Technical Report #2:
Pro-Con Structural Study of Alternate Floor Systems

Executive Summary

The purpose of this report is to analyze alternate floor framing systems and determine if they are a viable alternative to the existing system. The existing floor system consists of 2 ½” concrete slab over 3” deck that act compositely with the steel frame. Beams sized as W18’s, span 43.5’ in the critical bay and are supported by W24-W27 girders. Alternative floor systems were compared to one another based on several criteria, and are listed below. Most important were weight of the system, ability to span long distances, ease of construction, and cost. Secondary were floor system depth, fireproofing, and vibration control.

- Concrete Pan Joist
- Precast Hollowcore
- Non-Composite Slab/Steel
- Composite Joists

After analysis, concrete and precast systems were determined to be the least efficient. While they are inherently fire resistant, and do not require fireproofing, they are inefficient in spanning long distances. This long span is needed for the column free floor plan. Also, the weight of the system is unfavorable in the high seismic region. Foundation and lateral system redesign would be required, which can be very costly. There benefits were in vibration control and relative cost. Non-composite steel joists offer long spans, lighter weight than concrete, and ease of construction. No shear studs are required in this system which saves cost and time over the existing. The members are larger which increases foundation loads, and costs, but is worth further investigation. Lastly, were the composite joists systems which offer a light weight and efficient system, and is worth further investigation. Joists are able to span long distances and carry the floor load. These are relatively expensive compared to the other systems, because of the need for shear studs. However, reduction in overall weight of the building will reduce foundation and lateral system costs.
Table of Contents

- Introduction ... 2
- Existing Structural System ... 2,3
- Design Considerations ... 3
- Alternative Systems ... 4
 - Concrete Pan Joists ... 4,5
 - Hollowcore Plank ... 5,6
 - Non-Composite Steel .. 7
 - Composite Joists ... 8,9
- Comparison of Alternatives .. 9
- Conclusions ... 10
- Appendices ... 11
 - A. Existing Framing Plan ... 12
 - B. Composite Beams Calcs/Charts ... 13,14
 - C. Concrete Pan Joists Calcs/Charts 15,16
 - D. Precast Hollowcore Calcs/Charts 17,18
 - E. Non-Composite Slab and Steel Calcs/Charts 19,20
 - F. Composite Steel Joists Calcs/Charts 21,22
Introduction

555 City Center is a 21 story office building located in the heart of downtown Oakland. It was designed using the Uniform Building Code, but I have analyzed it with the International Building Code 2003. This code references the ANSI’s minimum design loads for buildings, which are provided below for live loads. The dead loads were calculated by myself, and are used for this technical assignment. Combined, these gravity loads will be used in determining alternate floor systems for a critical bay on a typical floor in the building. The entire typical floor framing is shown in appendix.

Live Loads: Taken from table 1607.1 from IBC 2003
- Office Floor: 80 psf – Assume any spot could be a corridor at some point
- Partitions: 20 psf – Assume 10 psf for seismic calculations

Dead Loads: (Assumed) waiting for confirmation
- Metal Deck: 2 psf
- Reinforced Concrete: 150 pcf (includes reinforcing)
- Steel Structural Members: 15 psf
- MEP: 10 psf
- Collateral: 5 psf

Design References Used:
- Nitterhouse Precast Concrete Literature
- CRSI – Concrete Reinforcing Steel Institute
- Vulcraft Steel Joist Catalogs
- RS Means Assemblies Catalog 2002

Existing Structural System

The elevated floors, starting from level 2, are composite metal deck systems. Typical floors 3-21 are 3” 18 gage composite deck with 2 ½” of normal weight concrete cover. The slabs are reinforced by either #6 @ 13” EW or WWF6x6 W1.9. The majority of the structural system is steel framing. All structural framing steel is designated as ASTM A992, Gr 50, unless otherwise noted. The building takes advantage of two lines of symmetry, one in the N-S direction, and the other in the E-W direction. The typical floors, 2-21, have the same framing, unless otherwise noted.
On a typical floor, composite steel deck spans the beams and girders. Beams are sized as W18x55 and W18x60 and span 43’-6”. The girders are sized W18 – W27, and span 30 – 35’, depending on location in the bay analyzed. The overall max depth of the floor system is 26.7” for a W27, plus an additional 5.5” for the composite deck, for a total of 32.2”. For this report, one critical bay was looked at between column lines X4-D2 and 5-6. It is not a square bay, but it is analyzed as a 30’x 43.5’ bay for simplicity. Beams are spaced 10’ on center in the long span. The original and analyzed bay layout is shown below.

Design Considerations

When identifying possible alternative floor systems, several factors were taken into account:
- Must be able to span long distances to keep column free spaces
- Weight of system
- Fire rating
- Depth of system
- Ease of construction
- Price
Alternative Floor Systems

Concrete Pan Joists

Concrete pan joist, also known as one-way joist floor systems, consist of evenly spaced concrete joists spanning in one direction. A reinforced concrete slab is cast integral with the joists to form a monolithic floor system. The one way joists frame into beams that span between the columns, perpendicular to the joists. These systems are effective for column layouts short span in one direction and long span in the orthogonal. It is preferable to span the joists in the short direction in rectangular bays, to achieve maximum economy.

Fire resistance is inherently provided by the concrete, so no additional fireproofing is required for the system. The joists also provide adequate stiffness over long spans and minimize structural depth of the system from 32” to 20.5”. The formwork for the system is the majority of the cost at 58%. However, because of the redundancy of the system, the formwork can be reused over and over again to reduce construction costs. These costs become an issue because of the need to set up formwork, set time for bars, waiting for concrete to cure, shoring, and teardown of formwork. The increased system weight is both good and bad. While the added weight helps to reduce floor vibrations and noise, it also requires the columns to become larger, and ultimately the foundations. Seismic issues also arise because the diaphragm has changed. Also, the extra weight of the concrete will increase the base shear on the building, and require a new lateral system analysis.

The system was designed, using the CRSI Design Guide for standard one-way joists, to span the 30’ distance. A 30” form with 6” ribs @ 36” c.c, with a total depth of 20.5” was selected. The ribs are 16” deep and covered with a 4.5” top slab. Number 5 bars @ 9” on top, and (1) #6 and (1) #7 in the bottom provide the adequate reinforcing. A joist band beam was not designed, but one would be required to span perpendicular to the joists along the column line.
Precast Hollowcore Plank

Precast hollowcore planks were chosen for another alternative floor system from the Nitterhouse design literature. Precast concrete offers several advantages over the original floor system. They are cast in a controlled environment which increases their quality over cast in place concrete. They are also prestressed which gives them a higher capacity and span length than normal weight concrete. Also, being concrete, the system is inherently fire resistant, but the wide flange beams they rest on, are not. They must be fireproofed, or replaced with inverted tee beams as the structural support. The planks also offer superior durability, natural sound attenuation, and vibration control.

There are several disadvantages of precast, including transportation cost and lead time. Precast must be ordered in advance, and transported to site. Transportation costs can become relatively expensive if the manufacturer does not operate locally. Because the planks are very heavy, 102.5 psf for those selected, this limits the amount that can be carried to site in one load. This will also increase transportation costs and project schedule. However, once on site, the construction is extremely fast. Only a 2” topping is needed to be placed before it is complete. There is no curing time, shoring, and formwork needed which will lead to a decrease in project schedule. The weight of the system will also impact the design of the lateral system and increase foundation size, which increases project cost.

