...5
 Floor Systems..6
 Framing System...7
 Lateral System..8
 Roof System...9
 Design Codes..10
 Materials Used..11
Gravity Loads..13
Floor Systems Analysis..15
 Existing: Composite Deck on Floor joists...16
 Proposed: Composite Deck on Wide Flange Beams..17
 Proposed: One-way Slab...18
 Proposed: Hollow Core Planks on Beam...19
Floor System Comparison..20
Conclusion...21
Appendices..22
 Appendix A: Composite Deck on Floor Joists...23
 Appendix B: Composite Deck on Wide Flange...26
 Appendix C: One-way Slab...29
 Appendix D: Hollow Core Planks..33
 Appendix E: Floor Plans...36
EXECUTIVE SUMMARY

The purpose of the Technical Report II is to analyze the pros and cons of alternate floor systems of Dauphin Hall. An analysis of the existing composite deck together with three other floor systems was performed to provide different options that may be considered for the Dauphin Hall.

The following floor systems were analyzed for a typical bay size of 25’×30’:
- Composite deck on floor joists
- Composite deck on wide flange beam
- One-way slab
- Hollow-core Plank with concrete topping

By vulcraft Design Catalog and AISC Steel Construction Manual, a 3VL16 composite deck and a W18×40 beam form the composite system. The one-way slab was design using ACI318-08 and ACI Design Handbook. A 15” slab thickness with #5 @ 10” O.C. and #6 @ 7” O.C. reinforcement was found to yield for flexure, and shrinkage and temperature. Using the PCI Design handbook and the AISC Steel Construction Manual, a 4’-0”×8” hollow core plank with 2” normal weight concrete and a W21×55 beam were picked for the hollow core floor system.

Each system was analyzed based on the flowing criteria: cost of the assemblies, fire rating, structural or non-structural advantages or disadvantages, etc. All of the systems were found to be to some extend applicable; however, the composite deck on wide flange beams seems to be most cost effective and practical in this case. View table 8 for a complete system comparison.

Partial drawings and hand calculations necessary for the understanding of the flooring systems are provided in the appendices of this report.
BUILDING INTRODUCTION

The Pennsylvania College of Technology is located in the 200 block of Rose Street in Williamsport, PA. Dauphin Hall is the newest dormitory on campus constructed in August 2010 by Murray Associates Architects, P.C in collaboration with IMC as the general contractor; Woodburn & Associates, INC as the food service designer; Whitney, Bailey, Cox & Magnani, LLC as the civil engineering firm; and Gatter & Diehl, INC as the MEP firm. This new structure costs approximately $26,000,000 and used the design-bid-build project delivery method.

This latest addition of the student housing provides 268 students with suites and single rooms. A 40-50 student seating commons enclosed with glass provides a social space for student collaboration. Located within the dormitory are other amenities such as: a 460 seat dining room, two private dining rooms for faculties, a 40 station satellite fitness center, two large leisure rooms, a student grocery store, laundry facilities, student mail boxes, Resident Life Offices, campus police office, and a Hall Coordinator apartment.

To the right side are different facades provided for an understanding of the shape of the building. A set of floor plans are provided in appendix E as a supplementary documents for a better understanding.
STRUCTURAL OVERVIEW

Dauphin Hall rests entirely on a shallow foundation and stone piers. The exterior and interior walls are composed of masonry walls. The whole structure is made out of steel framing (joists, beams, and columns), which supports a 4” concrete slab reinforced with welded wire mesh on a composite deck.

FOUNDATIONS

Based on the analysis done by CMT Laboratories, Inc. for this site, the geotechnical engineers have determined that the site was filled with Brown Silty Clay, and Brown Silty Sand with Gravel. Furthermore, the cohesive alluvial soils beneath the fill materials have low shear strength.

In light of these conditions, the conventional spread/column and continuous footing foundations will not provide adequate allowable bearing capacity to support the building. Deep foundations such as concrete filled tapered piles could support the structure but are not the most economical approach. Therefore, a practical solution is subsurface improvement with the use of shallow foundation.

All in all, the final decision comes down to using stone piers which were considered the most technically sound and economically feasible method. Those stone piers are typically eighteen (18) to thirty-six (36) inches in diameter depending on their loading and settlement criteria.

Figure 4: Typical Pier
FLOOR SYSTEMS

Due to the simplicity of the footprint of the Dauphin hall, a typical floor consists of 4” concrete slab reinforced with 6”×6” – W2.9×W2.9 welded wire mesh. The concrete slab rests on 1 ½” - 20 gage composite deck (Vulcraft). The joists supporting the floor system are spaced equally in column bays with a maximum spacing of 2’-0” O.C in areas of floor framing.

A typical bay for the three floors above is 25’×30’.

The figure below provides a typical bay size.

Figure 5: Typical Floor Bay Size (Red Square)
FRAMING SYSTEM

Almost all the structural columns supporting the floors are either a wide flange W10 or W8. They are all encased by 5/8” Gypsum board or 6” painted CMU. In locations near the stair cases, HSS columns were used. Concrete Masonry Units (CMU) is the typical interior partitions.
LATERAL SYSTEM

To resist the lateral system in the dauphin Hall, the structural engineers used wind moment frames with moment connections throughout the building. This configuration provides no obstruction and therefore allows a great use of the open floor plan. View the following details.
ROOF SYSTEMS

There is only one roof system on the Dauphin Hall dormitory due to the similarity of the outline of the building. The whole roof is composed of 1 1/2” – 20 gage type B roof decks, which rests on light gage trusses at 2’-0” O.C. The joists supporting the roof system are spaced at a maximum distance of 4’-0” O.C. between the column bays.

Figure 6: Roof plans
DESIGN CODES

All equipments and components of the Dauphin Hall shall comply with all applicable latest editions of articles and sections of the following codes in compliances with all Federal, State, County, and Local ordinances and regulations:

- 2006 International Building Code (IBC)
- National Electrical Code (NEC),
- Uniform Plumbing Code (UPC),
- National Sanitation Foundation (NSF)
- Specifications for structural concrete for buildings (ACI 301)
- Building Code Requirements for Reinforced Concrete (ACI 318-08)
- Recommended Practice for Hot Weather Concreting (ACI 305R)
- Recommended Practice for Cold Weather Concreting (ACI 306R)
- Recommended Practice for Concrete Formwork (ACI 347)
- American Society of Civil Engineers (ASCE 7-10)
MATERIALS USED

The following table provides a list of materials used in the design of this building. Those values were found in the structural drawing and the specifications.

<table>
<thead>
<tr>
<th>Concrete</th>
<th>Usage</th>
<th>Weight</th>
<th>Strength (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Footings</td>
<td>Normal</td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>Foundation alls</td>
<td>Normal</td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>Slab-on-Grade</td>
<td>Normal</td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>Suspended Slabs</td>
<td>Normal</td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>Toppings</td>
<td>Normal</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>Piers</td>
<td>Normal</td>
<td>4000</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Concrete materials

<table>
<thead>
<tr>
<th>Steel</th>
<th>Type</th>
<th>Standard</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-Shaped Structural Steel</td>
<td>ASTM A 572/A 572M</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Channels, Angles-Shapes</td>
<td>ASTM A 36/A 36M</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Plate and Bar</td>
<td>ASTM A 36/A 36M</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Cold-Formed Hollow SS</td>
<td>ASTM A 500</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Steel Pipe</td>
<td>ASTM A 53/A 53M</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Bolts, Nuts, and Washers</td>
<td>ASTM A 325/ASTM F 1852</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Steel Deck</td>
<td>ASTM A 653</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Reinforcing Bars</td>
<td>ASTM A 615/A 615M</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Deformed Bars</td>
<td>ASTM 767</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Welded Wire Fabric</td>
<td>ASTM A 615</td>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Steel materials
Masonry

<table>
<thead>
<tr>
<th>Type</th>
<th>Standard</th>
<th>Strength (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Block</td>
<td>ASTM C 90/ ASTM C 145</td>
<td>1900</td>
</tr>
<tr>
<td>Split Face CMU</td>
<td>ASTM C 90lightweight</td>
<td>1900</td>
</tr>
<tr>
<td>Bond Beam</td>
<td>N/A</td>
<td>3000</td>
</tr>
<tr>
<td>Precast Stone</td>
<td>N/A</td>
<td>5000-7000</td>
</tr>
<tr>
<td>Concrete Brick</td>
<td>ASTM C 1634/ASTM C 55</td>
<td>N/A</td>
</tr>
<tr>
<td>Mortar</td>
<td>ASTM C 979</td>
<td>N/A</td>
</tr>
<tr>
<td>Grout</td>
<td>ASTM C 404</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 3: Masonry materials

Miscellaneous

<table>
<thead>
<tr>
<th>Type</th>
<th>Strength (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Fill</td>
<td>3000</td>
</tr>
<tr>
<td>Non-Shrink Nonmetallic Grout</td>
<td>ASTM C 1107</td>
</tr>
</tbody>
</table>

Table 4: Miscellaneous materials
GRAVITY LOADS

Included in this report is a summary of dead, live, and snow loads used in the thesis design. There were compared to the actual design loads in the structural drawings. Several members were checked in the technical report I to verify adequacy.

