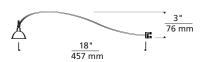

Appendices

Appendix A

Luminaire	Description	Manustina	Lamp		Dellest	ODI	ООТ	\/-I4	\
Designation	Description	Mounting	#	Туре	Ballast	CRI	ССТ	Volt.	Watts
H1	Tech Lighting Halogen adjustable accent lights, Clamps to Wall MonoRail	Surface	1	35W MR16	N/A	1	3000	12/277	35
H2	Leucos Incandescent Cylindrical Table Lamp	Table	1	100W A19	N/A	1	•	120	100
F1	Lightolier Compact Fluorescent downlight w/ vertical lamp, 6" aperture	Recessed	1	CFTR32W	Electronic	82	3500	277	34
F1A	Lightolier Compact Fluorescent downlight w/ vertical lamp, 6" aperture	Recessed	1	CFTR32W	Electronic Dimming	82	3500	277	38
F2	Erco 48" Recessed wallwasher	Recessed	1	F28T5	Electronic	82	3500	277	30
F3	Focal Point Fluorescent Directional Cove Light	Surface	1	F28T5	Electronic	85	3500	277	30
F3A	Focal Point Fluorescent Directional Cove Light	Surface	1	F28T5	Electronic Dimming	85	3500	277	30
F4	Se'lux Compact Fluorescent Wall Arm Mounted Sconce	Surface	1	CFQ26W	Electronic	82	3500	277	27
F5	WE-EF Rectangular Compact Fluorescent Step Light	Recessed	1	CFQ18W	Integral Electronic	82	3500	277	20
F6	WE-EF Circular Compact Fluorescent Step Light	Recessed	1	CFQ18W	Integral Electronic	82	3500	277	20
F7A	Focal Point Fluorescent Narrow Slot Downlight with Opaque Satin Lense	Recessed	1	F28T5	Electronic Dimming	85	3500	277	30
F8A	Lightolier Compact Fluorescent Wallwasher w/ vertical lamp,4" aperture	Recessed	1	CFQ18W	Electronic Dimming	82	3500	277	22
F9	Lightolier Compact Fluorescent wallwasher w/ vertical lamp, nominal 6" apperature	Recessed	1	CFTR32W	Electronic	82	3500	277	34
F10	Delray Lighting 8" Clyinder Vertical Lamp Up/Downlight	Surface (Column)	2	CFQ18W	Electronic	82	3500	277	36
F11	Lightolier Compact Fluorescent Downlight w/ vertical lamp, nominal 8 3/4" aperture	Recessed	1	CFM42W	Electronic	82	3500	277	46
F12	Elliptipar Style 301 Assymetrical Linear Fluorescent Strip	Surface	1	F32T8	Electronic	85	3500	277	34
F13	Winona Lighting Decorative Cylindrical Pendant	Suspended	2	FT39W	Magnetic	85	3500	277	84
F14	Elliptipar 30/30 Fluorescent Stack Light	Suspended	1	F28T5	Electronic	85	3500	277	30
M1	Bega Metal Halide Low Profile Path Light	Semi- Recessed	1	39W T4	Magnetic	82	3000	277	53
L1	ioLighting 36" Symmetrical Linear LED Accent, 5 degree beam spread w/ grazing	Surface	1	F28T5	Integrated Driver	-	5000	277	32



Wall Georgi

ARCHITECTURAL HEAD

Shown approximately 20% actual size.

DESCRIPTION

MonoRail

N/A

FreeJack

N/A

Clamps to Wall MonoRail. 18" long 3" high gentle curve. Pivots at head to direct the beam.

Wall

MonoRail

G

TwinRail

N/A

T~trak™

N/A

Kable Lite

N/A

SYSTEM

Available for Wall MonoRail only.

FINISH

Antique bronze, chrome, gold, satin nickel.

Two-Circuit

MonoRail

N/A

LAMP

Low-voltage Halogen MR16 lamp up to 75 watts (not included).

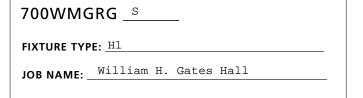
ACCESSORIES & OPTICAL CONTROLS

Wild Thing, Sun Louver, Flight Paper, MR16 Snout, Round Glass Shield, Cone Glass Shield, Lil Egypt, Lil Wok, Barndoors, Snap Barndoors, Backlight Shield, Louver Lens Holder, Snap Louver Lens Holder, Eggcrate Louver, Glass Lens (sold separately).

WEIGHT

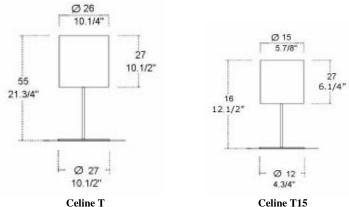
0.22 lb./0.10 kg. ±

ORDERING INFORMATION


700WMGRG

Z ANTIQUE BRONZE
C CHROME
G GOLD
S SATIN NICKEL

7400 Linder Avenue Skokie, Illinois 60077 T 847.410.4400 F 847.410.4500


www.techlighting.com

CELINE T-T15
LEUCOS INDUSTRIAL DESIGN TEAM

DESCRIPTION: A simple drum-shaped, satin white diffuser unites the Celine design

offering. Two sizes are available with incandescent light sources to provide

diffused illumination.

CONSTRUCTION: Flat round bases and cleaned-lined stems in brushed nickel support the

blown glass diffuser. On/Off switches are located on a black cord on all

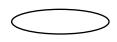
models. Dimmers are optional.

LIGHT SOURCE: T: 1 x 100 watt, incandescent, A-19, medium base (provided)

T15: 1 x 60 watt, incandescent, G-16 1/2, candelabra (provided)

FINISH: Stem and base details are in brushed nickel

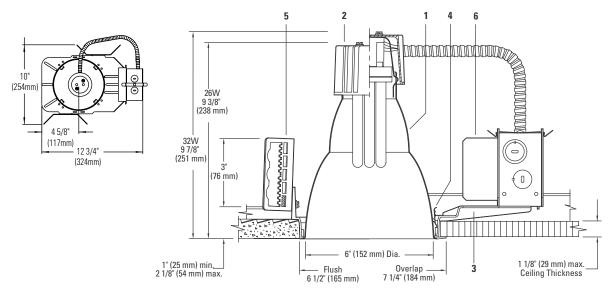
GLASS COLOR: Satin White


NET WEIGHT: T: 11 lbs.

T 15: 7 lbs.

Leucos USA, Inc.

11 Mayfield Avenue Edison, NJ 08837 Tel: 732-225-0010 Fax: 732-225-0250


www.leucos.com

Calculite® Compact Fluorescent Open Downlighting 8021

Page 1 of 2

6" Aperture Triple Tube Vertical Lamp

Ceiling Cutout: 6 9/16" (167 mm) Dia.

Reflector Trim		Frame-In	Kit	Lamp	
8021 CCLW 8021 CCLP 8021 CCL	Comfort Clear™, White Flange Comfort Clear™, Polished Flange Comfort Clear™, Molded Trim Ring	S6132BU S6132BCU3 S6132BJUM7	Electronic Universal Dimming Advance Mark7	120V - 277V 120V - 277V 120V - 277V	26 or 32W Triple Tube 4-Pin (Amalgam)
8021	Add suffix. See options for other finishes.	Remodele	er Frame-In Kit	Lamp	
		6132BURM	Electronic	120V - 277V	26 or 32W Triple Tube 4-Pin (Amalgam)

Features

- 1. Reflector: 16 ga. Alzak® aluminum, 50° visual cutoff to lamp and lamp image, medium distribution. Comfort Clear™ low iridescence finish. Self-flanged or flangeless with molded white trim ring (field paintable).
- 2. Socket Cup: Effectively dissipates heat and positions lamp holder. Snaps onto reflector neck to assure consistently correct optical alignment without tools.
- 3. Mounting Frame: Galvanized steel for dry or plaster ceilings. Accepts other 6" Triple Tube reflectors (see S6132BU Spec Sheet).
- 4. Retaining Springs: Precision-tooled steel friction springs secure reflector to mounting frame for quick, tool-less installation.
- Mounting Brackets: 16 ga. steel. Adjust from inside of fixture. Use 3/4" or 1 1/2" lathing channel, 1/2" EMT, or optional mounting bars.
- 6. Ballast/J-Box: Electronic 120V-277V. UL listed for through branch circuit wiring with max of (8) No. 12 AWG, 90°c supply conductors. Outboard mounted to reduce heat transfer and maintain lamp efficacy and life. Service from below without tools.

Electrical

Note: For ballast electrical data and latest lamp/ballast compatibility refer to "Ballast" specification sheet for complete electrical data.

S6132BU, S6132BCU: UL listed for through branch circuit wiring with max of (8) No. 12 AWG, 90° C supply conductors.

6132BURM: UL listed for No. 12 AWG, 90° C supply conductors.

Options and Accessories

Comfort Clear™ Finishes¹ Other Finishes Diffuse CCD White WH Champagne Bronze CCZ **CPW** Pewter

¹Specify desired flange. **W** White, **P** Polished, Blank - Molded Ring

Other Dimmina:

S6132BJ1MX Advance MarkX, 120V S6132BJ1LD3 Lutron Hi-lume®, 120V S6132BJ2LD3 Lutron Hi-lume®, 227V S6132BJ2MX Advance MarkX, 227V

Options and Accessories (continued)

Emergency Ltg. Kit FA EM3E* FA EM4* Fuse (Slow Blow) Add suffix F Existing/Thk. Ceiling FA EC6* Emergency Add suffix EM* Chicago Plenum Use 6132BULC *See Spec. Sheets: FAEM, FAEC

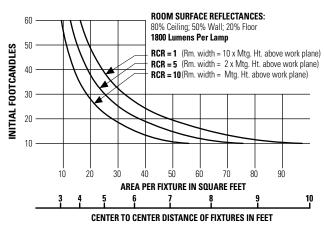
Mounting Bars & Accessories; see Specification Sheet MBA. Sloped Ceiling Adapters; see Specification Sheet SCA. IC Frame available; see C6CFL32 Specification Sheet.

Labels

UL Listed for damp locations.

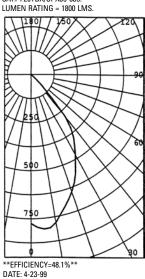
Alzak® is a registered trademark of ALCOA.

US Patent Pending.


Job Information	Type:
Job Name:	
Cat. No.:	
Lamp(s):	
Notes:	

Lightolier a Genlyte company 631 Airport Road, Fall River, MA 02720 • (508) 679-8131 • Fax (508) 674-4710 We reserve the right to change details of design, materials and finish. © 2006 Genlyte Group LLC • E0406

Page 2 of 2


26W **Quick Calculator**

This quick calculator chart determines the number and spacing of 1 lt.- 26W TTT units with Comfort Clear™ reflector, for any level of illumination

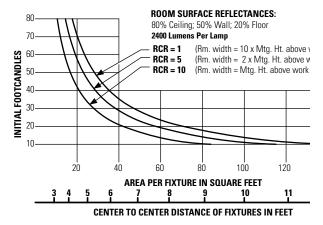
Spacing Ratio = 1.0

REPORT NO: LSI 14025 LIGHTOLIER RECESSED FLUORESCENT LUMINAIRE, WITH COMFORT CLEAR™ REFLECTOR ONE 26 WATT CPFL GE LAMP, CAT# F26TBX/SPX35-835.

EFFICIENCY=48.1%
DATE: 4-23-99
CIE TYPE DIRECT
LUMINOUS DIAMETER: 6.000
THIS REPORT BASED ON LM-1 AND
OTHER PERTINENT IES PROCEDURES.

701141	CLINAN	4 A DV
	L SUMN E CP LU	
O O	775	IVIEIVO
5	806	77
10	780	"
15	708	199
20	646	100
25	566	258
30	478	200
35	402	245
40	285	
45	78	81
50	13	
55	4	4
60	2	
65	1	2
70	1	
75	1	1
80	0	
85	Ω	n

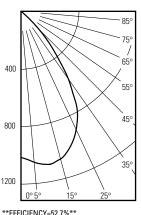
ZONAL	LUMEN	S AND P	ERCENTAGES
ZONE L	.UMENS	%LAMP	%LUMINAIF
0-30	533	29.66	61.66
0-40	778	43.25	89.92
0-60	863	47.98	99.75
0-90	865	48.10	100.00
40-90	87	4.85	10.08
60-90	2	.12	.25
90-180	0	.00	.00
0-180	865	48.10	100.00


Coefficients of Utilization

EFFECTIVE FLOOR CAVITY REFLECTANCE = .20

		80	70	50	30	10	
			WAL	L OF REFLEC	TANCE		
		50 30 10	50 30 10	50 30 10	50 30 10	50 30 10	0
	1	.54 .53 .52	.53 .52 .51	.51 .50 .49	.49 .48 .48	.47 .47 .46	.46
_	2	.50 .49 .47	.50 .48 .47	.48 .47 .46	.47 .46 .45	.45 .45 .44	.43
RATIO	3	.47 .45 .44	.47 .45 .43	.46 .44 .43	.44 .43 .42	.43 .42 .41	.41
Æ	4	.45 .42 .40	.44 .42 .40	.43 .41 .40	.42 .41 .39	.41 .40 .39	.38
≧	5	.42 .39 .37	.42 .39 .37	.41 .39 .37	.40 .38 .37	.39 .38 .36	.36
⋛	6	.40 .37 .35	.39 .37 .35	.39 .36 .35	.38 .36 .34	.37 .36 .34	.34
ROOM CAVITY	7	.37 .34 .33	.37 .34 .32	.36 .34 .32	.36 .34 .32	.35 .33 .32	.31
Ó	8	.35 .32 .30	.34 .32 .30	.34 .32 .30	.34 .31 .30	.33 .31 .30	.29
B	9	.33 .30 .28	.32 .30 .28	.32 .30 .28	.32 .29 .28	.31 .29 .28	.27
	10	.31 .28 .26	.30 .28 .26	.30 .28 .26	.30 .27 .26	.29 .27 .26	.25

6" Aperture Triple Tube Vertical Lamp


32W **Quick Calculator**

This quick calculator chart determines the number and spacing of 1 lt.- 32W TTT uni with Comfort Clear™ reflector, for any level of illumination

Spacing Ratio = 1.1

REPORT PREPARED FOR: LIGHTOLIER 04-27-1999 REPORT NO: LRL 499-9G LAMPS: 1 PLT-32 LUMENS: 2400 DESCRIP.: 6" DIA X 10" HT RECESSED DOWNLIGHT WITH COMFORT CLEAR™ REFLECTOR. VERTICAL

EFFICIENCY=52.7% DATE: 4-27-99 CIE TYPE DIRECT LUMINOUS DIAMETER: 6.000 THIS REPORT BASED ON LM-1 AND OTHER PERTINENT IES PROCEDURES

ZONE	L SUMN AVG* Z C.P. LUM	ONAL	
180	0.1. LOW	ILIVO	
175	Ö	0	
165	Ö	ŏ	
155	Ö	ő	
145	ŏ	ŏ	
135	Ö	Ŏ	
125	Ö	Ŏ	
115	Õ	Ō	
105	0	0	
95	0	0	
90	0	0	
85	1	1	
75	1	1	
65	3	3	
55	9	8	
45	99	77	
35	563	354	
25	904	418	
15	1063	301	
5	1066	102	
0	1035		
ZONAL	LUMENS	AND PE	RCENTAGES
ZONE L	UMENS 9	6 LAMP	%LUMINAIRE
)-30	821	34.2	64.9

%LUMINAIRE 1175 49 N 92.9 0-60 1260 52.5 99.6 0-90 100.0 1265 52.7 40-90 3.8 0.4 60-90 5 0 0.2 90-120 0.0 0.0 0.0 90-180 0-180 100 0

www.lightolier.com

Coefficients of Utilization

EFFECTIVE FLOOR CAVITY REFLECTANCE - 20

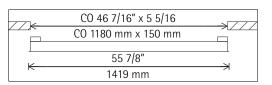
	LITEGITYE TEOOTI GAVITT HELECTANGE = .20								
		80	70	50	30	10			
				L OF REFLEC					
		50 30 10	50 30 10	50 30 10	50 30 10	50 30 10	0		
	1	.59 .58 .57	.58 .57 .56	.56 .55 .54	.54 .53 .53	.52 .52 .51	.50		
	2	.56 .54 .53	.55 .54 .52	.54 .52 .51	.52 .51 .50	.51 .50 .49	.48		
9.	3	.53 .51 .50	.53 .51 .49	.51 .50 .49	.50 .49 .48	.49 .48 .47	.46		
RAI	4	.51 .48 .47	.50 .48 .46	.49 .47 .46	.48 .46 .45	.47 .46 .45	.44		
≥	5	.48 .46 .44	.48 .45 .44	.47 .45 .43	.46 .44 .43	.45 .44 .43	.42		
ROOM CAVITY RATIO	6	.46 .43 .42	.46 .43 .41	.45 .43 .41	.44 .42 .41	.44 .42 .41	.40		
10	7	.44 .41 .39	.43 .41 .39	.43 .41 .39	.42 .40 .39	.42 .40 .39	.38		
00	8	.41 .39 .37	.41 .39 .37	.41 .38 .37	.40 .38 .37	.40 .38 .36	.36		
Ж	9	.39 .36 .35	.39 .36 .35	.38 .36 .35	.38 .36 .34	.38 .36 .34	.34		
	10	.35 .32 .31	.35 .32 .31	.35 .32 .30	.34 .32 .30	.34 .32 .30	.30		

Job Information Type:

Lightolier a Genlyte company 631 Airport Road, Fall River, MA 02720 • (508) 679-8131 • Fax (508) 674-4710

We reserve the right to change details of design, materials and finish. © 2006 Genlyte Group LLC • C0406

ERCO


TFL Wallwasher

FIXTURE: F2

for fluorescent lamps

65040.023 Reflector silver F28T5 28W Min. Bipin 2900lm ECG

Product description

Housing: sheet metal, white (RAL9002) powder-coated. Screwfastened end plates. Arrangement as continuous band of light possible. Mounting brackets with screw fixing: metal.

2 cable entries, through-wiring possible. 3-pole terminal block. Electronic control gear 120V/277V, 60Hz, class P inside cast housing. Wallwasher reflector: aluminum, satin matt anodized. Hinged cover for lamp replacement. Type Non IC luminaire. Insulation materials must be kept away from the luminaire by a minimum of 3". Suitable for damp location.

Max. ceiling thickness 3/4". Weight 17.64lbs / 8.00kg

TFL Wallwasher

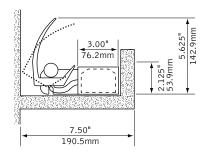
Planning Data

Illuminance (fc)
Specifications:
Number of luminaires n > 5
Light loss factor 0.80
Without indirect component
Without peripheral area
Wall height (ft) 10
F28T5 28W Min. Bipin 2900lm

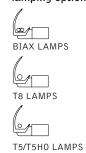
Offset from wall (ft) Luminaire spacing (ft)	3		3		4		4	
Luminanc spacing (it)	below the	between the						
Distance from ceiling (ft)	luminaire	luminaires	luminaire	luminaires	luminaire	luminaires	luminaire	luminaires
0.000	0	0	0	0	0	0	0	0
1.000	36	25	34	19	16	13	14	10
2.000	53	41	49	32	35	30	31	24
3.000	40	34	36	27	35	30	30	25
4.000	30	26	26	22	28	25	25	21
5.000	22	20	19	17	23	20	20	17
6.000	17	15	14	13	19	16	16	14
7.000	13	11	11	10	15	13	13	11
8.000	10	8	8	7	12	10	10	9
9.000	8	7	7	6	10	8	8	7
10.000	6	5	5	5	8	7	7	6

covelight™ 68

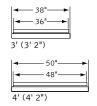
FEATURES


Intended for concealed cove installations where directional light requirements may change.

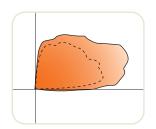
Multiple lamp configurations provide maximum flexibility.


Continuous row installations may be configured with combinations of 3' and 4' standard length units.

Adjustable asymmetric optical system adds flexibility and performance to any design.


DIMENSIONAL DATA

lamping options



fixture information

Overall luminaire length will exceed nominal length.

PERFORMANCE


1-Lamp T8 82% Efficiency 1242 cd @ 115°

See **Photometric** section for additional performance data.

august 2005

fixture type: project name:

DETAILS

Fixtures are always independent and never joined.

Overall luminaire length will exceed nominal length.

Consult factory for additional row length information.

SPECIFICATIONS

construction

20 Ga. steel reflector housing and remote ballast housing.

 $16\,$ Ga. steel end plates attached to housing.

Luminaires available in 3' and 4' nominal lengths only.

3' unit weight: 12 lbs 4' unit weight: 16 lbs

optic

Die-formed .02" specular aluminum reflector.

electrical

Electronic ballasts are thermally protected and have a Class ``P'' rating. Optional DALI and other dimming ballasts available.

 $\label{thm:consult} \mbox{Consult factory for dimming specifications and availability.}$

UL and cUL listed.

emergency

Emergency battery packs provide 90 minutes of one lamp illumination. Initial lumen output for lamp types are as follows:

Biax Lamps: Up to 650 lumens T8 Lamps: Up to 475 lumens T5 Lamp: Up to 550 lumens T5H0 Lamp: Up to 825 lumens

Battery pack requires unswitched hot from same branch circuit as AC ballast.

finish

Polyester powder coat applied over a 5-stage pre-treatment.
Standard luminaire housing finished in High Reflectance White.

ORDERING

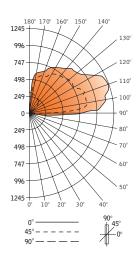
luminaire series Covelight	FCV	FCV
profile		68
6" x 8"	68	
lamping		
40 Watt Biax	BX40	
50 Watt Biax	BX50	
55 Watt Biax	BX55	
One Lamp T8	1T8	
One Lamp T5	1T5	
One Lamp T5H0	1T5H0	
circuit		10
Single Circuit	1C	
voltage		
120 Volt	120	
277 Volt	277	
347 Volt	347	
(Consult factory for availability)		
ballast		
Electronic Instant Start <20% THD (T8 Only)	E	
Electronic Program Start <10% THD	S	
Electronic Dimming Ballast (Consult factory for dimming availability)	D	
(consult factory for diffilling availability)		
mounting		CV
Cove	CV	
factory options		
Emergency Battery Pack	EM	
HLR/GLR Fuse	FU	
Include 3000K Lamp	L830	
Include 3500K Lamp	L835	
Include 4100K Lamp	L841	
finish		HW
High Reflectance White	HW	
luminaire length		
3'	3'	

(Overall luminaire length will exceed

nominal length.)

Focal

adjustable covelight™ 68



Filename: FCV681T8.IES

Catalog #: FCV-68-1T8-1C-120-E-HW-4'

Efficiency: 82% Test #: 8815.0

CANDLEPOWER DISTRIBUTION

Vertical Angle	0°	Hor 22.5°	izontal A 45°	ngle 67.5°	90°	Zonal Lumens
0°	0	0	0	0	0	
5°	0	0	0	0	0	0
15°	0	0	0	0	0	0
25°	0	0	0	0	0	0
35°	0	0	0	0	0	0
45°	0	0	0	0	0	0
55°	17	8	0	0	0	2
65°	72	47	12	0	0	12
75°	243	208	103	1	0	55
85°	530	462	276	91	0	151
90°	903	813	557	201	0	
95°	1126	1030	728	307	8	365
105°	1215	1115	817	342	51	385
115°	1242	1122	741	413	89	381
125°	983	895	706	443	118	300
135°	907	847	688	455	142	255
145°	798	755	630	464	171	198
155°	691	658	590	390	183	130
165°	594	522	469	341	195	72
175°	295	283	254	219	195	20
180°	198	198	198	198	198	

LUMEN SUMMARY

	Zone	Lumens	% Lamp	% Fixt
	90°-120°	1131	39.7	48.7
	90°-130°	1431	50.2	61.6
	90°-150°	1884	66.1	81.0
Total	90°-180°	2105	73.9	90.6
Luminaire	0°-180°	2324	82	100.0

MTR* 90

Project:					
Type:				Qty:	
	_		-		-
Series	Height	Lamp Type / Wattage	Finish	Voltage	Option

Series Height		Lamp Type / Wattage	Finish	Voltage	Options	
Bollard W90 MTR*90 Wall	 2 2' (.6m) 3 3' (.9m) 4 4' (1.2m) or specify custom height Wall Mounting see page 2 	T 13 13w Twin tube fluorescent Q 18 18w Quad fluorescent Q 26 26w Quad fluorescent	WH White BK Black BZ Bronze SV Silver SP Specify RAL#	120 277 347	HS House Side Shield (180) Consult factory for details	

3 1/2" (90mm)

10" (256mm)

Union Made Affiliated with IBEW Local 363

Highland, NY 12528
TEL: (845) 691-7723
FAX: (845) 691-6749
E-mail: seluxus@selux.com
Web Site: www.selux.com/usa
MTR90-0403-01 (ss-V3.1)

PO Box 1060, 5 Lumen Lane

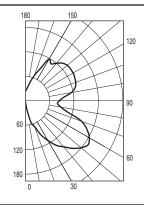
SELUX Corp. © 2002

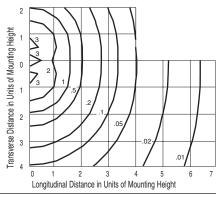
- 1. Fixture Cover Die-cast aluminum cover, with round angled form. Thick-walled aluminum cover is painted white on the interior for maximum luminaire efficiency. Removes by loosening two, vandal-resistant, stainless steel set screws for easy access to lamp chamber.
- 2. Gasketing Continuous gaskets provide weather-proofing, dust, and insect control at shielding base, fixture cover and between MTR rings.
- 3. Shielding Injection-molded acrylic multi-prisms for total reflection (MTR). MTR rings are patterned after the light bending characteristics of a prism. Rings are secured to die-cast aluminum fitter. Additional small reflector is available for asymmetrical light distribution. Consult factory for information.
- 4. Column Extruded, thick-walled aluminum, minimum wall thickness 0.110" (3mm). Column houses cold weather ballast.
- 5. Column Fitter (Not shown) Die-cast aluminum fitter holds ballast assembly and lamp socket. Fastened to column with three, vandal-resistant, stainless steel, countersunk screws. Column fitter removal allows access to ballast assembly.
- **6. Ballast -** (Not shown) Electronic, high power factor, class P, type A sound rating. Specify 120v, 277v, or 347v. Consult factory for more detailed ballast information. Lamp provided by others.

- 7. Lamp (Not shown) For use with compact fluorescent lamps. T13W single end 2 pin base GX23; and Q18w and Q26w single end 4 pin base G24q. Lamp by others.
- 8. Fixture Mount (shown on p.2) Column is mounted to hot-dipped, galvanized steel, direct burial tube, anchored 12" deep for increased rigidity and strength.

Exterior Luminaire Finish SELUX utilizes a high quality
Polyester Powder Coating.
All SELUX luminaires and poles
undergo a five stage intensive
pretreatment process where
product is thoroughly cleaned,
phosphated and sealed. SELUX
powder coated products provide
excellent salt and humidity
resistance as well as ultra violet
resistance for color retention.
All products are tested in accordance with test specifications for
coatings from ASTM and PCI.

Standard exterior colors are White (WH), Black (BK), Bronze (BZ), and Silver (SV). RAL colors (SP) are available, please specify RAL#.#.

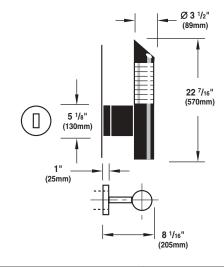

In a continuing effort to offer the best product possible, we reserve the right to change, without notice, specifications or materials that in our opinion will not alter the function of the product. Specification sheets found at www.selux.com/usa are the most recent versions and supercede all other printed or electronic versions.


SETUX

MTR Refractor

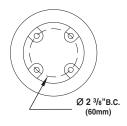
Catalog # B90-3-Q26 ITL Report # 40307

- Innovative multi-prisms for total reflection incorporates light-bending characteristics of a prism. US patent no. 4,669,034.
- Directs light precisely with minimum intensity at critical viewing angles.
- Blends efficiency with visual comfort.
- Maximum candela of 193 at 55° from vertical.

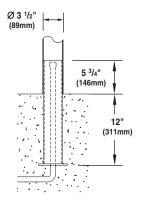


Lamp Prorate Table								
Fluorescent								
Wattage	Wattage Factor							
13	0.50	900						
18	0.69	1250						
26	1.00	1800						

Conversion Chart Values based on 3' (.9m) mounting height									
Mounting Height Multiply									
2.0' (.6m)	2.25								
2.5' (.8m)	1.44								
3.0' (.9m)	1.00								
3.5' (1.1m)	0.73								
4.0' (1.2m)	0.56								

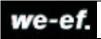

Wall Mount Information

Die cast aluminum wall mount arm with die-cast aluminum canopy. Secured to wall with 1/4" (6mm) threaded fasteners supplied by others.



Wall Arm Mounting Detail

(Conduit and mounting hardware by others.)


Anchorage Information

Concrete footing to be designed and installed by others.

Profile

In a continuing effort to offer the best product possible, we reserve the right to change, without notice, specifications or materials that in our opinion will not alter the function of the product. Specification sheets found at www.selux.com/usa are the most recent versions and supercede all other printed or electronic versions.

ARCHITECTURAL LIGHTING WALL LUMINAIRES/ RECESSED - STG259

Product Specification

615-1231

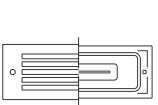
Compact fluorescent source.

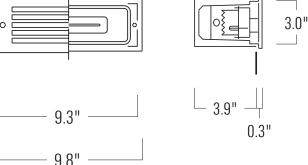
Painted aluminium lens frame.

Shielded light source with five horizontal slots.

Project:

Date:


Fixture Type: WE-EF Cat. #: Voltage: Finish: **Options:**



Product ID. No. Lamp/base Lumen

615-1231

CFQ18W / 1200 G24q-2

Recessed wall luminaire with compact fluorescent lamp. Shielded light source with five horizontal slots.

Materials: Luminaire body and frame constructed of die-cast marine grade aluminum alloy.

PCS

Opal UV-stabilized polycarbonate diffuser (inside textured). Durable high-temperature silicone weatherproof gasket.

PCS coated stainless steel hardware.

Integral electronic CF ballast for 120 or 277 volt – Specify Voltage. **Electrical:**

Compact fluorescent lamp holder: G24q-2 base, 4 pin, CFQ18 watt lamp required (lamp by others).

Provided with ½ " conduit entry at both ends of luminaire body to facilitate thru-wiring. Maximum of four No.

12 AWG conductors (plus ground).

Suitable for old, or new work utilizing a unique mounting system featuring two stainless steel claws for a fast Mounting:

and secure installation. Suitable for mounting within 3 feet of ground, and for all types of construction. including concrete pour installations. Refer to optional rough-in housing for concrete pour installations.

Weight: 2.5 lbs.

Rough-in dimensions: 9.5 "W x 3.25 "H x 4.2 "D.

Standard finish: Black RAL 9004, polyester powder coat with fine texture. Finish:

Optional finishes: White RAL 9016, polyester powder coat with fine texture.

Grey Metallic RAL 9007, polyester powder coat with fine texture.

Consult factory for special RAL color options. Specify finish.

UL , c UL listed for Wet locations. Listing:

ADA Compliant.

International Standards: IP55 dustproof/ jetproof.

Options: Fusing (120V/277V). Specify. 697-8001:

Refer to mounting accessories for optional blockout for concrete pour installations.

Date: 10/15/04

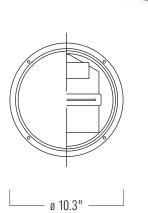
618-4630

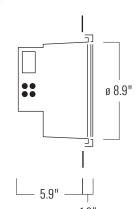
Compact fluorescent source.

Painted aluminium lens frame.

Opal lens.

Project:


Date:


Fixture Type: WE-EF Cat. # : Voltage: Finish: Options:

Product ID. No. Lamp/ base Lumen

618-4630 CFQ18W / G24q-2

1200

Recessed wall luminaire with compact fluorescent lamp.

Materials: Luminaire body and frame constructed of die-cast marine grade aluminum alloy.

PCS

Mounting:

Finish:

Listing:

Options:

Opal UV-stabilized polycarbonate diffuser (inside textured). Durable high-temperature silicone weatherproof gasket.

PCS coated stainless steel hardware.

Electrical: Two ½" conduit entries at bottom of luminaire body to facilitate thru-wiring capability. Maximum of four No.

12 AWG conductors. (plus ground). Suitable for 90 deg. C.

Integral electronic CF ballast for 120 or 277 volt – Specify Voltage.

Compact fluorescent lamp holder: G24q-2 base, 4 pin, CFQ18 watt lamp required (lamp by others). Suitable for mounting within 3 feet of ground and for all types of construction, including concrete pour

installations. Installation of housing using galvanized mounting straps included. Refer to optional rough-in housing for concrete pour installations. Weight: 9.0 lbs.

Rough-in dimensions: 9.25 " diameter x 6.16 " D.

Standard finish: Black RAL 9004, polyester powder coat with fine texture.

Optional finishes: White RAL 9016, polyester powder coat with fine texture.

Grey Metallic RAL 9007, polyester powder coat with fine texture.

Consult factory for special RAL color options. Specify finish.

UL, c UL listed for Wet locations.

ADA Compliant.

International Standards: IP55 dustproof/ jetproof. **697-8001:** Fusing (120V/ 277V). Specify.

618-9325: BTR25. Rough-in housing to sen

BTR25. Rough-in housing to serve as block-out for concrete pour installations. Specify.

Date: 10/15/04

FOCAL POINT

avenue b

FEATURES

Narrow 3" slot T5 fluorescent with opaque satin lens.

Shielding options include corrugated, solid regressed trim, concave louver as well as flush lens.

Universal mounting allows compatibility for multiple grid types.

Drywall installation is available, which allows for both individual or continuous row mount capability.

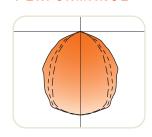
Avenue® B is a great solution for general illumination in a narrow aperture.

shielding options

corrugated regress trim

solid regress

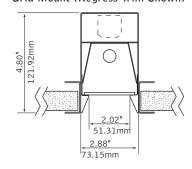
concave louver


flush lens

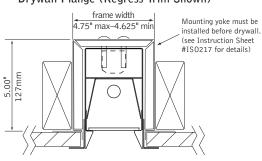
companion luminaire

linear

PERFORMANCE



1-Lamp T5 62% Efficiency 1466 cd @ 0°


See **Photometric** section for additional performance data.

DIMENSIONAL DATA

Grid Mount (Regress Trim Shown)

Drywall Flange (Regress Trim Shown)

fixture type: project name:

DETAILS

grid 2' unit 4' unit 5' unit g1 g2 g3 Luminaires cannot be installed in T-bar ceiling systems over 1.5".

drywall

2' unit

4' unit

5' unit

Drywall flange version provided with mounting yoke.

SPECIFICATIONS

construction

One-piece 20 Ga. steel housing

Corrugated and solid regress trim constructed of 6063-T5 extruded aluminum finished in Matte Satin White.

Grid luminaires include 20 Ga. steel, .5" wide universal flange rail finished in Matte Satin White

Drywall flange option is provided with 20 Ga. steel, .5" wide flange kit and 20 Ga. galvanized steel mounting yoke.

Surface mount 20 Ga. housing is also available.

2' unit weight: 5 lbs. 3' unit weight: 6 lbs. 4' unit weight: 7 lbs. 5' unit weight: 8 lbs.

optic

22 Ga. steel reflectors finished in High Reflectance White powder coat.

Acrylic lens diffuser .118" thick, frosted clear.

Concave parabolic louver: 1"H x 1" frequency fabricated of low iridescent, semi-specular premium grade aluminum.

Louver can be specified with matte white finish.

electrical

Luminaires are individually wired for specified circuits.

Thru-wiring not available.

Electronic ballasts are thermally protected and have a Class "P" rating.

Optional DALI and other dimming ballasts available.

 $\label{lem:consult_factory} \mbox{ Consult factory for dimming specifications and availability.}$

 $\ensuremath{\mathsf{UL}}$ and $\ensuremath{\mathsf{cUL}}$ listed.

emergency

Emergency battery packs provide 90 minutes of illumination.

Initial lumen output for lamp types are as follows:

T5 Lamp: Up to 550 lumens T5H0 Lamps: Up to 825 lumens

Battery pack requires unswitched hot from same branch circuit as AC ballast.

finish

Polyester powder coat applied over a 5-stage pre-treatment.

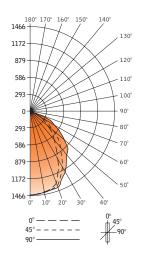
Standard luminaire housing finished in Matte Satin White.

ORDERING

luminaire series Avenue B	FAVB	<u>FAVB</u>
shielding Corrugated Regressed Trim with Lens Solid Regressed Trim with Lens	CR SR	
Flush Lens Concave Parabolic Louver White Concave Parabolic Louver	FL PL PW	
lamping		
One Lamp T5 One Lamp T5H0	1T5 1T5H0	
circuits Single Circuit	1C	<u>1C</u>
voltage		
120 Volt	120	
277 Volt	277	
347 Volt (Consult factory for availability)	347	
ballast		
Electronic Program Start <10% THD	S	
Electronic Dimming Ballast (Consult factory for dimming availability)	D	
mounting		
15/16" Grid	G1	
9/16" Grid	G2	
9/16" Slot Tee	G3	
Drywall Flange	F	
Cut out dimensions: 2': 3.5" x 23.6"		
3': 3.5" x 35.6" 4': 3.5" x 47.6"		
5': 3.5" x 59.6"		
factory options		
Chicago Plenum	CP	
Emergency Circuit	EC	
Emergency Battery Pack (3' & 4' Luminaires Only)	EM	
Seismic Brackets	EQ	
HLR/GLR Fuse	FU	
Include 3000K Lamp	L830	
Include 3500K Lamp	L835	
Include 4100K Lamp	L841	
finish		<u>WH</u>
Matte White Housing	WH	
luminaire length		
2' Nominal Housing	2'	
3' Nominal Housing	3'	
4' Nominal Housing	4'	
5' Nominal Housing (Dimming not available with 5' lamps) (For continuous row mount in drywall ceiling, specify luminaire run length, ie 24')	5'	

Focal

regress with lens avenue® b



Filename: FAVBSR1T5H0.IES

Catalog #: FAVB-SR-1T5H0-1C-120-S-G1-WH-4'

Efficiency: 62% Test #: 12914.0

CANDLEPOWER DISTRIBUTION

0°	Hoi 22.5°	rizontal A 45°	ngle 67.5°	90°	Zonal Lumen
1466	1466	1466	1466	1466	
1457	1457	1456	1456	1456	139
1432	1428	1417	1399	1393	401
1311	1299	1254	1187	1150	575
1102	1073	958	837	793	599
934	866	701	586	553	565
649	578	426	357	335	416
404	328	232	187	174	257
184	133	77	60	58	103
39	21	19	18	17	24
0	0	0	0	0	
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	
	1466 1457 1432 1311 1102 934 404 184 39 0 0 0 0 0 0	0° 22.5° 1466 1466 1457 1457 1432 1428 1311 1299 1102 1073 934 866 649 578 404 328 184 133 39 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0° 22.5° 45° 1466 1466 1466 1457 1456 1432 1417 1311 1299 1254 1102 1073 958 934 866 701 649 578 426 404 328 232 184 133 77 39 21 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1466 1466 1466 1466 1466 1457 1456 1456 1456 1432 1428 1417 1399 1311 1299 1254 1187 1102 1073 958 837 934 866 701 586 649 578 426 357 404 328 232 187 184 133 77 60 39 21 19 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0° 22.5° 45° 67.5° 90° 1466 1466 1466 1466 1466 1466 1466 1456 1456 1456 1456 1456 1437 1393 1313 1329 1254 1187 1150 1102 1073 958 837 793 934 866 701 586 553 649 578 426 357 335 404 328 232 187 174 184 133 77 60 58 39 21 19 18 17 0 <td< td=""></td<>

LUMEN SUMMARY

LUMINANCE DATA (CD/M²)

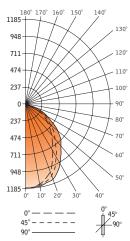
	Zone	Lumens	% Lamp	% Fixt	Vertical Angle	0°	45°	90°
	0°-30°	1115	22.3	36.2	45°	16467	12359	9750
	0°-40°	1714	34.3	55.7	55°	14106	9259	7281
	0°-60°	2695	53.9	87.5	65°	11918	6844	5133
Total	0°-90°	3078	61.6	100.0	75°	8863	3709	2794
Luminaire	0°-180°	3078	62	100.0	85°	5579	2718	2432

CO-EFFICIENTS OF UTILIZATION

Floor							2	0						
Ceiling		80			70		5	0	3	0]	.0	00	
Wall	70 5	0 30	10	70	50	10	50	10	50	10	50	10	00	
RCR 0	73 7	3 73	73	72	72	72	68	68	65	65	63	63	62	∻
1	68 6	6 64	62	67	65	61	62	59	60	57	58	56	54	reflectivity.
2	63 5	9 56	53	62	58	52	56	51	54	50	52	49	48	refle
3	59 5	3 49	46	57	52	45	51	45	49	44	48	43	42	es of
4	54 4	8 43	40	59	47	40	46	39	45	39	43	38	37	valu
5	50 4	3 38	35	49	42	34	41	34	40	34	39	33	32	ıtage
6	46 3	9 34	31	45	39	30	37	30	36	30	36	30	29	percentage values of
7	43 3	5 31	27	42	35	27	34	27	33	27	32	26	25	
8	40 3	2 27	24	39	32	24	31	24	30	23	29	23	22	indicate
9	37 2	9 24	21	36	29	21	28	21	27	21	27	20	19	Numbers
10	34 2	6 22	19	33	26	19	25	18	25	18	24	18	17	Num

flush lens avenue b

Spacing 1.2 Criterion: 1.1



Filename: FAVBFL1T5.IES

Catalog #: FAVB-FL-1T5H0-1C-120-S-G1-WH-4'

Efficiency: 51% Test #: 12915.0

CANDLEPOWER DISTRIBUTION

Spacing	1.2
Criterion:	1.0

Vertical Angle	0°	Hoi 22.5°	rizontal A 45°	ngle 67.5°	90°	Zonal Lumens
0°	1187	1187	1187	1187	1187	
5°	1182	1182	1178	1176	1176	113
15°	1158	1150	1126	1102	1091	319
25°	1053	1030	696	914	891	450
35°	870	835	749	684	660	476
45°	706	660	571	516	498	455
55°	478	444	383	349	338	355
65°	291	269	234	218	213	242
75°	133	124	111	106	105	122
85°	28	29	28	28	28	31
90°	0	0	0	0	0	
95°	0	0	0	0	0	0
105°	0	0	0	0	0	0
115°	0	0	0	0	0	0
125°	0	0	0	0	0	0
135°	0	0	0	0	0	0
145°	0	0	0	0	0	0
155°	0	0	0	0	0	0
165°	0	0	0	0	0	0
175°	0	0	0	0	0	0
180°	0	0	0	0	0	

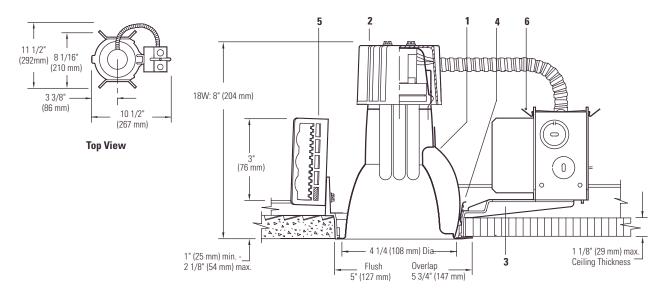
LUMEN SUMMARY

LUMINANCE DATA (CD/M²)

	Zone I	Lumens	Lamp	Fixt	Ar	ıgle	0°	45°	90°
	0°-30°	881	17.6	34.4		45°	12448	10067	8780
	0°-40°	1357	27.1	53.0		55°	10390	8325	7347
	0°-60°	2168	43.4	84.6		65°	8584	6903	6283
Total	0°-90°	2561	51.2	100.0		75°	6406	5347	5058
Luminaire	0°-180°	2561	51	100.0		85°	4005	4005	4005

CO-EFFICIENTS OF UTILIZATION

-		0					
Floor			20				
Ceiling	80	70	50	30	10	00	
Wall	70 50 30 10	70 50 10	50 10	50 10	50 10	00	
RCR 0	61 61 61 61	60 60 60	57 57	54 54	52 52	51	×
1	57 55 53 51	55 53 50	51 49	49 47	48 46	45	ctivii
2	52 49 46 43	51 48 43	46 42	44 41	43 40	39	refle
3	48 44 40 37	47 43 37	41 36	40 36	39 35	34	percentage values of reflectivity.
4	45 39 35 32	44 39 32	37 32	36 31	35 31	30	valu
5	41 35 31 28	40 35 28	33 27	33 27	32 27	26	ntage
6	38 32 28 25	37 31 24	30 24	30 24	29 24	23	Jercel
7	35 29 25 22	34 28 22	28 21	27 21	26 21	20	indicate p
8	33 26 22 19	32 26 19	25 19	24 19	24 19	18	
9	30 23 19 17	29 23 17	23 16	22 16	21 16	15	Numbers
10	28 21 17 15	27 21 15	21 15	20 15	20 15	14	N


Go to www.focalpointlights.com for additional photometric data.

Calculite® Compact Fluorescent Open Wall Washer **8011WW**

Page 1 of 2

4" Aperture Triple Tube Vertical Lamp

Ceiling Cutout: 5 1/16" (129 mm) Dia.

Reflector Trim		Frame-	In Kit		Lamp
8011WW CCLW	Comfort Clear™, White Flange	4118VU	Electronic	120V - 277V	18W Triple Tube
8011WW CCLP	Comfort Clear™, Polished Flange				4-Pin (Amalgam)
8011WW CCL	Comfort Clear™, Molded Trim Ring				
8011WW	Add suffix. See options for other finishes.				

Features

- 1. Downlight/Wall Washer Reflector: 16 ga. Alzak® aluminum. 50° lamp cutoff and lamp image. Provides vertical surface wall wash and downlighting. Comfort Clear™ low iridescence finish. Self-flanged or flangeless with molded white trim ring (field paintable).
- 2. Socket Cup: Die-cast aluminum cup effectively dissipates heat and positions lamp holder. Snaps onto reflector neck to assure consistently correct optical alignment without tools.
- 3. Mounting Frame: Die-cast aluminum for dry or plaster ceilings. Accepts other 4" triple tube reflectors.
- 4. Retaining Springs: Precision-tooled steel friction springs secure reflector to mounting frame for quick, tool-less installation.
- Mounting Brackets: 16 ga. steel. Adjust from inside of fixture. Use 3/4" or 1 1/2" lathing channel, 1/2" EMT, or optional mounting bars.
- 6. Ballast/J-Box: Outboard mounted to reduce heat transfer and maintain lamp efficacy and life. Service from below without tools. Provides vertical surface wall wash and downlighting.

Electrical

Note: For ballast electrical data and latest lamp/ballast compatibility refer to "Ballast" specification sheet for complete electrical data

UL Listed for through branch circuit wiring with max of (8) No. 12 AWG, 90°C supply conductors.

Options and Accessories

optione and / to			
Comfort Clear™ Finish	Other Fi	nishes	
Diffuse	CCD	White	WH
Champagne Bronze	CCZ		
Pewter	CPW		
¹ Specify desired flange			
W White, P Polished			
Blank - Molded Ring			

Options and Accessories (continued)

Add suffix EM* Emergency Add suffix LC Chicago Plenum Emergency Ltg. Kit FA EM3E* FA EM4E* Fuse (Slow Blow) Add suffix F

*See Spec. Sheets: FAEM

Mounting Bars & Accessories; see Specification Sheet MBA. Sloped Ceiling Adapters; see Specification Sheet SCA. IC Frame available; see C4CFL18 Specification Sheet.

Labels

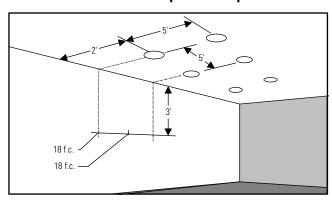
UL Listed for damp locations, I.B.E.W.

Alzak® is a registered trademark of ALCOA.

US Patent Pending.

:	Job Information	Type:
	Job Name:	
:	Cat. No.:	
•	Lamp(s)	
	Lamp(s): Notes:	

Lightolier a Genlyte Thomas Company www.lightolier.com 631 Airport Road, Fall River, MA 02720 • (508) 679-8131 • Fax (508) 674-4710 We reserve the right to change details of design, materials and finish. © 2002 Genlyte Thomas Group LLC (Lightolier Division) • A0902


Calculite® Compact Fluorescent Open Wall Washer **8011WW**

Page 2 of 2

4" Aperture Triple Tube Vertical Lamp

Lighting Data

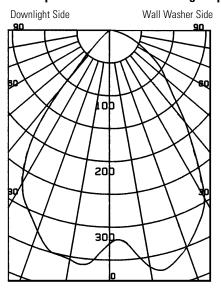
Footcandles On Wall: Multiple 18W Triple Tube Units

Example: With multiple clear reflector units located 2' from wall and spaced 2' on center (matching downlights 5' on center), the illumination on the wall 3' down from ceiling will be 14 f.c. beneath units and 18 f.c. between units.

Footcandle values are averaged and rounded off and are based on a minimum

2' From Wall-2' On Center

		l◀	 2-		
	1	14	12	14	
et	2	17	16	17	
Distance From Ceiling in Feet	3	18	18	18	
ng i	4	16	16	16	
Ceilli	5	12	12	12	
mo	6	10	10	10	
ie Fr	7	7	7	7	
tanc	8	6	6	6	
Dis	9	4	4	4	


2' From Wall-3' On Center

		H	 3-	 ▶I	
	1	11	6	11	
et	2	14	9	14	
Fe	3	12	12	12	
ng ii	4	10	11	10	
Seilli	5	8	8	8	
mo	6	7	7	7	
e Fr	7	5	5	5	
Distance From Ceiling in Feet	8	4	4	4	
Dis	9	3	3	3	

2' From Wall-4' On Center

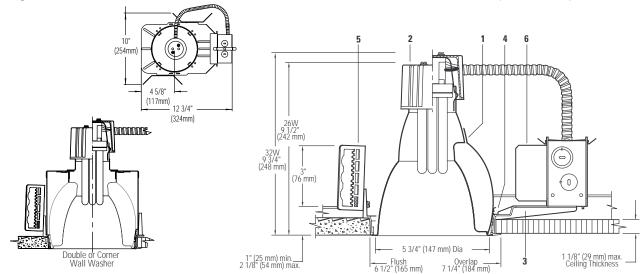
		◀	—4—	→ I	
	1	11	3	11	
Ħ	2	13	5	13	
Fe	3	11	7	11	
ng i	4	8	8	8	
Seilli	5	6	6	6	
Distance From Ceiling in Feet	6	5	5	5	
e Fr	7	4	4	4	
tanc	8	3	3	3	
Dis	9	3	3	3	

Candlepower Distribution Downlight Spacing Ratio 1.3

Coefficients of Utilization

		80			70			50			30			10		0_
						W	ALL RE	FLEC	CTAN	CE						
		50 30	10	50	30	10	50	30	10	50	30	10	50	30	10	0
	1	.46 .45	.44	.45	.44	.43	.43	.43	.42	.42	.41	.41	.40	.40	.39	.39
0	2	.43 .41	.39	.42	.40	.39	.41	.39	.38	.39	.38	.37	.38	.37	.37	.36
Ħ	3	.40 .37	.36	.39	.37	.36	.38	.36	.35	.37	.36	.34	.36	.35	.34	.33
~ ~	4	.37 .35	.33	.36	.34	.33	.36	.34	.32	.35	.33	.32	.34	.33	.31	.31
CAVITY RATIO	5	.34 .32	.30	.34	.32	.30	.33	.31	.30	.32	.31	.29	.32	.30	.29	.28
CA	6	.32 .30	.28	.32	.29	.28	.31	.29	.27	.31	.29	.27	.30	.28	.27	.26
R00M (7	.30 .27	.26	.30	.27	.25	.29	.27	.25	.28	.26	.25	.28	.26	.25	.24
8	8	.28 .25	.23	.27	.25	.23	.27	.25	.23	.27	.25	.23	.26	.24	.23	.22
<u>~</u>	9	.26 .23	.22	.26	.23	.22	.25	.23	.21	.25	.23	.21	.24	.23	.21	.21
	10	.24 .22	.20	.24	.22	.20	.24	.21	.20	.23	.21	.20	.23	.21	.20	.19

% EFFECTIVE CEILING CAVITY REFLECTANCE


20% FLOOR CAVITY REFLECTANCE

Job Information Type:

Lightolier a Genlyte Thomas Company www.lightolier.com 631 Airport Road, Fall River, MA 02720 • (508) 679-8131 • Fax (508) 674-4710 We reserve the right to change details of design, materials and finish. © 2002 Genlyte Thomas Group LLC (Lightolier Division) • A0902

Page 1 of 2

6" Aperture Triple Tube Vertical Lamp

Ceiling Cutout:	6	9/16"	(167mm) Dia.
-----------------	---	-------	--------	--------

Reflector Trim		Frame-In	Lamp		
Single Wall Washer	Double Wall Washer	Corner Wall Washer	S6132BU S6132BCU	Electronic, 120V - 277V Universal Dimming, 120V - 277V	26 or 32W Triple Tube 4-Pin (Amalgam)
8021WW CCLW Comfort Clear™, White Flange	8021DW CCLW	8021CW CCLW	S6132BUM7	Advance Mark7, 120V - 277V	
8021WW CCLP Comfort Clear™, Polished Flange	8021DW CCLP	8021CW CCLP			
8021WW CCL Comfort Clear", Molded Trim Ring 8021WW Add suffix. See options for other finisi	8021DW CCL hes.	8021CW CCL			

Features

- 1. Downlight/Wall Washer Reflector: 16 ga. Alzak® aluminum. 50° lamp cutoff and lamp image. Provides vertical surface wall wash and downlighting. Comfort Clear™ low iridescence finish. Self-flanged or flangeless with molded white trim ring (field paintable).
- 2. Socket Cup: Effectively dissipates heat and positions lamp holder. Snaps onto reflector neck to assure consistently correct optical alignment without tools.
- 3. Mounting Frame: Galvanized steel for dry or plaster ceilings. Accepts other 6" Triple Tube reflectors (see S6132BU Spec Sheet).
- 4. Retaining Springs: Precision-tooled steel friction springs secure reflector to mounting frame for quick, tool-less installation.
- 5. Mounting Brackets: 16 ga. steel. Adjust from inside of fixture. Use 3/4" or 1 1/2" lathing channel, 1/2" EMT, or optional mounting bars.
- 6. Ballast/J-Box: Electronic 120V-277V. UL listed for through branch circuit wiring with max of (8) No. 12AWG, 90°c supply conductors. Outboard mounted to reduce heat transfer and maintain lamp efficacy and life. Service from below without tools. Provides vertical surface wall wash and downlighting.

Electrical

Note: For ballast electrical data and latest lamp/ballast compatibility refer to "Ballast" specification sheet for complete electrical data.

Options and Accessories

Comfort Clear™ Finis	shes¹	Other Finishes	
Diffuse	CCD	White	WH
Champagne Bronze	CCZ		
Pewter	CPW		

¹Specify desired flange. W White, P Polished, Blank - Molded Ring

Other Dimming:

S6132BJ1MX Advance MarkX, 120V S6132BJ1LD3 Lutron Hi-lume®, 120V S6132BJ2MX Advance MarkX, 227V S6132BJ2LD3 Lutron Hi-lume®, 227V

Options and Accessories (continued)

Emergency Add suffix EM* Chicago Plenum Use 6132BULC Fuse (Slow Blow) Add Suffix F Emergency Ltg. Kit FA EM3E* FA EM4E*

*See Spec. Sheet: FAEM

Mounting Bars & Accessories; see Specification Sheet MBA. Sloped Ceiling Adapters; see Specification Sheet SCA. IC Frame available; see C6CFL32 specification sheet.

Labels

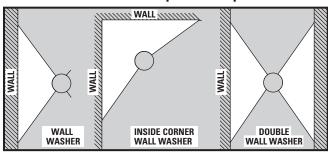
UL Listed for damp locations.

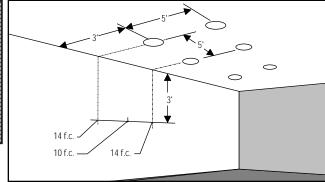
Alzak® is a registered trademark of ALCOA.

US Patent Pending.

Туре:

Lightolier a Genlyte Thomas Company www.lightolier.com 631 Airport Road, Fall River, MA 02720 • (508) 679-8131 • Fax (508) 674-4710 We reserve the right to change details of design, materials and finish. © 2002 Genlyte Thomas Group LLC (Lightolier Division) • C0104


Calculite® Compact Fluorescent Open Wall Washer **8021WW**


Page 2 of 2

6" Aperture Triple Tube Vertical Lamp

Lighting Data

Footcandles On Wall: Multiple 32W Triple Tube Units

2' From Wall-2' On Center

		◀	2_	→ I	
	1	35	34	35	
et	2	44	44	44	
n Fe	3	47	41	47	
Distance From Ceiling in Feet	4	38	35	38	
Ceilli	5	29	27	29	
E	6	22	22	22	
ë Fr	7	17	17	17	
tanc	8	13	13	13	
Dis	9	11	11	11	

2' From Wall-3' On Center

			_3		
	1	28	18	28	
	2	32	27	32	
Distance From Ceiling in Feet	3	30	30	30	
ig ir	4	26	24	26	
<u>≡</u>	5	19	20	19	
m C	6	15	15	15	
e Fro	7	12	12	12	
anc	8	10	10	10	
Dist	9	8	8	8	

2' From Wall-4' On Center

			—4—		
	1	26	18	26	
_	2	29	16	29	
Fee	3	25	22	25	
g in	4	20	19	20	
eilin	5	15	15	15	
шC	6	11	12	11	
Fro	7	9	10	9	
Distance From Ceiling in Feet	8	7	8	7	
Dist	9	6	7	6	
_					

Example: With multiple clear reflector units located 3' from wall and spaced 5' on center (matching downlights 5' on center), the illumination on the wall 3' down from ceiling will be 14 f.c. beneath units and 10 f.c. between

Footcandle values are averaged and rounded off and are based on a minimum of five units. Conversion Factor 26WTTT: (Clear), f.c.

x 0.8.

3' From Wall-3' On Center

			—3—	→	
		j			
	1	11	11	11	
₽	2	18	18	18	
٦Fe	3	20	20	20	
ng i	4	22	19	21	
Seiii	5	20	18	20	
mc	6	17	16	17	
e 된	7	15	13	14	
Distance From Ceiling in Feet	8	12	11	12	
Dis	9	11	10	10	

3' From Wall-4' On Center

			—4—		
	1	9	8	9	
eţ	2	14	13	14	
n Fe	3	16	15	16	
ing i	4	16	16	16	
Ceill	5	15	14	15	
mo.	6	13	12	13	
Se Fr	7	11	11	11	
Distance From Ceiling in Feet	8	10	9	10	
Dis	9	8	8	8	

3' From Wall-5' On Center

			0		
	1	9	5	9	
eţ	2	13	9	13	
n Fe	3	14	10	14	
ng i	4	13	13	13	
Ceilli	5	12	12	12	
mo.	6	11	10	11	
e Fr	7	9	9	9	
Distance From Ceiling in Feet	8	8	8	8	
Dis	9	7	7	7	

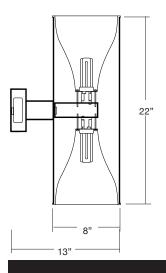
3' From Wall-6' On Center

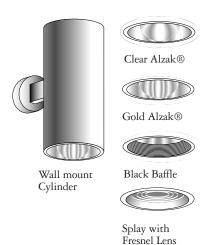
		1	—o—	_	
	1	9	3	9	
et	2	13	6	13	
n Fe	3	13	7	13	
ng i	4	13	9	13	
Ceilli	5	11	10	11	
ШО	6	9	9	9	
Distance From Ceiling in Feet	7	8	7	8	
tanc	8	7	7	7	
Dis	9	5	6	5	

Candlepower Distribution Downlight Spacing Ratio 1.1

canarchow	ים שואנווטונוטו
Downlight	Wall Washer
Side	Side
	000
4	
1	

% Effective Ceiling Cavity Reflect	ance
80 70 50 30 10	0


			80			70			50			30			10		0
								Wal	Refle	ctance	!						
_		50	30	10	50	30	10	50	30	10	50	30	10	50	30	10	0
	1	.58	.56	.55	.57	.55	.54	.54	.53	.53	.52	.52	.51	.51	.50	.49	.49
0	2	.53	.51	.49	.53	.50	.49	.51	.49	.48	.49	.48	.47	.48	.47	.46	.45
Cavity Ratio	3	.49	.47	.45	.49	.46	.44	.47	.45	.44	.46	.44	.43	.45	.43	.42	.41
y R	4	.46	.43	.41	.46	.43	.40	.44	.42	.40	.43	.41	.40	.42	.41	.39	.38
¥.	5	.43	.40	.37	.42	.39	.37	.41	.39	.37	.40	.38	.36	.40	.38	.36	.35
ತ್ರ	6	.40	.37	.34	.40	.36	.34	.39	.36	.34	.38	.36	.34	.37	.35	.33.	.33
Room	7	.37	.34	.31	.37	.34	.31	.36	.33	.31	.35	.33	.31	.35	.32	.31	.30
2	8	.34	.31	.29	.34	.31	.29	.34	.31	.29	.33	.30	.28	.32	.30	.28	.28
	9	.32	.29	.26	.32	.29	.26	.31	.28	.26	.31	.28	.26	.30	.28	.26	.25
	10	.30	.27	.24	.30	.27	.24	.29	.26	.24	.29	.26	.24	.28	.26	.24	.23
	20%	% Floo	r Cavit	ty Refl	ectano	e											


Job Information

Type:

Lightolier a Genlyte Thomas Company www.lightolier.com 631 Airport Road, Fall River, MA 02720 • (508) 679-8131 • Fax (508) 674-4710 We reserve the right to change details of design, materials and finish. © 2002 Genlyte Thomas Group LLC (Lightolier Division) • C0104

8" CYLINDER VERTICAL LAMP UP/DOWNLIGHT

SPECIFICATION INFORMATION

CYLINDER HOUSING

Wall mounted cylinder is constructed of seamless extruded aluminum with a powder coat finish. Fixture mounts to standard juction box.

REFLECTOR

Reflector is available in thirty degree cutoff **.30**. Finishes are Clear **A** or Gold **G** Alzak for anodized, specular, durable and anti-iridescent reflectors.

TRIM OPTIONS

B black baffle

G gold Alzak

SP splay fesnel lens

BALLAST

Electronic enclosed F-can, class P, HPF is supplied standard in 120V or 277V. Ballasts use 4 pin lamps and provide rapid start, .99 power factor with THD<10%.

ELECTRICAL

Ballast mounted in canopy for easy access. U.L. listed for use in damp locations. For wet locations fixture is provided with convex lens; specify **WL**.

ACCESSORIES

B black baffle

R retro-fit for existing cylinder (consult factory)

WL for wet location

FINISHES

BM brushed metal

BZ bronze

K black

W white

ORDERING INFORMATION

LAMP

2-18 18 watt quad tube

2-26 26 watt quad tube

2-32 32 watt triple tube

2-42 42 watt triple tube

120V ELECT.

CUV8218.1E 18watt quad tube

CUV8226.1E 26watt quad tube

CUV8232.1E 32watt triple tube **CUV8242.1E** 42watt triple tube

277V ELECT.

NOTES:

CUV8218.2E 18watt quad tube

CUV8226.2E 26watt quad tube

CUV8232.2E 32watt triple tube

CUV8242.2E 42watt triple tube

SUBMITTAL INFORMATION

TYPE: F10 PROJECT: Gates Hall

DESCRIPTION: CUV8218.2E

BURBANK,

CALIFORNIA,

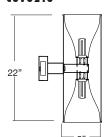
91505

WWW.

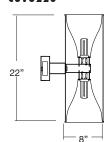
DELRAY

LIGHTING.

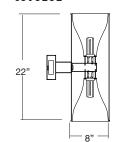
COM

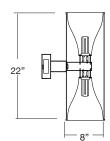

CLEAR ALZAK 30°

CLEAR ALZAK 30°

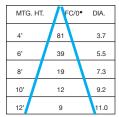

CLEAR ALZAK 30°

CLEAR ALZAK 30°

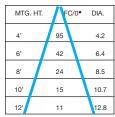

CUV8218


CUV8226

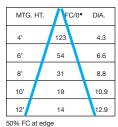
CUV8232

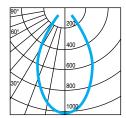


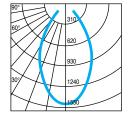
CUV8242

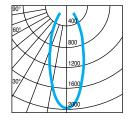


CONE OF LIGHT


MTG. HT.	FC	/0• DIA.					
4'	65	3.7					
6'	29	5.5					
8'	17	7.3					
10'	11	9.2					
12'	8	11.0					
50% FC at edge							


50% FC at edge


50% FC at edge



CP DISTRIBUTION

COEFFICIENTS OF UTILIZATION

% CEI	LING 80	(20%	FLOOR)
% WA	LL 70	50	30
0	75	75	75
1	72	71	70
2	70	67	65
3	67	64	61
4	64	60	58
5	62	57	54
6	59	55	52
7	57	52	49
8	54	49	46
9	52	47	43
10	50	44	41

% CEI	LING 80	(20%	FLOOR)
% W.	LL 70	50	30
0	71	71	71
1	69	67	66
2	66	63	61
3	63	60	57
4	61	57	54
5	58	53	50
6	55	51	48
7	53	48	45
8	50	45	42
9	48	43	39
10	46	40	37

% CEI	LING 80	(20%	FLOOR)
% W.	LL 70	50	30
0	84	84	84
1	80	78	77
2	77	74	71
3	73	69	66
4	70	65	62
5	67	61	57
6	63	58	54
7	60	54	50
8	57	50	46
9	54	47	43
10	51	44	40

% CEI	LING 80	(20%	FLOOR)
% WA	LL 70	50	30
0	79	79	79
1	76	74	73
2	73	70	67
3	69	66	63
4	66	62	58
5	63	58	55
6	60	55	51
7	57	51	48
8	54	48	44
9	51	45	41
10	49	42	39

NOTES

CUV8218

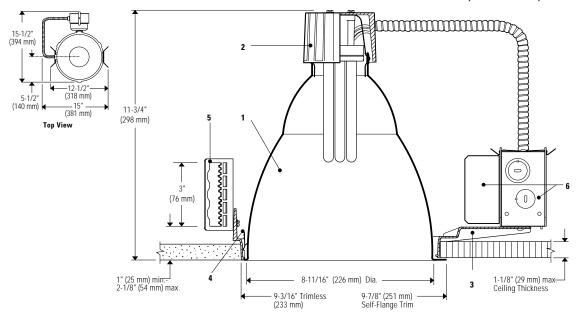
1-18 watt quad tube G24q-2 electronic socket Total lumens-1250 Spacing criteria-.9 Gold Alzak x.90

CUV8226

1-26 watt quad tube G24q-3 electronic socket Total lumens-1800 Spacing criteria-.9 Gold Alzak x.90

CUV8232

1-32 watt triple tube G24q-3 electronic socket Total lumens-2400 Spacing criteria-.9 Gold Alzak x.90


CUV8242

1-42 watt triple tube G24q-4 electronic socket Total lumens-3200 Spacing criteria-.9 Gold Alzak x.90

Calculite® Compact Fluorescent Open Downlight **8023**

Page 1 of 2

8 3/4" Aperture Triple Tube Vertical Lamp

Ceiling Cutout: 9 1/4" (235 mm) Dia.

Reflector Trim		Frame-In	Kit		Lamp
8023 CCLW 8023 CCLP 8023 CCL 8023	Comfort Clear [™] . White Flange Comfort Clear [™] , Polished Flange Comfort Clear [™] , Molded Trim Ring Add suffix. See options for other finishes.			42W Triple Tube 4-Pin (Amalgam)	
	, ad samm ess spanie is early innoise.		er Frame-In Kit	120V - 277V	Lamp Same as 8142VU

Features

- 1. Reflector: 16 ga. Alzak® aluminum, 50° visual cutoff to lamp and lamp image, medium distribution. Comfort Clear™ low iridescence finish. Selfflanged or flangeless with molded white trim ring (field paintable).
- 2. Socket Cup: Die-cast aluminum cup effectively dissipates heat and positions lamp holder. Snaps onto reflector neck to assure consistently correct optical alignment without tools.
- 3. Mounting Frame: Die-cast aluminum for dry or plaster ceilings.
- Retaining Springs: Precision-tooled steel friction springs secure reflector to mounting frame for quick, tool-less installation.
- 5. Mounting Brackets: 16 ga. steel. Adjust from inside of fixture. Use 3/4" or 1 1/2" lathing channel, 1/2" EMT, or optional mounting bars.
- 6. Ballast/J-Box: Outboard mounted to reduce heat transfer and maintain lamp efficacy and life. Service from below without tools.

Electrical

Note: For ballast electrical data and latest lamp/ballast compatibility refer to "Ballast" specification sheet for complete electrical data.

8142VU, 8142VCU: UL listed for through branch circuit wiring with max of (8) No. 12 AWG, 90° C supply conductors.

8142VURM: UL listed for No. 12 AWG, 90° C supply conductors.

Options and Accessories

Comfort Clear™ Finishes¹

Diffuse CCD Champagne Bronze CCZ WH White

¹Specify desired flange W White, P Polished Blank - Molded Ring

Options and Accessories (continued)

Add suffix EM* Emergency Chicago Plenum Add suffix **LC** Emergency Ltg. Kit FA EM3E* FA EM4E* Fuse (Slow Blow) Add suffix F

*See Spec. Sheets: FAEM

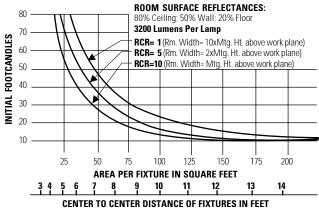
Mounting Bars & Accessories; see Specification Sheet MBA. Sloped Ceiling Adapters; see Specification Sheet SCA.

Labels

UL listed for damp locations.

Alzak® is a registered trademark of ALCOA

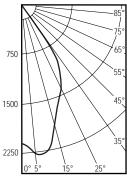
US Patent Pending


Job Information	Туре:
Job Name:	
Cat. No.:	
Lamp(s):	
Notes:	

Lightolier a Genlyte company www.lightolier.com 631 Airport Road, Fall River, MA 02720 • (508) 679-8131 • Fax (508) 674-4710 We reserve the right to change details of design, materials and finish. © 2006 Genlyte Group LLC • C1006

Page 2 of 2

8 3/4" Aperture Triple Tube Vertical Lamp


Quick Calculator

This quick calculator chart determines the number and spacing of 1 lt. 42W PL-T units with clear reflector, for any level of illumination.

Spacing Ratio = 0.9

CERTIFIED TEST REPORT NO. 0701FR COMPUTED BY LSI PROGRAM **TEST LITE** CALCULITE 8 3/4" DIA. APERTURE RECESSED COMPACT FLUORESCENT OPEN DOWNLIGHT COMFORT CLEAR™ REFLECTOR 1-42W PLT TRIPLE TUBE LAMP. LUMEN RATING = 3200 LMS.

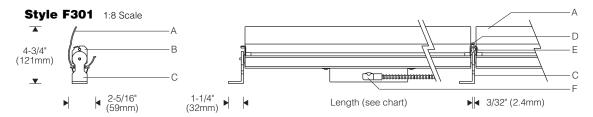
FFFICIENCY=63.1%

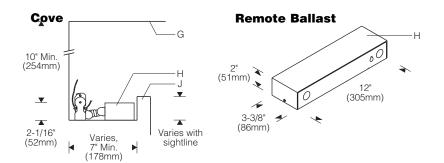
DATE: MAR. 31, 99

TESTED ACCORDING TO IES PROCEDURES. TEST DISTANCE EXCEEDS FIVE TIMES THE GREATEST LUMINOUS OPENING OF LUMINAIRE.

	EPOWER SU MEAN CP L	
0 5	1982	100
ວ 10	2098 2051	196
15	1817	510
20 25	1507 1323	610
30	1124	
35 40	830 470	511
45	211	180
50 55	36 6	11
60	3	""
65 70	1 0	1
70 75	0	0
80	0	0
85 90	0 0	U

ZONAL	LUMENS	AND PER	RCENTAGE
ZONE	LUMENS	%LAMP	%LUMINA
0-30	1316	41.14	65.17
0-40	1827	57.11	90.47
0-60	2018	63.08	99.93
0-90	2019	63.12	100.00
40-90	192	6.02	9.53
60-90	1	.04	.07
90-180	0	.00	.00
0-180	2019	63.12	100.00


Coefficients Of Utilization


EFFECTIVE FLOOR CAVITY REFLECTANCE = .20

	80	70	50	30	10	
		WA	ALL REFLECTA	ANCE		
	50 30 10	50 30 10	50 30 10	50 30 10	50 30 10	0
1	.71 .69 .68	.69 .68 .67	.67 .66 .65	.64 .64 .63	.62 .62 .61	.60
_ 2	.67 .64 .62	.65 .63 .62	.63 .62 .60	.62 .63 .59	.60 .59 .58	.57
ROOM CAVITY RATIO	.63 .60 .58	.62 .59 .57	.60 .58 .56	.59 .57 .56	.57 .56 .55	.54
≥ 4	.59 .56 .54	.59 .56 .54	.57 .55 .53	.56 .54 .52	.55 .53 .52	.51
≧ 5	.56 .53 .50	.55 .52 .50	.54 .52 .50	.53 .51 .49	.52 .50 .49	.48
₹ 6	.46 .43 .42	.52 .49 .47	.51 .49 .47	.51 .48 .46	.50 .48 .46	.45
S 7	.44 .41 .39	.49 .46 .44	.49 .46 .44	.48 .45 .43	.47 .45 .43	.42
<u> 8</u>	.41 .39 .37	.46 .43 .41	.46 .43 .41	.45 .43 .41	.45 .42 .40	.40
≈ 9	.39 .36 .35	.44 .41 .38	.43 .40 .38	.43 .40 .38	.42 .40 .38	.37
10	.35 .32 .31	.41 .38 .36	.41 .38 .36	.40 .37 .35	.40 .37 .35	.35

Job Information

Lightolier a Genlyte company www.lightolier.com 631 Airport Road, Fall River, MA 02720 • (508) 679-8131 • Fax (508) 674-4710 We reserve the right to change details of design, materials and finish. © 2006 Genlyte Group LLC • C1006

Luminaire
Length
24-1/2" (622mm)
36-1/2" (927mm)
48-1/2" (1231mm)
60-3/8" (1533mm)
73" (1854mm)
97" (2464mm)
120-3/4" (3067mm)

Note: Finish interior of cove matte white for best results.

Specifications

- A Specular extruded aluminum reflector
- **B** Stainless steel lampholder/support brackets
- C Aluminum L-shaped mounting brackets
- **D** Rotation locking screw
- E Joiner/alignment screw
- F Flexible metal conduit with 90° connector
- **G** Ceiling
- H Remote ballast in aluminum enclosure

J Architectural cove (for design guidance, see Applications Section)

Features

- Compact and flexible effective indirect cove lighting for malls, offices, lobbies, conference rooms and corridors
- Adjustable all reflectors in a row join and aim together; rotation locking screws secure position
- Create rows of any length modules from 2' to 10'
- Durable all parts are aluminum or stainless steel

Finish:

Reflector - extruded high purity aluminum with clear anodized specular finish. Mounting brackets and ballast enclosure - mill finish aluminum. All luminaire hardware - stainless steel.

Mounting

L-shaped mounting brackets can be base or wall mounted. Two brackets are supplied for each reflector. Reflectors can be mounted individually or joined together to form a continuous row. When mounted in a row, one bracket supports adjacent reflectors for minimum spacing.

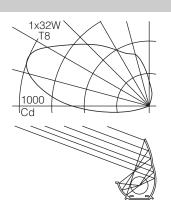
Reflector aiming is adjustable and is fixed in position by rotation locking screws at each mounting bracket. When mounted in a continuous row, joiner screws lock reflectors together allowing all in the row to be aimed together.

Standard:

UL listed or CSA certified for damp locations. (Style 151 smooth painted model with gasketed lens recommended for damp location use; see Outdoor Section.)

Electrical:

Use 90°C wire for supply connections. 5' (1.5m) wire leads exit center of reflector. 90° connector and 4' (1.2m) of flexible metal conduit are provided. Connector can be reversed in field from front of reflector to back.


Remote electronic HPF thermally protected class P ballast. Aluminum ballast enclosure includes four 7/8" diameter entries and a knockout for an accessory fuse. Maximum wire length between electronic ballast and fixture is 12' for two-lamp reflectors and 15' for one-lamp reflectors. Magnetic ballast is available for remote distances up to 55'.

Optional electronic dimming ballast dims to 5% of full light output. **Maximum wire length between dimming ballast and fixture is 1' for two-lamp reflectors and 4' for 1-lamp reflectors.** Compatible dimmer switch is required (by others). Consult local sales representative for specifications.

For complete ballast specifications, see Accessories Section.

Performance

Two parabolic reflector sections drive light across the ceiling from one edge. An elliptical section shields the lamp from normal viewing angles and redirects its light to a parabola. Glare is minimized and asymmetry of the beam is maximized resulting in high beam efficiency and superior surface uniformity.

For complete photometrics, visit www.elliptipar.com

C

To form a Catalog Number

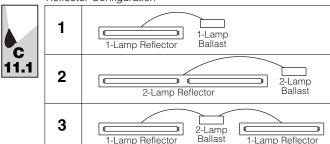
1 Source

F = Linear fluorescent

2 Style

301 = Small concealed, remote ballast

3 Lamp


Note: To order by overall row length, enter **ROW CODE** in place of Lamp Code below (see Row Charts on page C-11.2). Row Code specifies a row complete with all necessary reflectors, brackets and remote ballasts

A ___ = Lamp Code (to specify individual units)
Lamp Wattage (see chart below)

Reflector Configuration, specify 1, 2 or 3
(see chart below)

Example: **A232** = two 32W T8 lamps in nominal 8' reflector; one 2-lamp ballast

Reflector Configuration

Lamp Wattage	Lamp Length	Lamp Number
T8 Fluorescent	1	D.
17	2'	F17T8
25	3'	F25T8
32	4'	F32T8
40	5'	F40T8

For complete lamp and ballast information, see Accessories Section. T8 lamps by others.

Project:

4 Mounting

S = L-shaped brackets for wall or base mounting

5 Finish

00 = Bright anodized reflector; mill finish brackets and ballast enclosure

6 Voltage/Ballast

3 = 347V (Canada)

* Dimming available for 3' F25T8 and 4' F32T8 (lamp codes A125, A225, A132 and A232). For other T8 lamp lengths, consult sales representative. Dimming not available for Reflector Configuration 3.

7 Option (see Accessories Section for specifications)

00 = No options

0E = Remote emergency battery pack. Consult factory if dimming is also required.

0Y = Modified to comply with New York City code

XX = For modification not listed, include detailed description. Consult factory prior to specification.

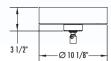
8 Standard

0 = UL, Underwriters Laboratories

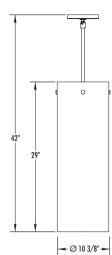
J = CSA. Canadian Standards Association

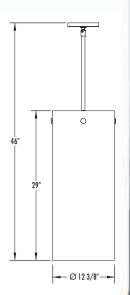
Example

F301 - A225 - S - 00 - 1 - 000


Small concealed fluorescent unit consisting of one nominal 6' reflector for use with two 25W T8 lamps. Remote 120V electronic 2-lamp ballast. L-shaped mounting brackets. UL.

Type:


Accessories


Order separately. See Accessories Section for specifications.

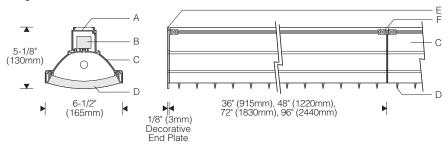
IMB (Surface Mount) canopy detail

SUBMITTAL SPECIFICATIONS:

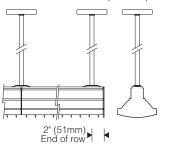
Ø 8 3/8"

5400 -	-		-	-	-	-
CATALOG	LAMPII	NG VOLIA	GE LENS	FINISH	BALLAST	SPECIAL
NUMBER			OPTION	l		

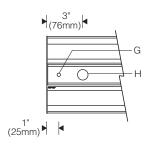
PRODUCT SPECIFICATIONS:

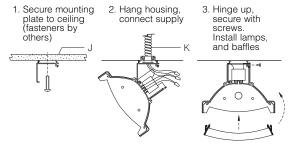

Catalog#:	5400-8, 540	5400-8, 5400-10, 5400-12			
Lamping:	5400-8*	F - F/H75- F/MH70-	(2) FT39W/2G11 (2) FT39W/2G11 and (1) 75W Par 38 Halogen Downlight (2) FT39W/2G11 and (1) 70W Par 38 Metal Halide Downlight		
	5400-10	F - F/H100- F/MH100-	(4) FT40W/2G11 (4) FT40W/2G11 and (1) 100W Par 38 Halogen Downlight (4) FT40W/2G11 and (1) 100W Par 38 Metal Halide Downlight		
	5400-12	F - F/H250- F/MH100-	(4) FTSOW/2G11 (4) FTSOW/2G11 and (1) 2SOW Par 38 Halogen Downlight (4) FTSOW/2G11 and (1) 10OW Par 38 Metal Halide Downlight		
Voltage:		120V or 277V	(when using Halogen Downlight 120V only)		
	page 13 for an	OA- FAH4- FAH5- FAH6- FAH7-	Extruded Opal Acrylic — Etched (Shown) White Vein Hand Painted Faux Alabaster Antique (Beige) Hand Painted Faux Alabaster Gray Vein Hand Painted Faux Alabaster Beige Vein Hand Painted Faux Alabaster		
Finishes:	Standard	PB- PN- SGW-	Polished Brass (Shown) Polished Nickel Semi Gloss White		
	Custom	CPF- CMF-	Custom Painted Finish (Consult Factory) Custom Metal Finish (Consult Factory)		
Ballast:	Metal Halide	IMB- RMB-	Integral Electronic (See Surface Mount Canopy Detail) Remote Mount Magnetic		
	Fluorescent**	DIM-	Dimming (Lutron ECO 10)		
Fluoresce	ent/Metal Halide**	DIM/IMB- DIM/RMB-	Dimming (Lutron ECO 10) / Integral Electronic (See Surface Mount Canopy Detail) Dimming (Lutron ECO 10) / Remote Mount Electronic		
Special:		STD- MOD-	Standard Modified Standard		
Weight:		F- F/H- F/MH-	8- 10 lbs. 10- 15 lbs. 12- 25 lbs. 8- 12 lbs. 10- 18 lbs. 12- 28 lbs. 8- 20 lbs. 10- 25 lbs. 12- 35 lbs.		

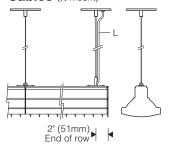
Lutron ECO-10 ballast's offer 100% to 10% dimming. ECO-10 ballast's are fully compatible with Lutrons complete line of 3-wire fluorescent controls.



5250 / CISCO COMPLIMENTARY WALL BRACKET - SEE PAGE 14 FOR BRACKET SPECIFICATIONS


Style 3030 1:8 Scale


Pendant Stems (X mount)


Top View (S mount)

Installation (S mount)

Cables (x mount)

Specifications

- **A** Extruded aluminum mounting plate
- **B** Electronic ballast
- C Specular extruded aluminum reflector housing
- Snap-in semi-specular parabolic cross-baffle, blades 1-1/2" o.c., 25° shielding
- E Aluminum decorative end plate (3 profiles order separately)
- F Aluminum joiner/ reveal plates
- **G** Mounting holes, 9/32" (7mm) dia. (**S** mount)
- **H** Knockout, (2) 7/8" (22mm) dia. (**S** mount)
- J Structure, fasteners (by others)
- K Conduit, connector (by others)
- L 18/3 cord with cable clips (cable mount)

Finish:

Painted surfaces - 6 stage pretreatment and electrostatically applied thermoset powder coat for stable, long lasting and corrosion resistant finish.

Reflector - extruded high purity aluminum with clear anodized specular finish. All luminaire hardware - stainless steel.

Cross-baffle - injection molded high-impact polycarbonate with metalized semi-specular finish.

Mounting:

S mount - mounting plate fastens flush to ceiling. Unit hinges on plate for hands-free access to wiring.

X mount - stems, cables ordered separately

Pendant stem - 11/16" O.D. aluminum, internally threaded. 5" dia. aluminum canopy.

Cable - 1/16" dia. 7x7 aircraft cable, field adjustable length. Crossbar with 1/4-20 stud and 5" dia. canopy.

When mounted in rows, clips are provided to align and space the mounting plates.

For bridge mount (shelf supported), consult factory.

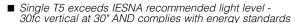
Electrical:

Use 90°C wire for supply connections and through wire.

S mount - 7/8" (22mm) dia. knockouts at ends of mounting plate for conduit feed (by others).

X mount - electrical feed hanger mounts over recessed outlet box (by others) and **must be located at end of row**.

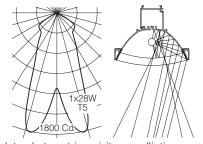
Housing hinges down for access to ballast and wiring. Optional #14 AWG prewired modular through wiring with quick connectors.


Integral electronic HPF thermally protected class P ballast with end-of-life protection.

Optional integral emergency battery operates one lamp. Separate unswitched supply is required.

Standard:

UL listed or CSA certified.

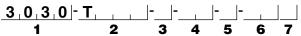

Features

- Precise extruded reflector drives light to the bottom shelf maximizes visibility of books and shelf utilization
- Parabolic cross-baffle 25° lengthwise shielding
- Electronic ballast programmed start for long life

Performance

Multiple reflector segments drive light to the lowest shelves. Unique cross-baffle redirects a portion of the lamp energy that otherwise goes directly to the floor back into the main beam while providing lengthwise shielding. The result is high beam efficiency and superior surface uniformity in tall, narrow stacks.

For complete photometrics, visit www.elliptipar.com.


elliptipar

1.0

30|30 STACK LIGHT™

Style 3030

To form a Catalog Number

1 Style

3030 = Stack light, integral ballast

2 Lamp

т	= T5 Fluorescent Lamp Code
	Lamp Wattage (see chart below)

Number of Lamps in Length, specify 1 or 2

Example: T228 = 8' (2.4m) housing with two 28W T5 lamps

Lamp Code	Length	Lamps	
T5 Fluorescent	:1	Di Di	
T121	36" (915mm)	1 x F21T5	
T128	48" (1220mm)	1 x F28T5	
T221	72" (1830mm)	2 x F21T5	
T228	96" (2440mm)	2 x F28T5	

For complete lamp and ballast information, see Accessories Section. Standard T5 lamp color is 3000K / 80+ CRI.

3 Mounting

S = Ceiling (surface) mount

X = For use with pendant stem or cable hangersNote: Order hangers separately

For bridge mount (shelf supported) consult factory.

4 Finish

02 = Semi-gloss white

99 = Custom RAL or computer matched color to be specified, consult sales representative

5 Voltage/Ballast

Electronic

1 = 120V For 347V (Canada), **2** = 277V consult factory.

6 Option (See Accessories Section for specifications)

00 = No option

0E = Integral emergency battery pack with indicator lamp and test button. Operates one lamp.

Note: For **X** mount, order one additional electrical feed stem or cable for unswitched feed to battery.

elliptipar

0K = Prewired modular #12 AWG thru wiring w/ connectors

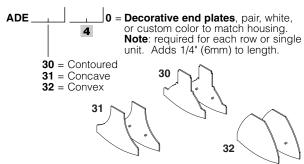
XX = For modification not listed, include detailed description. Consult factory prior to specification.

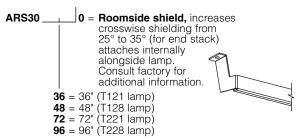
Proiect:

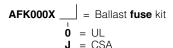
7 Standard

0 = UL, Underwriters Laboratories

J = CSA, Canadian Standards Association


Example

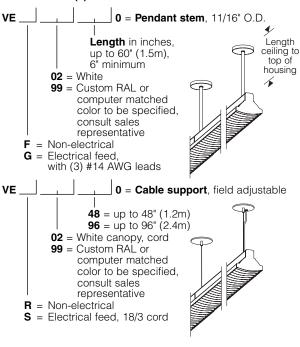

Stack light for use with two 4' F28T5 lamps. 96" long housing (not including decorative end plates). For use with pendant stem or cable hangers (order separately). Semi-gloss white. Integral 120V electronic 2-lamp ballast. UL. Optional modular wiring. Order decorative end plates separately.


If cable mounted (up to 48"), order (1) VER02480 non-electrical plus (1) VES02480 electrical feed hanger. For each additional unit in a row, order (1) additional VER02480 non-electrical hanger. See Hangers.

Accessories

Order separately. See Accessories Section for specifications.

Type:


Hangers

Order separately. See Accessories Section for specifications. Singles - order one non-electrical and one electrical feed hanger for each unit (**X** mount).

Rows - order one non-electrical hanger for each unit (**X** mount) plus one electrical feed for each row.

Note: For each single or row with emergency battery (option code **0E**), order one additional electrical feed and subtract one non-electrical hanger.

Electrical feed(s) must be located at an end of row.

elliptipa

114 Boston Post Road, West Haven, Connecticut 06516, USA Voice 203.931.4455 • Fax 203.931.4464 • www.elliptipar.com

Certain products illustrated may be covered by applicable patents and patents pending. For a list of patents, see Contents pages in catalog. These specifications supersede all prior publications and are subject to change without notice. © 2005 elliptipar.

Drive over luminaires for special applications

Outer housing: Constructed of high tensile strength, copper free die cast aluminum alloy.

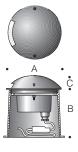
Inner housing: Constructed of copper free die cast aluminum alloy, die cast aluminum clamping ring/cover/guard, removable for relamping, secured together with four (4) heavy stainless steel bolts which provide a pressure seal to gasket and glass. Two (2) captive socket head stainless steel screws secure inner housing cover to outer housing.

Enclosure: One piece heavy die cast aluminum cover with clear borosilicate focusing lens with cast aluminum guard. Molded, one piece, high temperature silicone rubber gasket.

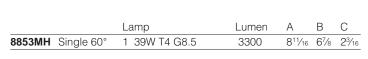
Electrical: G 8.5 porcelain bi-pin lampholder with stainless steel contacts. Magnetic HPF ballast available 120V or 277V - specify. Inner housing pre-wired with three (3) feet of 18/3 waterproof cable, cable clamp, and waterproof cable gland entry into housing. A separate waterproof wiring box for power supply must be provided (by contractor).

Finish: Standard finish is an eight step process consisting of two coats of gray high solids, UV stabilized polyurethane, one with light texture over a phosphate base. Custom colors are not available.

U.L. listed, suitable for wet locations and vehicle drive over. Protection class: IP 67.


Luminaires are designed to withstand loads of up to 8,800 lbs. at speeds up to 12 mph when installed on a proper foundation. Proper drainage must be provided.

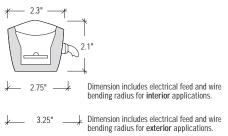
Type: M1

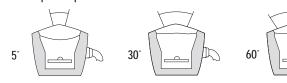

BEGA Product #: 8853мн

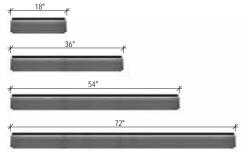
Project: WILLIAM H. GATES HALL

Voltage: 277
Color:
Options:
Modified:

High strength aluminum alloy, stainless steel, and bronze construction. Optical lens made from clear borosilicate glass. U.L. listed, suitable for wet locations. IP 67. Finish: Gray.




5; 30; 60°


Dimensions

Beam Spread Options

Individual Unit Lengths

Application

io Lighting's line series 2.0 is approximately 2" x 2" in cross section which allows for luminous accents to be delivered from "tight" architectural details. This low voltage linear floodlight luminaire utilizes high brightness LEDs and may be specified for interior or exterior applications. Nominal lengths include: 18", 36", 54", and 72". Precise beam spreads (5', 30', 60') along the perpendicular axis of the fixture are well suited for building grazing or wall washing effects. Individual units may be placed end to end to create continuos rows without obvious shadows between fixtures. Similar to halogen light sources, LEDs are point sources that offer superior definition to three dimensional objects and sparkle to reflective surfaces. Average rated life for series 2.0 is 50,000 hours. Lamp Lumen depreciation at 50,000 hrs is 30%.

Light Output

series 2.0's superior optical assemblies offer fixture efficiencies that range from 85% to almost 100%. Refer to light output tables for foot candle values at various distances. IES format files may be obtained from the factory or downloaded from iolighting.com.

- Warm White (3000° K): 177 Ims/ft
- Cool White (5000° K): 296 lms/ft

Construction

Heavy-duty aluminum housing provides recommended heat sink requirements for LEDs. Precision optics are composed of a customized acrylic material offering excellent light transmission and UV stability. High strength adhesive bonds the housing and optical assembly. series 2.0 is UL listed for wet locations.

Mounting Options

series 2.0 may be surface mounted, side surface mounted or surface mounted with field adjustability and lockable aiming.

Electrical

All fixtures are pre-wired and pre-assembled for easy installation. 8'-0", 18 AWG electrical feed is side mounted to enable continuous row mounting. Universal 120v or 277v supply required for remote driver. Driver enclosures for interior or exterior applications may be provided by io. Drivers may be remotely located up to 18'-0" (w/18 AWG), 46'-0"(w/14 AWG) and 71'-0" (w/12 AWG). Dimming is available, consult factory for details.

Individual units *may* be daisy chained and fed from a high capacity driver. Consult factory for more information.

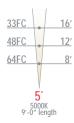
Power Consumption

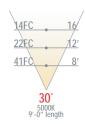
• standard: 10 w/ft

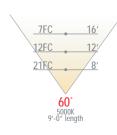
Finish

Anodized aluminum finish is standard. Custom anodized finishes available upon request.

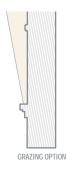
5, 30, 60 PATENT PENDING



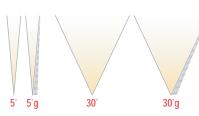




Light Output


Grazing Option

Edge of optic employs a diffuser to distribute fill light at lower angles. The grazing option may be specified with all three beam spread options.

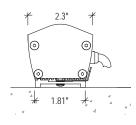

IES format photometrics may be downloaded from www.iolighting.com

Multipliers for Alternate	.6	.43	.6	.19	.43
Light'Source Colors	3000k	RED	GREEN	BLUE	AMBER

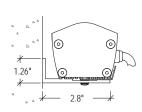
Distributions

series 2.0 may be specified with 5°, 30°, 60° beam spreads. For grazing vertical surfaces, each of the three beam spreads is available with a "grazing option".

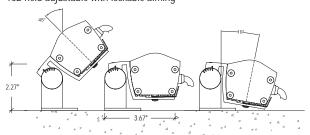
series 2.0's optical assembly is designed to practically eliminate stray light, making it perfect for applications where light pollution and/or light trespass are important design considerations.



It is not rated for submersible applications. line should not be mounted in conditions where there is any standing water whatsoever.


line series 2.0 is UL listed for wet locations.

Mounting Options


100 surface

101 side surface

102 field adjustable with lockable aiming

Order Code

04 2.0

I Location I Interior E Exterior

5K Color White 3000°K 5k White 5000°K *R Red

*G Green *B Blue *A Amber

5° 5g 30 5° w/grazing 30° 30g 30° w/grazing 60° 60g 60° w/grazing

5G

100 Distribution Mounting 100 Surface

101 Side surface 102 Field adjustable

1 Finish Anodized

Aluminum 2 Custom

36 Length UNITS (actual) 18 18" (17.71") 36 36"

(34.71") 54 54" (51.71")72 72" (68.71")

CONTINUOS ROW Specify Length i.e. 60'-0"

2 Voltage Dimming SIDE FEED STANDARD 120v

2 277v 3 120v w/dim 277v w/dim 4 5 other

Driver Enclosure I Interior E Exterior

I

N Not Req'd Supplied by electrical

contractors

*Note: Driver options and details vary from white light. Consult factory for details.

GE Consumer & Industrial Lighting

WORLDWIDE PARTNER

Commercial Products & Solutions

SITE SEARCH > HOME ** PRODUCTS > EDUCATION / RESOURCES > LIGHTING APPLICATIONS

Where to Buy | FAQs | Contact Us | EliteNet

20864 - Q35MR16/C/CG12

GE ConstantColor® Precise™ MR16

• UV protection

GENERAL CHARACTERISTICS		
Lamp type	Halogen - MR	
Bulb	MR16	
Base	2-Pin (GU5.3)	
Filament	C-6	
Wattage	35	
Voltage	12	
Voltage (MIN)	35	
Rated Life	5000 hrs	
Rated Life (Vert)	5000 hrs	
Lamp Enclosure Type (LET)	Covered glass	

PHOTOMETRIC CHARACTERISTICS

Initial Lumens (Hor) 7500 Initial Lumens (Vert) 7500 Center Beam Candlepower (CBCP) Color Temperature 3000 K Nominal Initial Lumens per 214 Watt	Initial Lumens	7500
Center Beam Candlepower (CBCP) Color Temperature 3000 K Nominal Initial Lumens per 214	Initial Lumens (Hor)	7500
(CBCP) Color Temperature 3000 K Nominal Initial Lumens per 214	Initial Lumens (Vert)	7500
Nominal Initial Lumens per 214		7500
	Color Temperature	3000 K
		214

ELECTRICAL CHARACTERISTICS

Burn Position

	position	
DIMENSIONS		
Maximum Overall Length (MOL)	1.8750 in (47.6 mm)	
Bulb Diameter (DIA)	2.000 in (50.8 mm)	

Universal burning

PRODUCT INFORMATION

Product Code	20864
Description	Q35MR16/C/CG12
ANSI Code	FRB
Standard Package	BUNDLE
Standard Package GTIN	00043168208642
Standard Package Quantity	20
Sales Unit	Unit
No Of Items Per Sales Unit	1
No Of Items Per Standard Package	20

View Larger

ADDITIONAL RESOURCES

Catalogs

Testimonials

Brochures

Product Brochures

- Color
- XL Brochure

Application/Segment Brochures

- Contractor Lighting
- Healthcare Lighting
- Office Lighting

Sell Sheets

GE ConstantColor® Precise™ MR16 Lamps

IES/Photometric Download

MSDS (Material Safety Data Sheets)

Disposal Policies & Recycling Information

FIXTURE: H2

WORLDWIDE PARTNER

Commercial Products & Solutions

Where to Buy | FAQs | Contact Us | EliteNet

91227 - TU*100A1/F-RS/E27 230-240V GE 1/20 MIH

GE A19

/		
1	γ	
/	/	1
1	- (Loc

GENERAL CHARACTERISTICS		
Incandescent - A-line		
A19		
Medium Skirt (E27)		
100		
3000 hrs		

PHOTOMETRIC CHARACTERISTICS

Initial Lumens	880
Nominal Initial Lumens per Watt	8

View Larger

PRODUCT INFORMATION

Product Code	91227
Description	TU*100A1/F-RS/E27 230-240V GE 1/20 MIH
Standard Package Quantity	20
Sales Unit	Unit

ADDITIONAL RESOURCES

Catalogs

Disposal Policies & Recycling Information

Return To Top

Home | Products | EliteNet | Education/Resources | Lighting Applications | Where to Buy | FAQs | Contact Us | Site Map Products for Your Home | Press Room | Corporate | Investor Information | Privacy Policy | Accessibility Statement | Terms of Use Copyright General Electric Company 1997-2007

FIXTURE: F1 & F1A

GE Consumer & Industrial Lighting

WORLDWIDE PARTNER

Commercial Products & Solutions

SITE SEARCH >> HOME >> PRODUCTS >> EDUCATION / RESOURCES >> LIGHTING APPLICATIONS

Where to Buy | FAQs | Contact Us | EliteNet

97631 - F32TBX/835/A/ECO

GE Ecolux® Biax® T4 - Facilities; Retail Display; Hospitality; Office; Restaurant; Warehouse

GENERAL CHARACTERISTICS

Lamp type	Compact Fluorescent - Plug-In	
Bulb	T4	
Base	GX24q-3	
Wattage	32	
Voltage	120/100	
Rated Life	12000 hrs	
Starting Temperature (MIN)	0 °C (32 °F)	
Cathode Resistance	2.700 Ohm	
Rated Life (rapid start) @ Time	12000 h @ 3 h 20000 h @ 12 h	
Additional Info	Dimmable with appropriate dimming ballast., End of Life Protection (EOL), TCLP compliant	
Primary Application	Facilities; Retail Display; Hospitality; Office; Restaurant; Warehouse	

PHOTOMETRIC CHARACTERISTICS

Initial Lumens	2200
Mean Lumens	1850
Nominal Initial Lumens per Watt	68
Color Temperature	3500 K
Color Rendering Index (CRI)	82

ELECTRICAL CHARACTERISTICS

Current (max)	5.2500 A
Open Circuit Voltage (after preheating) (MAX)	265 V
Open Circuit Voltage (MIN)	515 V
Lamp Current	0.320 A
Preheat Voltage (MIN)	4 V
Current Crest Factor (MAX)	1.7
Supply Current Frequency	20000 Hz

ADDITIONAL RESOURCES

<u>Catalogs</u>

Testimonials

Brochures

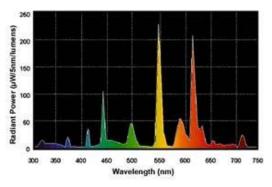
Product Brochures

- Ecolux
- Ecolux (Environmental)

Sell Sheets

- Fast Warming
- Biax® T/E 32W with Amalgam

Disposal Policies & Recycling Information


Bulb

Base

0

View Larger

GRAPHS & CHARTS

GE Consumer & Industrial Lighting

WORLDWIDE PARTNER

Commercial Products & Solutions

SITE SEARCH > HOME ** PRODUCTS > EDUCATION / RESOURCES > LIGHTING APPLICATIONS

Where to Buy | FAQs | Contact Us | EliteNet

PRINT

46705 - F28W/T5/835/ECO

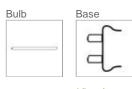
GE Ecolux® Starcoat® T5

• Passes TCLP, which can lower disposal costs.

GENERAL CHARACTERISTICS		
Lamp type	Linear Fluorescent - Straight Linear	
Bulb	T5	
Base	Miniature Bi-Pin (G5)	
Wattage	28	
Voltage	167	
Rated Life	30000 hrs	
Rated Life (rapid start) @ Time	36000 h @ 12 h 30000 h @ 3 h	
Bulb Material	Soda lime	
Starting Temperature (MIN)	-20 °C (-4 °F)	
Additional Info	TCLP compliant	

PHOTOMETRIC CHARACTERISTICS

Initial Lumens	2900
Mean Lumens	2660
Nominal Initial Lumens per Watt	103
Color Temperature	3500 K
Color Rendering Index (CRI)	85
S/P Ratio (Scotopic/Photopic Ratio)	1.5


ELECTRICAL CHARACTERISTICS

Open Circuit Voltage (rapid start) Min @ Temperature	425 V @ 10 °C
Cathode Resistance Ratio - Rh/Rc (MIN)	4.25
Cathode Resistance Ratio - Rh/Rc (MAX)	6.5
Current Crest Factor (MAX)	1.7

DIMENSIONS

Maximum Overall Length (MOL)	45.8000 in (1163.3 mm)
Nominal Length	45.200 in (1148.0 mm)
Bulb Diameter (DIA)	0.625 in (15.8 mm)
Bulb Diameter (DIA) (MAX)	0.670 in (17.0 mm)
Max Base Face to Base Face (A)	45.240 in (1149.0 mm)
Face to End of Opposing Pin	45.420 in (1153.6 mm)

View Larger

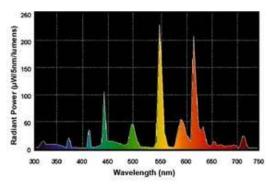
ADDITIONAL RESOURCES

Catalogs

Testimonials

Brochures

Application/Segment Brochures


- Contractor Lighting
- Healthcare Lighting

Product Brochures

- Ecolux
- Ecolux (Environmental)

Disposal Policies & Recycling Information

GRAPHS & CHARTS

Lamp Mortality

FIXTURE: F3 & F3A

GE Consumer & Industrial Lighting

WORLDWIDE PARTNER

Commercial Products & Solutions

SITE SEARCH > HOME ** PRODUCTS > EDUCATION / RESOURCES > LIGHTING APPLICATIONS

Where to Buy | FAQs | Contact Us | EliteNet

₽RINT

46705 - F28W/T5/835/ECO

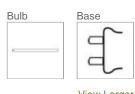
GE Ecolux® Starcoat® T5

• Passes TCLP, which can lower disposal costs.

GENERAL CHARACTERISTICS Lamp type Linear Fluorescent -Straight Linear Bulb T5 Miniature Bi-Pin (G5) Base 28 Wattage 167 Voltage Rated Life 30000 hrs 36000 h @ 12 h Rated Life (rapid start) @ Time 30000 h @ 3 h **Bulb Material** Soda lime -20 °C (-4 °F) Starting Temperature (MIN) Additional Info TCLP compliant

PHOTOMETRIC CHARACTERISTICS

Initial Lumens	2900
Mean Lumens	2660
Nominal Initial Lumens per Watt	103
Color Temperature	3500 K
Color Rendering Index (CRI)	85
S/P Ratio (Scotopic/Photopic Ratio)	1.5


ELECTRICAL CHARACTERISTICS

Open Circuit Voltage (rapid start) Min @ Temperature	425 V @ 10 °C
Cathode Resistance Ratio - Rh/Rc (MIN)	4.25
Cathode Resistance Ratio - Rh/Rc (MAX)	6.5
Current Crest Factor (MAX)	1.7

DIMENSIONS

Maximum Overall Length (MOL)	45.8000 in (1163.3 mm)
Nominal Length	45.200 in (1148.0 mm)
Bulb Diameter (DIA)	0.625 in (15.8 mm)
Bulb Diameter (DIA) (MAX)	0.670 in (17.0 mm)
Max Base Face to Base Face (A)	45.240 in (1149.0 mm)
Face to End of Opposing Pin	45.420 in (1153.6 mm)

View Larger

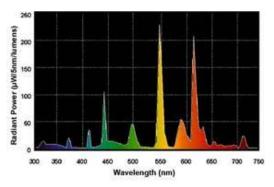
ADDITIONAL RESOURCES

Catalogs

Testimonials

Brochures

Application/Segment Brochures


- Contractor Lighting
- Healthcare Lighting

Product Brochures

- Ecolux
- Ecolux (Environmental)

Disposal Policies & Recycling Information

GRAPHS & CHARTS

Lamp Mortality

GE Consumer & Industrial Lighting

WORLDWIDE PARTNER

Commercial Products & Solutions

SITE SEARCH >> HOME >> PRODUCTS >> EDUCATION / RESOURCES >> LIGHTING APPLICATIONS

Where to Buy | FAQs | Contact Us | EliteNet

97616 - F26TBX/835/A/ECO

GE Ecolux® Biax® T4 - Facilities; Retail Display; Hospitality; Office; Restaurant; Warehouse

	GENERAL	CHAR/	ACTERISTICS
--	---------	-------	-------------

GENERAL CHARAC	TERISTICS
Lamp type	Compact Fluorescent - Plug-In
Bulb	T4
Base	GX24q-3
Wattage	26
Voltage	120/105
Rated Life	12000 hrs
Starting Temperature (MIN)	0 °C (32 °F)
Cathode Resistance	2.700 Ohm
Rated Life (rapid start) @ Time	12000 h @ 3 h 20000 h @ 12 h
Additional Info	Dimmable with appropriate dimming ballast., End of Life Protection (EOL), TCLP compliant
Primary Application	Facilities; Retail Display; Hospitality; Office; Restaurant; Warehouse

PHOTOMETRIC CHARACTERISTICS

Initial Lumens	1710
Mean Lumens	1440
Nominal Initial Lumens per Watt	65
Color Temperature	3500 K
Color Rendering Index (CRI)	82

ELECTRICAL CHARACTERISTICS

ELECTRICAL CHAI	RACTERISTICS
Current (max)	5.2500 A
Open Circuit Voltage (after preheating) (MAX)	265 V
Open Circuit Voltage Across Starter (MIN)	198 V
Lamp Current	0.325 A
Preheat Voltage (MIN)	4 V
Current Crest Factor (MAX)	1.7
Supply Current Frequency	20000 Hz

View Larger

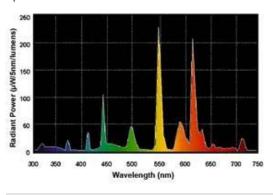
ADDITIONAL RESOURCES

Catalogs

Testimonials

Brochures

Product Brochures


- Ecolux
- Ecolux (Environmental)

Sell Sheets

Fast Warming

Disposal Policies & Recycling Information

GRAPHS & CHARTS

GE Consumer & Industrial Lighting

WORLDWIDE PARTNER

Commercial Products & Solutions

SITE SEARCH > HOME ** PRODUCTS > EDUCATION / RESOURCES > LIGHTING APPLICATIONS

Where to Buy | FAQs | Contact Us | EliteNet

97600 - F18DBX/835/ECO4P

GE Ecolux® Biax® T4 - Facilities; Retail Display; Hospitality; Office; Restaurant; Warehouse

CHARACTERIST	

TERISTICS
Compact Fluorescent - Plug-In
T4
G24q-2
18
100
12000 hrs/20000
0 °C (32 °F)
6.050 Ohm
Dimmable with appropriate dimming ballast., End of Life Protection (EOL), TCLP compliant
Facilities; Retail Display; Hospitality; Office; Restaurant; Warehouse

PHOTOMETRIC CHARACTERISTICS

Initial Lumens	1200
Mean Lumens	970
Nominal Initial Lumens per Watt	66
Color Temperature	3500 K
Color Rendering Index (CRI)	82

ELECTRICAL CHARACTERISTICS

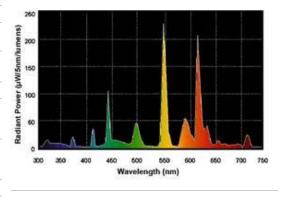
DIMENSIONS

Current (max)	5.2500 A
Open Circuit Voltage (after preheating) (MAX)	220 V
Open Circuit Voltage Across Starter (MIN)	198 V
Lamp Current	0.220 A
Preheat Voltage (MIN)	4 V
Current Crest Factor (MAX)	1.7
Supply Current Frequency	60 Hz

View Larger

ADDITIONAL RESOURCES

Catalogs


Testimonials

Sell Sheets

• Double Biax® 2-Pin & 4-Pin

Disposal Policies & Recycling Information

GRAPHS & CHARTS

GE Consumer & Industrial Lighting

WORLDWIDE PARTNER

Commercial Products & Solutions

SITE SEARCH > HOME * PRODUCTS > EDUCATION / RESOURCES > LIGHTING APPLICATIONS

Where to Buy | FAQs | Contact Us | EliteNet

PRINT

46705 - F28W/T5/835/ECO

GE Ecolux® Starcoat® T5

• Passes TCLP, which can lower disposal costs.

