Dormitory
Northeast USA
Cadell G. Calkins
Structural Option
Faculty Advisor: Dr. Richard A. Behr
April 9, 2012
Dormitory

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

Building Introduction

- New Dormitory Building A
- Located in Northeast USA
- 92,389 SF
- Height: 57.75’
- Construction Cost: $26 Million
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

Site Map

- Dormitory
- New Dormitory Building A
- Located in Northeast USA
- 92,389 SF
- Height: 57.75’
- Construction Cost: $26 Million
- Delivery: Public/private partnership using a development team to deliver the project by guaranteed maximum price
Dormitory

• Introduction
• Existing Structural System
• Problem Statement
• Proposed Solution
• Oriented Strand Board Shear Walls
• Steel Braced Frame Shear Walls
• Comparison of Lateral Systems
• Electrical Breadth
• Façade Breadth
• Conclusion

Project Team

• Owner: Nonprofit Corporation
• Architect: WTW Architects
• Construction Manager: Massaro Corporation
• MEP, Telecom, and Security Engineer: H. F. Lenz Company
• Structural Engineer: Taylor Structural Engineers, Inc.
• Landscape Architect: LaQuatra Bonci Associates
• Developer: Allen & O’Hara Development Co. LLC

South Wing
Dormitory

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board shear Walls
- Steel Braced Frame shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

Architecture

- Wings
 - Suite Style Rooms
 - Brick and Ground Face CMU
 - Hip Roof with Asphalt Shingles
 - Sweeping Dormer Accents
- Core
 - Student Gathering Spaces
 - Large, Storefront Windows
 - Flat Roof
 - Sun Shades

Central Core
Dormitory

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

Existing Structural System

- Foundation
 - Rammed Aggregate Piers
 - 2 foot hole
 - 30 feet deep
 - 2 foot lifts of well graded crushed rock
 - Strengthened soil around hole for slab on grade
- Strip and Spread Footings
- Concrete Masonry Units (CMU)

- Floor
 - 1st Floor
 - 8 inch concrete planks resting on CMUs
 - 2nd-4th Floors
 - 18 inch deep wood floor trusses on load bearing walls
 - 9.25 inch deep laminated veneer lumber wood joists on wide flange beams and girders

Rammed Aggregate Pier

Existing Structural System

- **Lateral System**
 - Wings North-South Direction
 - Shear walls located in corridor and exterior walls
 - ½ inch oriented strand board for exterior walls
 - ¾ inch oriented strand board for corridor walls
- Wings East-West Direction
 - Shear walls located between each suite and exterior walls
 - ¾ inch oriented strand board for exterior walls
 - 2 layers of 5/8 inch gypsum wall board (GWB) for suite walls
- **Core**
 - Shear walls around the stairs, elevator, and where the core meets the wings.
 - 8 inch reinforced CMU

Dormitory

- Introduction
- **Existing Structural System**
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

Wings North-South Direction

- Shear walls located in corridor and exterior walls
- ½ inch oriented strand board for exterior walls
- ¾ inch oriented strand board for corridor walls

Wings East-West Direction

- Shear walls located between each suite and exterior walls
- ¾ inch oriented strand board for exterior walls
- 2 layers of 5/8 inch gypsum wall board (GWB) for suite walls

Core

- Shear walls around the stairs, elevator, and where the core meets the wings.
- 8 inch reinforced CMU

Corridor Shear Wall

- Dormitory
- Lateral System
- Wings North-South Direction
- Shear walls located in corridor and exterior walls
- ½ inch oriented strand board for exterior walls
- ¾ inch oriented strand board for corridor walls
- Wings East-West Direction
- Shear walls located between each suite and exterior walls
- ¾ inch oriented strand board for exterior walls
- 2 layers of 5/8 inch gypsum wall board (GWB) for suite walls
- Core
- Shear walls around the stairs, elevator, and where the core meets the wings.
- 8 inch reinforced CMU
Dormitory

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

Problem Statement

- Global Warming might soon be a design consideration for a structural engineer.
- According to the National Wildlife Federation, the maximum hurricane wind speeds are expected to increase 2 to 13 percent within this century.
- In regards to the Dormitory,
 - Original Design 90 mph (ASCE 7-05) or 115 mph (ASCE 7-10)
 - Increase to 102 mph or 130 mph, respectively
- To understand this new loading, the following situation has been created.
 - State College of Florida, Manatee-Sarasota (SCF) would like to build the Dormitory. In this area, the design wind speed is 150 mph.
 - SCF has required that the Dormitory be capable of withstanding:
 - wind pressures due to hurricanes and tornadoes
 - debris impacts on the façade
 - foundation for the sandy soil
Proposed Solution

• Lateral System in Wings:
 • Oriented strand board (OSB) shear walls
 • Steel braced frame shear walls

• Lateral System in Core
 • Steel braced frame shear walls

• Gravity System
 • Steel deck and joist floors
 • Steel wide flange beams and columns

• Foundation
 • Strip and spread footings

Problem Statement

• To understand this new loading, the following situation has been created.
 • State College of Florida, Manatee-Sarasota (SCF) would like to build the Dormitory. In this area, the design wind speed is 150 mph.