The hollowcore selected comes in 4’ pieces and spans 30’ in the bay. A 12” x 4’ Spandeck-UL-J917 with a 2” cast in place topping, with a capacity of 187 psf was
selected. The reinforcing pattern consists of 6 – 1/2" diameter, 270 K Lo-Relaxation strands. The planks span between two girders, both sized to be W40x149. However, a W24x192 may be selected as an alternate size. It is heavier but reduced floor system depth. The overall depth of the system including the plank is 52.2” for W40 and 39.5” with the W24. Realistically, another girder, or column line should be added in order to decrease the size and weight of the beams used to carry the planks.
Non-Composite Slab and Steel

This system is just like the original, except that the beams and girders do not have composite action with the slab. This means that the beam will take all the moment, and not transfer any to the slab. The locations of the beams are every 10’, and span the long direction. A 3” deck with 2 ½” concrete cover spans perpendicular to the beams. The benefit of this system is its ease of construction. Shear studs are no longer needed to help transfer load, so there is a material and labor cost savings. Welders are not needed to be on site as often, and no time is needed to install. Schedule decreases and floors go up quicker. Another benefit of steel is its reduction of dead load in the building compared to concrete.

Steel systems require spray on fireproofing or encasements to achieve necessary fire ratings. This is an expensive added cost. Also, because the beams act alone from the concrete, they will become larger to accommodate the added moment. This increased weight increases column size, which increases foundations and cost. It also affects seismic issues with the lateral system negatively. Vibration control is more of a problem with steel than concrete because of weight. Steel is more susceptible to floor vibrations and sound attenuation.

Beam sizes showed an increase in size as expected. They jumped from W18x55 to W27x84, controlled by total load deflection. The girders, however, remained relatively unchanged from a W24x55 to a W24x68. More calculations would need to be done to determine the appropriate size of the girder compared to the beam it is supporting.
Composite Steel Joists

This system is ideally suited for commercial construction where large column free areas are desired. This system takes advantage of the interaction between concrete slab and steel joists through shear studs like the original steel system, resulting in smaller members. Floor to floor height is reduced because mechanical systems can be routed through the open webs of the joists. However, shear stud installation is labor intensive and expensive to the project. Erection and connections are simplified due to standard end bearing seats which mean faster construction. Weight savings over large W-shapes reduces building weight, which reduces foundation size and cost. It also reduces the overall base shear and seismic reaction on the lateral system. Floor vibrations can be a problem with steel structures, but over the long spans provided by the joists, it is reduced.

Joists were designed and chosen from the Vulcraft Composite Joist andDecking Catalogs online. In the analyzed bay, the joists are spaced every 6’ o.c. and span 43.5’. The existing decking, 2 ½” concrete over 3” deck, was used to determine a correct joist size. However, once picked from the chart it was given that the decking could be made smaller to a 2” deck, for a total of 4.5”. The joist designation found was an 18VC 1200/600/450 with 32- ¾” diameter shear studs per span. This is an 18” joist with 4.5” decking, for a total of only 22.5” depth. Two rows of bridging between joists is needed to prevent movement and rotation. The loads from the joists were then used to determine a girder size to support them. A W24x55 was calculated to adequately carry the joists.

Composite Steel Joist Framing
Comparison of Alternative Floor Systems

<table>
<thead>
<tr>
<th>Framing System</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Cost/ Sq. foot</th>
<th>System Weight</th>
<th>Further Investigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Composite Beams</td>
<td>Column free space Lightweight Beam Layout Flexible</td>
<td>Cost + Labor Fireproofing</td>
<td>$20</td>
<td>Light</td>
<td>Y</td>
</tr>
<tr>
<td>Concrete Pan Joist</td>
<td>Small depth Vibration Control</td>
<td>Weight - Seismic Trouble spanning bay Foundation redesign</td>
<td>$15-15</td>
<td>Heavy</td>
<td>N</td>
</tr>
<tr>
<td>Precast Hollowcore</td>
<td>Cost Quality Product</td>
<td>Weight - Seismic Large Depth Foundation redesign</td>
<td>$10</td>
<td>Heaviest</td>
<td>N</td>
</tr>
<tr>
<td>Noncomposite Slab/Steel</td>
<td>Ease of Construction Beam Layout Flexible</td>
<td>Large Members Vibration</td>
<td>$15</td>
<td>Medium</td>
<td>Y</td>
</tr>
<tr>
<td>Composite Joists</td>
<td>Column free space Lightweight Ease of Construction</td>
<td>Cost + Labor Fireproofing</td>
<td>$18-19</td>
<td>Lightest</td>
<td>Y</td>
</tr>
</tbody>
</table>
Conclusions

After analysis, it was found that any of the alternative systems could work as floor systems in the building. However, some are far more efficient and better suited for a high rise office building in a high seismic region. The concrete pan joist system can be ruled out as an alternative and further investigation. While it does offer small system depth, it is not enough to make up for the shear weight of the system, and the foundation and lateral system redesign that comes with it. Also, it would be difficult to span a band beam 43.5’ under the presented loading. An extra set of columns would need to be installed, which would go against the column free floor plan. Precast hollowcore plank can be ruled out as well. While it is relatively cheap and easy to construct compared to the other systems, its weight disqualifies it as a viable alternative. Foundation redesign and lateral system redesign would result, like with pan joists. Non-composite slab system with steel beams provides the column free spaces the building needs. Although the beams are larger than the composite system, they do not require shear studs. Shear stud installation is costly and labor intensive. Schedule of the project would be shortened, and in turn, the cost. Lastly, is the option of using composite open web steel joists. The joists are relatively lightweight compared to the existing system and still span the required 43.5’. They provide the column free space needed, and are fairly easy to construct. While vibration can be an issue in steel forms, the long span of the joist helps to minimize the effects. For these reasons, it is a viable alternative floor system.
Appendices

A. Existing Framing Plan

B. Composite Beams Calcs/Charts

C. Concrete Pan Joists Calcs/Charts

D. Precast Hollowcore Calcs/Charts

E. Non-Composite Slab and Steel Calcs/Charts

F. Composite Steel Joists Calcs/Charts
A. Existing Framing Plan (Bay chosen shaded)
B. Composite Beams (Current System)

Current System - Composite Deck on Steel Frame

30' x 43.5'

* Bay was checked in Tech #1 Report

Designed:
- B1: W18x55 (36) shear studs (3/4" O.D.)
- G1: W24x55 (34) shear studs (3/4" O.D.)

RECHECK:

BEAM B1: DL = 100 PSF => Wn = (1.2(10)+1.0(160)) / 10 = 2.8 klf x w

Mu = \frac{2.8 \text{ klf}(43.5)^{3}}{8} = 4602 k

b = 130.5"

Check: 10'(13) = 120" - controls

USE LOAD MANUAL (Table 5-14) - Assume W18x55

C2 = 0.69x55(20) (3) = 168.3 kbf

T3 = (16x2.5)x55(10) = 610 kbf

a = \frac{810}{(168.5x55)(20)} = 1.44

\gamma_2 = \frac{5.5 - 1.44}{2} = 4.78

Table 5-14 (p. 142)

\gamma_2 = 4.5 (conservative), PNA @ 3

\gamma_M = \frac{694 k}{602 k} \geq 1.0

\gamma_N = \frac{578}{234 k} = 2.47 \leq 51 shear studs

OR \gamma_2 = 5.0, PNA @ 4

\gamma_M = \frac{694 k}{602 k} \geq 1.0

\gamma_N = \frac{454 k}{234 k} = 1.94 \leq 44 shear studs

W18x55 Works

OK for NOTH
CHECK GIRDER G1:

\[W_0 = 1.2(100 + 100) + 280 = 280 \text{ PSF} \]

\[W_0' = \frac{43.5}{2} \text{ (dead load)} = 21.75 \text{ kip} \]

\[M_0 = \frac{W_0' L}{8} = 686 \text{ kip-ft} \]

\[\text{Def} = \frac{W_0' L^2}{48EI} = \frac{90}{48} = 1.875 \text{ in} \]

\[\text{Spans} = \frac{25}{5} = 5 \text{ (20)} = 20 \text{ ft} \]

\[C = 0.65(5)(5.5)(5.5) = 1262 \text{ kip-ft} \]

\[T_5 = 16.35(5) = 81.75 \text{ kip-ft} \]

\[a = \frac{81.75}{181.35} = 1.18 \]

\[\alpha_1 = 5, \gamma_2 = 5.5, \frac{44}{2} = 4.53 \]

TABLE 5-H (15, 5-19) \[@ \gamma_2 = 4.5, \text{ AND @ 6 (CONSERVATIVE)} \]

\[\phi = 765 > 686 \text{ kip} \]

\[\gamma = 332 \times \frac{2}{2} = 16.1 > 32 \text{ STUDES} \]

SAME STEEL, MORE STUDS (CONSERVATIVE WITH \(\gamma_2 \)) \[\text{OK} \]

COMPOSITE SLAB/DECK AND BEAMS/GIRDERS ARE

COMPARE TO IN-SITU DESIGN, ONLY DIFFERENCE

75 SLIGHTLY MORE STUDS BECAUSE I WAS

CONSERVATIVE.
C. Concrete Pan Joists

Concrete Pan Joist Girders (USF, CRSI, CUMBERLAND)
- Standard One-Way Joists

Loading:
- Dead Load: 30 psf
- Live Load: 100 psf

Try spanning from short direction (30)

Structural Girders

1. Column

2. Joist Span

3. Structural Girder

Design:

- Column: 1,400,000 psi
- Joist Span: 60,000 psi

* Pick above horizontal line and calculate deflection calculations not required

4. Choices will work:

30+6 w/ Ø6 @ 20" C.C.
30+7 w/ Ø6 @ 20" C.C.

5. Choose minimal depth and least steel

- 30" form = 6" rib @ 36" C.C.
- Design Load = 222 psf

Depth: 16" ribs @ 4.5" top size = 20.5" total depth
Reinforcing: Top = #5 @ 9" (1) #6 and (1) #7, A5 = 1414 lb

- #5 @ 9" O.C.
DESIGN FOR END SPAN - JOIST-BAND BEAM

\(\omega_0 = 212 \text{ psf} \) FIND DISTRIBUTED WEIGHT FOR JOIST SYSTEM
(TABLE 8-1 OF CBI)

JOIST-RAIL SYSTEM WEIGHT = 97 psf + FROM TABLE
1/4(97) = 135.8 psf

TOTAL WEIGHT: 212 + 135.8 = 347.8 psf

\(\omega = 347.8 \text{ psf} \times 10 = 10.4 \text{ klf} \)

CHECK CIAS CI:12 FOR JOIST-BAND BEAM SIZE
FOR 30'-0" SPAN WITH LOAD = 10.4 klf

STANDARD (1)
ONE-WAY JOISTS

MULTIPLE SPANS

<table>
<thead>
<tr>
<th>DEPTH</th>
<th>30" Forms = 6" rib @ 36" c.-c.</th>
<th>FACTORED USABLE SUPERIMPOSED LOAD (PSF)(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>END SPAN</td>
<td>16" Deep Rib + 4.5" Top Slab = 20.5" Total Depth</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOP BARS</th>
<th>SIZE</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>END SPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>27'-0"</td>
<td>131</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28'-0"</td>
<td>112</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29'-0"</td>
<td>95</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30'-0"</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31'-0"</td>
<td>66</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32'-0"</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33'-0"</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34'-0"</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35'-0"</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOTTOM BARS</th>
<th>SIZE</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>END SPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>27'-0"</td>
<td>131</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28'-0"</td>
<td>112</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29'-0"</td>
<td>95</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30'-0"</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31'-0"</td>
<td>66</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32'-0"</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33'-0"</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34'-0"</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35'-0"</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STEEL (psf)</th>
<th>.05</th>
<th>1.04</th>
<th>1.74</th>
<th>1.44</th>
<th>1.71</th>
<th>1.93</th>
<th>1.15</th>
<th>1.42</th>
<th>1.70</th>
<th>2.01</th>
</tr>
</thead>
</table>

\(f_c = 4,000 \text{ psi} \)
\(f_y = 60,000 \text{ psi} \)
D. Precast Hollowcore

HOLLOW CORE PLANK (SPAN SHORT DIMENSION)

LOADS: DEAD LOAD = 15 PSF TOTAL LOAD = 115 PSF
LINE LOAD = 100 PSF

* WITTE HOUSE PRESTRESSED HOLLOWCORE PLANK (CATALOG ONLINE)

- NEEDS TO SPAN 30' FROM GIRDER TO GIRDER
- 12" X 21" SLAB DECK - UL-TA17 W/ 2" CIP TOPPING
- STRAND PATTERN: C-1/2" Ø, 370 K LO- Pretension
- ALLOWABLE SUPERIMPOSED LOAD: 167 PSF > 115 PSF (STRESS) OK

CHECK SUPPORTING GIRDER FOR APPROPRIATE SIZE

- LINE LOAD = 100 PSF
- DEAD LOAD = 15 PSF
- SELF WEIGHT = 102.5 PSF FROM CATALOG
- TOTAL FACTORED LOAD

\[\frac{1.5D + 1.6L}{2} \]

\[M_0 = \frac{60 \times 12^2}{8} = \frac{(360 \times 12 \times 30)(435)}{8} = 2135.91 k \]

\[Z_{th} = \frac{M_0}{\phi F_3} = \frac{2135.91(12)}{0.9(50 \text{ k}} = 569.6 \text{ in}^3 \]

CHECK LOAD STEEL MANUAL
- TABLE 5-3

\[[w_{90} \times 149] \text{ w/ } h = 598^2 > 569.6 \times 25 \text{ SEC} \]

- SEE DETAILS FOR CONNECTION INFORMATION OF PLANK TO STEEL
- CONSIDER DFC J 27
Prestressed Concrete
12" x 4' SpanDeck—U.L.—J917
(2" C.I.P. TOPPING)

PHYSICAL PROPERTIES

Composite

\[
\begin{align*}
A' &= 293 \text{ in}^2 \\
S_b' &= 9.35 \text{ in}^3 \\
I' &= 7164 \text{ in}^4 \\
S_t' &= 1649 \text{ in}^3 \text{(At Top of SpanDeck)} \\
Y_b' &= 7.65 \text{ in} \\
S_e' &= 1129 \text{ in}^3 \text{(At Top of Topping)} \\
Y_{t1}' &= 4.35 \text{ in} \text{ (To Top of SpanDeck)} \Rightarrow \text{Wt.} = 410 \text{ PLF} \\
Y_{t2}' &= 6.35 \text{ in} \text{ (To Top of Topping)} \Rightarrow \text{Wt.} = 102.5 \text{ PSF}
\end{align*}
\]

DESIGN DATA

1. Precast Strength @ 28 days = 5000 PSI
2. Precast Density = 150 PCF.
4. Composite Strength = 3000 PSI
5. Composite Density = 190 PCF
6. Strand Height = 1.5 in.
7. Ultimate moment capacities (when fully developed): 4 = 1/2" x 27K = 145.2kN
 6 = 1/2" x 27K = 286.1kN
8. Maximum bottom tensile stress is 0.7f'_c = 424 PSI
9. All superimposed load is treated as live load in the strength analysis of flexure and shear.
10. Moment strength capacity is based on stress/strain strand relationships.
11. Load values to the left of the solid line are controlled by ultimate strength. Load values to the right are controlled by service stress.
12. Shear values are the maximum allowable before shear reinforcement is required.
13. Deflection limits were not considered when determining allowable loads in this section.
14. All loads shown refer to allowable loads applied after the topping has hardened.

<table>
<thead>
<tr>
<th>12" SPANDECK/2" TOPPING</th>
<th>ALLOWABLE SUPERIMPOSED LOAD (PSF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARD BY STAIRUP @ 1-1/2" FROM END</td>
<td>STANDARD BY STAIRUP</td>
</tr>
<tr>
<td>Strand Pattern</td>
<td></td>
</tr>
<tr>
<td>Concrete</td>
<td></td>
</tr>
<tr>
<td>Flexible 4 - 1/2"</td>
<td>446</td>
</tr>
<tr>
<td>Shear 4 - 1/2"</td>
<td>438</td>
</tr>
<tr>
<td>Flexible 6 - 1/2"</td>
<td>374</td>
</tr>
<tr>
<td>Shear 6 - 1/2"</td>
<td>362</td>
</tr>
<tr>
<td>Flexible 8 - 1/2"</td>
<td>327</td>
</tr>
<tr>
<td>Shear 8 - 1/2"</td>
<td>318</td>
</tr>
</tbody>
</table>

NITTERHOUSE CONCRETE PRODUCTS

This table is for simple spans and uniform loads. Design data for any of these span-load conditions is available on request. Individual designs may be furnished to satisfy unusual conditions of heavy loads, concentrated loads, cantilevers, flanges or stem openings and narrow widths.

2655 MOLLY PITCHER HWY, SOUTH, BOX 26
CHAMBERSBURG, PA 17201-0012
717-267-4500 • FAX: 717-267-4514
REV. 11/09
E. Non-Composite Slab and Steel

- Use same framing and concrete depth as exists.

LOADS:
- dead: 2 1/2 concrete over 8' metal deck = 68.8 psf
- M & P = 10
- Deck = 2
- Structural = 15
- Coll Total = 5
- Line: 100 psf for office loading

BEAMS:
- trib width = 10'-120'
- \(w_0 = \frac{12D+14L}{2} = \frac{12(10)+14(120)}{2} = 780 \text{ psf} \)
- \(w_u = 2.60(50)^2 = 278 \text{ psf} \)
- \(M_u = \frac{2.6(43.5)^2}{8} = 662.3 \text{ k} \)

SIZE MEMBER: LAFD Manual (Table 5-3)
- \(Z_y = \frac{M_u}{f_y} = \frac{662.3(12)}{0.9(50)} = 136.6 \text{ in}^3 \)
- \(\Rightarrow \text{Try a} 10\times24\times68 \)
- \(w_1 = 177.6 \text{ in}^3 > 136.6 \text{ in}^3 \)
- \(C_{M_u} (664) > 662.3 \text{ k} \in \text{OK} \)

CHECK GIRDERS
- \(P_i = \frac{2.6(43.5)}{2} = 60.9 \text{ k} \)
- \(M_{top} = P_e = 609(10) = 6090 \text{ k} \)
- \(Z_y = \frac{609(12)}{0.9(50)} = 162.4 \Rightarrow (W)24\times68 \Rightarrow Z_y = 177 \in \text{OK} \)
- \(C_{M_u} = 664 \geq 609 \text{ k} \in \text{OK} \)
CHECK BEAMS FOR DEFLECTION

SERVICE LOADS

\(\mu_2 = 200 \text{ ksf} \)
\(\mu_3 = 100 \text{ ksf} \)

LIVE LOAD:

\(A_{w} = 5 \text{ in} \)
\(384 \text{ in} \)
\(360 \)
\(384(29/50) \text{ in} \)

\(f_{w} = 1920 \text{ in}^2 \)

LAFD MANUAL: \(W = 27.84 \text{ in} \)
\(f_{w} = 2100 \text{ in}^2 \)

TOTAL LOAD:

\(A_{t} = 5 \text{ in} \)
\(384 \text{ in} \)
\(240 \)
\(384(29/50) \text{ in} \)

\(f_{t} = 2560 \)

LAFD MANUAL: \(W = 27.84 \text{ in} \)
\(f_{t} = 2560 \)

\(W = 27.84 \text{ in} \) is size needed due to service loads

CHECK BEAMS FOR DEFLECTION UNDER SERVICE LOADS

\(p_{max} = 200 \text{ ksf}(2/3) = 133.3 \text{ ksf} \)
\(w = 0.88 \text{ ksf} \)
\(1.15 \text{ klf} = 1450 \text{ ksf} \)

\(p_{max} = 10.9 \text{ ksf} \)
\(w = 10.92 \text{ ksf} \)
\(0.72 \text{ klf} = 786 \text{ ksf} \)

\(A_{w} = 5(384/304/130) \)
\(f_{w} = 21.56 \text{ in}^2 \)

\(A_{t} = 5(384/304/130) \)
\(f_{t} = 21.56 \text{ in}^2 \)

A \(W/8+40 \) for girder on exterior
A \(W/24+55 \) for interior girder
F. Composite Steel Joists

Composite Deck + Open Web Steel Joists

Given: Fc: 5000 psi, Normal Weight Concrete, Original Decking - Designed 2 1/2" Concrete over 3" Rib

Assume: Joists will be placed every 6 ft with spacing 43.8' & 44'

Dead load: Concrete = 5.5/6 (60) = 88.8
Joist = 45 LF
Deck = 216 F
RDP = 10 F
Girder = 6 LF

Line load reductions not taken into account

Line Load = 100 LF (G) = 600 LF
Total Live Load = 842 LF

Check Joist Catalog - Vulcraft - Composite Joists Catalog

- A 2.5" HSS & 2" Deck, Joists spaced 8', (an IHD) 1200 LF
 - Wd = 32 LF = Weight of joist
 - Wd = 850 LF = Wd / 260
 - 1/2" of Shear Sticks / span
 - Bridging required = 2 rows

Composite Line Load = 100 LF (G) = 600 LF + 850 LF = 1450 LF
OK in deflection

Composite Dead Load = 850 + 450 = 750 LF (G) + 450 = 1200 LF

Use: 18 VC 1200/600/150 - Joist Designation
32 - 3/4" of Shear Sticks / span

Joist Weight = 32 LF
Joist Length = 5'
2 Rows of Bridgins

2" Deck w/ 2 1/2" Concrete over
WEIGHT TABLE AND DESIGN GUIDE
VULCRAFT COMPOSITE STEEL JOISTS, VC SERIES

Based on Allowable Tensile Stress of 30,000 psi

<table>
<thead>
<tr>
<th>Joint Span</th>
<th>Joint Depth</th>
<th>Slab Design</th>
<th>Normal Weight Concrete</th>
<th>f''c = 3.0 ksi</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ft)</td>
<td>(in)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL (psf)</td>
<td>207</td>
<td>350</td>
<td>413</td>
<td>469</td>
</tr>
<tr>
<td>WD (psf)</td>
<td>207</td>
<td>350</td>
<td>413</td>
<td>469</td>
</tr>
<tr>
<td>Hds</td>
<td>25.12</td>
<td>30.12</td>
<td>38.12</td>
<td>46.12</td>
</tr>
</tbody>
</table>

Stress calculations and load distribution shown in the diagram.

CHECK GIRDERS THAT SUPPORT JOISTS (SPAN: 30)

<table>
<thead>
<tr>
<th>P/3</th>
<th>P/3</th>
<th>P/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dead Load

JOIST w/ = 32 PSF (40) = 1408 lb

Concrete: 5'12 (188) = 68.8 PSF (40) = 1813
MEd/Fnaw = 17 PSF (40) = 645 lb

Live = 100 PSF (40) = 26400

P = 1.3 (1813 + 1813 + 645) + 1/2 (26400)

P = 35.64'2 = 13.8 k

LFD (TABLES 3)

<table>
<thead>
<tr>
<th>MEd</th>
<th>2114 k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>1018 x 35</td>
</tr>
<tr>
<td>0.9</td>
<td>66.5 in</td>
</tr>
<tr>
<td>J = 510 in</td>
<td></td>
</tr>
</tbody>
</table>

Strength calculations with load considerations.

Noting the importance of interior girders in handling the load.

Strength gains, but interior girders would need

Take the load > Z = 133, W29 0.55 would be needed.