DEAD AND LIVE LOADS

<table>
<thead>
<tr>
<th>Superimposed Dead Loads</th>
<th>Design Loads</th>
<th>Thesis Loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roofing</td>
<td>3 PSF</td>
<td>3 PSF</td>
</tr>
<tr>
<td>Framing</td>
<td>5 PSF</td>
<td>10 PSF</td>
</tr>
<tr>
<td>Insulation</td>
<td>3 PSF</td>
<td>3 PSF</td>
</tr>
<tr>
<td>Ceiling</td>
<td>2 PSF</td>
<td>2 PSF</td>
</tr>
<tr>
<td>Elec./Lights</td>
<td>3 PSF</td>
<td>3 PSF</td>
</tr>
<tr>
<td>Mechanical</td>
<td>5 PSF</td>
<td>5 PSF</td>
</tr>
<tr>
<td>Sprinklers</td>
<td>3 PSF</td>
<td>3 PSF</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>1 PSF</td>
<td>1 PSF</td>
</tr>
<tr>
<td>Total</td>
<td>25 PSF</td>
<td>30 PSF</td>
</tr>
<tr>
<td>Floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4” Slab and Deck</td>
<td>44 PSF</td>
<td>57 PSF</td>
</tr>
<tr>
<td>Framing</td>
<td>5 PSF</td>
<td>15 PSF</td>
</tr>
<tr>
<td>Mechanical</td>
<td>5 PSF</td>
<td>5 PSF</td>
</tr>
<tr>
<td>Elec./Lights</td>
<td>3 PSF</td>
<td>3 PSF</td>
</tr>
<tr>
<td>Ceiling</td>
<td>2 PSF</td>
<td>2 PSF</td>
</tr>
<tr>
<td>Sprinklers</td>
<td>3 PSF</td>
<td>3 PSF</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>3 PSF</td>
<td>3 PSF</td>
</tr>
<tr>
<td>Total</td>
<td>65 PSF</td>
<td>88 PSF</td>
</tr>
<tr>
<td>Superimposed DL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow</td>
<td>35 PSF</td>
<td>30 PSF</td>
</tr>
<tr>
<td>Snow</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Design Dead Loads
Table 6: Area of Typical Floor

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground floor</td>
<td>14,473</td>
</tr>
<tr>
<td>2nd Floor</td>
<td>10,320</td>
</tr>
<tr>
<td>3rd Floor</td>
<td>10,320</td>
</tr>
<tr>
<td>4th Floor</td>
<td>10,320</td>
</tr>
<tr>
<td>Roof</td>
<td>10,320</td>
</tr>
</tbody>
</table>

Table 7: Design Live Load

<table>
<thead>
<tr>
<th>Description</th>
<th>Design Loads</th>
<th>Thesis Loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>35 PSF</td>
<td>30 PSF</td>
</tr>
<tr>
<td>First Floor</td>
<td>100 PSF</td>
<td>100 PSF</td>
</tr>
<tr>
<td>Stairs</td>
<td>100 PSF</td>
<td>100 PSF</td>
</tr>
<tr>
<td>Dorm Rooms</td>
<td>40 PSF</td>
<td>40 PSF</td>
</tr>
<tr>
<td>Corridors</td>
<td>100 PSF</td>
<td>100 PSF</td>
</tr>
<tr>
<td>Storage</td>
<td>125 PSF</td>
<td>125 PSF</td>
</tr>
<tr>
<td>Mechanical room</td>
<td>150 PSF</td>
<td>125 PSF</td>
</tr>
<tr>
<td>Common Areas</td>
<td>100 PSF</td>
<td>100 PSF</td>
</tr>
</tbody>
</table>
FLOOR SYSTEM ANALYSIS

A spot checked of the existing 4” normal weight concrete slab on 1-1/2 -20 gage composite steel deck was done on a typical 25’× 30’ bay and all its calculations can be found in appendix A. This system was then compared to a one-way slab, a composite deck on a beam, and a hollow-core slab of the same bay. These preliminary sizes were estimated using ACI 318-08, IBC 2009, PCI design handbook, and other design aids.

Based on the RS Means: Square Foot Costs 2011, a cost analysis was done on the four floor systems to determine which one is cost effective.

A complete hand calculation of each system can be found in the appendixes.
EXISTING FLOOR SYSTEM: SLAB & COMPOSITE DECK ON FLOOR JOISTS

Decking

Using Vulcraft Manual, a 1.5VL 20 composite deck with 4” normal weight concrete was found to be more than adequate for unshored length and has more than the required strength for loading. The deck has a 1 ½ hour fire rating. Overall the composite deck was overdesigned.

Floor Joists supporting Composite Deck

For a factored total load and live load of 604 plf and 320 plf respectively, we find in the Vulcraft manual that a 18K7, 20K6, and 22K4 are all satisfactory joists for a 25’ span. Based on their weight, a 22K4 seems to be the lightest of the group. However, from the “economical joist guide” section on page 125 of the same manual, we find that a 20K5 is more economical. Therefore, we pick a 20K5 joist spaced at 2’-0” O.C. with 2 rows of bridging for our final design.

However, the existing design joists are overdesigned using 22K6 joists spaced at 2’-0” O.C. This member has 25% more strength than required.

Advantages:

One of the major advantages of using this floor system is that it provides a great space underneath the floor for mechanical and electrical equipment. All the lighting fixtures can be hanged straight on the joists. The composite deck provides a profile shape that uses less concrete than the conventional system; therefore reducing the size and cost of elements used in the primary structure and foundations. It also provides a great advantage in seismic, gravity and foundation design by reducing the weight of the structure. Moreover, temporary props can be eliminated resulting in faster erection and a shortening of the construction program. Additionally, it provides a working platform and is cost and energy efficient, and recyclable.

Disadvantages:

With this system being used throughout the building, the cost of steel on this project will increase. Moreover, steel joist floors do not provide an aesthetic ceiling for the floors below. In addition, composite decks have sagging problems due to the weight of the deck, and are temperature sensitive. Composite decks tend to expand in hot weather and contract in cold weather making many decks less suitable for bearing a lot of weight. Finally, if the deck is damaged, it must be completely replaced.
PROPOSED FLOOR SYSTEM: COMPOSITE DECK ON WIDE FLANGE BEAMS

This system is a derivation of the above floor system in order to reduce the overall cost of structural steel in the project. A 3”-16 gage composite deck with 4” normal weight concrete with two wide flange beams spanning in the longer direction seems more suitable. The deck is perpendicular to the beams.

Decking:

For a 3 span condition with a total factored load of 196psf, a 3VL16 deck has 11’-4” construction span, which is more than the 8’-4” required span for unshored condition. The given strength turns out to be slightly over 25% more than the required strength when added the slab weight. The unprotected deck achieves a 1 ½ hour fire rating for a 4” normal weight concrete (Vulcraft Manual).

Composite Beam:

A W18×40 was proven to have enough flexural strength (ΦM= 294 ft-k >270 ft-k) to support the given loads. The compact section criterion is also satisfied along with live load deflection and wet concrete deflection. The live load deflection was = 0.82 in < 1 in, and the wet concrete deflection was = 0.63 in < 1.5 in. In addition, two studs per rib are required to achieve the desired strength.

Advantages:

Similarly to the previous system, this system will allow a depth of 18 inches in the ceiling for lighting fixtures and mechanical equipment for the floors below. Also, this will reduce the cost of structural steel in the project considerably. Another beneficial advantage of using this type of deck is that by applying some type of fire protection on the deck, we can achieve a higher fire rating resistance.

Disadvantages:

Compared to the previous system, the 18 inches ceiling height would be a challenge for the mechanical and electrical equipment. Flexible duck or other types of ventilation may be required if this system is chosen. Moreover, additional fire proofing material may be required on the beam, which could slightly increase the cost.
PROPOSED FLOOR SYSTEM: ONE-WAY SLAB

A thickness of 15 inches was determined to work on a 30 ft span with a live load of 100 psf and a superimposed dead load of 30 psf using PCI Design Handbook and ACI 318-08. For these load conditions, we can provide # 6 bars at 7 inches O.C. in the short direction to meet flexural requirements of 31 ft-k > 27 ft-k. To limit the effect of temperature and shrinkage, a reinforcement of the slab with # 5 bars @ 10 inches O.C. is required (Note: #6 @ 14” O.C. could be used for consistency). A spacing of 7 inches is more than enough to withstand cracking and shear. By visual inspection shear is not a controlling factor here.

Advantages:

This floor system configuration provides a greater floor to floor height. Therefore, another floor can be added to the existing system height without increasing the height too much. Another advantage of this system is that during construction, the form work can be reused multiple times. In addition, there is no need for fire protection due to the 15 inches thickness of the slab.

Disadvantages:

The ceiling will not provide a space for mechanical or electrical equipment. Vibration may be a problem in this case. In addition, the foundation of the building will need to be rechecked due to the weight of the slab.
PROPOSED FLOOR SYSTEM: HOLLOW-CORE ON BEAM

Precast hollow-core planks were proposed for the same 25’×30’ bay. Using the PCI Design Handbook, a 4'-0" × 8" with 2” normal weight concrete was found to be sufficient to support the load across the 25’ span. A W 21×55 was used to support the hollow core planks in the 30’ direction. This beam was checked for deflection and all supporting calculations can be found in Appendix D.

Advantages:

The hollow core planks being precast meaning the system was constructed under controlled conditions providing a maximum strength capacity to be attained. Since the system is being produced in a factory, the general contractor can save time in the erection process and storage space.

Disadvantages:

The steel beam supporting the hollow core planks will need fire protection for the whole system to achieve a 2 hours fire rating.
SYSTEM COMPARISON

Floor System Comparison

<table>
<thead>
<tr>
<th>Limitations</th>
<th>Existing Composite Deck on Floor joists</th>
<th>Composite Deck on Wide Flange Beam</th>
<th>One-way Slab</th>
<th>Hollow Core Plank</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Weight (psf)</td>
<td>66.2</td>
<td>109</td>
<td>188</td>
<td>166</td>
</tr>
<tr>
<td>Slab depth (in)</td>
<td>5.5</td>
<td>7</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Total depth (in)</td>
<td>27.5</td>
<td>25</td>
<td>15</td>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost and Safety</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire rating</td>
<td>1 ½</td>
<td>1 ½</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Extra fire proofing</td>
<td>Required</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Total Cost($/SF)</td>
<td>20.70 + cost of joists</td>
<td>15.70</td>
<td>19.20</td>
<td>23.22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Impact</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation impact</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Architectural impact</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Constructability</td>
<td>Easy</td>
<td>Easy</td>
<td>Moderate</td>
<td>Easy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consideration</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibration concerns</td>
<td>Some</td>
<td>Some</td>
<td>Minimal</td>
<td>Minimal</td>
</tr>
<tr>
<td>Possible alternative</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Additional study</td>
<td>N/A</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 8: System Comparison
CONCLUSION

Three alternative systems were studied in addition to the existing system. These systems are: a composite deck on a wide flange beam, a one way slab, and a hollow core plank on steel beams. All the analyses were done on a typical bay of 25 feet by 30 feet.

The composite deck and beam were designed using the Vulcraft Design Catalog and the AISC Steel Construction manual. The composite system consists of a 4” normal weight concrete with a 3VL16 composite deck and a W18×40 beam. The one-way slab system is composed of a 15” normal weight slab reinforced with #5 @ 10” O.C. in the 30 feet direction and #6 @ 7” O.C. in the 25 feet direction for flexure, shrinkage and temperature respectively. The one-way slab was designed using ACI 318-08 and ACI Design Handbook (Volume 1). Based on the loading conditions, the PCI Design Handbook (6th Edition) recommends a 4’-0”×8” hollow core plank. A W21×55 beam will support the hollow core planks.

After reviewing the advantages and disadvantages of each system, two systems were determined to not be viable alternative: The hollow core planks and the one-way slab. Both systems increase the weight of the building considerably. The hollow core planks are more expensive and have the greatest total depth of all the systems. Therefore, the best alternative system may be the composite deck on a wide flange beam. However, this system will have a slightly higher cost due to additional fire proofing required. A further study of the composite deck on wide flange beam system will need to be done.
APPENDIX A: EXISTING SYSTEM: COMPOSITE DECK ON FLOOR JOISTS

Existing Floor System: composite deck on floor joists.

A - Deck Loads

- LL = 100 psf, slab weight = 57 psf
- SDL = 30 psf

Composite deck

- 4" concrete slab
- 1 - 3/4" 20 gauge steel deck

Normal weight concrete

- t = 5.5"
- $f'_c = 4000$ psi

Dead combination:

$W = 1.2DL + 1.6LL = 1.2(30 + 57) + 1.6(100) = 264$ psf

Vulcraft Decking Catalog

3 span condition

Try: 1.5 V L 20

Check unshored length

- 740" \div 21 (joist spacing) \leq 180"

Check superimposed LL

For 5'-0" clear span, 400 psf ≥ 264 psf; ≤ 20 ok for loading

Recommended reinforcement

- 6×6 - W 2 x W 2 x 1 for $t = 5.5"$

USE DECK 1.5 V L 20

Note: An 4" normal weight unprotected 1.5 V L 20 deck has 1 1/2 hr fire rating as per Vulcraft Catalog.
B- Floor Joist Supporting Composite Deck

C (Vulcraft)

Loads
LL = 100 psf
SL = 30 psf
DL = 80 psf < Includes slabs/deck.

Load combination:
Total load = 1.6 LL + 1.2 DL
= 1.6(100) + 1.2(30+80) = 302 psf

Total load = (302)(2) = 604 plf

Live load = 1.6(100)(2) = 320 plf

Possibilities (LRFD)

<table>
<thead>
<tr>
<th>Joist Size</th>
<th>Total load (plf)</th>
<th>Live load (plf)</th>
<th>wt/ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>18K7</td>
<td>727</td>
<td>337</td>
<td>9</td>
</tr>
<tr>
<td>20K6</td>
<td>669</td>
<td>350</td>
<td>8.2</td>
</tr>
<tr>
<td>22K4</td>
<td>657</td>
<td>381</td>
<td>8</td>
</tr>
</tbody>
</table>

Select 22K4 joist as the lightest from the list above.

From "Economical joist guide" p. 125

For 25'-0" length, select 20K5 (weight = 8.2 lb/ft)
Total load = (446)1.5 = 669 plf > 604 plf
Live load = 350 plf > 320 plf

USE 20K5 JOIST FOR FINAL DESIGN

Bridging requirements:
From Vulcraft p. 43 & Section number 5
USE 20K5 joist @ 2'-0" O.C. with 2 rows bridging
Design Joists
22 K6

Total load = 805 plf > 664 plf ✓ OK
Live load = 464 plf > 320 plf ✓ OK
Weight = 90.2 lbs/ft

22 K6 Joists checks out
APPENDIX B: COMPOSITE DECK ON WIDE FLANGE BEAM

Proposed Floor System: Composite deck on wide flange beam

A composite deck (Vulcraft)

Floor construction:

3"-16 gauge composite deck
4" Normal weight concrete
Tested slab depth, t = 7"
$f_c = 4000$ psi

Loads:

LL = 100 psf
SL = 30 psf
Total = 130 psf

$W = 1.2(30) + 1.6(100) = 196$ psf

Vulcraft Deck Catalog

Try 3VL-16, (slab weight = 69 psf)

Check shored length (3 span condition)

11'-4" = 8.33" = 0.15

Check superimposed live load

8'-6" clear span

379 psf > 196 psf

$W_u = 1.2(69) + 196 = 279$ psf < 379 psf = 0 OK

Fire endurance: 1 ½ hr. standing for 4" NW unprotected deck.

Use 3VL-16 composite deck
B. Composite Beam

Loads:
- LL = 100 psf
- SDL = 30 psf
- DL = 64 psf + 6 psf (Allowable) = 70 psf

DL = (0.85)(8.33) = 8.75 psf
LL = (100)(8.33) = 833 psf

Wy = 1.2(8.75) + 1.6(833) = 2.4 k/ft

\[V_4 = \frac{wL^2}{2} = \frac{(2.4)(30)^2}{2} = 36 \text{k} \]

\[M_4 = \frac{wL^2}{8} = \frac{(2.4)(30)^2}{8} = 270 \text{ ft-k} \]

Using Tz table (Table 3-2 Steel Manual):
Try W18 X 40
- \(\phi M_{pk} = 294 \text{ ft-k} \leq 270 \text{ ft-k} \)
- Ok

Check compact section criterion:
- \(\phi V_{pk} = 169 \text{k} \geq 36 \text{k} \)

Section properties:
- \(A_g = 11.8 \text{ in}^2 \)
- \(f_y = 50 \text{ ksi} \)
- \(I_g = 6.12 \text{ in}^4 \)
- A 992

Check AL:
- \(\Delta_{LL} = \frac{f}{360} = \frac{(30)(4)}{360} = 1.0 \text{ in} \)
- Maximum deflection

- \(\Delta_{LL} = \frac{5w_4L^4}{384EI_x} = \frac{5(0.65)(30)^4(1728)}{384(29000)(612)} = 0.82 \text{ in} \leq 1 \text{ in} \leq 0.6 \text{k} \)

Check concrete check:
- \(W = [(69)(8.33) + 40] = 615 \text{k} \)
- \(A_{max} = \frac{1}{840} = \frac{(30)(27)}{840} = 15 \text{ in} \)

- \(\Delta_{pl} = \frac{5w_4L^4}{384EI_x} = \frac{5(0.65)(30)^4(1728)}{384(29000)(612)} = 0.63 \text{ in} \leq 1.5 \text{ in} \leq 0.6 \text{k} \)
Composite behavior

\[b_{eq} = \frac{\text{span}}{4} = \frac{(36\text{ in})(12\text{ in})}{4} = 90 \text{ in} \]

\[\text{Spacing} = \frac{(8.33\text{ in})(12\text{ in})}{99.96\text{ in}} \]

From Table 3-19 (Steel Manual)

Location of neutral axis:

\[V_c = 0.85(4\text{ ft})(4) = 122.4k \]

\[V_a = 50(11.8) = 590k \]

\[V_c > V_a \quad \text{Neutral axis in concrete} \]

Table 3-19 (Steel Manual)

\[a = \frac{294}{0.85}\text{ in} = 0.696 < 1.0 \]

\[a = 0.75 \text{ in} - \frac{a}{2} = 7 - \frac{1}{4} = 6.5 \text{ in} \]

From Table 3-19 (Steel Manual)

\[\phi M_n = 440 \text{ ft-lb} \quad \phi V_n = 217 \text{ k} \]

\[Q_n = \frac{294}{17.3} = 17.09 \text{ k} \]

36 studs required > 30 % N.L.

28 Dauphin Hall–Penn College of Technology, Williamsport, PA
APPENDIX C: PROPOSED FLOOR SYSTEM: ONE-WAY SLAB

Proposed Floor System & One-way Slabs

Loads

\[L_L = 100 \text{ psf} \]
\[S_L = 30 \text{ psf} \]
\[f_L = 4,000 \text{ psi} \]
\[f_y = 40 \text{ kpsi} \]

Normal weight concrete.

Using ACI 318-08, Table 9.5(a),

For a solid one-way slab with one end continuous:

\[h = \frac{f}{24} \Rightarrow h_{min} = \frac{(30)(12)}{24} \times \left(\frac{0.4 + 40}{100} \right) = 1.2 \text{ in} \]

Use \(h = 1.5 \text{ in} \)

Assume: \(c = 15 - 1 = 14 \text{ in} \)

\[w_{slab} = \frac{(15)(12)}{144} \times 150 = 186 \text{ psf} \]

\[w_L = 1.2L + 1.6LL = 1.2(188 + 30) + 1.6(100) = 422 \text{ psf} \]

\[M_n = \frac{w_L}{14} \times (422)(30) = 21 \text{ ft-k} \]

Using slab table, \(p = 0.004 \) for \(M_n = 23.8 \text{ ft-k} \)

\[p = 0.005 \] for \(M_n = 29.5 \text{ ft-k} \)

Interpolate \(p = 0.00456 \) for \(M_n = 26.1 \text{ ft-k} \)

\[A_S = p_{bol} = 0.00456(12)(14) = 0.766 \text{ in}^2/\text{ft} \]

Provide #6 @ 7 in. O.C. \((A_S = 0.76 \text{ in}^2/\text{ft}) \)
Check flexural requirement \(\phi M_n > M_u \)

\[\phi = \frac{\pi^2 E_d}{48(1-\nu^2)} \left(\frac{d-c}{c} \right) \]

Assume \(E_d > E_y \)

\[a = \frac{A_{fy}}{0.85 f_y b} = \frac{(0.76)(40)}{0.85(4)(12)} = 0.7509 \text{ in} \]

\[c = \frac{a}{\beta_1} = \frac{0.7509}{0.85} = 0.8835 \text{ in} \]

\[E_y = \frac{E_u (d-c)}{c} = \frac{0.003}{0.8835} (13.875 - 0.8835) = 0.0441 \]

\[E_d = 0.0441 > 0.005 \Rightarrow \text{use } \phi = 0.9 \]

\[\phi M_n = \phi A_{fy} (d - \frac{a}{2}) = 0.9 (0.766)(40)(13.875 - 0.7509)/\pi \]

\[\phi M_n = 31 \text{ ft} - \text{k} > 27 \text{ ft} - \text{k} \Rightarrow \text{OK} \]

Check temperature & shrinkage reinforcement

ACI 318-08 § 7.12.2.1

\[A_{Ts5} = 0.00086 b h \leq \text{ for } f_c = 4000 \text{ psi} \]

\[A_{Ts5} = 0.0020(12)(15) = 0.36 \text{ in}^2/\text{ft} \]

Provide # @ 10 in O.C.

\[A_{Ts5} = 0.36 \text{ in}^2/\text{ft} > 0.36 \text{ in}^2/\text{ft} \Rightarrow \text{OK} \]

Could use #6 @14" for consistency (As = 0.38 in^2/ft)

Crack Control

ACI 318-08 § 10.6.4

\[S \leq 15 \left(\frac{40,000}{f_y} \right) - 2.5 \leq 15 \left(\frac{40,000}{2626} \right) - 2.5 \leq 15 \left(\frac{40}{26.26} \right) - 2.5 (0.15) = 20.6 - 2.5 = 20.6" > 1" \Rightarrow \text{OK} \]
\[
\phi V_c = \phi (2 \sqrt{f_c}) \text{lb/ft} \cdot \text{in}
\]
\[
= 0.9 (2 \sqrt{4}) (12) (13.875) = 599 \text{ k}
\]
\[
\phi V_c = 599 \text{ k} > V_u = 6.3 \text{ k} \Rightarrow \text{ok}
\]

Sketch

[Diagram of a structural beam with reinforcement details]
FLEXURE 7.2–Design moment strength ϕM_n for sections 12 in. wide; $f_c = 4000$ psi

Reference: ACI 318-89 Sections 9.3.2, 10.2, and 10.3.1–10.3.3 and ACI 318R-89 Sections 10.3.1 and 10.3.3

<table>
<thead>
<tr>
<th>moment strength ϕM_n (kip)</th>
<th>d (in)</th>
<th>p</th>
<th>f_c (ksi)</th>
<th>f_y (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.002</td>
<td>0.8</td>
<td>0.9</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>0.003</td>
<td>1.2</td>
<td>1.5</td>
<td>1.7</td>
<td>2.1</td>
</tr>
<tr>
<td>0.004</td>
<td>1.8</td>
<td>2.3</td>
<td>2.6</td>
<td>3.2</td>
</tr>
<tr>
<td>0.005</td>
<td>2.6</td>
<td>3.3</td>
<td>3.9</td>
<td>4.6</td>
</tr>
<tr>
<td>0.006</td>
<td>3.6</td>
<td>4.6</td>
<td>5.5</td>
<td>6.6</td>
</tr>
<tr>
<td>0.007</td>
<td>4.7</td>
<td>6.0</td>
<td>7.5</td>
<td>9.3</td>
</tr>
<tr>
<td>0.008</td>
<td>5.9</td>
<td>7.5</td>
<td>9.5</td>
<td>11.5</td>
</tr>
<tr>
<td>0.009</td>
<td>7.3</td>
<td>9.1</td>
<td>11.7</td>
<td>14.5</td>
</tr>
</tbody>
</table>

For use of this Design Aid, see Flexure Examples 4, 5, and 8.
APPENDIX D: HOLLOW CORE PLANKS ON BEAM

Proposed Floor Systems: Hollow-core

Try 4'-0" x 8" hollow core with 2" topping.

- $DL = 30 \text{ psf}$
- $LH = 100 \text{ psf}$
- Slab weight = $\frac{(2)(12) \times 150}{144} = 25 \text{ psf}$
- $W = 30 + 100 + 25 = 155 \text{ psf}$
- $\text{Span} = 25'-0"$
- $f'c = 5,000 \text{ psi}$
- $f_{pu} = 270,000 \text{ psi}$

For a design span of 25 ft,

Try 4'-0" x 8" hollow core with 2" nominal weight topping

with 58-9 Strand (PCI Design Handbook)

$177 \text{ psf} > 155 \text{ psf}$ 2o OK

Section properties

- $A = 233 \text{ in}^2$
- $t_0 = 5.16 \text{ in}$
- $I = 832.5 \text{ in}^4$

USE 58-9 Strand 4'-0" x 8" hollow core with 2" NW topping
Beam Supporting Hollow core Floor

4'0" X 8' Hollow core

Span = 30'-6"

f_c = 5,000 psi

f_p = 27,000 psi

Loads

LL = 100 psf

SDL = 30 psf

FlorAL = 864 psf < include slab wt

DL = (86 + 30)(12.5) = 1450 psf

LL = (100)(12.5) = 1250 psf

Factored loads: W_n = 1.2(1450) + 1.6(1250) = 3.7 k/lf

V_n = \(\frac{wL}{2} = \frac{(3.7)(30)}{2} = 55.5 \text{ k} \)

M_n = \(\frac{wL^2}{2} = \frac{(3.7)(30)^2}{2} = 416 \text{ ft-k} \)

Using Z_x - Table (Table 3-2 Steel Manual)

Try W 21 x 55

φ_M = 473 ft-l k 716 ft-l k = OK

φ_V = 234 k > 55.5 k = OK

For compact section

A_g = 16.2 in²

I_x = 1140 in⁴

y = 50.8 in

Check A_L:

A_L = \(\frac{L}{3b_0} = \frac{(30)(12)}{360} = 1.0 \text{ in} \)

A_L = \(\frac{5w_0L^4}{384E_I_x} = \frac{(5)(12.5)(30)^4(1128)}{384(29,000)(1140)} = 0.69 \text{ in} < 1.0 \text{ in} \) OK

Check Total deflection:

Δ_T = \(\frac{L}{240} = \frac{(30)(12)}{240} = 1.5 \text{ in} \)

Δ_T = \(\frac{(5)(2.5)(30)^4(1728)}{384(29,000)(1140)} = 1.48 \text{ in} < 1.5 \text{ in} \) OK

USE W 21 x 55
Table of safe superimposed service load (psf) and cambers (in.)

No Topping

<table>
<thead>
<tr>
<th>Strand Designation Code</th>
<th>Span, ft</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>66-S</td>
<td>458</td>
<td>415</td>
<td>378</td>
<td>346</td>
<td>311</td>
<td>269</td>
<td>234</td>
<td>204</td>
<td>179</td>
<td>150</td>
<td>140</td>
<td>124</td>
<td>110</td>
<td>96</td>
<td>87</td>
<td>77</td>
<td>69</td>
<td>61</td>
<td>54</td>
<td>45</td>
<td>43</td>
<td>36</td>
<td>33</td>
<td>29</td>
<td>22</td>
<td>19</td>
<td>16</td>
<td>13</td>
<td>11</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>76-S</td>
<td>470</td>
<td>424</td>
<td>367</td>
<td>355</td>
<td>326</td>
<td>303</td>
<td>276</td>
<td>242</td>
<td>213</td>
<td>186</td>
<td>167</td>
<td>149</td>
<td>133</td>
<td>119</td>
<td>108</td>
<td>95</td>
<td>85</td>
<td>76</td>
<td>67</td>
<td>59</td>
<td>52</td>
<td>44</td>
<td>39</td>
<td>35</td>
<td>31</td>
<td>28</td>
<td>25</td>
<td>22</td>
<td>19</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>58-S</td>
<td>464</td>
<td>421</td>
<td>384</td>
<td>352</td>
<td>323</td>
<td>300</td>
<td>280</td>
<td>260</td>
<td>244</td>
<td>229</td>
<td>211</td>
<td>194</td>
<td>180</td>
<td>165</td>
<td>144</td>
<td>130</td>
<td>118</td>
<td>107</td>
<td>98</td>
<td>88</td>
<td>79</td>
<td>70</td>
<td>63</td>
<td>56</td>
<td>51</td>
<td>45</td>
<td>40</td>
<td>36</td>
<td>32</td>
<td>29</td>
<td>26</td>
</tr>
<tr>
<td>68-S</td>
<td>476</td>
<td>433</td>
<td>393</td>
<td>351</td>
<td>332</td>
<td>309</td>
<td>289</td>
<td>263</td>
<td>235</td>
<td>210</td>
<td>189</td>
<td>166</td>
<td>142</td>
<td>121</td>
<td>110</td>
<td>92</td>
<td>80</td>
<td>71</td>
<td>62</td>
<td>56</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>36</td>
<td>33</td>
<td>30</td>
<td>28</td>
<td>26</td>
<td>24</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>78-S</td>
<td>488</td>
<td>442</td>
<td>402</td>
<td>370</td>
<td>341</td>
<td>318</td>
<td>295</td>
<td>259</td>
<td>225</td>
<td>193</td>
<td>165</td>
<td>140</td>
<td>121</td>
<td>106</td>
<td>98</td>
<td>88</td>
<td>79</td>
<td>70</td>
<td>63</td>
<td>56</td>
<td>51</td>
<td>45</td>
<td>40</td>
<td>36</td>
<td>33</td>
<td>30</td>
<td>28</td>
<td>26</td>
<td>24</td>
<td>22</td>
<td>20</td>
</tr>
</tbody>
</table>

2 in. Normal Weight Topping

Strand Designation Code	Span, ft	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40									
66-S	489	445	394	345	294	256	217	196	177	158	139	115	96	84	72	66	59	54	49	44	40	36	33	30	27	24	22	20	18	16	14	12	10	8	6	4		
76-S	492	451	414	394	357	333	310	293	274	254	235	216	197	177	159	143	126	110	95	83	71	62	56	51	46	41	37	32	27	24	21	18	15	12	10	8	6	4
58-S	483	432	389	358	328	302	276	252	230	208	187	167	147	127	108	94	83	71	63	56	50	45	40	36	32	28	24	21	18	15	13	11	9	7	5	3	2	
68-S	465	426	386	349	318	292	263	241	221	203	184	164	145	126	108	95	85	75	67	60	55	51	47	43	39	35	31	28	24	21	18	15	12	10	8	6	4	
78-S	472	435	402	376	349	325	305	286	267	248	230	212	195	177	160	144	126	111	100	90	81	75	70	65	60	56	52	48	44	41	38	35	32	29	26	24	21	18

Strength is based on strain compatibility; bottom tension is limited to $7.5\sqrt{fc}$; see pages 2–7 through 2–10 for explanation.
APPENDIX E: FLOOR PLANS

Figure 17: Ground floor
Figure 18: Upper Floors