• SCF has required that the Dormitory be capable of withstanding:
 • wind pressures due to hurricanes and tornadoes
 • debris impacts on the façade
 • foundation for the sandy soil
Dormitory

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

Shear Wall Design

- 1st Floor Shear Wall Design
- North – South Winds
 - Original Design Satisfactory
 - ¾ inch OSB corridor walls
 - ½ inch OSB exterior walls
 - Maximum Deflection = 0.17 in < L/360 = 0.3 in
- East – West Winds
 - GWB Insufficient
 - Use 5/16 in OSB with 3 in edge fastener spacing
 - Maximum Deflection = 0.26 in < L/360 = 0.3 in

Oriented Strand Board
Shear Wall Design

- North – South Winds
- Maximum Deflection
 - $0.19 \text{ in} < \frac{L}{360} = 0.30 \text{ in}$
- Columns – W8x31
- Braces – L2x2x1/8 – L2x2x5/16
- Beams – W12x35
Dormitory

Shear Wall Design

- East–West Winds
- Maximum Deflection
 - $0.08 \text{ in} < \frac{L}{360} = 0.30 \text{ in}$
- Columns – W8x31
- Braces – L2x2x1/8 – L2x2x1/4
- Beams – W12x30 – W12x35

Steel Braced Frames
Shear Wall Design

- Dormitory
 - Introduction
 - Existing Structural System
 - Problem Statement
 - Proposed Solution
 - Oriented Strand Board Shear Walls
 - Steel Braced Frame Shear Walls
 - Comparison of Lateral Systems
 - Electrical Breadth
 - Façade Breadth
 - Conclusion

- ETABS Model
 - AE 597A – Computer Modeling
 - Deflections

MAE Requirement
Shear Wall Design

- Braced Frame Connection
 - AE 534 – Steel Connections
 - 4 inch wide, ¼ inch A36 plate
 - (2) ⅛ inch welds, 5 inches long
 - (2) ⅛ inch welds, 9 inches long

Dormitory

- Braced Frame Connection
- AE 534 – Steel Connections
- 4 inch wide, ¼ inch A36 plate
- (2) ⅛ inch welds, 5 inches long
- (2) ⅛ inch welds, 9 inches long
Dormitory

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

<table>
<thead>
<tr>
<th>System</th>
<th>Drift at Roof (inches)</th>
<th>h/400 (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSB Shear Wall E-W</td>
<td>1.30</td>
<td>1.47</td>
</tr>
<tr>
<td>Steel Braced Frame E-W</td>
<td>0.32</td>
<td>1.47</td>
</tr>
<tr>
<td>OSB Shear Wall N-S</td>
<td>0.86</td>
<td>1.47</td>
</tr>
<tr>
<td>Steel Braced Frame N-S</td>
<td>0.75</td>
<td>1.47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>Gravity</th>
<th>Walls</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSB Shear Wall</td>
<td>$1,228,000</td>
<td>$288,000</td>
<td>$1.516 million</td>
</tr>
<tr>
<td>Steel Braced Frame</td>
<td>$1,072,000</td>
<td>$261,000</td>
<td>$1.333 million</td>
</tr>
</tbody>
</table>
Dormitory

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

Electrical Breadth

- Results:
 - DOW POWERHOUSE Solar Shingle
 - Payback Period of 10 Years
 - Install like Asphalt Shingles
 - Battery Backup

Photovoltaic System

http://www.dowsolar.com/about/business.htm
Dormitory

• Introduction
• Existing Structural System
• Problem Statement
• Proposed Solution
• Oriented Strand Board Shear Walls
• Steel Braced Frame Shear Walls
• Comparison of Lateral Systems
• Electrical Breadth
• Façade Breadth
• Conclusion

Façade Breadth

• Rain Screen Wall Cladding System
 • American Fiber Cement Corporation’s Textura
 • R-value and condensation analysis using H.A.M.
 • Impact Resistant
 • “This product has been designed and tested to comply with the Requirements of the Florida Building Code 2010 edition including High Velocity Hurricane Zone (HVHZ), TAS 202 and TAS 203”

Rain Screen

http://www.americanfibercement.com/textura
Dormitory

• Introduction
• Existing Structural System
• Problem Statement
• Proposed Solution
• Oriented Strand Board Shear Walls
• Steel Braced Frame Shear Walls
• Comparison of Lateral Systems
• Electrical Breadth
• Façade Breadth
• Conclusion

Conclusion

• Lateral System Comparison
 • Oriented strand board
 • Steel braced frame
• Solar Shingles
• Rain Screen Cladding

Recommendation

• Steel braced frame system
• Steel floor and gravity system
Acknowledgements

- Penn State Architectural Engineering Faculty
 - Dr. Behr
 - Massaro Corporation
 - David Sciullo
 - WTW Architects
 - Harold Colker
 - Brian DiPietro
- Dormitory Owner
- Family and Friends
Dormitory

Questions and Comments

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion