This course covers advanced topics in elastic and inelastic structural metal member behavior and the theoretical basis of design codes and procedures. Philosophies of design, fatigue, bending stability, torsion, stability of plates, stability of columns, stability of beam-columns, connections, and frame stability will be covered in depth in addition to other topics relating to advanced behavior and design of metal structures.

CE545 Course Packet available in the Engineering Copy Center

J.A. Laman, 231J Sackett Bldg., 863-0523, jlanam@psu.edu

Office Hours: M and W, 1:00 to 3:00 pm or by appointment

MWF, 11:15 to 12:05 am, Room 212 Hammond

Practice design problems emphasizing concepts discussed in class are included in the course packet. Problems will not be graded, however, students are encouraged to complete the problems as reinforcement of class discussions and examination preparation. Solutions will be posted on the ANGEL site for the course.

A semester steel design project will be assigned in class and is described in the course packet.

Two evening semester exams and a comprehensive final exam will be administered for the course. Times and dates are indicated in the course schedule.

The course grade will be based on:

- 10% - Engineers Notebook
- 15% - Design Project
- 50% - Mid-term exams (2 @ 25%)
- 25% - Final Examination
- 100% - Total

The *Student Guide to General University Policies and Rules* applies to this course
<table>
<thead>
<tr>
<th>Topic</th>
<th>Reading</th>
</tr>
</thead>
</table>
| FRAME DESIGN REVIEW | S&J Ch 12, 14
AISC Second Order Effects and Moment Magnification
AISC Stability and Leaning Columns |
| PHILOSOPHIES OF DESIGN | course notes
ASD vs LRFD and Structural Reliability
Failure Criteria
Brittle Fracture/Ductile Yielding
Von Mises Yield Criteria |
| FATIGUE | course notes
Stress Life, Strain Life, Fracture Mechanics
Variable Amplitude Loading and Miner’s Rule
AISC Fatigue Design Requirements |
| BENDING BEHAVIOR | S&J Ch 7
General Flexural Theory
Unsymmetrical Bending
Biaxial Bending
Tapered Members |
| TORSION | S&J Ch 8
Pure Torsion
Shear Flow
Shear Center of Open Thin-Walled Sections
Uniform Torsion
Torsion of Structural Shapes
Nonuniform Torsion
Combined Torsion and Bending
Torsion of Closed Thin-Walled Sections, Single Cell and Multi-Cell |
| LATERAL TORSIONAL BUCKLING | S&J Ch 9
Elastic and Inelastic |
| COLUMNS, PLATES, and COMPRESSION MEMBERS | S&J Ch 6
Local Buckling of Plate Elements
AISC Design Criteria (App. B)
Torsional Compression Buckling (App. E) |
| BEAM-COLUMN AND FRAME BEHAVIOR | S&J Ch 12
Approximate 2nd order effects
Elastic and Inelastic Behavior |
| CONNECTIONS | S&J Ch 13
Review of Bolt and Weld Strength
AISC Design Aids
Example |