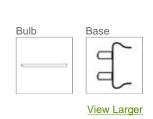
GENERAL CHARACTERISTICS	
Lamp type	Linear Fluorescent - Straight Linear
Bulb	T5
Base	Miniature Bi-Pin (G5)
Wattage	28
Voltage	167
Rated Life	30000 hrs
Rated Life (rapid start) @ Time	36000 h @ 12 h 30000 h @ 3 h
Bulb Material	Soda lime
Starting Temperature (MIN)	-20 °C (-4 °F)
Additional Info	TCLP compliant

THO TOWNET NIC CHARACTERISTICS	
Initial Lumens	2900
Mean Lumens	2660
Nominal Initial Lumens per Watt	103
Color Temperature	3500 K
Color Rendering Index (CRI)	85

ELECTRICAL CHARACTERISTICS

S/P Ratio (Scotopic/Photopic

PHOTOMETRIC CHARACTERISTICS


Open Circuit Voltage (rapid start) Min @ Temperature	425 V @ 10 °C
Cathode Resistance Ratio - Rh/Rc (MIN)	4.25
Cathode Resistance Ratio - Rh/Rc (MAX)	6.5
Current Crest Factor (MAX)	1.7

DIMENSIONS

Ratio)

Maximum Overall Length (MOL)	45.8000 in (1163.3 mm)
Nominal Length	45.200 in (1148.0 mm)
Bulb Diameter (DIA)	0.625 in (15.8 mm)
Bulb Diameter (DIA) (MAX)	0.670 in (17.0 mm)
Max Base Face to Base Face (A)	45.240 in (1149.0 mm)
Face to End of Opposing Pin	45.420 in (1153.6 mm)

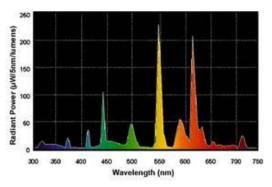
ADDITIONAL RESOURCES

Catalogs

Testimonials

Brochures

Application/Segment Brochures


- Contractor Lighting
- Healthcare Lighting

Product Brochures

- Ecolux
- Ecolux (Environmental)

Disposal Policies & Recycling Information

GRAPHS & CHARTS

Lamp Mortality

GE Consumer & Industrial Lighting

WORLDWIDE PARTNER

Commercial Products & Solutions

SITE SEARCH >> HOME ** PRODUCTS >> EDUCATION / RESOURCES >> LIGHTING APPLICATIONS

Where to Buy | FAQs | Contact Us | EliteNet

97600 - F18DBX/835/ECO4P

GE Ecolux® Biax® T4 - Facilities; Retail Display; Hospitality; Office; Restaurant; Warehouse

	GENERAL	CHAR/	ACTERISTICS
--	---------	-------	-------------

GENERAL CHARACTERISTICS	
Lamp type	Compact Fluorescent - Plug-In
Bulb	T4
Base	G24q-2
Wattage	18
Voltage	100
Rated Life	12000 hrs/20000
Starting Temperature (MIN)	0 °C (32 °F)
Cathode Resistance	6.050 Ohm
Additional Info	Dimmable with appropriate dimming ballast., End of Life Protection (EOL), TCLP compliant
Primary Application	Facilities; Retail Display; Hospitality; Office; Restaurant; Warehouse

PHOTOMETRIC CHARACTERISTICS

Initial Lumens	1200
Mean Lumens	970
Nominal Initial Lumens per Watt	66
Color Temperature	3500 K
Color Rendering Index (CRI)	82

ELECTRICAL CHARACTERISTICS

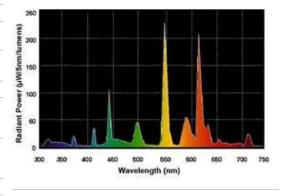
DIMENSIONS

Current (max)	5.2500 A
Open Circuit Voltage (after preheating) (MAX)	220 V
Open Circuit Voltage Across Starter (MIN)	198 V
Lamp Current	0.220 A
Preheat Voltage (MIN)	4 V
Current Crest Factor (MAX)	1.7
Supply Current Frequency	60 Hz

View Larger

ADDITIONAL RESOURCES

Catalogs


Testimonials

Sell Sheets

• Double Biax® 2-Pin & 4-Pin

Disposal Policies & Recycling Information

GRAPHS & CHARTS

GE Consumer & Industrial Lighting

WORLDWIDE PARTNER

Commercial Products & Solutions

SITE SEARCH > HOME ** PRODUCTS > EDUCATION / RESOURCES > LIGHTING APPLICATIONS

Where to Buy | FAQs | Contact Us | EliteNet

97631 - F32TBX/835/A/ECO

GE Ecolux® Biax® T4 - Facilities; Retail Display; Hospitality; Office; Restaurant; Warehouse

GENERAL CHARACTERISTICS

Lamp type	Compact Fluorescent - Plug-In
Bulb	T4
Base	GX24q-3
Wattage	32
Voltage	120/100
Rated Life	12000 hrs
Starting Temperature (MIN)	0 °C (32 °F)
Cathode Resistance	2.700 Ohm
Rated Life (rapid start) @ Time	12000 h @ 3 h 20000 h @ 12 h
Additional Info	Dimmable with appropriate dimming ballast., End of Life Protection (EOL), TCLP compliant
Primary Application	Facilities; Retail Display; Hospitality; Office; Restaurant; Warehouse

PHOTOMETRIC CHARACTERISTICS

Initial Lumens	2200
Mean Lumens	1850
Nominal Initial Lumens per Watt	68
Color Temperature	3500 K
Color Rendering Index (CRI)	82

ELECTRICAL CHARACTERISTICS

Current (max)	5.2500 A	
Open Circuit Voltage (after preheating) (MAX)	265 V	
Open Circuit Voltage (MIN)	515 V	
Lamp Current	0.320 A	
Preheat Voltage (MIN)	4 V	
Current Crest Factor (MAX)	1.7	
Supply Current Frequency	20000 Hz	

ADDITIONAL RESOURCES

<u>Catalogs</u>

Testimonials

Brochures

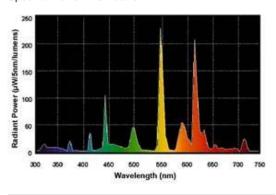
Product Brochures

- Ecolux
- Ecolux (Environmental)

Sell Sheets

- Fast Warming
- Biax® T/E 32W with Amalgam

Disposal Policies & Recycling Information


Bulb

Base

0

View Larger

GRAPHS & CHARTS

GE Consumer & Industrial Lighting

WORLDWIDE PARTNER

Commercial Products & Solutions

→ HOME **PRODUCTS** ▶ EDUCATION / RESOURCES > LIGHTING APPLICATIONS SITE SEARCH

Where to Buy | FAQs | Contact Us | EliteNet

97600 - F18DBX/835/ECO4P

GE Ecolux® Biax® T4 - Facilities; Retail Display; Hospitality; Office; Restaurant; Warehouse

0	High Color Rendering
Energy Savings	

GENERAL CHARACTERISTIC	S
------------------------	---

GENERAL CHARACTERISTICS		
Compact Fluorescent - Plug-In		
T4		
G24q-2		
18		
100		
12000 hrs/20000		
0 °C (32 °F)		
6.050 Ohm		
Dimmable with appropriate dimming ballast., End of Life Protection (EOL), TCLP compliant		
Facilities; Retail Display; Hospitality; Office; Restaurant; Warehouse		

PHOTOMETRIC CHARACTERISTICS

Initial Lumens	1200
Mean Lumens	970
Nominal Initial Lumens per Watt	66
Color Temperature	3500 K
Color Rendering Index (CRI)	82

ELECTRICAL CHARACTERISTICS

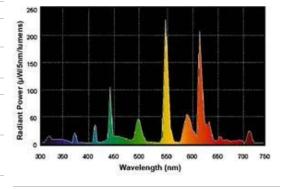
DIMENSIONS

5.2500 A
220 V
198 V
0.220 A
4 V
1.7
60 Hz

View Larger

ADDITIONAL RESOURCES

Catalogs


Testimonials

Sell Sheets

Double Biax® 2-Pin & 4-Pin

Disposal Policies & Recycling Information

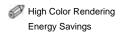
GRAPHS & CHARTS

WORLDWIDE PARTNER

Commercial Products & Solutions

SITE SEARCH > HOME * PRODUCTS > EDUCATION / RESOURCES > LIGHTING APPLICATIONS

Where to Buy | FAQs | Contact Us | EliteNet


Base

View Larger

97635 - F42TBX/835/A/ECO

GE Ecolux® Biax® T4 - Facilities; Retail Display; Hospitality; Office; Restaurant; Warehouse

Lamp type	Compact Fluorescent - Plug-In
Bulb	T4
Base	GX24-q4
Wattage	42
Voltage	135
Rated Life	12000 hrs
Starting Temperature (MIN)	-18 °C (-0 °F)
Cathode Resistance	2.700 Ohm
Rated Life (rapid start) @ Time	12000 h @ 3 h 20000 h @ 12 h
Additional Info	Dimmable with appropriate dimming ballast., End of Life Protection (EOL), TCLP compliant
Primary Application	Facilities; Retail Display; Hospitality; Office; Restaurant; Warehouse

Initial Lumens	3200
Mean Lumens	2690
Nominal Initial Lumens per Watt	76
Color Temperature	3500 K
Color Rendering	82

ELECTRICAL CHARACTERISTICS

Index (CRI)

PHOTOMETRIC CHARACTERISTICS

Current (max)	5.2500 A
Open Circuit Voltage (after preheating) (MAX)	265 V
Open Circuit Voltage (MIN)	515 V
Lamp Current	0.320 A
Preheat Voltage (MIN)	4 V

Bulb

Catalogs

Testimonials

Brochures

Product Brochures

- Ecolux
- Ecolux (Environmental)

ADDITIONAL RESOURCES

Sell Sheets

- Fast Warming
- Biax® T/E 42W

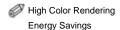
Disposal Policies & Recycling Information

∌ PR

FIXTURE: F12

WORLDWIDE PARTNER

Commercial Products & Solutions


SITE SEARCH > HOME * PRODUCTS > EDUCATION / RESOURCES > LIGHTING APPLICATIONS

Where to Buy | FAQs | Contact Us | EliteNet

10326 - F32T8XLSPX35HLEC

GE Ecolux® Starcoat® T8

• Passes TCLP, which can lower disposal costs.

Additional Info

TCLP compliant

PHOTOMETRIC CHARACTERISTICS Initial Lumens 3100 Mean Lumens 2915

Mean Lumens	2915
Nominal Initial Lumens per Watt	96
Color Temperature	3500 K
Color Rendering Index (CRI)	85
S/P Ratio (Scotopic/Photopic	1.5

ELECTRICAL CHARACTERISTICS

Open Circuit Voltage (rapid start) Min @ Temperature	315 V @ 10 °C
Cathode Resistance Ratio - Rh/Rc (MIN)	4.25
Cathode Resistance Ratio - Rh/Rc (MAX)	6.5
Current Crest Factor (MAX)	1.7

DIMENSIONS

ADDITIONAL RESOURCES

Catalogs

Testimonials

Brochures

Application/Segment Brochures

- Contractor Lighting
- Healthcare Lighting
- Office Lighting
- Retail Lighting

Product Brochures

- Ecolux
- Ecolux (Environmental)
- Industrial Lighting
- <u>ULTRA Linear Fluorescent</u>

Sell Sheets

<u>F32T8 High Lumen Linear Fluorescent System</u>

MSDS (Material Safety Data Sheets)

Disposal Policies & Recycling Information

GRAPHS & CHARTS

B→ PR

FIXTURE: F13

WORLDWIDE PARTNER

Commercial Products & Solutions

Where to Buy | FAQs | Contact Us | EliteNet

46745 - F39W/T5/835/ECO

GE Ecolux® Starcoat® T5

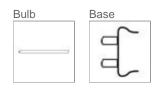
• Passes TCLP, which can lower disposal costs.

GENERAL CHARACTERISTICS	
Lamp type	Linear Fluorescent - Straight Linear
Bulb	T5
Base	Miniature Bi-Pin (G5)
Wattage	39
Voltage	112
Rated Life	30000 hrs
Rated Life (rapid start) @ Time	36000 h @ 12 h 30000 h @ 3 h
Bulb Material	Soda lime
Starting Temperature (MIN)	-20 °C (-4 °F)
Additional Info	TCLP compliant

PHOTOMETRIC CHARACTERISTICS Initial Lumens 3500 Mean Lumens 3220

Wodii Edillollo	0220
Nominal Initial Lumens per Watt	89
Color Temperature	3500 K
Color Rendering Index (CRI)	85
S/P Ratio (Scotopic/Photopic	1.5

Ratio)


ELECTRICAL CHARACTERISTICS

Open Circuit Voltage (rapid start) Min @ Temperature	350 V @ 10 °C
Cathode Resistance Ratio - Rh/Rc (MIN)	4.25
Cathode Resistance Ratio - Rh/Rc (MAX)	6.5
Current Crest Factor (MAX)	1.7

DIMENSIONS

Maximum Overall Length (MOL)	33.9800 in (863.0 mm)
Nominal Length	33.400 in (848.3 mm)

View Larger

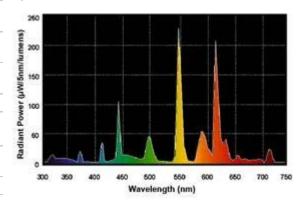
ADDITIONAL RESOURCES

Catalogs

Testimonials

Brochures

Application/Segment Brochures


- Contractor Lighting
- Healthcare Lighting

Product Brochures

- Ecolux
- Ecolux (Environmental)

Disposal Policies & Recycling Information

GRAPHS & CHARTS

GE Consumer & Industrial Lighting

WORLDWIDE PARTNER

Commercial Products & Solutions

SITE SEARCH > HOME ** PRODUCTS > EDUCATION / RESOURCES > LIGHTING APPLICATIONS

Where to Buy | FAQs | Contact Us | EliteNet

PRINT

46705 - F28W/T5/835/ECO

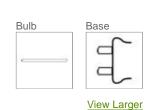
GE Ecolux® Starcoat® T5

• Passes TCLP, which can lower disposal costs.

GENERAL CHARACTERISTICS	
Lamp type	Linear Fluorescent - Straight Linear
Bulb	T5
Base	Miniature Bi-Pin (G5)
Wattage	28
Voltage	167
Rated Life	30000 hrs
Rated Life (rapid start) @ Time	36000 h @ 12 h 30000 h @ 3 h
Bulb Material	Soda lime
Starting Temperature (MIN)	-20 °C (-4 °F)
Additional Info	TCLP compliant

PHOTOMETRIC CHARACTERISTICS

Initial Lumens	2900
Mean Lumens	2660
Nominal Initial Lumens per Watt	103
Color Temperature	3500 K
Color Rendering Index (CRI)	85
S/P Ratio (Scotopic/Photopic Ratio)	1.5


ELECTRICAL CHARACTERISTICS

Open Circuit Voltage (rapid start) Min @ Temperature	425 V @ 10 °C
Cathode Resistance Ratio - Rh/Rc (MIN)	4.25
Cathode Resistance Ratio - Rh/Rc (MAX)	6.5
Current Crest Factor (MAX)	1.7

DIMENSIONS

Maximum Overall Length (MOL)	45.8000 in (1163.3 mm)
Nominal Length	45.200 in (1148.0 mm)
Bulb Diameter (DIA)	0.625 in (15.8 mm)
Bulb Diameter (DIA) (MAX)	0.670 in (17.0 mm)
Max Base Face to Base Face (A)	45.240 in (1149.0 mm)
Face to End of Opposing Pin	45.420 in (1153.6 mm)

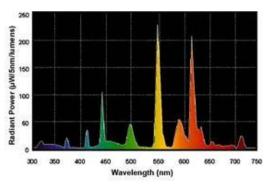
ADDITIONAL RESOURCES

Catalogs

Testimonials

Brochures

Application/Segment Brochures


- Contractor Lighting
- Healthcare Lighting

Product Brochures

- Ecolux
- Ecolux (Environmental)

Disposal Policies & Recycling Information

GRAPHS & CHARTS

Lamp Mortality

FIXTURE: M1

GE Consumer & Industrial Lighting

WORLDWIDE PARTNER

Commercial Products & Solutions

SITE SEARCH > HOME ** PRODUCTS > EDUCATION / RESOURCES > LIGHTING APPLICATIONS

Where to Buy | FAQs | Contact Us | EliteNet

20153 - CMH39TUVCU830G12

GE ConstantColor® PulseArc® CMH® Ceramic Metal Halide T4.5

_amp type	High Intensity Discharge - Ceramic Metal Halide
Bulb	T4.5
Base	Bi-Pin (G12)
Nattage	39
Rated Life	10000 hrs
Bulb Material	Quartz
amp Enclosure Type LET)	Enclosed fixtures only
Additional Info	UV control

PHOTOMETRIC CHARACTERISTICS

Initial Lumens	3400
Mean Lumens	2600
Nominal Initial Lumens per Watt	87
Color Temperature	3000 K
Color Rendering Index (CRI)	82

ELECTRICAL CHARACTERISTICS

Burn Position	Universal burning position
Warm Up Time to 90% (MAX)	2 min/3
Hot Restart Time to 90% (MIN)	10 min
Hot Restart Time to 90% (MAX)	15 min

DIMENSIONS

Maximum Overall Length (MOL)	3.5600 in (90.4 mm)
Light Center Length	2.180 in (55.3 mm)

PRODUCT INFORMATION

Product Code	20153
Description	CMH39TUVCU830G12
ANSI Code	M130
Standard Package	Case
Standard Package GTIN	10043168201534
Standard Package Quantity	12

Bulb

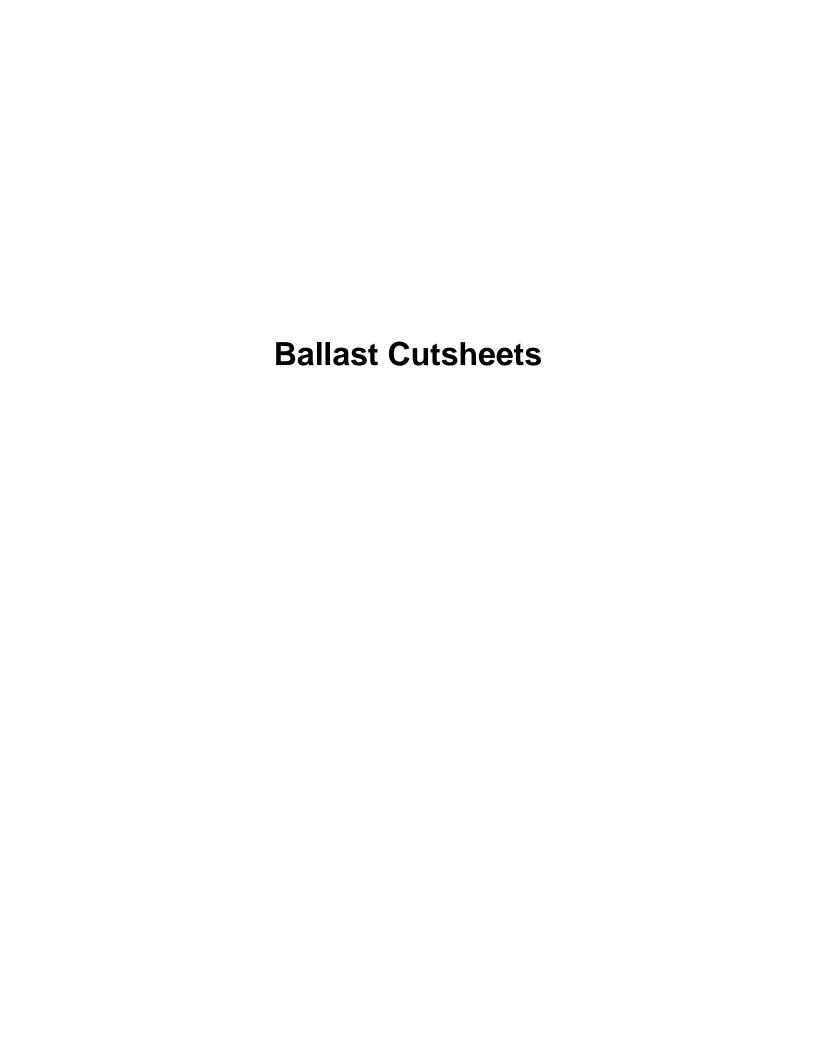
Base

ADDITIONAL RESOURCES

Catalogs

Testimonials

Brochures


Product Brochures

- <u>Ceramic Metal Halide</u>

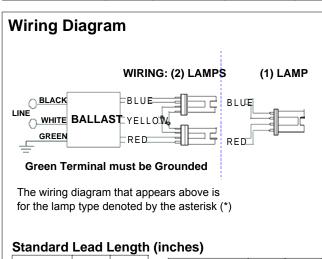
 Application/Segment Brochures
- Contractor Lighting

MSDS (Material Safety Data Sheets)

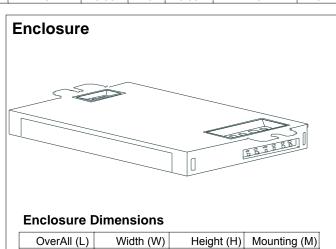
Disposal Policies & Recycling Information

4.6 "

4 3/5


11.7 cm

Electrical Specifications


ICF-2S26-H1-LD@277							
Brand Name	SMARTMATE						
Ballast Type	Electronic						
Starting Method	Programmed Start						
Lamp Connection	Series						
Input Voltage	120-277						
Input Frequency	50/60 HZ						
Status	Active						

Lamp Type	Num. of Lamp s	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
CFM26W/GX24Q	1	26	0/-18	0.11	29	1.10	10	0.98	1.5	3.79
CFM26W/GX24q	2	26	0/-18	0.20	54	1.00	10	0.99	1.5	1.85
* CFM32W/GX24q	1	32	0/-18	0.13	36	0.98	10	0.98	1.5	2.72
CFM42W/GX24q	1	42	0/-18	0.17	46	0.98	10	0.98	1.5	2.13
CFQ26W/G24q	1	26	0/-18	0.10	27	1.00	10	0.98	1.5	3.70
CFQ26W/G24q	2	26	0/-18	0.19	51	1.00	10	0.99	1.5	1.96
CFS21W/GR10q	2	21	0/-18	0.18	51	1.12	10	0.99	1.5	2.20
FT24W/2G11	2	24	0/-18	0.18	48	0.93	10	0.99	1.5	1.94

Standard	Lead I	_engtn	1
	in.	cm.	
Black	0.0		
White	0.0		
Blue	0.0		
Red	0.0		
Yellow	0		
Gray			
Violet			

101100)		
	in.	cm.
Yellow/Blue		
Blue/White		
Brown		
Orange		
Orange/Black		
Black/White		
Red/White		

2.4 "

2 2/5

6.1 cm

1.0 "

2.5 cm

4.98 "

4 49/50

12.6 cm

Revised 09/02/2004

Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

ICF-2S26-H1-LD@277							
Brand Name	SMARTMATE						
Ballast Type	Electronic						
Starting Method	Programmed Start						
Lamp Connection	Series						
Input Voltage	120-277						
Input Frequency	50/60 HZ						
Status	Active						

Notes:

Section I - Physical Characteristics

- 1.1 Ballast shall be physically interchangeable with standard electromagnetic or standard electronic ballasts, where applicable.
- 1.2 Ballast shall be available in a plastic/metal can or all metal can construction to meet all plenum requirements.
- 1.3 Ballast shall be provided with poke-in wire trap connectors color coded per ANSI C82.11.

Section II - Performance Requirements

- 2.1 Ballast shall be Programmed Start except for ballasts with -QS suffix, which shall be Rapid Start.
- 2.2 Ballast shall contain auto restart circuitry in order to restart lamps without resetting power.
- 2.3 Ballast shall operate from 50/60 Hz input source of 120V through 277V with sustained variations of +/- 10% (voltage and frequency) with no damage to the IntelliVolt ballast. RCF models shall operate from 60 Hz input source of 120V with sustained variations of +/- 10% (voltage and frequency) with no damage to the ballast.
- 2.4 Ballast shall be high frequency electronic type and operate lamps at a frequency above 42 kHz to avoid interference with infrared devices and eliminate visible flicker.
- 2.5 Ballast shall have a Power Factor greater than 0.98 for primary lamp.
- 2.6 Ballast shall have a minimum ballast factor of 1.00 for primary lamp application.
- 2.7 Ballast shall provide for a Lamp Current Crest Factor of 1.7 or less in accordance with lamp manufacturer recommendations.
- 2.8 Ballast input current shall have Total Harmonic Distortion (THD) of less than 10% when operated at nominal line voltage with primary lamp.
- 2.9 Ballast shall have a Class A sound rating.
- 2.10 Ballast shall have a minimum starting temperature of -18C (0F) for primary lamp. Ballasts for PL-H lamps shall have a minimum starting temperature of -30C (-20F) for primary lamp.
- 2.11 Ballast shall provide Lamp EOL Protection Circuit.
- 2.12 Ballast shall tolerate sustained open circuit and short circuit output conditions without damage.

Section III - Regulatory Requirements

- 3.1 Ballast shall not contain any Polychlorinated Biphenyl (PCB).
- 3.2 Ballast shall be Underwriters Laboratories (UL) listed, Class P and Type 1 Outdoor; and Canadian Standards Association (CSA) certified where applicable.
- 3.3 Ballast shall be Underwriters Laboratories (UL) rated for use in air-handling spaces.
- 3.4 Ballast shall comply with ANSI C62.41 Category A for Transient protection.
- 3.5 Ballast shall comply with ANSI C82.11 where applicable.
- 3.6 Ballast shall comply with the requirements of the Federal Communications Commission (FCC) rules and regulations, Title 47 CFR part 18, Non-Consumer (Class A) for EMI/RFI (conducted and radiated) except for RCF models which shall be Consumer (Class B).

Section IV - Other

- 4.1 Ballast shall be manufactured in a factory certified to ISO 9002 Quality System Standards.
- 4.2 Ballast shall carry a five-year warranty from date of manufacture against defects in material or workmanship, including replacement, for operation at a maximum case temperature of 75C and three-years for a maximum case temperature of 85C (90C 3year warranty for ICF1H120-M4-XX, ICF2S42-90C-M2-XX and ICF2S70-M4-XX modesls).

4.3 Manufacturer shall have a fifteen-	vear history of producing	electronic ballasts for th	e North American market

4.4 Ballast shall be Advance	part #	O	approved	egual.

Revised 09/02/2004

Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

CompactSE-1 03.08.04

Compact SE Overview

For designs requiring the energy savings and aesthetic appeal of dimmed T4 compact fluorescent or T5 twin-tube lamps, Compact SE dimming ballasts are your solution. The Compact SE product family includes ballasts for nearly every type of dimmable compact fluorescent lamp.

Features

- Continuous, flicker-free dimming from 100% to 5%
- Standard 3-wire line-voltage phase-control technology for consistent fixture-to-fixture dimming performance
- Models for 4-pin T4 compact lamps and T5 twin-tube lamps
- Programmed rapid start design will preheat lamp cathodes before applying full arc voltage
- Lamps turn on to any dimmed level without flashing to full brightness
- Low harmonic distortion throughout the entire dimming range maintains power quality
- Frequency of operation ensures that ballast does not interfere with infrared devices operating between 38 and 42 kHz
- Inrush current limiting circuitry eliminate circuit breaker tripping, switch arcing, and relay failure
- End-of-lamp-life protection circuitry ensures safe operation throughout entire lamp life cycle
- Ultra quiet operation
- Protected from miswires of any input power to control lead, or lamp leads to each other or ground
- 100% compatible with all Lutron 3-wire fluorescent controls
- 100% performance tested at factory
- Designed and assembled in the USA
- 5-year limited warranty with Lutron field service commissioning (3-year standard warranty) from date of purchase
- Ballasts that dim T4 compact fluorescent lamps are intended for factory installation by OEM fixture manufacturer.

Compact SE, case type A

3.00"w (76mm) x 1.00"h (25mm) x 4.90"l (124mm)

Compact SE, case type B

3.00"w (76mm) x 1.00"h (25mm) x 6.75"l (171mm)

Compact SE, case type F

2.38"w (60mm) x 1.50"h (38mm) x 9.50"l (241mm)

LUTRON. SPECIFICATION SUBMITTAL

Job Name:

Model Numbers:

FCB-T432-277-1-S

FIXTURE: F1A

CompactSE-2 03.08.04

Specifications

Performance

- Dimming Range: 100% to 5% measured relative light output (RLO)
- Lamp Starting: programmed rapid start
- Minimum Lamp Starting Temperature: 10°C (50°F)
- Ambient Temperature Operating Range: 10°C (50°F) to 60°C (140°F)
- Relative Humidity: maximum 90% noncondensing
- Operating Voltage: 120V or 277V at 60Hz
- Lamp Current Crest Factor: less than 1.7
- Lamp Flicker: none visible
- Light Output: constant ±2% light output for line voltage variations of ±10%
- Lamp Life: average lamp life meets or exceeds rating of lamp manufacturer
- Ballast Factor: greater than .95 for T4 quad or triple tube lamps, and greater than .85 for T5 twin-tube lamps
- Power Factor: greater than .95
- Total Harmonic Distortion (THD): less than 10%
- Maximum Inrush Current: 7 amps per ballast at 120V, 3 amps per ballast at 277V
- Sound Rating: Inaudible in a 27dBa ambient
- Maximum Ballast Case Temperature: 75°C (167°F)

Standards

- UL Listed (evaluated to the requirements of UL935)
- CSA certified (evaluated to the requirements of C22.2 No. 74)
- Class P thermally protected
- Meets ANSI C82.11 High Frequency Ballast Standard
- Meets FCC Part 18 Non-Consumer for EMI/RFI emissions requirements
- T4 compact fluorescent ballasts are MIL Std. 461E compliant (meets the requirements of CE101, RE101 and RE102)
- Meets ANSI C62.41 Category A surge protection standards to 6kV
- Manufacturing facilities employ ESD reduction practices that comply with the requirements of ANSI/ESD S20.20
- Lutron Quality Systems registered to ISO 9001

LUTRON SPECIFICATION SUBMITTAL

Job Name:

Model Numbers:

FCB-T432-277-1-S

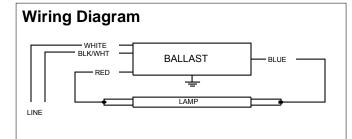
Job Number:

Compact SE Ballast Models

					120 VOLTS		277 VOLTS
Lamp Type	Lamp Watts	Lamps per ballast	Case Type	Ballast Current (amps)	Compact SE Model Number ¹	Ballast Current (amps)	Compact SE Model Number ¹
T4 4-Pin Quad-Tube	18W	1 2	A B	.20 .42	FDB-T418-120-1-S FDB-T418-120-2-S	.08 .17	FDB-T418-277-1-S FDB-T418-277-2-S
1/2" diameter	26W	1 2	A B	.26 .50	FDB-T426-120-1-S FDB-T426-120-2-S	.12 .21	FDB-T426-277-1-S FDB-T426-277-2-S
T4 4-Pin Triple-Tube	18W	1 2	A B	.20 .42	FDB-T418-120-1-S FDB-T418-120-2-S	.08 .17	FDB-T418-277-1-S FDB-T418-277-2-S
1/2" diameter	26W	1 2	A B	.26 .50	FDB-T426-120-1-S FDB-T426-120-2-S	.12 .21	FDB-T426-277-1-S FDB-T426-277-2-S
1/2 diameter	32W	1 2	A B	.31 .59	FDB-T432-120-1-S FDB-T432-120-2-S	.13 .24	FDB-T432-277-1-S FDB-T432-277-2-S
	42W	1 2	B B	.36 .67	FDB-T442-120-1-S FDB-T442-120-2-S	.16 .29	FDB-T442-277-1-S FDB-T442-277-2-S
T5 Twin-Tube	36/39W (16")	1 2 3	F F F		FDB-1643-120-1 ₹DB ₇ †643 ₅ 120-2 FDB-1643-120-3	.14 .25 .35	FDB-1643-277-1 FDB-1643-277-2 FDB-1643-277-3
5/8" diameter	40W (22")	1 2 3	F F F	.33 .61 .88	FDB-2227-120-1 FDB-2227-120-2 FDB-2227-120-3	.14 .25 .38	FDB-2227-277-1 FDB-2227-277-2 FDB-2227-277-3
	50W (22")	1 2	F F	.38 .69	FDB-2243-120-1 FDB-2243-120-2	.17 .32	FDB-2243-277-1 FDB-2243-277-2

Compact SE™ 5%

LUTRON SPECIFICATION SUBMITTAL

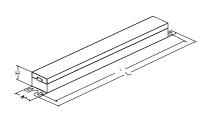

Job Name:	Model Numbers: FCB-T432-277-1-S
Job Number:	

 $^{^{\}scriptsize 1}$ Mounting studs standard for T4 ballasts. Delete suffix -S in the model number if mounting studs not needed.

VCN-132-MC								
Brand Name	CENTIUM MICRO CAN							
Ballast Type	Electronic							
Starting Method	Instant Start							
Lamp Connection	Series							
Input Voltage	277							
Input Frequency	60 HZ							
Status	Active							

Lamp Type	Num. of Lamp s	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F21T5	1	21	50/10	0.10	27	1.10	10	0.98	1.7	4.07
F25T8	1	25	0/-18	0.09	25	0.98	10	0.98	1.7	3.92
* F28T5	1	28	50/10	0.11	30	0.98	10	0.99	1.7	3.27
F32T8	1	32	0/-18	0.11	30	0.98	10	0.98	1.7	3.27
F32T8/ES (30W)	1	30	60/16	0.10	28	0.98	10	0.98	1.7	3.50

Diag. 63


The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black		0
White	25L	63.5
Blue	31R	78.7
Red	37L	94
Yellow		0
Gray		0
Violet		0

iciicaj		
	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White	25L	63.5
Red/White		0

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
9.50 "	1.08 "	1.05 "	8.91 "
9 1/2	1 2/25	1 1/20	8 91/100
24.1 cm	2.7 cm	2.7 cm	22.6 cm

Revised 07/23/2004

Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

VCN-1	32-MC
Brand Name	CENTIUM MICRO CAN
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Series
Input Voltage	277
Input Frequency	60 HZ
Status	Active

Notes:

Section I - Physical Characteristics

- 1.1 Ballast shall be physically interchangeable with standard electromagnetic or standard electronic ballasts, where applicable.
- 1.2 Ballast shall be provided with integral leads color-coded per ANSI C82.11.

Section II - Performance Requirements

- 2.1 Ballast shall be Instant Start.
- 2.2 Ballast shall contain auto restart circuitry in order to restart lamps without resetting power.
- 2.3 Ballast shall operate from 50/60 Hz input source of 120V or 277V with sustained variations of +/- 10% (voltage and frequency) with no damage to the ballast. IntelliVolt models shall operate from 50/60 Hz input source of 120V through 277V with sustained variations of +/- 10% (voltage and frequency) with no damage to the ballast.
- 2.4 Ballast shall be high frequency electronic type and operate lamps at a frequency above 42 kHz to avoid interference with infrared devices and eliminate visible flicker.
- 2.5 Ballast shall have a Power Factor greater than 0.98 for primary lamp.
- 2.6 Ballast shall have a minimum ballast factor for primary lamp application as follows: 0.75 for Low Watt, 0.85 for Normal Light Output, and 1.20 for High Light.
- 2.7 Ballast shall provide for a Lamp Current Crest Factor of 1.7 or less in accordance with lamp manufacturer recommendations.
- 2.8 Ballast input current shall have Total Harmonic Distortion (THD) of less than 20% for Standard models and THD of less than 10% for Centium models when operated at nominal line voltage with primary lamp.
- 2.9 Ballast shall have a Class A sound rating.
- 2.10 Ballast shall have a minimum starting temperature of -18C (0F) for standard T8 lamps and 16C (60F) for energy-saving T8 lamps.
- 2.11 Ballast shall provide Lamp EOL Protection Circuit.
- 2.12 Ballast shall tolerate sustained open circuit and short circuit output conditions without damage.

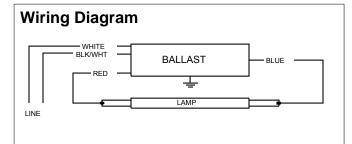
Section III - Regulatory Requirements

- 3.1 Ballast shall not contain any Polychlorinated Biphenyl (PCB).
- 3.2 Ballast shall be Underwriters Laboratories (UL) listed, Class P and Type 1 Outdoor; and Canadian Standards Association (CSA) certified where applicable.
- 3.3 Ballast shall comply with ANSI C62.41 Category A for Transient protection.
- 3.4 Ballast shall comply with ANSI C82.11 where applicable.
- 3.5 Ballast shall comply with the requirements of the Federal Communications Commission (FCC) rules and regulations, Title 47 CFR part 18, Non-Consumer (Class A) for EMI/RFI (conducted and radiated).

Section IV - Other

- 4.1 Ballast shall be manufactured in a factory certified to ISO 9002 Quality System Standards.
- 4.2 Ballast shall carry a five-year warranty from date of manufacture against defects in material or workmanship, including replacement, for operation at a maximum case temperature of 70C.
- 4.3 Manufacturer shall have a fifteen-year history of producing electronic ballasts for the North American market.
- 4.4 Ballast shall be Advance part # _____ or approved equal.

NOTE: The use of Optanium 2.0 (IOP) models is recommended to reduce striations in energy-saving T8 lamps (25W, 28W or 30W). Remote or tandem wiring of energy-saving T8 lamps (25W, 28W or 30W) is only recommended for Optanium 2.0 (IOP) models.

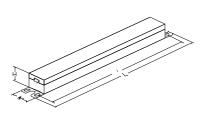

ult lamp manufacturer for operation of T5 lamps on instant start ballasts.	
sed 07/23/2004	
is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary	
ading on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted. ADVANCE TRANSFORMER CO	

O'HARE INTERNATIONAL CENTER - 10275 WEST HIGGINS ROAD ROSEMONT, ILLINOIS 60018
TELEPHONE: (847) 390-5000 FAX: (847) 390-5109

VCN-132-MC				
Brand Name	CENTIUM MICRO CAN			
Ballast Type	Electronic			
Starting Method	Instant Start			
Lamp Connection	Series			
Input Voltage	277			
Input Frequency	60 HZ			
Status	Active			

Lamp Type	Num. of Lamps	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F21T5	1	21	50/10	0.10	27	1.10	10	0.98	1.7	4.07
F25T8	1	25	0/-18	0.09	25	0.98	10	0.98	1.7	3.92
* F28T5	1	28	50/10	0.11	30	0.98	10	0.99	1.7	3.27
F32T8	1	32	0/-18	0.11	30	0.98	10	0.98	1.7	3.27
F32T8/ES (30W)	1	30	60/16	0.10	28	0.98	10	0.98	1.7	3.50

Diag. 63


The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black		0
White	25L	63.5
Blue	31R	78.7
Red	37L	94
Yellow		0
Gray		0
Violet		0

,		
	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White	25L	63.5
Red/White		0

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
9.50 "	1.08 "	1.05 "	8.91 "
9 1/2	1 2/25	1 1/20	8 91/100
24.1 cm	2.7 cm	2.7 cm	22.6 cm

Revised 07/23/2004

Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

VCN-1	32-MC
Brand Name	CENTIUM MICRO CAN
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Series
Input Voltage	277
Input Frequency	60 HZ
Status	Active

Notes:

Section I - Physical Characteristics

- 1.1 Ballast shall be physically interchangeable with standard electromagnetic or standard electronic ballasts, where applicable.
- 1.2 Ballast shall be provided with integral leads color-coded per ANSI C82.11.

Section II - Performance Requirements

- 2.1 Ballast shall be Instant Start.
- 2.2 Ballast shall contain auto restart circuitry in order to restart lamps without resetting power.
- 2.3 Ballast shall operate from 50/60 Hz input source of 120V or 277V with sustained variations of +/- 10% (voltage and frequency) with no damage to the ballast. IntelliVolt models shall operate from 50/60 Hz input source of 120V through 277V with sustained variations of +/- 10% (voltage and frequency) with no damage to the ballast.
- 2.4 Ballast shall be high frequency electronic type and operate lamps at a frequency above 42 kHz to avoid interference with infrared devices and eliminate visible flicker.
- 2.5 Ballast shall have a Power Factor greater than 0.98 for primary lamp.
- 2.6 Ballast shall have a minimum ballast factor for primary lamp application as follows: 0.75 for Low Watt, 0.85 for Normal Light Output, and 1.20 for High Light.
- 2.7 Ballast shall provide for a Lamp Current Crest Factor of 1.7 or less in accordance with lamp manufacturer recommendations.
- 2.8 Ballast input current shall have Total Harmonic Distortion (THD) of less than 20% for Standard models and THD of less than 10% for Centium models when operated at nominal line voltage with primary lamp.
- 2.9 Ballast shall have a Class A sound rating.
- 2.10 Ballast shall have a minimum starting temperature of -18C (0F) for standard T8 lamps and 16C (60F) for energy-saving T8 lamps.
- 2.11 Ballast shall provide Lamp EOL Protection Circuit.
- 2.12 Ballast shall tolerate sustained open circuit and short circuit output conditions without damage.

Section III - Regulatory Requirements

- 3.1 Ballast shall not contain any Polychlorinated Biphenyl (PCB).
- 3.2 Ballast shall be Underwriters Laboratories (UL) listed, Class P and Type 1 Outdoor; and Canadian Standards Association (CSA) certified where applicable.
- 3.3 Ballast shall comply with ANSI C62.41 Category A for Transient protection.
- 3.4 Ballast shall comply with ANSI C82.11 where applicable.
- 3.5 Ballast shall comply with the requirements of the Federal Communications Commission (FCC) rules and regulations, Title 47 CFR part 18, Non-Consumer (Class A) for EMI/RFI (conducted and radiated).

Section IV - Other

- 4.1 Ballast shall be manufactured in a factory certified to ISO 9002 Quality System Standards.
- 4.2 Ballast shall carry a five-year warranty from date of manufacture against defects in material or workmanship, including replacement, for operation at a maximum case temperature of 70C.
- 4.3 Manufacturer shall have a fifteen-year history of producing electronic ballasts for the North American market.
- 4.4 Ballast shall be Advance part # _____ or approved equal.

NOTE: The use of Optanium 2.0 (IOP) models is recommended to reduce striations in energy-saving T8 lamps (25W, 28W or 30W). Remote or tandem wiring of energy-saving T8 lamps (25W, 28W or 30W) is only recommended for Optanium 2.0 (IOP) models.

nsult lamp manufacturer for operation of T5 lamps on instant start ballasts.	
rised 07/23/2004	
a is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary ending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.	_
ADVANCE TRANSFORMER CO	

Eco-10 (1) 07.06.04

Eco-10 Overview

Eco-10 lighting management electronic dimming ballasts are designed to maximize the benefits of a lighting management system. Eco-10 offers 100% to 10% dimming, and is ideal for use in any space where saving energy is the primary goal of the design.

Features

- Continuous, flicker-free dimming from 100% to 10%
- Standard 3-wire line-voltage phase-control technology for consistent fixture-to-fixture dimming performance
- Models available for T5 and T5-HO linear, T8 linear and U-bent, and T5 twin-tube lamps
- Programmed rapid start design preheats lamp cathodes before applying full arc voltage
- Lamps turn on to any dimmed level without flashing to full brightness
- Low harmonic distortion throughout the entire dimming range maintains power quality
- Frequency of operation ensures that ballast does not interfere with infrared devices operating between 38 and 42 kHz
- Inrush current limiting circuitry eliminates circuit breaker tripping, switch arcing, and relay failure
- End-of-lamp-life protection circuitry (for T5 and T5-HO linear models) ensures safe operation throughout entire lamp life cycle
- For linear lamps, ballasts maintain consistent light output for different lamp lengths, ensuring uniformity
- Ultra-quiet operation
- Protected from miswires of any input power to control lead
- 100% compatible with all Lutron 3-wire fluorescent controls
- 100% performance tested at factory
- Designed and assembled in the USA
- 5-year limited warranty with Lutron field service commissioning (3-year standard warranty) from date of purchase

Eco-10, case type C 1.18"w (30mm) x 1.00"h (25mm) x 18.00"l (457mm)

Eco-10, case type D 1.58"w (40mm) x 1.00"h (25mm) x 9.50"l (241mm)

Eco-10, case type F 2.38"w (60mm) x 1.50"h (38mm) x 9.50"l (241mm)

WILLITEON	SPECIFICATION	CLIDIAITTAL
3S L L L L L L L L L L L L L L L L L L		SUBMITTAL

Job Name:	Model Numbers: ECO-T528-277-1
Job Number:	

Eco-10 (2) 07.06.04

Specifications

Performance

- Dimming Range: 100% to 10% measured relative light output
- Lamp Starting: programmed rapid start
- Minimum Lamp Starting Temperature: 10°C (50°F)
- Ambient Temperature Operating Range: 10°C (50°F) to 60°C (140°F)
- Relative Humidity: maximum 90% noncondensing
- Operating Voltage: 120V or 277V at 60Hz
- Lamp Current Crest Factor: less than 1.7
- Lamp Flicker: none visible
- Light Output Variation: constant ±2% light output for line voltage variations of ±10%
- Lamp Life: average lamp life meets or exceeds rating of lamp manufacturer
- Ballast Factor: greater than .85 for T8 and T5 twin-tube lamps, equal to 1.0 for T5 lamps
- Power Factor: greater than .95
- Total Harmonic Distortion (THD): less than 20%
- Maximum Inrush Current: 7 amps per ballast at 120V, 3 amps per ballast at 277V
- Sound Rating: Inaudible in a 27dBa ambient
- Maximum Ballast Case Temperature: 75°C (167°F)

Standards

10%

- UL Listed (evaluated to the requirements of UL935)
- CSA certified (evaluated to the requirements of C22.2 No. 74)
- Class P thermally protected
- Meets ANSI C82.11 High Frequency Ballast Standard
- Meets FCC Part 18 Non-Consumer requirements for EMI/RFI emissions
- Meets ANSI C62.41 Category A surge protection standards up to and including 4kV
- Manufacturing facilities employ ESD reduction practices that comply with the requirements of ANSI/ESD S20.20
- Lutron Quality Systems registered to ISO 9001,2000

LUTRON. SPECIFICATION SUBMITTAL

Job Name:

Model Numbers:

ECO-T528-277-1

Job Number:

Eco-10 (3) 07.06.04

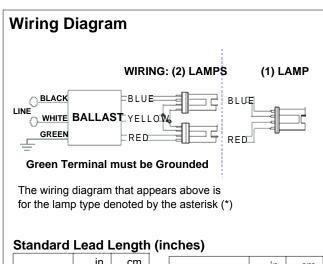
Eco-10 Ballast Models

					120 VOLTS	277 VOLTS	
Lamp Type	Lamp Watts (length)	Lamps per ballast	Case Type	Ballast Current (amps)	Eco-10 Model Number	Ballast Current (amps)	Eco-10 Model Number
T5 linear	14W (22")	1 2	C C	.17 .32	E 3 T514 C 120 1 E 3 T514 C 120 2	.08 .14	E 3 T514 C 277 1 E 3 T514 C 277 2
5/8" diameter	21W (34")	1 2	C C	.25 .43	E 3 T521 C 120 1 E 3 T521 C 120 2	.11 .19	E 3 T521 C 277 1 E 3 T521 C 277 2
	28W (45.3")	1 2	C C	.30 .55	ECO-T528-120-1 ECO-T528-120-2	.14 .25	ECO-T528-277-1 ECO-T528-277-2
T5-HO linear high output	24W (21.5")	1 2	C C	.26 .45	ECO-T524-120-1 ECO-T524-120-2	.13 .20	ECO-T524-277-1 ECO-T524-277-2
5/8" diameter	39W (33.4")	1 2	C C	.38 .76	ECO-T5H39-120-1 ECO-T5H39-120-2	.17 .31	ECO-T5H39-277-1 ECO-T5H39-277-2
₩ 	54W (45.3")	1	СС	.58 1.1	ECO-T554-120-1 ECO-T554-120-2	.25 .45	ECO-T554-277-1 ECO-T554-277-2
T5 Twin-Tube	36/39W (16")	1 2 3	F F	.33 .58 .85	ECO-T539-120-1 ECO-T539-120-2 ECO-T539-120-3	.14 .25 .35	ECO-T539-277-1 ECO-T539-277-2 ECO-T539-277-3
5/8" diameter	40W (22")	1 2 3	F F	.33 .61 .88	ECO-T540-120-1 ECO-T540-120-2 ECO-T540-120-3	.14 .25 .38	ECO-T540-277-1 ECO-T540-277-2 ECO-T540-277-3
	50W (22")	1 2	F F	.38 .69	ECO-T550-120-1 ECO-T550-120-2	.17 .32	ECO-T550-277-1 ECO-T550-277-2

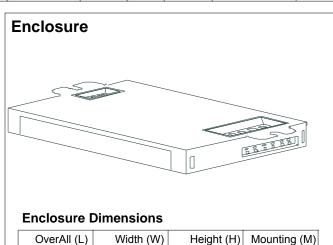
LUTRON SPECIFICATION SUBMITTAL

Job Name:

Model Numbers:


ECO-T528-277-1

Job Number:


ICF-2S26-H1-LD@277					
Brand Name	SMARTMATE				
Ballast Type	Electronic				
Starting Method	Programmed Start				
Lamp Connection	Series				
Input Voltage	120-277				
Input Frequency	50/60 HZ				
Status	Active				

Lamp Type	Num. of Lamp s	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
CFM26W/GX24Q	1	26	0/-18	0.11	29	1.10	10	0.98	1.5	3.79
CFM26W/GX24q	2	26	0/-18	0.20	54	1.00	10	0.99	1.5	1.85
CFM32W/GX24q	1	32	0/-18	0.13	36	0.98	10	0.98	1.5	2.72
CFM42W/GX24q	1	42	0/-18	0.17	46	0.98	10	0.98	1.5	2.13
* CFQ26W/G24q	1	26	0/-18	0.10	27	1.00	10	0.98	1.5	3.70
CFQ26W/G24q	2	26	0/-18	0.19	51	1.00	10	0.99	1.5	1.96
CFS21W/GR10q	2	21	0/-18	0.18	51	1.12	10	0.99	1.5	2.20
FT24W/2G11	2	24	0/-18	0.18	48	0.93	10	0.99	1.5	1.94

	in.	cm.
Black	0.0	
White	0.0	
Blue	0.0	
Red	0.0	
Yellow	0	
Gray		
Violet		

101100)		
	in.	cm.
Yellow/Blue		
Blue/White		
Brown		
Orange		
Orange/Black		
Black/White		
Red/White		

OverAll (L)	Width (W)	Height (H)	Mounting (M)
4.98 "	2.4 "	1.0 "	4.6 "
4 49/50	2 2/5	1	4 3/5
12.6 cm	6.1 cm	2.5 cm	11.7 cm

Revised 09/02/2004

Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

ICF-2S26-H1-LD@277					
Brand Name	SMARTMATE				
Ballast Type	Electronic				
Starting Method	Programmed Start				
Lamp Connection	Series				
Input Voltage	120-277				
Input Frequency	50/60 HZ				
Status	Active				

Notes:

Section I - Physical Characteristics

- 1.1 Ballast shall be physically interchangeable with standard electromagnetic or standard electronic ballasts, where applicable.
- 1.2 Ballast shall be available in a plastic/metal can or all metal can construction to meet all plenum requirements.
- 1.3 Ballast shall be provided with poke-in wire trap connectors color coded per ANSI C82.11.

Section II - Performance Requirements

- 2.1 Ballast shall be Programmed Start except for ballasts with -QS suffix, which shall be Rapid Start.
- 2.2 Ballast shall contain auto restart circuitry in order to restart lamps without resetting power.
- 2.3 Ballast shall operate from 50/60 Hz input source of 120V through 277V with sustained variations of +/- 10% (voltage and frequency) with no damage to the IntelliVolt ballast. RCF models shall operate from 60 Hz input source of 120V with sustained variations of +/- 10% (voltage and frequency) with no damage to the ballast.
- 2.4 Ballast shall be high frequency electronic type and operate lamps at a frequency above 42 kHz to avoid interference with infrared devices and eliminate visible flicker.
- 2.5 Ballast shall have a Power Factor greater than 0.98 for primary lamp.
- 2.6 Ballast shall have a minimum ballast factor of 1.00 for primary lamp application.
- 2.7 Ballast shall provide for a Lamp Current Crest Factor of 1.7 or less in accordance with lamp manufacturer recommendations.
- 2.8 Ballast input current shall have Total Harmonic Distortion (THD) of less than 10% when operated at nominal line voltage with primary lamp.
- 2.9 Ballast shall have a Class A sound rating.
- 2.10 Ballast shall have a minimum starting temperature of -18C (0F) for primary lamp. Ballasts for PL-H lamps shall have a minimum starting temperature of -30C (-20F) for primary lamp.
- 2.11 Ballast shall provide Lamp EOL Protection Circuit.
- 2.12 Ballast shall tolerate sustained open circuit and short circuit output conditions without damage.

Section III - Regulatory Requirements

- 3.1 Ballast shall not contain any Polychlorinated Biphenyl (PCB).
- 3.2 Ballast shall be Underwriters Laboratories (UL) listed, Class P and Type 1 Outdoor; and Canadian Standards Association (CSA) certified where applicable.
- 3.3 Ballast shall be Underwriters Laboratories (UL) rated for use in air-handling spaces.
- 3.4 Ballast shall comply with ANSI C62.41 Category A for Transient protection.
- 3.5 Ballast shall comply with ANSI C82.11 where applicable.
- 3.6 Ballast shall comply with the requirements of the Federal Communications Commission (FCC) rules and regulations, Title 47 CFR part 18, Non-Consumer (Class A) for EMI/RFI (conducted and radiated) except for RCF models which shall be Consumer (Class B).

Section IV - Other

- 4.1 Ballast shall be manufactured in a factory certified to ISO 9002 Quality System Standards.
- 4.2 Ballast shall carry a five-year warranty from date of manufacture against defects in material or workmanship, including replacement, for operation at a maximum case temperature of 75C and three-years for a maximum case temperature of 85C (90C 3year warranty for ICF1H120-M4-XX, ICF2S42-90C-M2-XX and ICF2S70-M4-XX modesls).

4.3 Manufacturer shall have a fifteen-	vear history of producing	electronic ballasts for th	e North American market

4.4 Ballast shall be Advance	part #	or a	approved	egual

Revised 09/02/2004

Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

Eco-10 (1) 07.06.04

Eco-10 Overview

Eco-10 lighting management electronic dimming ballasts are designed to maximize the benefits of a lighting management system. Eco-10 offers 100% to 10% dimming, and is ideal for use in any space where saving energy is the primary goal of the design.

Features

- Continuous, flicker-free dimming from 100% to 10%
- Standard 3-wire line-voltage phase-control technology for consistent fixture-to-fixture dimming performance
- Models available for T5 and T5-HO linear, T8 linear and U-bent, and T5 twin-tube lamps
- Programmed rapid start design preheats lamp cathodes before applying full arc voltage
- Lamps turn on to any dimmed level without flashing to full brightness
- Low harmonic distortion throughout the entire dimming range maintains power quality
- Frequency of operation ensures that ballast does not interfere with infrared devices operating between 38 and 42 kHz
- Inrush current limiting circuitry eliminates circuit breaker tripping, switch arcing, and relay failure
- End-of-lamp-life protection circuitry (for T5 and T5-HO linear models) ensures safe operation throughout entire lamp life cycle
- For linear lamps, ballasts maintain consistent light output for different lamp lengths, ensuring uniformity
- Ultra-quiet operation
- Protected from miswires of any input power to control lead
- 100% compatible with all Lutron 3-wire fluorescent controls
- 100% performance tested at factory
- Designed and assembled in the USA
- 5-year limited warranty with Lutron field service commissioning (3-year standard warranty) from date of purchase

Eco-10, case type C 1.18"w (30mm) x 1.00"h (25mm) x 18.00"l (457mm)

Eco-10, case type D 1.58"w (40mm) x 1.00"h (25mm) x 9.50"l (241mm)

Eco-10, case type F 2.38"w (60mm) x 1.50"h (38mm) x 9.50"l (241mm)

WILLITEON	SPECIFICATION	CLIDIAITTAL
3S L L L L L L L L L L L L L L L L L L		SUBMITTAL

Job Name:	Model Numbers:
	ECO-T528-277-1
Job Number:	

10%

Eco-10 (2) 07.06.04

Specifications

Performance

- Dimming Range: 100% to 10% measured relative light output
- Lamp Starting: programmed rapid start
- Minimum Lamp Starting Temperature: 10°C (50°F)
- Ambient Temperature Operating Range: 10°C (50°F) to 60°C (140°F)
- Relative Humidity: maximum 90% noncondensing
- Operating Voltage: 120V or 277V at 60Hz
- Lamp Current Crest Factor: less than 1.7
- Lamp Flicker: none visible
- Light Output Variation: constant ±2% light output for line voltage variations of ±10%
- Lamp Life: average lamp life meets or exceeds rating of lamp manufacturer
- Ballast Factor: greater than .85 for T8 and T5 twin-tube lamps, equal to 1.0 for T5 lamps
- Power Factor: greater than .95
- Total Harmonic Distortion (THD): less than 20%
- Maximum Inrush Current: 7 amps per ballast at 120V, 3 amps per ballast at 277V
- Sound Rating: Inaudible in a 27dBa ambient
- Maximum Ballast Case Temperature: 75°C (167°F)

Standards

- UL Listed (evaluated to the requirements of UL935)
- CSA certified (evaluated to the requirements of C22.2 No. 74)
- Class P thermally protected
- Meets ANSI C82.11 High Frequency Ballast Standard
- Meets FCC Part 18 Non-Consumer requirements for EMI/RFI emissions
- Meets ANSI C62.41 Category A surge protection standards up to and including 4kV
- Manufacturing facilities employ ESD reduction practices that comply with the requirements of ANSI/ESD S20.20
- Lutron Quality Systems registered to ISO 9001.2000

\$LUTRON SPECIFICATION SUBMITTAL

Job Name:	Model Numbers:
	ECO-T528-277-1
Job Number:	

Eco-10 (3) 07.06.04

Eco-10 Ballast Models

					120 VOLTS		277 VOLTS
Lamp Type	Lamp Watts (length)	Lamps per ballast	Case Type	Ballast Current (amps)	Eco-10 Model Number	Ballast Current (amps)	Eco-10 Model Number
T5 linear	14W (22")	1	C C	.17 .32	E 3 T514 C 120 1 E 3 T514 C 120 2	.08 .14	E 3 T514 C 277 1 E 3 T514 C 277 2
5/8" diameter	21W (34")	1 2	C C	.25 .43	E 3 T521 C 120 1 E 3 T521 C 120 2	.11 .19	E 3 T521 C 277 1 E 3 T521 C 277 2
	28W (45.3")	1 2	C C	.30 .55	ECO-T528-120-1 ECO-T528-120-2	.14 .25	ECO-T528-277-1 ECO-T528-277-2
T5-HO linear high output	24W (21.5")	1 2	СС	.26 .45	ECO-T524-120-1 ECO-T524-120-2	.13 .20	ECO-T524-277-1 ECO-T524-277-2
5/8" diameter	39W (33.4")	1 2	СС	.38 .76	ECO-T5H39-120-1 ECO-T5H39-120-2	.17 .31	ECO-T5H39-277-1 ECO-T5H39-277-2
₩	54W (45.3")	1 2	СС	.58 1.1	ECO-T554-120-1 ECO-T554-120-2	.25 .45	ECO-T554-277-1 ECO-T554-277-2
T5 Twin-Tube	36/39W (16")	1 2 3	F F F	.33 .58 .85	ECO-T539-120-1 ECO-T539-120-2 ECO-T539-120-3	.14 .25 .35	ECO-T539-277-1 ECO-T539-277-2 ECO-T539-277-3
5/8" diameter	40W (22")	1 2 3	F F	.33 .61 .88	ECO-T540-120-1 ECO-T540-120-2 ECO-T540-120-3	.14 .25 .38	ECO-T540-277-1 ECO-T540-277-2 ECO-T540-277-3
	50W (22")	1 2	F F	.38 .69	ECO-T550-120-1 ECO-T550-120-2	.17 .32	ECO-T550-277-1 ECO-T550-277-2

LUTRON SPECIFICATION SUBMITTAL

Job Name:

Model Numbers:

ECO-T528-277-1

Job Number:

CompactSE-1 03.08.04

Compact SE Overview

For designs requiring the energy savings and aesthetic appeal of dimmed T4 compact fluorescent or T5 twin-tube lamps, Compact SE dimming ballasts are your solution. The Compact SE product family includes ballasts for nearly every type of dimmable compact fluorescent lamp.

Features

- Continuous, flicker-free dimming from 100% to 5%
- Standard 3-wire line-voltage phase-control technology for consistent fixture-to-fixture dimming performance
- Models for 4-pin T4 compact lamps and T5 twin-tube lamps
- Programmed rapid start design will preheat lamp cathodes before applying full arc voltage
- Lamps turn on to any dimmed level without flashing to full brightness
- Low harmonic distortion throughout the entire dimming range maintains power quality
- Frequency of operation ensures that ballast does not interfere with infrared devices operating between 38 and 42 kHz
- Inrush current limiting circuitry eliminate circuit breaker tripping, switch arcing, and relay failure
- End-of-lamp-life protection circuitry ensures safe operation throughout entire lamp life cycle
- Ultra quiet operation
- Protected from miswires of any input power to control lead, or lamp leads to each other or ground
- 100% compatible with all Lutron 3-wire fluorescent controls
- 100% performance tested at factory
- Designed and assembled in the USA
- 5-year limited warranty with Lutron field service commissioning (3-year standard warranty) from date of purchase
- Ballasts that dim T4 compact fluorescent lamps are intended for factory installation by OEM fixture manufacturer.

Compact SE, case type A

3.00"w (76mm) x 1.00"h (25mm) x 4.90"l (124mm)

Compact SE, case type B

3.00"w (76mm) x 1.00"h (25mm) x 6.75"l (171mm)

Compact SE, case type F

2.38"w (60mm) x 1.50"h (38mm) x 9.50"l (241mm)

LUTRON. SPECIFICATION SUBMITTAL

Job Name:

Model Numbers:

FDB-T418-277-1-S

Job Number:

CompactSE-2 03.08.04

Specifications

Performance

- Dimming Range: 100% to 5% measured relative light output (RLO)
- Lamp Starting: programmed rapid start
- Minimum Lamp Starting Temperature: 10°C (50°F)
- Ambient Temperature Operating Range: 10°C (50°F) to 60°C (140°F)
- Relative Humidity: maximum 90% noncondensing
- Operating Voltage: 120V or 277V at 60Hz
- Lamp Current Crest Factor: less than 1.7
- Lamp Flicker: none visible
- Light Output: constant ±2% light output for line voltage variations of ±10%
- Lamp Life: average lamp life meets or exceeds rating of lamp manufacturer
- Ballast Factor: greater than .95 for T4 quad or triple tube lamps, and greater than .85 for T5 twin-tube lamps
- Power Factor: greater than .95
- Total Harmonic Distortion (THD): less than 10%
- Maximum Inrush Current: 7 amps per ballast at 120V, 3 amps per ballast at 277V
- Sound Rating: Inaudible in a 27dBa ambient
- Maximum Ballast Case Temperature: 75°C (167°F)

Standards

- UL Listed (evaluated to the requirements of UL935)
- CSA certified (evaluated to the requirements of C22.2 No. 74)
- Class P thermally protected
- Meets ANSI C82.11 High Frequency Ballast Standard
- Meets FCC Part 18 Non-Consumer for EMI/RFI emissions requirements
- T4 compact fluorescent ballasts are MIL Std. 461E compliant (meets the requirements of CE101, RE101 and RE102)
- Meets ANSI C62.41 Category A surge protection standards to 6kV
- Manufacturing facilities employ ESD reduction practices that comply with the requirements of ANSI/ESD S20.20
- Lutron Quality Systems registered to ISO 9001

LUTRON SPECIFICATION SUBMITTAL

Job Name:

Model Numbers:

FDB-T418-277-1-S

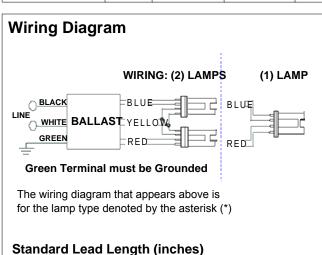
Job Number:

Compact SE Ballast Models

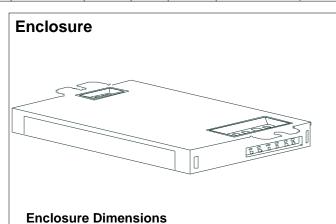
					120 VOLTS		277 VOLTS
Lamp Type	Lamp Watts	Lamps per ballast	Case Type	Ballast Current (amps)	Compact SE Model Number ¹	Ballast Current (amps)	Compact SE Model Number¹
T4 4-Pin Quad-Tube	18W	1 2	A B	.20 .42	FDB-T418-120-1-S FDB-T418-120-2-S	.08 .17	FDB-T418-277-1-S FDB-T418-277-2-S
1/2" diameter	26W	1 2	A B	.26 .50	FDB-T426-120-1-S FDB-T426-120-2-S	.12 .21	FDB-T426-277-1-S FDB-T426-277-2-S
T4 4-Pin Triple-Tube	18W	1 2	A B	.20 .42	FDB-T418-120-1-S FDB-T418-120-2-S	.08 .17	FDB-T418-277-1-S FDB-T418-277-2-S
1/2" diameter	26W	1 2	A B	.26 .50	FDB-T426-120-1-S FDB-T426-120-2-S	.12 .21	FDB-T426-277-1-S FDB-T426-277-2-S
1/2 diameter	32W	1 2	A B	.31 .59	FDB-T432-120-1-S FDB-T432-120-2-S	.13 .24	FDB-T432-277-1-S FDB-T432-277-2-S
	42W	1 2	B B	.36 .67	FDB-T442-120-1-S FDB-T442-120-2-S	.16 .29	FDB-T442-277-1-S FDB-T442-277-2-S
T5 Twin-Tube	36/39W (16")	1 2 3	F F F	.33 .58 .85	FDB-1643-120-1 FDB-1643-120-2 FDB-1643-120-3	.14 .25 .35	FDB-1643-277-1 FDB-1643-277-2 FDB-1643-277-3
5/8" diameter	40W (22")	1 2 3	F F F	.33 .61 .88	FDB-2227-120-1 FDB-2227-120-2 FDB-2227-120-3	.14 .25 .38	FDB-2227-277-1 FDB-2227-277-2 FDB-2227-277-3
	50W (22")	1 2	F F	.38 .69	FDB-2243-120-1 FDB-2243-120-2	.17 .32	FDB-2243-277-1 FDB-2243-277-2

Compact SE™ 5%

LUTRON SPECIFICATION SUBMITTAL


Job Name:	Model Numbers: FDB-T418-277-1-S
Job Number:	

 $^{^{\}scriptsize 1}$ Mounting studs standard for T4 ballasts. Delete suffix -S in the model number if mounting studs not needed.


ICF-2S26-H1-LD@277					
Brand Name	SMARTMATE				
Ballast Type	Electronic				
Starting Method	Programmed Start				
Lamp Connection	Series				
Input Voltage	120-277				
Input Frequency	50/60 HZ				
Status	Active				

Lamp Type	Num. of Lamp s	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
CFM26W/GX24Q	1	26	0/-18	0.11	29	1.10	10	0.98	1.5	3.79
CFM26W/GX24q	2	26	0/-18	0.20	54	1.00	10	0.99	1.5	1.85
* CFM32W/GX24q	1	32	0/-18	0.13	36	0.98	10	0.98	1.5	2.72
CFM42W/GX24q	1	42	0/-18	0.17	46	0.98	10	0.98	1.5	2.13
CFQ26W/G24q	1	26	0/-18	0.10	27	1.00	10	0.98	1.5	3.70
CFQ26W/G24q	2	26	0/-18	0.19	51	1.00	10	0.99	1.5	1.96
CFS21W/GR10q	2	21	0/-18	0.18	51	1.12	10	0.99	1.5	2.20
FT24W/2G11	2	24	0/-18	0.18	48	0.93	10	0.99	1.5	1.94

Standard	Leau i	_engtn
	in.	cm.
Black	0.0	
White	0.0	
Blue	0.0	
Red	0.0	
Yellow	0	
Gray		
Violet		

101100)		
	in.	cm.
Yellow/Blue		
Blue/White		
Brown		
Orange		
Orange/Black		
Black/White		
Red/White		

OverAll (L)	Width (W)	Height (H)	Mounting (M)
4.98 "	2.4 "	1.0 "	4.6 "
4 49/50	2 2/5	1	4 3/5
12.6 cm	6.1 cm	2.5 cm	11.7 cm

Revised 09/02/2004

ICF-2S26-H1-LD@277					
Brand Name	SMARTMATE				
Ballast Type	Electronic				
Starting Method	Programmed Start				
Lamp Connection	Series				
Input Voltage	120-277				
Input Frequency	50/60 HZ				
Status	Active				

Notes:

Section I - Physical Characteristics

- 1.1 Ballast shall be physically interchangeable with standard electromagnetic or standard electronic ballasts, where applicable.
- 1.2 Ballast shall be available in a plastic/metal can or all metal can construction to meet all plenum requirements.
- 1.3 Ballast shall be provided with poke-in wire trap connectors color coded per ANSI C82.11.

Section II - Performance Requirements

- 2.1 Ballast shall be Programmed Start except for ballasts with -QS suffix, which shall be Rapid Start.
- 2.2 Ballast shall contain auto restart circuitry in order to restart lamps without resetting power.
- 2.3 Ballast shall operate from 50/60 Hz input source of 120V through 277V with sustained variations of +/- 10% (voltage and frequency) with no damage to the IntelliVolt ballast. RCF models shall operate from 60 Hz input source of 120V with sustained variations of +/- 10% (voltage and frequency) with no damage to the ballast.
- 2.4 Ballast shall be high frequency electronic type and operate lamps at a frequency above 42 kHz to avoid interference with infrared devices and eliminate visible flicker.
- 2.5 Ballast shall have a Power Factor greater than 0.98 for primary lamp.
- 2.6 Ballast shall have a minimum ballast factor of 1.00 for primary lamp application.
- 2.7 Ballast shall provide for a Lamp Current Crest Factor of 1.7 or less in accordance with lamp manufacturer recommendations.
- 2.8 Ballast input current shall have Total Harmonic Distortion (THD) of less than 10% when operated at nominal line voltage with primary lamp.
- 2.9 Ballast shall have a Class A sound rating.
- 2.10 Ballast shall have a minimum starting temperature of -18C (0F) for primary lamp. Ballasts for PL-H lamps shall have a minimum starting temperature of -30C (-20F) for primary lamp.
- 2.11 Ballast shall provide Lamp EOL Protection Circuit.
- 2.12 Ballast shall tolerate sustained open circuit and short circuit output conditions without damage.

Section III - Regulatory Requirements

- 3.1 Ballast shall not contain any Polychlorinated Biphenyl (PCB).
- 3.2 Ballast shall be Underwriters Laboratories (UL) listed, Class P and Type 1 Outdoor; and Canadian Standards Association (CSA) certified where applicable.
- 3.3 Ballast shall be Underwriters Laboratories (UL) rated for use in air-handling spaces.
- 3.4 Ballast shall comply with ANSI C62.41 Category A for Transient protection.
- 3.5 Ballast shall comply with ANSI C82.11 where applicable.
- 3.6 Ballast shall comply with the requirements of the Federal Communications Commission (FCC) rules and regulations, Title 47 CFR part 18, Non-Consumer (Class A) for EMI/RFI (conducted and radiated) except for RCF models which shall be Consumer (Class B).

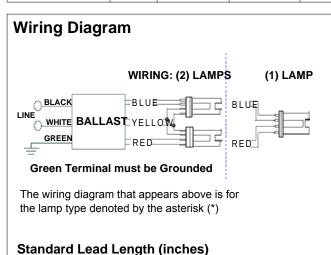
Section IV - Other

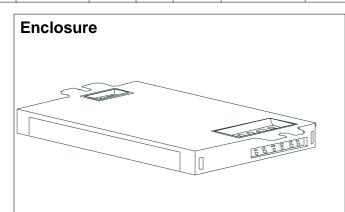
- 4.1 Ballast shall be manufactured in a factory certified to ISO 9002 Quality System Standards.
- 4.2 Ballast shall carry a five-year warranty from date of manufacture against defects in material or workmanship, including replacement, for operation at a maximum case temperature of 75C and three-years for a maximum case temperature of 85C (90C 3year warranty for ICF1H120-M4-XX, ICF2S42-90C-M2-XX and ICF2S70-M4-XX modesls).

4.3 Manufacturer shall have a fifteen-	vear history of producing	electronic ballasts for th	e North American market

4.4 Ballast shall be Advance	part #	O	approved	egual.

Revised 09/02/2004




ICF-2S18-H1-LD@277					
Brand Name	SMARTMATE				
Ballast Type	Electronic				
Starting Method	Programmed Start				
Lamp Connection	Series				
Input Voltage	120-277				
Input Frequency	50/60 HZ				
Status	Active				

Lamp Type	Num. of Lamps	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
CFM18W/GX24Q	1	18	0/-18	0.08	20	1.05	10	0.97	1.5	5.25
CFM18W/GX24q	2	18	0/-18	0.14	39	1.05	10	0.99	1.5	2.69
CFQ18W/G24q	1	18	0/-18	0.07	19	1.00	10	0.97	1.5	5.26
* CFQ18W/G24q	2	18	0/-18	0.13	35	0.95	10	0.99	1.5	2.71
CFS16W/GR10q	2	16	0/-18	0.13	37	1.00	09	0.99	1.5	2.70
CFS21W/GR10Q	1	21	0/-18	0.07	20	0.90	15	0.97	1.5	4.50
CFS21W/GR10Q	2	21	0/-18	0.14	40	0.91	10	0.99	1.5	2.28

	in.	cm.
Black	0.0	
White	0.0	
Blue	0.0	
Red	0.0	
Yellow	0	
Gray		

	ſ	
	in.	cm.
Yellow/Blue		
Blue/White		
Brown		
Orange		
Orange/Black		
Black/White		
Red/White		

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
4.98 "	2.4 "	1.0 "	4.6 "
4 49/50	2 2/5	1	4 3/5
12.6 cm	6.1 cm	2.5 cm	11.7 cm

Revised 08/15/2006

ICF-2S18-F	11-LD@277
Brand Name	SMARTMATE
Ballast Type	Electronic
Starting Method	Programmed Start
Lamp Connection	Series
Input Voltage	120-277
Input Frequency	50/60 HZ
Status	Active

Notes:

Section I - Physical Characteristics

- 1.1 Ballast shall be physically interchangeable with standard electromagnetic or standard electronic ballasts, where applicable.
- 1.2 Ballast shall be available in a plastic/metal can or all metal can construction to meet all plenum requirements.
- 1.3 Ballast shall be provided with poke-in wire trap connectors color coded per ANSI C82.11.

Section II - Performance Requirements

- 2.1 Ballast shall be Programmed Start except for ballasts with -QS suffix, which shall be Rapid Start.
- 2.2 Ballast shall contain auto restart circuitry in order to restart lamps without resetting power.
- 2.3 Ballast shall operate from 50/60 Hz input source of 120V through 277V with sustained variations of +/- 10% (voltage and frequency) with no damage to the IntelliVolt ballast. RCF models shall operate from 60 Hz input source of 120V with sustained variations of +/- 10% (voltage and frequency) with no damage to the ballast.
- 2.4 Ballast shall be high frequency electronic type and operate lamps at a frequency above 42 kHz to avoid interference with infrared devices and eliminate visible flicker.
- 2.5 Ballast shall have a Power Factor greater than 0.98 for primary lamp.
- 2.6 Ballast shall have a minimum ballast factor of 1.00 for primary lamp application.
- 2.7 Ballast shall provide for a Lamp Current Crest Factor of 1.7 or less in accordance with lamp manufacturer recommendations.
- 2.8 Ballast input current shall have Total Harmonic Distortion (THD) of less than 10% when operated at nominal line voltage with primary lamp.
- 2.9 Ballast shall have a Class A sound rating.
- 2.10 Ballast shall have a minimum starting temperature of -18C (0F) for primary lamp. Ballasts for PL-H lamps shall have a minimum starting temperature of -30C (-20F) for primary lamp.
- 2.11 Ballast shall provide Lamp EOL Protection Circuit.
- 2.12 Ballast shall tolerate sustained open circuit and short circuit output conditions without damage.

Section III - Regulatory Requirements

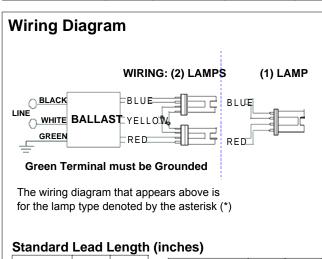
- 3.1 Ballast shall not contain any Polychlorinated Biphenyl (PCB).
- 3.2 Ballast shall be Underwriters Laboratories (UL) listed, Class P and Type 1 Outdoor; and Canadian Standards Association (CSA) certified where applicable.
- 3.3 Ballast shall be Underwriters Laboratories (UL) rated for use in air-handling spaces.
- 3.4 Ballast shall comply with ANSI C62.41 Category A for Transient protection.
- 3.5 Ballast shall comply with ANSI C82.11 where applicable.
- 3.6 Ballast shall comply with the requirements of the Federal Communications Commission (FCC) rules and regulations, Title 47 CFR part 18, Non-Consumer (Class A) for EMI/RFI (conducted and radiated) except for RCF models which shall be Consumer (Class B).

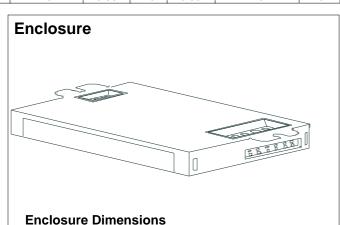
Section IV - Other

- 4.1 Ballast shall be manufactured in a factory certified to ISO 9002 Quality System Standards.
- 4.2 Ballast shall carry a five-year warranty from date of manufacture against defects in material or workmanship, including replacement, for operation at a maximum case temperature of 75C and three-years for a maximum case temperature of 85C (90C 3year warranty for ICF1H120-M4-XX, ICF2S42-90C-M2-XX and ICF2S70-M4-XX modesls).
- 4.3 Manufacturer shall have a fifteen-year history of producing electronic ballasts for the North American market.

4.4 Ballast shall be Advance	part #	or approv	ved	egual	ı

Revised 08/15/2006




ICF-2S26-H1-LD@277				
Brand Name	SMARTMATE			
Ballast Type	Electronic			
Starting Method	Programmed Start			
Lamp Connection	Series			
Input Voltage	120-277			
Input Frequency	50/60 HZ			
Status	Active			

Lamp Type	Num. of Lamp s	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
CFM26W/GX24Q	1	26	0/-18	0.11	29	1.10	10	0.98	1.5	3.79
CFM26W/GX24q	2	26	0/-18	0.20	54	1.00	10	0.99	1.5	1.85
CFM32W/GX24q	1	32	0/-18	0.13	36	0.98	10	0.98	1.5	2.72
* CFM42W/GX24q	1	42	0/-18	0.17	46	0.98	10	0.98	1.5	2.13
CFQ26W/G24q	1	26	0/-18	0.10	27	1.00	10	0.98	1.5	3.70
CFQ26W/G24q	2	26	0/-18	0.19	51	1.00	10	0.99	1.5	1.96
CFS21W/GR10q	2	21	0/-18	0.18	51	1.12	10	0.99	1.5	2.20
FT24W/2G11	2	24	0/-18	0.18	48	0.93	10	0.99	1.5	1.94

Standard	Leau i	_engtn	(
	in.	cm.	
Black	0.0		
White	0.0		
Blue	0.0		
Red	0.0		
Yellow	0		
Gray			
Violet			

,		
	in.	cm.
Yellow/Blue		
Blue/White		
Brown		
Orange		
Orange/Black		
Black/White		
Red/White		

OverAll (L)	Width (W)	Height (H)	Mounting (M)
4.98 "	2.4 "	1.0 "	4.6 "
4 49/50	2 2/5	1	4 3/5
12.6 cm	6.1 cm	2.5 cm	11.7 cm

Revised 09/02/2004

ICF-2S26-H1-LD@277				
Brand Name	SMARTMATE			
Ballast Type	Electronic			
Starting Method	Programmed Start			
Lamp Connection	Series			
Input Voltage	120-277			
Input Frequency	50/60 HZ			
Status	Active			

Notes:

Section I - Physical Characteristics

- 1.1 Ballast shall be physically interchangeable with standard electromagnetic or standard electronic ballasts, where applicable.
- 1.2 Ballast shall be available in a plastic/metal can or all metal can construction to meet all plenum requirements.
- 1.3 Ballast shall be provided with poke-in wire trap connectors color coded per ANSI C82.11.

Section II - Performance Requirements

- 2.1 Ballast shall be Programmed Start except for ballasts with -QS suffix, which shall be Rapid Start.
- 2.2 Ballast shall contain auto restart circuitry in order to restart lamps without resetting power.
- 2.3 Ballast shall operate from 50/60 Hz input source of 120V through 277V with sustained variations of +/- 10% (voltage and frequency) with no damage to the IntelliVolt ballast. RCF models shall operate from 60 Hz input source of 120V with sustained variations of +/- 10% (voltage and frequency) with no damage to the ballast.
- 2.4 Ballast shall be high frequency electronic type and operate lamps at a frequency above 42 kHz to avoid interference with infrared devices and eliminate visible flicker.
- 2.5 Ballast shall have a Power Factor greater than 0.98 for primary lamp.
- 2.6 Ballast shall have a minimum ballast factor of 1.00 for primary lamp application.
- 2.7 Ballast shall provide for a Lamp Current Crest Factor of 1.7 or less in accordance with lamp manufacturer recommendations.
- 2.8 Ballast input current shall have Total Harmonic Distortion (THD) of less than 10% when operated at nominal line voltage with primary lamp.
- 2.9 Ballast shall have a Class A sound rating.
- 2.10 Ballast shall have a minimum starting temperature of -18C (0F) for primary lamp. Ballasts for PL-H lamps shall have a minimum starting temperature of -30C (-20F) for primary lamp.
- 2.11 Ballast shall provide Lamp EOL Protection Circuit.
- 2.12 Ballast shall tolerate sustained open circuit and short circuit output conditions without damage.

Section III - Regulatory Requirements

- 3.1 Ballast shall not contain any Polychlorinated Biphenyl (PCB).
- 3.2 Ballast shall be Underwriters Laboratories (UL) listed, Class P and Type 1 Outdoor; and Canadian Standards Association (CSA) certified where applicable.
- 3.3 Ballast shall be Underwriters Laboratories (UL) rated for use in air-handling spaces.
- 3.4 Ballast shall comply with ANSI C62.41 Category A for Transient protection.
- 3.5 Ballast shall comply with ANSI C82.11 where applicable.
- 3.6 Ballast shall comply with the requirements of the Federal Communications Commission (FCC) rules and regulations, Title 47 CFR part 18, Non-Consumer (Class A) for EMI/RFI (conducted and radiated) except for RCF models which shall be Consumer (Class B).

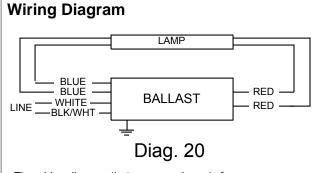
Section IV - Other

- 4.1 Ballast shall be manufactured in a factory certified to ISO 9002 Quality System Standards.
- 4.2 Ballast shall carry a five-year warranty from date of manufacture against defects in material or workmanship, including replacement, for operation at a maximum case temperature of 75C and three-years for a maximum case temperature of 85C (90C 3year warranty for ICF1H120-M4-XX, ICF2S42-90C-M2-XX and ICF2S70-M4-XX modesls).

4.3 Manufacturer shall have a fifteen-	vear history of producing	electronic ballasts for th	e North American market

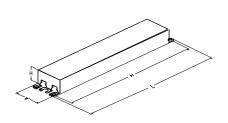
4.4 Ballast shall be Advance	part #	O	approved	egual.

Revised 09/02/2004



VCN-1S32-SC						
Brand Name	CENTIUM					
Ballast Type	Electronic					
Starting Method	Programmed Start					
Lamp Connection	Series					
Input Voltage	277					
Input Frequency	60 HZ					
Status	Active					

Lamp Type	Num. of Lamps	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F17T8	1	17	32/00	0.08	22	1.00	10	0.97	1.7	4.55
F25T8	1	25	32/00	0.10	28	0.95	10	0.98	1.7	3.39
* F32T8	1	32	32/00	0.13	34	0.90	10	0.98	1.7	2.65


The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black		0
White	22L	55.9
Blue	36L	91.4
Red	26R	66
Yellow		0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White	22L	55.9
Red/White		0

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
9.50 "	1.7 "	1.18 "	8.90 "
9 1/2	1 7/10	1 9/50	8 9/10
24.1 cm	4.3 cm	3 cm	22.6 cm

Revised 11/13/2001

VCN-1S32-SC						
Brand Name	CENTIUM					
Ballast Type	Electronic					
Starting Method	Programmed Start					
Lamp Connection	Series					
Input Voltage	277					
Input Frequency	60 HZ					
Status	Active					

Notes:

Section I - Physical Characteristics

- 1.1 Ballast shall be physically interchangeable with standard electromagnetic or standard electronic ballasts, where applicable.
- 1.2 Ballast shall be provided with integral leads color-coded per ANSI C82.11.

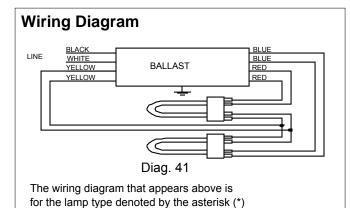
Section II - Performance Requirements

- 2.1 Ballast shall be _____ (Instant or Rapid) Start.
- 2.2 Ballast shall provide Independent Lamp Operation (ILO) for Instant Start ballasts allowing remaining lamp(s) to maintain full light output when one or more lamps fail.
- 2.3 Ballast shall contain auto restart circuitry in order to restart lamps without resetting power (except T8/HO ballast).
- 2.4 Ballast shall operate from 60 Hz input source of 120V, 277V or 347V as applicable with sustained variations of +/- 10% (voltage and frequency) with no damage to the ballast. IntelliVolt models shall operate from 50/60 Hz input source of 120V through 277V with sustained variations of +/- 10% (voltage and frequency) with no damage to the ballast.
- 2.5 Ballast shall be high frequency electronic type and operate lamps at a frequency above 42 kHz ("GCN" models between 20kHz and 30kHz) to avoid interference with infrared devices and eliminate visible flicker.
- 2.6 Ballast shall have a Power Factor greater than 0.98 for primary lamp.
- 2.7 Ballast shall have a minimum ballast factor for primary lamp application as follows: 0.75 for Low Watt, 0.85 for Normal Light Output, and 1.20 for High Light.
- 2.8 Ballast shall provide for a Lamp Current Crest Factor of 1.7 or less in accordance with lamp manufacturer recommendations.
- 2.9 Ballast input current shall have Total Harmonic Distortion (THD) of less than 20% for Standard models and THD of less than 10% for Centium models when operated at nominal line voltage with primary lamp.
- 2.10 Ballast shall have a Class A sound rating for all 4-foot lamps and smaller.
- 2.11 Ballast shall have a minimum starting temperature of _____ [-18C (0F) for standard T8 and Long Twin Tube lamps, 10C (50F) for standard T12 lamps, 0C (32F) for Slimline T8 lamps and "GCN" models, -29C (-20F) for T8/HO lamps,] for primary lamp application. Ballast shall have a minimum starting temperature of 60F (16C) for energy-saving T8 and T12 lamps.
- 2.12 Ballast shall tolerate sustained open circuit and short circuit output conditions without damage.

Section III - Regulatory Requirements

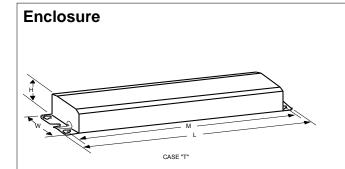
- 3.1 Ballast shall not contain any Polychlorinated Biphenyl (PCB).
- 3.2 Ballast shall be Underwriters Laboratories (UL) listed, Class P and Type 1 Outdoor; and Canadian Standards Association (CSA) certified where applicable. Models with -HAZ suffix meet UL 935 Type HL (hazardous location) requirements.
- 3.3 Ballast shall comply with ANSI C62.41 Category A for Transient protection.
- 3.4 Ballast shall comply with ANSI C82.11 where applicable.
- 3.5 Ballast shall comply with the requirements of the Federal Communications Commission (FCC) rules and regulations, Title 47 CFR part 18, Non-Consumer (Class A) for EMI/RFI (conducted and radiated).

Section IV - Other


- 4.1 Ballast shall be manufactured in a factory certified to ISO 9002 Quality System Standards.
- 4.2 Ballast shall carry a five-year warranty from date of manufacture against defects in material or workmanship, including replacement, for operation at a maximum case temperature of 70C.
- 4.3 Manufacturer shall have a fifteen-year history of producing electronic ballasts for the North American market.
- 4.4 Ballast shall be Advance part # _____ or approved equal.

NOTE: The use of Optanium 2.0 (IOP tandem wiring of energy-saving T8 lar	mps (25W, 28W or 30W) is onl	y recommended for Optanium	2.0 (IOP) models.	
Revised 11/13/2001		$\mathbb{U}_{\mathbb{B}}$		
Data is based upon tests performed by Advan	ce Transformer in a controlled enviro	nment and representative of relative p	performance. Actual performance can va	ry
depending on operating conditions. Specificati	ions are subject to change without no		ess otherwise noted.	

V-2BS39-TP						
Brand Name	MAGNETIC STD					
Ballast Type	Magnetic					
Starting Method	Rapid Start					
Lamp Connection	Series					
Input Voltage	277					
Input Frequency	60 HZ					
Status	Active					


Lamp Type	Num. of Lamp s	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (Watts)	Ballast Factor	MAX THD %	Power Factor	Lamp Current Crest Factor	B.E.F.
FT36W/2G11	2	36	50/10	0.32	80	0.91	30	0.90	1.8	1.15
* FT39W/2G11	2	39	50/10	0.33	84	0.91	30	0.91	1.8	1.09

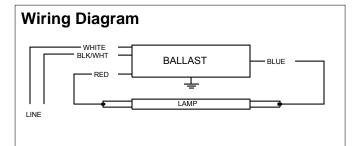
Standard Lead Length (inches)

Stanuaru	Leau i	_engin
	in.	cm.
Black	12	
White	12	
Blue	24	
Red	24	
Yellow	24	
Gray		
Violet		

•		
	in.	cm.
Yellow/Blue		
Blue/White		
Brown		
Orange		
Orange/Black		
Black/White		
Red/White		

Enclosure Dimensions

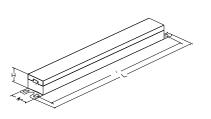
OverAll (L)	Width (W)	Height (H)	Mounting (M)
9.50 "	2.375 "	1.5 "	8.90625 "
9 1/2	2 3/8	1 1/2	8 29/32
24.1 cm	6 cm	3.8 cm	22.6 cm


Revised 07/01/1999

VCN-1	32-MC
Brand Name	CENTIUM MICRO CAN
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Series
Input Voltage	277
Input Frequency	60 HZ
Status	Active

Lamp Type	Num. of Lamps	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F21T5	1	21	50/10	0.10	27	1.10	10	0.98	1.7	4.07
F25T8	1	25	0/-18	0.09	25	0.98	10	0.98	1.7	3.92
* F28T5	1	28	50/10	0.11	30	0.98	10	0.99	1.7	3.27
F32T8	1	32	0/-18	0.11	30	0.98	10	0.98	1.7	3.27
F32T8/ES (30W)	1	30	60/16	0.10	28	0.98	10	0.98	1.7	3.50

Diag. 63


The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black		0
White	25L	63.5
Blue	31R	78.7
Red	37L	94
Yellow		0
Gray		0
Violet		0

,		
	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White	25L	63.5
Red/White		0

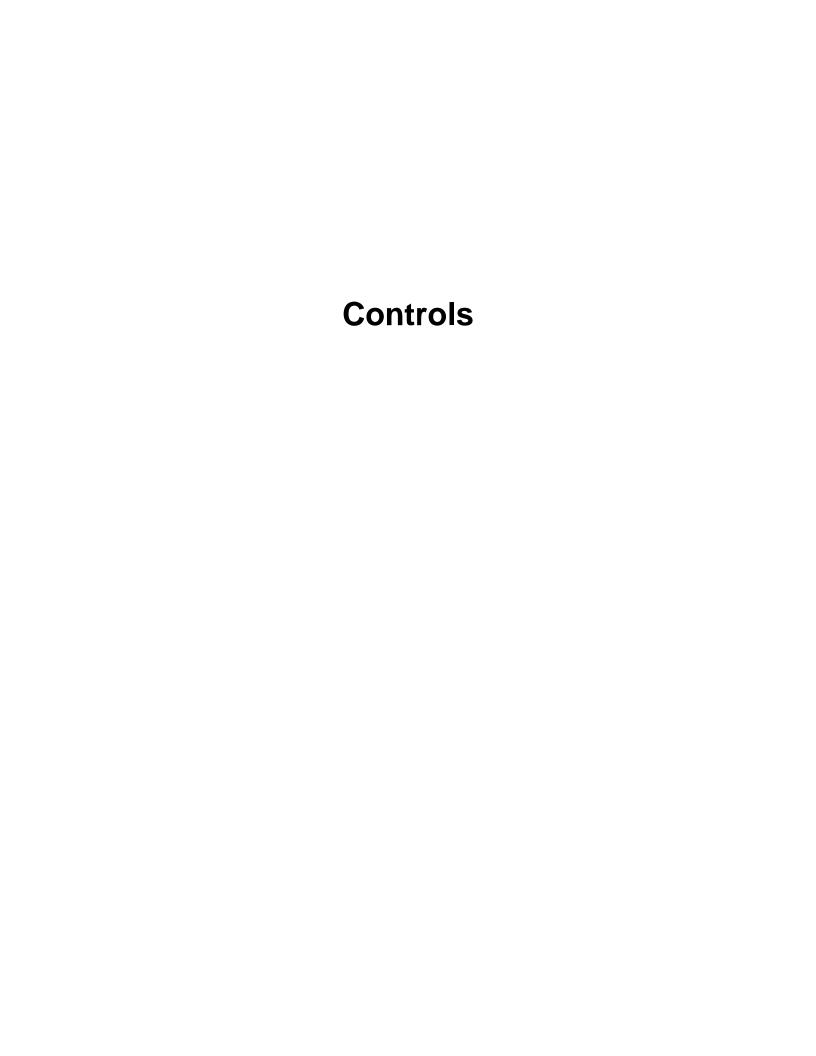
Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
9.50 "	1.08 "	1.05 "	8.91 "
9 1/2	1 2/25	1 1/20	8 91/100
24.1 cm	2.7 cm	2.7 cm	22.6 cm

Revised 07/23/2004

FIXTURE: M1



Metal Halide Lamp Ballast

Catalog Number 71A50Y1 For 39W M130 60 Hz HX-HPF

Status: Active

DIMENSIONS AND DATA INPUT VOLTS 3 X 4 CORE - 2 COIL UNIT CIRCUIT TYPE HX-HPF POWER FACTOR (min) 90% -5.10 REGULATION 4 50" Line Volts 0.7' Lamp Watts ±10% LINE CURRENT (Amps) Operating..... 0.28 0.56 Open Circuit..... MAX 1.30 0.70 Starting..... 0.50 0.25 UL TEMPERATURE RATINGS H(180°C) Insulation Class Coil Temperature Code 1029 0.25" WIDE 2 SLOTS MIN. AMBIENT STARTING TEMP. -30°F or -35°C NOM. OPEN CIRCUIT VOLTAGE 248 INPUT VOLTAGE AT LAMP DROPOUT..... 70 140 **INPUT WATTS** 53 3 95' 4 HOLES RECOMMENDED FUSE (Amps)..... CLEARED FOR #10 CORE and COIL THRU-BOLTS Dimension (A) 0.85 Dimension (B) 1.95 Weight (lbs.) 3 Lead Lengths 12" 2.45' CAPACITOR REQUIREMENT 2.80 Microfarads 10.0 Volts (min.) 280 Fault Current Withstand (amps) 60 Hz TEST PROCEDURES (Refer to Advance Test Procedure for HID Ballasts - Form 1270) High Potential Test (Volts) Capacitor: 7C100M30-R 1 minute 1500 2 seconds 2500 Open Circuit Voltage Test (Volts) 223-273 Short-Circuit Current Test (Amps) Secondary Current 0.60-0.74 Input Current..... 0.38 0.19 5年5年2 Wiring Diagram: Capacitance: 10 Dia/Oval Dim: 1.5 LINE V Height: 2.9 Temp Rating: 105°C Ignitor: LI533-H4 Fig. K3 **Typical Ordering Information** (please call Advance for suffix availability) **Order Suffix** Description IR Ballast With Ignitor and Dry Film Capacitor Ballast to Lamp Distance (BTL) = 5 feetTemp Rating: 105°C Data is based upon tests performed by Advance Transformer in a controlled environment and representitive of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice.

gp-1 10.19.06

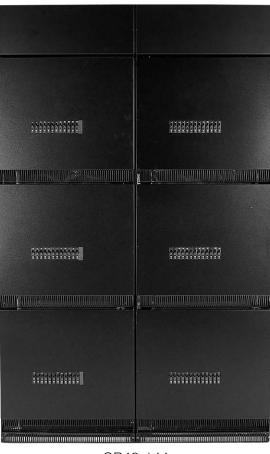
GP Dimming Panels 120-127 / 277 Volt

GP3/4 Mini Panels

GP8-24 Standard-Size Panels

GP Dimming Panels provide power and dimming for up to 144 load circuits and control any light source, including full-conduction non-dim.

Models available with:


- 120-127 V and 277 V input power.
- 3 to 144 circuits.
- Different feed types and breakers.

GP Dimming Panels work with:

- GRAFIK Eye 4000 Control Units.
- GRAFIK 5000™, GRAFIK 6000®, and GRAFIK 7000® Systems.
- LP Dimming Panels.
- XP Softswitch_{TM} Panels.
- DMX512 dimming systems via the 2LINK™ option.

GP36 Large-Size Panels

GP48-144 Large-Size Panels

31/2	TRON.	SPECIFICA	NOIT	SUBMITTAL

Job Name:	Model Numbers:
Job Number:	

Specifications - 120-127 / 277 Volt

Standards

- UL Listed (Reference: UL File 42071).
- Complies with CSA or NOM (where appropriate).

Power

- Input power: 100-127V and 277V, 50/60Hz, phase-to-neutral.
- Branch Circuit Capacity:
 - 120-127V up to 2000W/VA
 - 277V 4500W/VA
- Number of Circuits: 3-144
- Branch Circuit Breakers: UL-rated thermal magnetic.

AIC ratings (other ratings available):

- 100-127V 10,000A
- 277V 14,000A
- Lightning strike protection: Meets ANSI/IEEE standard 62.41-1980.
 Can withstand voltage surges of up to 6000V and current surges of up to 3000A.
- 10-year power failure memory: Automatically restores lighting to scene selected prior to power interruption.

Sources/Load Types

Operates these sources with a smooth continuous Square Law dimming curve or on a full conduction non-dim basis:

- Incandescent (Tungsten)/Halogen
- Magnetic Low Voltage Transformer
- Electronic Low Voltage Transformer¹
- Lutron Electronic Fluorescent Dimming Ballasts
- Magnetic Fluorescent Lamp Ballasts
- Optional modules allow for control of 0-10V, DSI, and PWM load types.
- Operates HID sources on a full conduction non-dim basis.

Wiring

- Internal: Prewired by Lutron.
- System communications: Lowvoltage Class 2 (PELV) wiring connects Dimming Panels to other components.
- Line (mains) voltage: Feed, load, and control circuit wiring only.
 No other wiring or assembly required.

Filter Chokes

- Load current rise time is measured at a 90 degree conduction angle.
- 10-90% of load current waveform:
 - 350µSec rise time at 50% dimmer capacity.
 - 400µSec rise time at 100% dimmer capacity.
- 0-100% of load current waveform:
 - 525µSec rise time at 50% dimmer capacity.
 - 600µSec rise time at 100% dimmer capacity.
- At no point in the waveform can the rate of current change exceed 300mA per µSec.
- Consult Lutron for higher rise time options.

Dimming Cards

- Panel current ratings are listed for continuous operation - ULlisted specifically for each light source.
- RTISS™ filter circuit technology compensates for incoming line voltage variations: No visible flicker with +/-2% change in RMS voltage/cycle and +/-2% Hz change in frequency/second.
- Arcless-relay air gap-off switches (one per load circuit) ensure open load circuits when off function selected. Eliminate arcing at mechanical contacts when loads are switched.

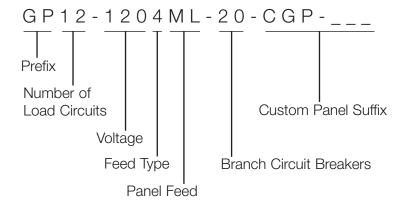
Physical Design

- Enclosure: NEMA-Type 1 (Type 2 available upon request), IP-20 protection; #16 U.S. Gauge Steel. Indoors only.
- Weight: 30-1300 pounds (14-590kg).
- Mounting: Surface mount only.
 Allow space for ventilating.

Environment/Heat Dissipation

- Patented, ribbed aluminum heat sink base cools Panel by convection. No fans.
- 32-104°F (0-40°C). Relative humidity less than 90% non-condensing.

**	ITRON.	SPECIFIC	ATION	SUBMITTAL


Page

Job Name:	Model Numbers:
Job Number:	

¹ Reverse-phase control transformers require an ELVI Power Interface. Check phase with transformer manufacturer.

gp-3 10.19.06

How to Build a GP Model Number

Prefix:

GP for GP Dimming Panel

Number of Load Circuits:

Indicates number of load circuits in the panel

Voltage:

120 for 120-127 V **277** for 277 V

Feed Type:

2 for 1 phase 2 wire

3 for 1 phase 3 wire (split phase)

4 for 3 phase 4 wire

Panel Feed:

ML for Main Lugs only

Mxx for Main Breaker with xx = breaker size in Amps

Branch Circuit Breakers:

20 for 20A branch circuit breakers

15 for 15A branch circuit breakers

Custom Panel Suffix:

Indicates panel with special options

LUTRON SPECIFICATION SUBMITTAL

Job Name:	Model Numbers:
Job Number:	

gp-6 10.19.06

GP8-24 Standard-Size Models

Only standard panels listed. Consult Lutron for further options.

277V Power

				Panel Bran	ch Ratings
Number Of Circuits	Feed Type	Panel Feed	Maximum Feed	Circuit Breakers ¹	Maximum Dimmed Hot Load ²
	1Ø, 2W	Main Lugs Only	175A	20A	4500W/VA
GP8	3Ø, 4W	Main Lugs Only	175A	20A	4500W/VA
	3Ø, 4VV	60A Main Breaker	60A	20A	4500W/VA
GP12	3Ø, 4W	Main Lugs Only	175A	20A	4500W/VA
GF 12	30, 400	80A Main Breaker	80A	20A	4500W/VA
OD10	000 4111	Main Lugs Only	175A	20A	4500W/VA
GP16	3Ø, 4W	125A Main Breaker	125A	20A	4500W/VA

LUTRON SPECIFICATION SUBMITTAL

Job Name:	Model Numbers:
Job Number:	

¹ 20/16A, 15/12A continuous load rating.

² Measured current will not exceed continuous load rating due to voltage drop in the dimmer.

Appendix B

Panelboard Worksheets

EXISTING PANELBOARD NW01-N02

		LIGHTING A		APPLIAN						SHEET		
	Р	anel Tag		>	B-NW01-N	Pa	anel Loc	ation:	ELEC. ROOM NW - LEVEL 01			
١		nal Phase to Neutra			277		Phase		3		-	
N	lomir	nal Phase to Phase	Volta	ge>	480		Wires	i:	4			
Pos	Ph.	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Rer	narks	
1	Α	MECH FTU	4	WEST	6300	va	1.00	6300	6300			
2	A	LIGHTING		SW ROOMS	3000	va	0.95	2850	3000			
3	В		4	WEST	6400	va	1.00	6400	6400			
4 5	B C	LIGHTING 	4	NW ROOMS WEST	1000 6200	va	0.95 1.00	950 6200	1000 6200			
6	С	LIGHTING	1	LOUNGE	2100	va va	0.95	1995	2100			
7	A	LIGHTING	1	RM 118	1300	va	0.95	1235	1300			
8	Α	LIGHTING	1	CORRIDOR	3600	W	0.95	3600	3789			
9	В	SPARE			0	W		0	0			
10	В	LIGHTING	1	E EXTERIO	2400	va	0.95	2280	2400			
11	С	SPARE			0	W		0	0			
12	С	LIGHTING	1	E EXTERIO	2100	va	0.95	1995	2100			
13	A	MECH FTU	3	WEST	9500	va	1.00	9500	9500			
14 15	A B	ALC-1A 	3	WEST	500 9500	va va	1.00	500 9500	500 9500			
16	В	SPARE	3	WEST	9500	va W	1.00	9500	9500			
17	C		3	WEST	9500	va	1.00	9500	9500			
18	C	SPARE	Ť	T	0	w		0	0			
19	A	SPARE			0	W		0	0			
20	Α	SPARE			0	W		0	0			
21	В				0	W		0	0			
22	В	SPARE			0	W		0	0			
23	С				0	W		0	0			
24	C	SPARE			0	W		0	0			
25 26	A	SPARE SPARE			0	w		0	0			
27	В	SPARE			0	W		0	0			
28	В	SPARE			0	w		0	0			
29	С	SPARE			0	w		0	0			
30	С	SPARE			0	W		0	0			
31	Α	SPARE			0	W		0	0			
32	Α	SPARE			0	W		0	0			
33	В	SPARE			0	W		0	0			
34	В	SPARE			0	W		0	0			
35 36	C C	SPARE SPARE			0	W		0	0			
37	A	SPARE			0	W		0	0			
38	Α	SPARE			0	w		0	0			
39	В	SPARE			0	W		0	0			
40	В	SPARE			0	W		0	0			
41	С	SPARE		ļ	0	W		0	0			
42	С	SPARE			0	W		0	0	A	70.5	
PAN	EL Ī	OTAL						62.8	63.6	Amps=	76.5	
PHA	SE L	OADING.						kW	kVA	%	Amps	
		HASE TOTAL	Α					24.0	24.4	38%	88.0	
		HASE TOTAL	В	<u> </u>				19.1	19.3	30%	69.7	
<u> </u>	PH	HASE TOTAL	С	<u> </u>	<u></u>	<u> </u>		19.7	19.9	31%	71.8	
LOA	D CA	ATAGORIES		Conne			Dei	mand				
<u> </u>				kW	kVA	DF	kW	kVA	PF			
1	flu	uorescent lighting	1	14.9	15.7	1.25	18.6	19.6	0.95			
2	N 4 -	equipment	1-	0.5	0.5	1.00	0.5	0.5	1.00			
<u>3</u>	IVIE	echanical - highest Mechanical	1	28.5 18.9	28.5 18.9	1.25	35.6 18.9	35.6 18.9	1.00 1.00			
5		wiconanical	1	0.0	0.0	0.00	0.0	0.0	1.00			
6			1	0.0	0.0	0.00	0.0	0.0				
7				0.0	0.0	0.00	0.0	0.0				
8					0.0	0.00	0.0	0.0				
		Demand Loads					73.7	74.6				
	Spare Capacity 25%						18.4	18.7				
I	Tota	l Design Loads					92.1	93.3	0.99	Amps=	112.3	

REVISED PANELBOARD NW01-N02

		LIGHTING A		APPLIAN						SHEET	
	Р	anel Tag		>	CB-NW01-N	P	anel Loc	ation:	ELEC. R	OOM NW	- LEVEL 01
١		nal Phase to Neutral			277		Phase		3		
N	lomir	nal Phase to Phase	Voltaç	ge>	480		Wires	S:	4		
Pos	Ph.	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Rer	narks
1	Α	MECH FTU	4	WEST	6300	va	1.00	6300	6300		
2	Α	LIGHTING	1	SW ROOMS	3000	va	0.95	2850	3000		
3	В		4	WEST	6400	va	1.00	6400	6400		
4	В	LIGHTING	_	NW ROOMS		va	0.95	950	1000		
5	С		4	WEST	6200	va	1.00	6200	6200		
6	C	LIGHTING	1	LOUNGE	2100	va	0.95	1995	2100		
8	A	LIGHTING LIGHTING	1	RM 118 CORRIDOR	1300 2070	va VA	0.95 0.95	1235 1967	1300 2070		
9	В	SPARE	<u> </u>	CORREDOR	0	W	0.00	0	0		
10	В	LIGHTING	1	TERRACE	1920	w	0.95	1920	2021		
11	C	SPARE			0	w	0.00	0	0		
12	С	LIGHTING	1	TERRACE	1756	w	0.95	1756	1848		
13	Α	MECH FTU	3	WEST	9500	va	1.00	9500	9500		
14	Α	ALC-1A	2	ELEC. RM	500	va	1.00	500	500		
15	В		3	WEST	9500	va	1.00	9500	9500		
16	В	LIGHTING	1	GALLERIA	340	W	0.95	340	358		
17	С	LICUTING	3 1	WEST GALLERIA	9500	va	1.00 0.95	9500	9500		
18 19	<u>C</u>	LIGHTING SPARE	1	GALLERIA	936	W	0.95	936	985		
20	A	SPARE	\vdash		0	W		0	0		
21	В				0	W		0	0		
22	В	SPARE			0	w		0	0		
23	С				0	w		0	0		
24	С	SPARE			0	w		0	0		
25	Α	SPARE			0	W		0	0		
26	Α	SPARE			0	W		0	0		
27	В	SPARE			0	W		0	0		
28	В	SPARE			0	W		0	0		
29	С	SPARE			0	W		0	0		
30	C A	SPARE SPARE			0	W		0	0		
32	A	SPARE			0	W		0	0		
33	В	SPARE			0	W		0	0		
34	В	SPARE			0	w		0	0		
35	С	SPARE			0	w		0	0		
36	C	SPARE			0	W		0	0		
37	Α	SPARE			0	W		0	0		
38	Α	SPARE			0	W		0	0	ļ	
39	В	SPARE			0	W		0	0		
40	В	SPARE	1		0	W		0	0		
41	C C	SPARE SPARE	-		0	W		0	0	-	
		OTAL			U	٧٧		61.8	62.6	Amps=	75.3
PHA		OADING	 					kW	kVA	%	Amps
-		HASE TOTAL	A					22.4	22.7	36%	81.8
		HASE TOTAL	B					19.1	19.3	31%	69.6 74.5
				_				20.4	20.6	33%	14.0
LOA				Conne		<u> </u>		mand			
	.,	Investment Ball Com		kW	kVA	DF	kW	kVA	PF 0.05		
2	TIU	uorescent lighting equipment		13.9 0.5	14.7 0.5	1.25	17.4 0.5	18.4 0.5	0.95 1.00	\vdash	
3	NΛ	echanical - highest	\vdash	28.5	28.5	1.25	35.6	35.6	1.00		
4	IVIC	Mechanical		18.9	18.9	1.00	18.9	18.9	1.00		
5				0.0	0.0	0.00	0.0	0.0			
6	6 0.0				0.0	0.00	0.0	0.0			
7				0.0	0.0	0.00	0.0	0.0			
8					0.0	0.00	0.0	0.0			
	Total Demand Loads						72.5	73.4			
<u> </u>	Spare Capacity 25%						18.1	18.3			446 :
l	I ota	l Design Loads				90.6	91.7	0.99	Amps=	110.4	

EXISTING PANELBOARD NWB1-E02

		LIGHTING A		APPLIAN						SHEET		
	P	anel Tag			B-NWB1-E		anel Loc		ELEC. RM NW - LEVEL B1			
١		nal Phase to Neutra			277	<u> </u>	Phase		3		LVLLDI	
N	lomir	nal Phase to Phase	Volta	ge>	480		Wires	s:	4			
Pos	Ph.	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Rer	narks	
1	Α	LIGHTING	_	EXIT SIGNS		va	0.95	95	100			
2	Α	LIGHTING	1	STAIR 1	400	va	0.95	380	400			
3	В	LIGHTING	1	EGRESS	3300	va	0.95	3135	3300			
5	B C	LIGHTING LIGHTING	1	STAIR 4 MECH/ELEC	200 400	va	0.95 0.95	190 380	200 400			
6	С	LIGHTING	1	L107	1500	va va	0.95	1425	1500			
7	A	LIGHTING	1 1	EXIT SIGNS		va	0.95	95	100			
8	Α	SPARE			0	W		0	0			
9	В	LIGHTING	1	GRESS L-0	1300	va	0.95	1235	1300			
10	В	SPARE			0	W		0	0			
11	C	LIGHTING	1	MECH/ELEC		va	0.95	380	400			
12	С	SPARE			0	W		0	0			
13	Α	SPARE			0	W		0	0			
14 15	A B	SPARE SPARE	1		0	w w		0	0	 		
16	В	SPARE	1		0	W		0	0	 		
17	С	SPARE	1		0	W		0	0			
18	C	SPARE			0	w		0	0	İ		
19	Α	SPARE			0	W		0	0			
20	Α	SPARE			0	W		0	0			
21	В	SPARE			0	W		0	0			
22	В	SPARE			0	W		0	0			
23	С	SPARE			0	W		0	0			
24	C A	SPARE SPARE			0	W		0	0			
25 26	A	SPARE			0	w		0	0			
27	В	SPARE			0	W		0	0			
28	В	SPARE			0	w		0	0			
29	C	SPARE			0	W		0	0			
30	С	SPARE			0	W		0	0			
31	Α	SPARE			0	W		0	0			
32	Α	SPARE			0	W		0	0			
33	В	SPARE			0	W		0	0			
34	В				0	W		0	0			
35 36	С	SPARE 			0	W		0	0			
37	A	SPARE	1		0	W		0	0			
38	Α	SPARE			0	w		0	0			
39	В	SPARE			0	W		0	0			
40	В	==			0	W		0	0			
41	С	SPARE			0	W		0	0			
42	С				0	W		0	0	ļ., .		
PAN	EL T	OTAL						7.3	7.7	Amps=	9.3	
PHA		OADING						kW	kVA	%	Amps	
		HASE TOTAL	Α					0.6	0.6	8%	2.2	
		HASE TOTAL	В					4.6	4.8	62%	17.3	
<u> </u>	Pŀ	HASE TOTAL	С					2.2	2.3	30%	8.3	
LOA	D C	ATAGORIES		Conn	ected		Dei	mand				
				kW	kVA	DF	kW	kVA	PF			
1	fl	uorescent lighting	1	7.3	7.7	1.25	9.1	9.6	0.95			
2			1	0.0	0.0	0.00	0.0	0.0				
3			1-	0.0	0.0	0.00	0.0	0.0		 		
5			1-	0.0	0.0	0.00	0.0	0.0		 		
	6			0.0	0.0	0.00	0.0	0.0		 		
-	7			0.0	0.0	0.00	0.0	0.0		 		
8					0.0	0.00	0.0	0.0				
	Total	Demand Loads		0.0			9.1	9.6				
	Sp	pare Capacity		25%			2.3	2.4				
	Tota	l Design Loads					11.4	12.0	0.95	Amps=	14.5	

REVISED PANELBOARD NWB1-E02

Panel Tag			LIGHTING A		APPLIAN						SHEET		
Nominal Phase to Neutral Voltage> A80 Wires: 4		P								ELEC. RM NW - LEVEL B1			
Pos Ph. Load Type		lomir	nal Phase to Neutra	l Volta	age>	277		Phase	e:	3			
1													
2 A LIGHTING 1 STAIR 1 400 va 0.95 380 400 3 B LIGHTING 1 STAIR 4 200 va 0.95 3135 3300 4 B LIGHTING 1 STAIR 4 200 va 0.95 190 200 5 C LIGHTING 1 MECH/ELEC 400 va 0.95 380 400 7 A LIGHTING 1 LIBRARY 460 va 0.95 380 400 8 A SPARE 0 va 0.95 95 100 9 B LIGHTING 1 STAIR 5 100 va 0.95 95 100 9 B LIGHTING 1 STAIR 5 100 va 0.95 95 100 10 B SPARE 0 va 0.95 1116 1175 11 C LIGHTING 1 MECH/ELEC 400 va 0.95 380 400 12 C SPARE 0 va 0.95 380 400 13 A SPARE 0 va 0.95 380 400 14 A SPARE 0 va 0.95 380 400 15 B SPARE 0 va 0.95 380 400 16 B SPARE 0 va 0.95 380 400 17 C SPARE 0 va 0.95 380 400 18 C SPARE 0 va 0 0 19 A SPARE 0 va 0 0 19 A SPARE 0 va 0 0 19 A SPARE 0 va 0 0 10 A SPARE 0 va 0 0 10 A SPARE 0 va 0 0 10 A SPARE 0 va 0 0 18 C SPARE 0 va 0 0 19 A SPARE 0 va 0 0 20 A SPARE 0 va 0 0 21 B SPARE 0 va 0 0 22 B SPARE 0 va 0 0 23 C SPARE 0 va 0 0 24 C SPARE 0 va 0 0 25 A SPARE 0 va 0 0 26 A SPARE 0 va 0 0 27 B SPARE 0 va 0 0 28 S SPARE 0 va 0 0 29 C SPARE 0 va 0 0 30 C SPARE 0 va 0 0 31 A SPARE 0 va 0 0 32 C SPARE 0 va 0 0 33 B SPARE 0 va 0 0 34 B SPARE 0 va 0 0 35 C SPARE 0 va 0 0 36 C SPARE 0 va 0 0 37 A SPARE 0 va 0 0 44 C SPARE 0 va 0 0 45 C SPARE 0 va 0 0 46 C SPARE 0 va 0 0 47 C SPARE 0 va 0 0 48 C SPARE 0 va 0	-										Rer	narks	
3 B LIGHTING		_		_									
4 B LIGHTING 1 STAIR 4 200 va 0.95 190 200				_									
S C LIGHTING 1 MECH/ELEC 400 va 0.95 380 400	-	_		_									
Total Demand Loads	5	_	LIGHTING	1	MECH/ELEC		va	0.95					
B A SPARE 0 w 0 0 0 0 0 0 0 0	-	_											
9 B LIGHTING		_		1	EXIT SIGNS			0.95					
10	-			1	GRESS L-0			0.95					
12 C SPARE	_			† †	0.1.20020			0.00					
13	11		LIGHTING	1	MECH/ELEC	400	va	0.95	380	400			
14	-								_				
15	-	_		<u> </u>									
16 B						_			_				
17	-												
19	-	С	SPARE							0			
20	-						W						
21 B	-	_				_							
22 B		_		1									
23 C SPARE	-												
25	-												
26	24	С				0	W		0	0			
27 B SPARE		_											
28 B				1									
29 C SPARE	-	_											
30 C SPARE 0 w 0 0 0	-			1									
32	-					0	W		0	0			
33 B SPARE 0 W 0 0 0 34 B SPARE 0 W 0 0 0 35 C SPARE 0 W 0 0 0 36 C SPARE 0 W 0 0 0 37 A SPARE 0 W 0 0 0 38 A SPARE 0 W 0 0 0 39 B SPARE 0 W 0 0 0 40 B SPARE 0 W 0 0 0 41 C SPARE 0 W 0 0 0 41 C SPARE 0 W 0 0 0 42 C SPARE 0 W 0 0 0 42 C SPARE 0 W 0 0 0 PANEL TOTAL 6.2 6.6 Amps= 7. PHASE LOADING	-						W						
34 B SPARE	-	_											
35 C SPARE 0 w 0 0 0 36 C SPARE 0 w 0 0 0 0 37 A SPARE 0 w 0 0 0 38 A SPARE 0 w 0 0 0 38 A SPARE 0 w 0 0 0 39 B SPARE 0 w 0 0 0 39 B SPARE 0 w 0 0 0 30 30 30 30				1									
36 C SPARE 0 w 0 0 0 37 A SPARE 0 w 0 0 0 0 38 A SPARE 0 w 0 0 0 0 39 B SPARE 0 w 0 0 0 0 0 0 0 0	_								_				
38 A SPARE 0 W 0 0 0 0 0 0 0 0		_											
SPARE O W O O O O O O O O O O	-	_				0	W		0				
A0 B SPARE				<u> </u>									
A1 C SPARE	_	_		-					_	_			
A	-	_		\vdash									
PHASE LOADING	-	_		<u> </u>									
PHASE TOTAL A 0.6 0.6 9% 2. PHASE TOTAL B 4.4 4.7 71% 16 PHASE TOTAL C 1.2 1.3 20% 4. LOAD CATAGORIES Connected Demand De	PAN	EL T	OTAL						6.2	6.6	Amps=	7.9	
PHASE TOTAL A 0.6 0.6 9% 2. PHASE TOTAL B 4.4 4.7 71% 16 PHASE TOTAL C 1.2 1.3 20% 4. LOAD CATAGORIES Connected Demand De	PHA	SEI	OADING						kW	kVA	%	Amps	
PHASE TOTAL C 1.2 1.3 20% 4. LOAD CATAGORIES Connected Demand D		PH	IASE TOTAL	Α								2.2	
LOAD CATAGORIES Connected Demand kW kVA DF kW kVA PF 1 fluorescent lighting 6.2 6.6 1.25 7.8 8.2 0.95 2 0.0 0.0 0.00 0.0 0.0 0.0 3 0.0 0.0 0.00 0.0 0.0 0.0 4 0.0 0.0 0.00 0.0 0.0 0.0 5 0.0 0.0 0.00 0.0 0.0 0.0 6 0.0 0.0 0.00 0.0 0.0 0.0 7 0.0 0.0 0.00 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 7.8 8.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <td></td> <td>PH</td> <td>IASE TOTAL</td> <td>В</td> <td></td> <td></td> <td></td> <td></td> <td>4.4</td> <td>4.7</td> <td>71%</td> <td>16.9</td>		PH	IASE TOTAL	В					4.4	4.7	71%	16.9	
kW kVA DF kW kVA PF 1 fluorescent lighting 6.2 6.6 1.25 7.8 8.2 0.95 2 0.0 0.0 0.00 0.0 0.0 0.0 3 0.0 0.0 0.00 0.0 0.0 0.0 4 0.0 0.0 0.00 0.0 0.0 0.0 5 0.0 0.0 0.00 0.0 0.0 0.0 6 0.0 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 7.8 8.2 0.0 <td><u></u></td> <td>PH</td> <td>IASE TOTAL</td> <td>C</td> <td></td> <td></td> <td><u> </u></td> <td></td> <td>1.2</td> <td>1.3</td> <td>20%</td> <td>4.6</td>	<u></u>	PH	IASE TOTAL	C			<u> </u>		1.2	1.3	20%	4.6	
1 fluorescent lighting 6.2 6.6 1.25 7.8 8.2 0.95 2 0.0 0.0 0.00 0.0 0.0 0.0 3 0.0 0.0 0.00 0.0 0.0 0.0 4 0.0 0.0 0.00 0.0 0.0 0.0 5 0.0 0.0 0.00 0.0 0.0 0.0 6 0.0 0.0 0.00 0.0 0.0 0.0 7 0.0 0.0 0.00 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 7.8 8.2 8.2 8.2	LOA	D CA	TAGORIES										
2 0.0 0.0 0.00 0.0 0.0 3 0.0 0.0 0.00 0.0 0.0 4 0.0 0.0 0.00 0.0 0.0 5 0.0 0.0 0.00 0.0 0.0 6 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 7.8 8.2	<u> </u>			1									
3 0.0 0.0 0.0 0.0 0.0 4 0.0 0.0 0.0 0.0 0.0 5 0.0 0.0 0.0 0.0 0.0 6 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 7.8 8.2		flu	uorescent lighting							0.95			
4 0.0 0.0 0.0 0.0 0.0 5 0.0 0.0 0.0 0.0 0.0 6 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 7.8 8.2				 									
5 0.0 0.0 0.0 0.0 0.0 6 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 7.8 8.2													
7 0.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 7.8 8.2					0.0		0.00	0.0	0.0				
8 0.0 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 7.8 8.2													
Total Demand Loads 7.8 8.2	-												
	_	Total	Demand Loads		0.0	0.0	0.00						
Spare Capacity 75% 5.8 6.1								5.8	6.1				
										0.95	Amps=	17.3	

EXISTING PANELBOARD NW02-N02

		LIGHTING A		APPLIAN						SHEET	
	Р	anel Tag			B-NW02-N		anel Loc		ELEC. RM NW LEVEL 02		
1		nal Phase to Neutra			277		Phase		3		
	_	al Phase to Phase	_		480		Wires		4		
Pos		Load Type	Cat.		Load	Units	I. PF	Watts	VA	Ren	narks
2	A	MECH FTU LIGHTING	1	WEST EST OFFICE	3900 2700	va va	1.00 0.95	3900 2565	3900 2700		
3	В		2	WEST	3200	va	1.00	3200	3200		
4	В	LIGHTING	1	W CORRIDO	1900	va	0.95	1805	1900		
5	С		2	WEST	2400	va	1.00	2400	2400		
6	C	LIGHTING	1	W OFFICES	1500	va	0.95	1425	1500		
7 8	A	SPARE LIGHTING	1	NW ROOMS	900	w va	0.95	0 855	900		
9	В	SPARE	+ '-	W ROOME	0	W	0.55	0	0		
10	В	LIGHTING	1	NTRAL COF	2300	va	0.95	2185	2300		
11	С	SPARE			0	W		0	0		
12	C	LIGHTING SPARE	1	LEAR STOR		va	0.95	570	600		
13 14	A	SPARE			0	W W		0	0		
15	В				0	w		0	0		
16	В	SPARE			0	W		0	0		
17	С				0	W		0	0		
18	C	SPARE SPARE			0	W		0	0		
19 20	A	SPARE	1		0	W W		0	0		
21	В	SPARE			0	W		0	0		
22	В	SPARE			0	W		0	0		
23	С	SPARE			0	W		0	0		
24 25	C A	SPARE SPARE			0	W		0	0		
26	A	SPARE			0	W W		0	0		
27	В	SPARE			0	w		0	0		
28	В	SPARE			0	W		0	0		
29	С	SPARE			0	W		0	0		
30 31	C A	SPARE SPARE			0	W		0	0		
32	A	SPARE			0	W W		0	0		
33	В	SPARE			0	W		0	0		
34	В	SPARE			0	W		0	0		
35	С	SPARE			0	W		0	0		
36 37	C A	SPARE SPARE			0	W		0	0		
38	A	SPARE			0	W W		0	0		
39	В	SPARE			0	w		0	0		
40	В	SPARE			0	W		0	0		
41	С	SPARE	1		0	W		0	0		
42 PAN	C IFI T	SPARE OTAL	1		0	W		0 18.9	0 19.4	Amps=	23.3
				<u> </u>							
PHA		OADING	^					kW	kVA	% 30%	Amps
		HASE TOTAL	A B					7.3 7.2	7.5 7.4	39% 38%	27.1 26.7
		ASE TOTAL	C					4.4	4.5	23%	16.2
LOAD CATAGORIES				Conne	ected		Der	mand	-		
	OF	OONIEO	1	kW	kVA	DF	kW	kVA	PF		
1	flu	orescent lighting		9.4	9.9	1.25	11.8	12.4	0.95		
2	m	echanical largest		9.5	9.5	1.25	11.9	11.9	1.00		
3		mechanical		0.0	0.0	1.00	0.0	0.0			
5			1	0.0	0.0	0.00	0.0	0.0			
6			1	0.0	0.0	0.00	0.0	0.0			
7				0.0	0.0	0.00	0.0	0.0			
8				0.0	0.0	0.00	0.0	0.0			
	Total Demand Loads Spare Capacity						23.6	24.3			
		ara Canacity		25%			5.9	6.1			

REVISED PANELBOARD NW02-N02

		LIGHTING A		APPLIAN						SHEET	
	Р	anel Tag			B-NW02-N		anel Loc			RM NW L	EVEL 02
	lomi	nal Phase to Neutra	l Volta	age>	277		Phase		3		
		nal Phase to Phase	Volta		480		Wires		4		
Pos		Load Type	Cat.		Load	Units	I. PF	Watts	VA	Rer	narks
1	Α	MECH FTU	2	WEST	3900	va	1.00	3900	3900		
2	A	LIGHTING		EST OFFICE	2700	va	0.95	2565	2700		
3 4	B B	 LIGHTING	1	WEST W CORRIDO	3200 1900	va va	1.00 0.95	3200 1805	3200 1900		
5	С		2	WEST	2400	va	1.00	2400	2400		
6	C	LIGHTING		W OFFICES	935	va	0.95	888	935		
7	Α	SPARE			0	W		0	0		
8	Α	LIGHTING	1	NW ROOMS	900	va	0.95	855	900		
9	В	SPARE			0	W		0	0		
10	<u>B</u>	LIGHTING	1	NTRAL COP		va	0.95	2185	2300		
11	С	SPARE	1	LEAD CTOD	0	W	0.05	0	0		
12 13	C A	LIGHTING SPARE	1	LEAR STOR	600 0	va	0.95	570 0	600		
14	A	LIGHTING	1	GALLERIA	340	W W	0.95	340	358		
15	В		+ '	J, LLLINIA	0	W	5.55	0	0		
16	В	LIGHTING	1	GALLERIA	1640	w	0.95	1640	1726	1	
17	С	<u></u>			0	W		0	0		
18	С	SPARE			0	W		0	0		
19	Α	SPARE	1		0	W		0	0		
20	Α	SPARE	-		0	W		0	0		
21	В	SPARE			0	W		0	0		
22	B C	SPARE			0	W		0	0		
23 24	С	SPARE SPARE			0	W W		0	0		
25	A	SPARE			0	W		0	0		
26	Α	SPARE			0	w		0	0		
27	В	SPARE			0	W		0	0		
28	В	SPARE			0	W		0	0		
29	С	SPARE			0	W		0	0		
30	С	SPARE			0	W		0	0		
31	Α	SPARE	-		0	W		0	0		
32	A	SPARE			0	W		0	0		
33	B B	SPARE SPARE	1		0	W W		0	0		
35	С	SPARE	1		0	W		0	0		
36	C	SPARE	1		0	w		0	0		
37	A	SPARE			0	W		0	0		
38	Α	SPARE			0	W		0	0		
39	В	SPARE			0	W		0	0		
40	В	SPARE			0	W		0	0		
41	С	SPARE	-		0	W		0	0	-	
42 DAN	C ELT	SPARE OTAL	1		0	W		0 20.3	0 20.9	Amps=	25.2
											25.2
PHA		OADING	 					kW	kVA	%	Amps
		HASE TOTAL	A					7.7	7.9	38%	28.4
		HASE TOTAL	B					8.8 3.9	9.1 3.9	44% 19%	32.9 14.2
=			<u> </u>						ა.ყ	1370	14.2
LOA	LOAD CATAGORIES			Conne				mand			
1	fl.	uorescent lighting	+	kW 10.8	kVA 11.4	DF 1.25	kW 13.6	kVA 14.3	PF 0.95		
2		nechanical largest	1	9.5	9.5	1.25	11.9	11.9	1.00	 	
3	- ''	mechanical	1	0.0	0.0	1.00	0.0	0.0	1.00		
4			1	0.0	0.0	0.00	0.0	0.0			
5				0.0	0.0	0.00	0.0	0.0			
6				0.0	0.0	0.00	0.0	0.0			
7			0.0	0.0	0.00	0.0	0.0				
8 Total Demand Loads				0.0	0.0	0.00	0.0	0.0			
		Demand Loads Dare Capacity	50%			25.4 12.7	26.1 13.1				
		are Capacity I Design Loads	1	3070			38.2	39.2	0.97	Amps=	47.2
<u> </u>	1 016	ii Dosigii Luaus					JU.Z	JJ.Z	0.31	Amps-	71.4

EXISTING PANELBOARD NE02-N04

Panel Tag		LIGHTING AND APPLIANCE PANELBOARD SIZING WORKSHEET											
Nominal Phase to Neutral Voltage		Р	anel Tag		>	CB-NE02-N	Pa	anel Loc	ation:	ELEC.	RM NE -L	EVEL 02	
Nominal Phase to Phase Voltage	N		•								<u> </u>		
Fost Pin								Wires	3:				
1	Pos	Ph.	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Rer	narks	
3 B	1	Α		2	EAST	4800	VA	1.00	4800	4800			
4 B LICHTING 1 S. FOYER 2400 VA 0.95 2280 2400 C		Α	LIGHTING	1	S. FOYER		VA	0.95					
S C 2 EAST 2600 VA 1.00 2600 2600				_									
C			LIGHTING	_									
T													
R				+ '-	ENTRAL OF			0.95					
9 B				1	LOCKERS			0.95					
10				† ·	LOGINEINO			0.00					
11 C		В		1	NE ROOMS			0.95					
13	11	С	SPARE			0	W		0	0			
14				1	E. FOYER		VA	0.95					
15 B				ļ.,			_			_			
16	-			1	RM. 217			0.95					
17 C				1	DM 212	_	_	0.05		_			
The color of the	-		LIGHTING 	+	INIVI. Z I 3			0.90			 		
19 A SPARE			LIGHTING	1	RM. 212			0.95			 		
20				Ť	1 _			2.00					
21 B				1	RM. 222			0.95					
23 C SPARE	21	В	SPARE			0	W		0	0			
C	-			3	ELEC. CLOS	500	VA	1.00	500	500			
25							W						
26	-			-									
27 B SPARE				-									
28	-			1					_				
29	-			1									
30													
32		С				0	w		0	0			
33 B SPARE 0 W 0 0 0 0 0 0 0 0	31	Α				0	W		0	0			
34 B SPARE 0 W 0 0 0 0 0 0 0 0	-					0	W		0	0			
35 C SPARE 0 w 0 0 0 36 C SPARE 0 w 0 0 0 0 37 A SPARE 0 w 0 0 0 38 A SPARE 0 w 0 0 0 38 A SPARE 0 w 0 0 0 39 B SPARE 0 w 0 0 0 0 40 B SPARE 0 w 0 0 0 0 41 C SPARE 0 w 0 0 0 0 42 C SPARE 0 w 0 0 0 0 0 0 0 0													
36 C SPARE 0 W 0 0 0													
37 A SPARE 0 W 0 0 0				1									
38 A SPARE O W O O O	-					_			_				
39 B SPARE 0 W 0 0 0 0 0 0 0 0	-												
40 B SPARE 0 W 0 0 0													
A	40	В				0	W		0	0			
PANEL TOTAL 22.8 23.5 Amps= 28.3							W						
PHASE LOADING		_				0	W				<u> </u>		
PHASE TOTAL A 10.3 10.6 45% 38.3 PHASE TOTAL B 5.0 5.2 22% 18.8 PHASE TOTAL C 7.4 7.7 33% 27.8 LOAD CATAGORIES Connected Demand	PAN	EL T	OTAL						22.8	23.5	Amps=	28.3	
PHASE TOTAL A 10.3 10.6 45% 38.3 PHASE TOTAL B 5.0 5.2 22% 18.8 PHASE TOTAL C 7.4 7.7 33% 27.8 LOAD CATAGORIES Connected Demand	PHA	SE L	OADING						kW	kVA	%	Amps	
PHASE TOTAL C 7.4 7.7 33% 27.8 LOAD CATAGORIES Connected Demand				_							45%		
Connected Demand										5.2			
kW kVA DF kW kVA PF 1 fluorescent lighting 14.2 14.9 1.25 17.7 18.6 0.95 2 mechanical largest 8.1 8.1 1.25 10.1 10.1 1.00 3 equipment 0.5 0.5 1.00 0.5 0.5 1.00 4 0.0 0.0 0.00 0.0 0.0 0.0 5 0.0 0.0 0.00 0.0 0.0 0.0 6 0.0 0.0 0.00 0.0 0.0 0.0 7 0.0 0.0 0.00 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 28.3 29.3 29.3 Spare Capacity 25% 7.1 7.3	<u> </u>	PHASE TOTAL							7.4	7.7	33%	27.8	
1 fluorescent lighting 14.2 14.9 1.25 17.7 18.6 0.95 2 mechanical largest 8.1 8.1 1.25 10.1 10.1 1.00 3 equipment 0.5 0.5 1.00 0.5 0.5 1.00 4 0.0 0.0 0.00 0.0 0.0 0.0 5 0.0 0.0 0.00 0.0 0.0 0.0 6 0.0 0.0 0.00 0.0 0.0 0.0 7 0.0 0.0 0.00 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 28.3 29.3 29.3 29.3 Spare Capacity 25% 7.1 7.3 7.3	LOA	D C	ATAGORIES		Conne	ected		Der	mand				
2 mechanical largest 8.1 8.1 1.25 10.1 10.1 1.00 3 equipment 0.5 0.5 1.00 0.5 0.5 1.00 4 0.0 0.0 0.00 0.0 0.0 0.0 5 0.0 0.0 0.00 0.0 0.0 0.0 6 0.0 0.0 0.00 0.0 0.0 0.0 7 0.0 0.0 0.00 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 28.3 29.3 29.3 Spare Capacity 25% 7.1 7.3													
3 equipment 0.5 0.5 1.00 0.5 1.00 4 0.0 0.0 0.00 0.0 0.0 0.0 5 0.0 0.0 0.0 0.0 0.0 0.0 6 0.0 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 28.3 29.3 29.3 29.3 Spare Capacity 25% 7.1 7.3 7.3				lacksquare									
4 0.0 0.0 0.00 0.0 0.0 5 0.0 0.0 0.00 0.0 0.0 6 0.0 0.0 0.00 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 28.3 29.3 Spare Capacity 25% 7.1 7.3		m		+									
5 0.0 0.0 0.00 0.0 0.0 6 0.0 0.0 0.00 0.0 0.0 7 0.0 0.0 0.00 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 28.3 29.3 Spare Capacity 25% 7.1 7.3			equipment	+						1.00	 		
6 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0.00 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 28.3 29.3 Spare Capacity 25% 7.1 7.3				+							-		
7 0.0 0.0 0.00 0.0 0.0 8 0.0 0.0 0.00 0.0 0.0 Total Demand Loads 28.3 29.3 Spare Capacity 25% 7.1 7.3				+			_				 		
8 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 28.3 29.3 Spare Capacity 25% 7.1 7.3				1									
Total Demand Loads 28.3 29.3 Spare Capacity 25% 7.1 7.3				1									
Spare Capacity 25% 7.1 7.3	_	Total	Demand Loads										
Total Design Loads 35.4 36.6 0.97 Amps= 44.0		Sp	pare Capacity				7.3						
		Tota	al Design Loads					35.4	36.6	0.97	Amps=	44.0	

REVISED PANELBOARD NE02-N04

		LIGHTING A		APPLIAN						SHEET	
	Р	anel Tag			CB-NE02-N		anel Loc			RM NE -L	EVEL 02
١		nal Phase to Neutra			277		Phase		3		
N	lomir	nal Phase to Phase	Voltaç	ge>	480		Wires):	4		
Pos	Ph.	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Rer	narks
1	Α	MECH FTU	2	EAST	4800	VA	1.00	4800	4800		
2	Α	SPARE				VA	0.95	0	0		
3	В		2	EAST	700	VA	1.00	700	700		
5	B C	SPARE 	2	EAST	2600	VA VA	0.95 1.00	0 2600	0 2600		
6	C	LIGHTING	_	ENTRAL OF	3100	VA	0.95	2945	3100		
7	A	SPARE	+-	EIVIIIO (E OI	0	w	0.00	0	0		
8	Α	LIGHTING	1	LOCKERS	800	VA	0.95	760	800		
9	В	SPARE			0	W		0	0		
10	В	LIGHTING	1	NE ROOMS	300	VA	0.95	285	300		
11	С	SPARE			0	W		0	0		
12	С	LIGHTING	1	E. FOYER	1300	VA	0.95	1235	1300		
13	A	SPARE	+ -	DM 047	0	W	0.05	0	0		
14 15	A B	LIGHTING 	1	RM. 217	1900 0	VA w	0.95	1805 0	1900 0	-	
16	В	LIGHTING	1	RM. 213	1300	VA	0.95	1235	1300		
17	Ċ		†	111111 210	0	W	0.00	0	0		
18	Ċ	LIGHTING	1	RM. 212	700	VA	0.95	665	700	İ	
19	A	SPARE			0	W		0	0		
20	Α	LIGHTING	1	RM. 222	1700	VA	0.95	1615	1700		
21	В	SPARE			0	W		0	0		
22	В	ALC-2B	3	ELEC. CLOS		VA	1.00	500	500		
23	С	SPARE			0	W		0	0		
24 25	C A	SPARE SPARE			0	W		0	0		
26	A	SPARE			0	w		0	0		
27	В	SPARE	1		0	W		0	0		
28	В	SPARE			0	w		0	0		
29	С	SPARE			0	w		0	0		
30	С	SPARE			0	W		0	0		
31	Α	SPARE			0	W		0	0		
32	Α	SPARE			0	W		0	0		
33	В	SPARE	-		0	W		0	0		
34 35	B C	SPARE SPARE			0	W		0	0		
36	C	SPARE			0	w		0	0		
37	A	SPARE	1		0	W		0	0		
38	Α	SPARE			0	w		0	0		
39	В	SPARE			0	W		0	0		
40	В	SPARE			0	W		0	0		
41	С	SPARE			0	W		0	0		
42	С	SPARE			0	W		0	0	A main - 1	00.7
PAN	EL I	OTAL						19.1	19.7	Amps=	23.7
PHA		.OADING						kW	kVA	%	Amps
		HASE TOTAL	Α					9.0	9.2	47%	33.2
		HASE TOTAL	В					2.7	2.8	14%	10.1
		HASE TOTAL	С	<u> </u>		<u> </u>		7.4	7.7	39%	27.8
LOAD CATAGORIES				Conne				mand			
<u> </u>				kW	kVA	DF	kW	kVA	PF	$oxed{\Box}$	
1		uorescent lighting	1	10.5	11.1	1.25	13.2	13.9	0.95		
2	m	echanical largest	1	8.1	8.1	1.25	10.1	10.1	1.00		
3 4		equipment	1	0.5 0.0	0.5 0.0	1.00	0.5 0.0	0.5 0.0	1.00		
5			1	0.0	0.0	0.00	0.0	0.0			
6			1	0.0	0.0	0.00	0.0	0.0			
7				0.0	0.0	0.00	0.0	0.0			
8					0.0	0.00	0.0	0.0			
Total Demand Loads				0.0			23.8	24.5			
		pare Capacity		25%			6.0	6.1		ļ <u>T</u>	
	Tota	l Design Loads	1				29.8	30.6	0.97	Amps=	36.9

EXISTING PANELBOARD NW03-E02

LIGHTING AND APPLIANCE PANELBOARD SIZING WORKSHEET												
	Р	anel Tag		B-NW03-E		anel Loc			ELEC. RM NW - LEVEL 03			
Nominal Phase to Neutral Voltage>					277		Phase: 3					
N	lomir	nal Phase to Phase	√olta	ge>	480		Wires	S:	4			
Pos	Ph.	Load Type	Cat.		Load	Units	I. PF	Watts	VA	Rer	narks	
1	Α	LIGHTING	1	EXIT SIGNS		va	0.95	95	100			
2	Α	LIGHTING	1	EXIT SIGNS		va	0.95	95	100			
3	В	LIGHTING	1	EGRESS	1300	va	0.95	1235	1300			
5	B C	LIGHTING LIGHTING	1	EGRESS MECH. EMER	1700 300	va	0.95 0.95	1615 285	1700 300			
6	С	LIGHTING		MECH. EMER	300	va va	0.95	285	300			
7	Α	LIGITING	Ė	VILOTI: LIVILI	0	W	0.00	0	0			
8	Α				0	w		0	0			
9	В				0	W		0	0			
10	В				0	W		0	0			
11	С				0	W		0	0			
12	C				0	W		0	0			
13	A				0	W		0	0			
14 15	A B				0	W		0	0			
16	В				0	W		0	0			
17	C				0	w		0	0			
18	C				0	W		0	0			
19	Α	•			0	W		0	0			
20	Α				0	W		0	0			
21	В				0	W		0	0			
22	В				0	W		0	0			
23	C C				0	W		0	0			
24 25	A				0	w		0	0			
26	A				0	W		0	0			
27	В				0	w		0	0			
28	В				0	w		0	0			
29	С				0	W		0	0			
30	С				0	W		0	0			
31	Α				0	W		0	0			
32	A				0	W		0	0			
33	B B				0	w		0	0			
35	С				0	W		0	0			
36	C				0	w		0	0			
37	Α				0	w		0	0			
38	Α				0	W		0	0			
39	В				0	W		0	0			
40	В				0	W		0	0			
41 42	C C				0	W W		0	0	-		
	_	OTAL	Ь	<u> </u>	U	vv		3.6	3.8	Amps=	4.6	
				ı								
PHA		OADING	L .					kW	kVA	%	Amps	
<u> </u>		HASE TOTAL	A					0.2	0.2	5%	0.7	
		HASE TOTAL	B					2.9 0.6	3.0 0.6	79% 16%	10.8 2.2	
E				<u> </u>					0.0	1070	۷.۷	
LOA	LOAD CATAGORIES		<u> </u>	Conne		<u> </u>		mand				
4	fl.	uorescent lighting	-	kW 3.6	4VA 3.8	DF 1.25	kW 4.5	kVA 4.8	PF 0.95			
2	ш	aorescent lighting	 	0.0	0.0	0.00	0.0	0.0	0.95	 		
3				0.0	0.0	0.00	0.0	0.0				
4				0.0	0.0	0.00	0.0	0.0				
5				0.0	0.0	0.00	0.0	0.0				
6				0.0	0.0	0.00	0.0	0.0				
7				0.0	0.0	0.00	0.0	0.0				
8			<u> </u>	0.0	0.0	0.00	0.0	0.0				
<u> </u>		Demand Loads	<u> </u>	0501			4.5	4.8				
		are Capacity I Design Loads	1	25%			1.1	1.2	0.05	Amna	7 1	
	rota	ii Desigii Loads	<u> </u>	L			5.6	5.9	0.95	Amps=	7.1	

REVISED PANELBOARD NW03-E02

	LIGHTING AND APPLIANCE PANELBOARD SIZING WORKSHEET													
	Р	anel Tag		>	B-NW03-E	Pa	Panel Location: ELEC. RM NW - LI							
		nal Phase to Neutra			277		Phase		3					
	Iomir	nal Phase to Phase		480		Wires		4						
Pos		Load Type	Cat.		Load	Units	I. PF	Watts	VA	Ren	narks			
1	Α	LIGHTING		EXIT SIGNS		va	0.95	95	100					
2	Α	LIGHTING		EXIT SIGNS		va	0.95	95	100					
3	B B	LIGHTING LIGHTING	1	EGRESS EGRESS	1300 1630	va va	0.95 0.95	1235 1549	1300 1630					
5	C	LIGHTING		MECH. EMER		va	0.95	285	300					
6	C	LIGHTING		ИЕСН. EMEI	300	va	0.95	285	300					
7	Α				0	W		0	0					
8	Α				0	W		0	0					
9	В				0	W		0	0					
10	В				0	W		0	0					
11	С				0	W		0	0					
12	C A				0	W		0	0					
14	A				0	W W		0	0					
15	В				0	w		0	0					
16	В				0	w		0	0					
17	С				0	W		0	0					
18	С				0	W		0	0					
19	Α				0	W		0	0					
20	Α		-		0	W		0	0					
21	В				0	W		0	0					
22	B C				0	W		0	0					
24	C				0	W W		0	0					
25	A				0	w		0	0					
26	Α				0	w		0	0					
27	В				0	W		0	0					
28	В				0	W		0	0					
29	С				0	W		0	0					
30	C				0	W		0	0					
31	A				0	W		0	0					
32 33	A B				0	W W		0	0					
34	В				0	W		0	0					
35	C				0	w		0	0					
36	С				0	w		0	0					
37	Α				0	W		0	0					
38	Α				0	W		0	0					
39	В				0	W		0	0					
40	В				0	W		0	0					
41	C				0	W W		0	0					
		OTAL	1			I 44		3.5	3.7	Amps=	4.5			
			1											
PHA		OADING	^					kW	kVA	% 5%	Amps			
\vdash		HASE TOTAL	A B					0.2 2.8	0.2 2.9	5% 79%	0.7 10.6			
-		HASE TOTAL	C					0.6	0.6	16%	2.2			
100				0	antad		D		0.0					
LUA	ט ט	ATAGORIES	-	Conne kW	ected kVA	DF	kW	mand kVA	PF					
1	fli	uorescent lighting	 	3.5	3.7	1.25	4.4	4.7	0.95					
2	110	and the second second		0.0	0.0	0.00	0.0	0.0	5.00					
3				0.0	0.0	0.00	0.0	0.0						
4				0.0	0.0	0.00	0.0	0.0						
5				0.0	0.0	0.00	0.0	0.0						
6				0.0	0.0	0.00	0.0	0.0						
7				0.0	0.0	0.00	0.0	0.0						
8	Tate	Domand	-	0.0	0.0	0.00	0.0	0.0						
-		Demand Loads pare Capacity	-	50%			4.4 2.2	4.7 2.3		 				
		l Design Loads	1	30%			6.6	7.0	0.95	Amps=	8.4			
	. 516	55.g// L0000		I	I		5.5		3.00	pu=	<u> </u>			

EXISTING PANELBOARD NEB1-N04

LIGHTING AND APPLIANCE PANELBOARD SIZING WORKSHEET													
	P	anel Tag			CB-NEB1-N		anel Loc			VEL B1			
N		nal Phase to Neutral		277		Phase		3					
		nal Phase to Phase		-	480		Wires	S:	4				
Pos	Ph.	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Rer	narks		
1	Α	LIGHTING	1	SE OFFICES	3600	va	0.95	3420	3600				
2	Α	LIGHTING	1	& SE WAL	3100	va	0.95	2945	3100				
3	В	LIGHTING	1	ALCOVE	1000	va	0.95	950	1000				
4	В	LIGHTING	1	STACKS	2900	va	0.95	2755	2900				
5	С	LIGHTING	1	LIBR. RDG	2300	va	0.95	2185	2300				
6	C A	LIGHTING LIGHTING	1	STACKS LIBR. RDG	3000	va	0.95	2850	3000 1300				
7 8	A	LIGHTING	1	STACKS	1300 3400	va va	0.95 0.95	1235 3230	3400				
9	В	LIGHTING	1	LIBR. RDG	1800	va	0.95	1710	1800				
10	В	LIGHTING	1	STACKS	2900	va	0.95	2755	2900				
11	С	LIGHTING	1	LIBR. RDG	1800	va	0.95	1710	1800				
12	С	LIGHTING	1	STACKS	2600	va	0.95	2470	2600				
13	Α	LIGHTING	1	LIBR. RDG	1800	va	0.95	1710	1800				
14	Α	LIGHTING	1	STACKS	3000	va	0.95	2850	3000				
15	В	LIGHTING	1	LIBR. RDG	1800	va	0.95	1710	1800				
16	В	LIGHTING	1	NE ROOMS	2600	va	0.95	2470	2600				
17	С	LIGHTING	1	LIBR. RDG	1800	va	0.95	1710	1800				
18 19	C A	ALC-L1B LIGHTING	1	ELEC. RM LIBR. RDG	500 1800	va va	1.00 0.95	500 1710	500 1800				
20	A	SPARE	<u> </u>	LIBIX. IXDO	0	W	0.93	0	0				
21	В	LIGHTING	1	LIBR. RDG	2300	va	0.95	2185	2300				
22	В	SPARE			0	W		0	0				
23	С	SPARE			0	W		0	0				
24	С	SPARE			0	W		0	0				
25	Α	SPARE			0	W		0	0				
26	Α	SPARE			0	W		0	0				
27	В				0	W		0	0				
28	В	SPARE 			0	W		0	0				
29 30	C C	SPARE			0	W		0	0				
31	A	SPARE			0	W		0	0				
32	Α	SPARE			0	W		0	0				
33	В	SPARE			0	W		0	0				
34	В	SPARE			0	W		0	0				
35	С	SPARE			0	W		0	0				
36	С	SPARE			0	W		0	0				
37	Α	MECH FTU	3	EAST	6500	va	1.00	6500	6500				
38	Α	SPARE		E 4 0 E	0	W	4.00	0	0				
39 40	B B	SPARE	3	EAST	4900 0	va	1.00	4900 0	4900 0				
41	C	SPARE 	3	EAST	4200	w va	1.00	4200	4200				
42	С	SPARE	٦		0	W		0	0				
		OTAL		1	-			58.7	60.9	Amps=	73.3		
PHA		OADING HASE TOTAL	٨					kW	kVA	% 40%	Amps		
-		HASE TOTAL	A B					23.6 19.4	24.5 20.2	40% 33%	88.4 72.9		
		HASE TOTAL	С					15.6	16.2	27%	58.5		
					t l		_		10.2		55.5		
LUA	LOAD CATAGORIES			Conne kW	ected kVA	DF	kW	mand kVA	PF				
1	fli	uorescent lighting		42.6	44.8	1.25	53.2	56.0	0.95				
2	- 110	equipment		0.5	0.5	1.00	0.5	0.5	1.00				
3	Me	echanical (Largest)		15.6	15.6	1.25	19.5	19.5	1.00				
4				0.0	0.0	0.00	0.0	0.0					
5				0.0	0.0	0.00	0.0	0.0					
6				0.0	0.0	0.00	0.0	0.0					
7				0.0	0.0	0.00	0.0	0.0					
8	Tc+-1	Domonallacida		0.0	0.0	0.00	0.0	0.0					
-		Demand Loads		250/			73.2	76.0					
		pare Capacity Il Design Loads		25%			18.3 91.5	19.0 95.0	0.96	Amps=	114.3		
Ь	1010	i Design Luaus					91.0	33.0	0.90	∠mbs≡	114.0		

REVISED PANELBOARD NEB1-N04

		LIGHTING A		APPLIAN						SHEET	
	Р	anel Tag		>	B-NEB1-N	Pa	anel Loc	ation:	FLFC.	RM NE LE	-VFI B1
Ν		nal Phase to Neutral		277		Phase: 3					
		nal Phase to Phase		0	480		Wires	3:	4		
Pos	Ph.	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Rer	narks
1	Α	LIGHTING	_	SE OFFICES		va	0.95	3420	3600		
2	Α	LIGHTING	1	LIBRARY	1196	W	0.95	1196	1259		
3	В	LIGHTING	1	ALCOVE	1000	va	0.95	950	1000		
4	В	LIGHTING	1	STACKS	2900	va	0.95	2755	2900		
5	С	LIGHTING	1	LIBRARY	1196	W	0.95	1196	1259		
6	С	LIGHTING	1	STACKS	3000	va	0.95	2850	3000		
7	Α	LIGHTING	1	LIBR. RDG	1300	va	0.95	1235	1300		
8	Α	LIGHTING	1	STACKS	3400	va	0.95	3230	3400		
9	В	LIGHTING	1	LIBR. RDG	1752	W	0.95	1752	1844		
10	B C	LIGHTING LIGHTING	1	STACKS LIBR. RDG	2900 1752	va	0.95	2755 1752	2900 1844		
12	С	LIGHTING	1	STACKS	2600	w va	0.95	2470	2600		
13	A	SPARE	† †	OTACKO	2000	va	0.95	0	0		
14	Α	LIGHTING	1	STACKS	3000	va	0.95	2850	3000		
15	В	SPARE	Ė			va	0.95	0	0		
16	В	LIGHTING	1	NE ROOMS	2600	va	0.95	2470	2600		
17	С	SPARE				va	0.95	0	0		
18	С	ALC-L1B	2	ELEC. RM	500	va	1.00	500	500		
19	Α	SPARE				va	0.95	0	0		· · · · ·
20	Α	SPARE			0	W		0	0		
21	В	SPARE			0	va	0.95	0	0		
22	В	SPARE			0	W		0	0		
23	С	SPARE	-		0	W		0	0		
24	C	SPARE			0	W		0	0		
25 26	A	SPARE SPARE	-		0	W		0	0		
27	В				0	W W		0	0		
28	В	SPARE			0	W		0	0		
29	C				0	w		0	0		
30	Č	SPARE			0	w		0	0		
31	Α	SPARE			0	w		0	0		
32	Α	SPARE			0	W		0	0		
33	В	SPARE			0	W		0	0		
34	В	SPARE			0	W		0	0		
35	С	SPARE			0	W		0	0		
36	С	SPARE			0	W		0	0		
37	Α	MECH FTU	3	EAST	6500	va	1.00	6500	6500		
38	Α	SPARE		E 4 0 E	0	W	4.00	0	0		
39	ВВ	SPARE	3	EAST	4900	va	1.00	4900	4900		
40 41	С	OFARE 	3	EAST	0 4200	W	1.00	0 4200	0 4200		
42	С	SPARE	٦	LAGI	0	va w	1.00	0	0		
	_	OTAL		<u> </u>		**		47.0	48.6	Amps=	58.5
PHA		OADING						kW	kVA	%	Amps
		HASE TOTAL	A					18.4	19.1	39%	68.8
		HASE TOTAL	В					15.6	16.1	33%	58.3
		HASE TOTAL	С					13.0	13.4	28%	48.4
LOĀ	D C/	TAGORIES		Conne				mand			
				kW	kVA	DF	kW	kVA	PF		
1	flu	uorescent lighting		30.9	32.5	1.25	38.6	40.6	0.95		
2	N 4 -	equipment		0.5	0.5	1.00	0.5	0.5	1.00		
3	IVIE	chanical (Largest)		15.6	15.6	1.25	19.5	19.5	1.00		
5				0.0	0.0	0.00	0.0	0.0		 	
6			1	0.0	0.0	0.00	0.0	0.0		 	
7				0.0	0.0	0.00	0.0	0.0			
8				0.0	0.0	0.00	0.0	0.0			
_	Total	Demand Loads		0.0	0.0	0.00	58.6	60.6			
Spare Capacity 25%							14.7	15.2		1	
	Sr	vare Gapacity		23/0			14.7	13.2			

EXISTING PANELBOARD NWB2-N03(2)

LIGHTING AND APPLIANCE PANELBOARD SIZING WORKSHEET												
	P	anel Tag			B-NWB2-NO		anel Loc			PUMP ROOM		
N		nal Phase to Neutra		277	1,0	Phase		3	I INC	J1V1		
		al Phase to Phase			480		Wires		4			
Pos		Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Rer	narks	
43	Α	MECH FC-11	1	B2	800	va	1.00	800	800			
44	Α	SPARE			0	W		0	0			
45	В		1	B2	800	va	1.00	800	800			
46	В				0	W		0	0			
47	С		1	B2	800	va	1.00	800	800			
48	С				0	W		0	0			
49	Α	MECH FC-12	2	B2	800	va	1.00	800	800			
50	Α	SPARE			0	W	4.00	0	0			
51	В		2	B2	800	va	1.00	800	800			
52 53	B C		2	B2	0 800	W	1.00	0 800	0 800			
54	С		1 -	DZ	0	va w	1.00	0	0			
55	A	SPARE			0	W		0	0			
56	A	SPACE			0	W		0	0			
57	В				0	w		0	0			
58	В	<u></u>			0	W		0	0			
59	С				0	W		0	0			
60	С				0	W		0	0			
61	Α	SPARE			0	W		0	0			
62	Α	SPACE			0	W		0	0			
63	В				0	W		0	0			
64	В				0	W		0	0			
65	С				0	W		0	0			
66	C	 CDACE			0	W		0	0			
67 68	A	SPACE SPACE			0	W		0	0			
69	В	JFACL			0	W		0	0			
70	В				0	w		0	0			
71	C				0	w		0	0			
72	С				0	w		0	0			
73	Α	SPACE			0	W		0	0			
74	Α	SPACE			0	W		0	0			
75	В				0	W		0	0			
76	В				0	W		0	0			
77	С				0	W		0	0			
78	C				0	W		0	0			
79 80	A	SPACE SPACE	-		0	W		0	0			
81	В				0	W		0	0			
82	В				0	w		0	0			
83	C		T		0	w		0	0			
84	C				0	W		0	0			
								4.8	4.8	Amps=	5.8	
DLIA	SE I	OADING						kW	kVA	%	Amno	
ГПА		HASE TOTAL	Α					1.6	1.6	33%	Amps 5.8	
		ASE TOTAL	В					1.6	1.6	33%	5.8	
		ASE TOTAL	C					1.6	1.6	33%	5.8	
1.04				Conn	octod		Da	mand	. <u> </u>			
LOA	LOAD CATAGORIES			Conn kW	kVA	DF	kW	kVA	PF			
1		mech largest	+	2.4	2.4	1.25	3.0	3.0	1.00			
2		mechanical	T	2.4	2.4	1.00	2.4	2.4	1.00			
3	flu	orescent lighting		0.0	0.0	0.00	0.0	0.0				
4				0.0	0.0	0.00	0.0	0.0				
5				0.0	0.0	0.00	0.0	0.0				
6				0.0	0.0	0.00	0.0	0.0				
7				0.0	0.0	0.00	0.0	0.0				
8				0.0	0.0	0.00	0.0	0.0				
<u> </u>		Demand Loads		0501			5.4	5.4				
-		are Capacity		25%			1.4	1.4	4.00	Λ	0.4	
	ı ota	l Design Loads			L		6.8	6.8	1.00	Amps=	8.1	

REVISED PANELBOARD NWB2-N03(2)

Parel Tag			LIGHTING A		APPLIAN					<u> </u>	SHEET	
Nominal Phase to Neutral Voltage> Nominal Phase to Phase Voltage> Nominal Phase to Phase Voltage> A80 Wires: 4		P										OM
Pos Ph		lomi	nal Phase to Neutral	Volta	ıge>							
43 A MECH FC-11 1 B2 800 va 1.00 800 800	Ν	lomir			je>	480			S:	4		
44 A DIMMER RACK 1 3 EVEL 01 1430 w 0.95 1430 1505				Cat.			Units				Ren	narks
Mathematics				_								
146 B	-											
1	-				B2							
Method A Met				-	R2							
Main					D2							
51 B			MECH FC-12	_	B2							
52 B	50	Α	SPARE			0	W		0	0		
53 C				2	B2			1.00				
SA												
SS A SPARE		_		2	B2			1.00				
Section Sect												
57 B	-											
58 B						_			_	_		
59 C				М								
SPARE										_		
62 A SPACE		С				0	W		0	0		
63 B										_		
64 B												
65 C												
66 C C												
67 A SPACE 0 w 0 0 68 A SPACE 0 w 0 0 69 B 0 w 0 0 70 B 0 w 0 0 71 C 0 w 0 0 73 A SPACE 0 w 0 0 74 A SPACE 0 w 0 0 75 B 0 w 0 0 76 B 0 w 0 0 76 B 0 w 0 0 77 C 0 w 0 0 79 A SPACE 0 w 0 0 80 A SPACE 0 w 0 0 81<												
68 A SPACE						_			_			
69 B 0 w 0 0 70 B 0 w 0 0 71 C 0 w 0 0 72 C 0 w 0 0 73 A SPACE 0 w 0 0 74 A SPACE 0 w 0 0 75 B 0 w 0 0 76 B 0 w 0 0 76 B 0 w 0 0 77 C 0 w 0 0 78 C 0 w 0 0 80 A SPACE 0 w 0 0 81 B 0 w 0 0 82												
Total Demand Loads Figure 25% Figure 2												
72 C	70	В				0	W		0	0		
73						0	W		0	0		
74 A SPACE 0 W 0 0 75 B 0 W 0 0 76 B 0 W 0 0 77 C 0 W 0 0 79 A SPACE 0 W 0 0 80 A SPACE 0 W 0 0 81 B 0 W 0 0 82 B 0 W 0 0 83 C 0 W 0 0 84 C 0 W 0 0 84 C 0 W 0 0 PHASE TOTAL A 3.0 3.1 33% 11.2 PHASE TOTAL C 3.0 3.1 33% 11.2 LOAD CATAGORIES<							W					
Total Demand Loads Figure 25% Figure 2												
76 B 0 W 0 0 77 C 0 W 0 0 78 C 0 W 0 0 80 A SPACE 0 W 0 0 81 B 0 W 0 0 82 B 0 W 0 0 83 C 0 W 0 0 84 C 0 W 0 0 84 C 0 W 0 0 PHASE TOTAL A 3.0 3.1 33% 11.2 PHASE TOTAL B 3.0 3.1 33% 11.2 LOAD CATAGORIES Connected Demand Demand Image: Content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the conte												
Total Demand Loads Figure 25% Figure 2												
Tell Tell									_	_		
79 A SPACE 0 w 0 0 80 A SPACE 0 w 0 0 81 B 0 w 0 0 82 B 0 w 0 0 84 C 0 w 0 0 84 C 0 w 0 0 PHASE LOADING <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
STATE STAT												
82 B	80	Α	SPACE			0	W		0	0		
83 C	_						W			_		
B4 C 0 w 0 0												
PHASE LOADING				\vdash							-	
PHASE LOADING kW kVA % Amps PHASE TOTAL A 3.0 3.1 33% 11.2 PHASE TOTAL B 3.0 3.1 33% 11.2 PHASE TOTAL C Demand 1.2 LOAD CATAGORIES Connected Demand PF 1 mech largest 2.4 2.4 1.25 3.0 3.0 1.00 2 mechanical 2.4 2.4 1.00 2.4 2.4 1.00 3 fluorescent lighting 4.3 4.5 1.25 5.4 5.6 0.95 4 0.0 0.0 0.00 0.0 0.0 0.0 5 0.0 0.0 0.00 0.0 0.0 0.0 6 0.0 0.0 0.00 0.0 0.0 0.0 7 0.0 0.0 0.00 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0	04	U				U	W				Amns-	11 2
PHASE TOTAL A 3.0 3.1 33% 11.2 PHASE TOTAL B 3.0 3.1 33% 11.2 PHASE TOTAL C Demand 3.0 3.1 33% 11.2 LOAD CATAGORIES Connected Demand Demand 11.2 Demand Demand 11.2 1 mech largest 2.4 2.4 1.25 3.0 3.0 1.0				, ,								
PHASE TOTAL B 3.0 3.1 33% 11.2 PHASE TOTAL C Demand 3.0 3.1 33% 11.2 LOAD CATAGORIES Connected Demand Dem	PHA											
PHASE TOTAL C 3.0 3.1 33% 11.2 LOAD CATAGORIES Connected Demand Demand <td< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	-											
Connected Demand	-											
kW kVA DF kW kVA PF 1 mech largest 2.4 2.4 1.25 3.0 3.0 1.00 2 mechanical 2.4 2.4 1.00 2.4 2.4 1.00 3 fluorescent lighting 4.3 4.5 1.25 5.4 5.6 0.95 4 0.0 0.0 0.00 0.0 0.0 0.0 5 0.0 0.0 0.00 0.0 0.0 0.0 6 0.0 0.0 0.00 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 10.8 11.0 11.0 11.0 Spare Capacity 25% 2.7 2.8 2.8 2.7 2.8								1		J. I	J J J / 0	11.4
1 mech largest 2.4 2.4 1.25 3.0 3.0 1.00 2 mechanical 2.4 2.4 1.00 2.4 2.4 1.00 3 fluorescent lighting 4.3 4.5 1.25 5.4 5.6 0.95 4 0.0 0.0 0.00 0.0 0.0 0.0 5 0.0 0.0 0.00 0.0 0.0 0.0 6 0.0 0.0 0.00 0.0 0.0 0.0 7 0.0 0.0 0.00 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 0.0 Total Demand Loads Spare Capacity 25% 2.7 2.8 2.7 2.8	LUA	D CA	ATAGORIES				DE			DE	 	
2 mechanical 2.4 2.4 1.00 2.4 2.4 1.00 3 fluorescent lighting 4.3 4.5 1.25 5.4 5.6 0.95 4 0.0 0.0 0.00 0.0 0.0 0.0 5 0.0 0.0 0.0 0.0 0.0 0.0 6 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 10.8 11.0 Spare Capacity 25% 2.7 2.8	1		mech largest									
3 fluorescent lighting 4.3 4.5 1.25 5.4 5.6 0.95 4 0.0 0.0 0.00 0.0 0.0 5 0.0 0.0 0.0 0.0 0.0 6 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 10.8 11.0 Spare Capacity 25% 2.7 2.8												
4 0.0 0.0 0.0 0.0 0.0 5 0.0 0.0 0.0 0.0 0.0 6 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 10.8 11.0 Spare Capacity 25% 2.7 2.8		fl										
6 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 10.8 11.0 Spare Capacity 25% 2.7 2.8	4					0.0						
7 0.0 0.0 0.0 0.0 0.0 8 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 10.8 11.0 Spare Capacity 25% 2.7 2.8												
8 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 10.8 11.0 Spare Capacity 25% 2.7 2.8												
Total Demand Loads 10.8 11.0 Spare Capacity 25% 2.7 2.8												
Spare Capacity 25% 2.7 2.8	_	Total	Demand Loads	\vdash	0.0	0.0	0.00				 	
					25%						 	
					2070			13.5	13.8	0.97	Amps=	16.6

EXISTING PANELBOARD NWB2-N08

		LIGHTING A		APPLIAN						SHEET	
	P	anel Tag			B-NWB2-N		anel Loc			C. RM - LE	VFL B2
١		nal Phase to Neutra			277		Phase		3		
N	lomir	nal Phase to Phase		je>	480		Wires	3:	4		
Pos		Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Rer	narks
1	Α	SPARE	ļ.,	M 0700 A 0	0	W	0.05	0	0		
3	A B	LIGHTING SPARE	1	W STORAG	1800 0	va	0.95	1710	1800		
4	В	LIGHTING	1	S. STACKS	3500	w va	0.95	0 3325	0 3500		
5	C	SPARE	†	0.01710110	0	W	0.00	0	0		
6	С	LIGHTING	1	E. OFFICES	2000	va	0.95	1900	2000		
7	Α	SPARE			0	W		0	0		
8	Α	LIGHTING	1	STACKS	3400	va	0.95	3230	3400		
9 10	B B	SPARE LIGHTING	1	CTACKS	0	W	0.05	0	0		
11	C	SPARE	1	STACKS	3300 0	va w	0.95	3135 0	3300		
12	c	LIGHTING	1	STACKS	3300	va	0.95	3135	3300		
13	Α	SPARE			0	W		0	0		
14	Α	LIGHTING 1 STAC		STACKS	2900	va	0.95	2755	2900		
15	В	SPARE		07.0	0	W		0	0		
16	В	B LIGHTING 1 ST		STACKS	2000	va	0.95	1900	2000		
17 18	C	SPARE LIGHTING	1	STACKS	0 2700	w va	0.95	0 2565	0 2700		
19	A	SPARE	+	SIACKS	0	va W	บ.ฮอ	2363	0		
20	Α	LIGHTING	1	CORRIDOR	3600	va	0.95	3420	3600		
21	В	SPARE			0	W		0	0		
22	В	LIGHTING	1	N. ROOMS	3500	va	0.95	3325	3500		
23	С	SPARE			0	W		0	0		
24	C	LIGHTING	1	L201, L202	2000	va	0.95	1900	2000		
25 26	A A	SPARE ALC-L2A	2	ELEC. RM	0 500	w va	1.00	0 500	0 500		
27	В	SPARE	+ -	LLLO. IXIVI	0	W	1.00	0	0		
28	В	ALC-L2B	2	ELEC. RM	500	va	1.00	500	500		
29	С	SPARE			0	W		0	0		
30	С	SPARE			0	W		0	0		
31	Α	SPARE			0	W		0	0		
32 33	A B	SPARE SPARE	1		0	W		0	0		
34	В	SPARE	1		0	W		0	0		
35	C	SPARE			0	w		0	0		
36	С	SPARE			0	W		0	0		
37	Α	SPARE			0	W		0	0		
38	Α	SPARE			0	W		0	0		
39	В	SPARE	1		0	W		0	0		
40 41	B C	SPARE SPARE	1		0	W		0	0		
42	С	SPARE	1		0	W		0	0		
		OTAL	1					33.3	35.0	Amps=	42.1
DΠν	SEI	.OADING	1					kW	kVA	%	Amps
1.114		HASE TOTAL	Α					11.6	12.2	35%	44.0
		HASE TOTAL	В					12.2	12.8	37%	46.2
		HASE TOTAL	С					9.5	10.0	29%	36.1
LOA		ATAGORIES	ı	Conne	ected		Der	mand			
	_ 0/		1	kW	kVA	DF	kW	kVA	PF		
1	flu	uorescent lighting		32.3	34.0	1.25	40.4	42.5	0.95		
2		equipment		1.0	1.0	1.00	1.0	1.0	1.00		
3			 	0.0	0.0	0.00	0.0	0.0			
4 5			1	0.0	0.0	0.00	0.0	0.0		 	
6			1	0.0	0.0	0.00	0.0	0.0		 	
7			1	0.0	0.0	0.00	0.0	0.0			
8				0.0	0.0	0.00	0.0	0.0			
		Demand Loads					41.4	43.5			
		pare Capacity	1	25%			10.3	10.9		\Box	
	Tota	ll Design Loads					51.7	54.4	0.95	Amps=	65.4

REVISED PANELBOARD NWB2-E08

Ν		anel Tag		_	B-NWB2-N						
Ν					CB-NVVB2-N	l Pa	anel Loc	ation:	FLFC	C. RM - LE	VFL B2
		nal Phase to Neutra			277		Phase		3		<u> </u>
-	lomir	nal Phase to Phase	Voltag	ge>	480		Wires	3:	4		
Pos	Ph.	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Rer	narks
1	Α	SPARE			0	W		0	0		
2	Α	LIGHTING	1	W STORAG		va	0.95	1710	1800		
3	В	SPARE	—	O OTACKO	0	W	0.05	0	0		
5	B C	LIGHTING SPARE	1	S. STACKS	2160 0	W W	0.95	2160 0	2274 0		
6	С	LIGHTING	1	SE. OFFICES	2000	va	0.95	1900	2000		
7	A	SPARE	+ -	DE. 01110E	0	W	0.00	0	0		
8	Α	LIGHTING	1	STACKS	3400	va	0.95	3230	3400		
9	В	SPARE			0	W		0	0		
10	В	LIGHTING	1	STACKS	3300	va	0.95	3135	3300		
11	С	SPARE		071010	0	W		0	0		
12	C	LIGHTING			3300	va	0.95	3135	3300		
13 14	A	SPARE LIGHTING 1 STAC		STACKS	0 2900	W	0.95	0 2755	0 2900		
15	В	SPARE	++	SIACKS	0	va w	ບ.ສວ	0	0		
16	В	LIGHTING	1	STACKS	2000	va	0.95	1900	2000		
17	С	SPARE			0	W		0	0		
18	С	LIGHTING	1	STACKS	2700	va	0.95	2565	2700		
19	Α	SPARE			0	W		0	0		
20	Α	LIGHTING	1	CORRIDOR	2000	va	0.95	1900	2000		
21	В	SPARE	1	N DOOMC	0	W	0.05	0	0		
22	B C	LIGHTING SPARE	1	N. ROOMS	3500 0	va w	0.95	3325 0	3500 0		
24	С	LIGHTING	1	L201, L202	2000	va	0.95	1900	2000		
25	A	SPARE	+ '-	LZO1, LZOZ	0	W	0.55	0	0		
26	Α	ALC-L2A	2	ELEC. RM	500	va	1.00	500	500		
27	В	SPARE			0	W		0	0		
28	В	ALC-L2B	2	ELEC. RM	500	va	1.00	500	500		
29	С	SPARE			0	W		0	0		
30	C	LIGHTING	1	LIBR. RDG	1380	W	0.95	1380	1453		
31	Α	SPARE			0	W		0	0		
32	A B	SPARE SPARE			0	W W		0	0		
34	В	SPARE			0	W		0	0		
35	C	SPARE			0	W		0	0		
36	С	SPARE			0	W		0	0		
37	Α	SPARE			0	W		0	0		
38	Α	SPARE			0	W		0	0		
39	В	SPARE			0	W		0	0		
40 41	B C	SPARE SPARE			0	W		0	0		
42	C	SPARE			0	W		0	0		
		OTAL			U	VV		32.0	33.6	Amps=	40.5
			1								
PHA		OADING	1					kW	kVA	%	Amps
		HASE TOTAL	A B					10.1 11.0	10.6 11.6	32% 34%	38.3 41.8
		HASE TOTAL	С					10.9	11.5	34%	41.8
			+ -		1 1				11.0	U-7/0	71.0
LOA	D CA	ATAGORIES	1	Conne		רב		mand kVA	PF		
1	fl	uorescent lighting		kW 31.0	kVA 32.6	DF 1.25	kW 38.7	40.8	0.95		
2	- 110	equipment	1	1.0	1.0	1.00	1.0	1.0	1.00		
3				0.0	0.0	0.00	0.0	0.0			
4				0.0	0.0	0.00	0.0	0.0			
5				0.0	0.0	0.00	0.0	0.0			
6				0.0	0.0	0.00	0.0	0.0			
7				0.0	0.0	0.00	0.0	0.0			
8		Domondia		0.0	0.0	0.00	0.0	0.0			
	Total Demand Loads		1	1	l	1	39.7	41.8			
		pare Capacity		50%			19.9	20.9			

EXISTING PANELBOARD NWB2-E04

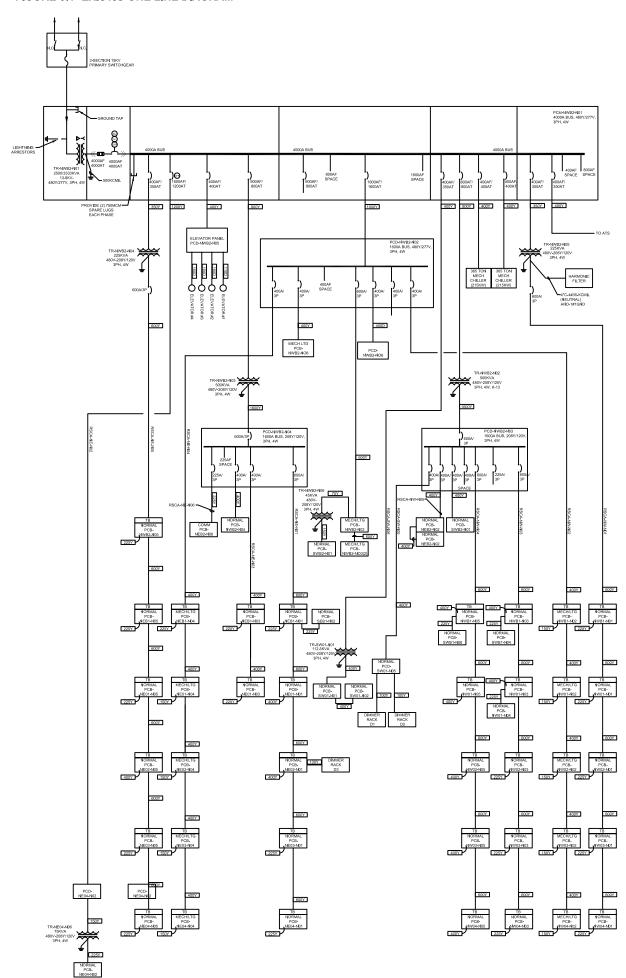
		LIGHTING A		APPLIAN						SHEET	
	P	anel Tag			B-NWB2-E		anel Loc		_		LEVEL B2
Ν		nal Phase to Neutral			277		Phase		3	l	LL VLL DZ
		al Phase to Phase		-	480		Wires		4		
Pos	Ph.	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Rer	narks
1	Α	LIGHTING	1	EXIT SIGNS	100	va	0.95	95	100		
2	Α	LIGHTING	1	STAIR 2	800	va	0.95	760	800		
3	В	LIGHTING	1	EGRESS	1800	va	0.95	1710	1800		
4	В	LIGHTING	1	STAIR 3	600	va	0.95	570	600		
5	С	LIGHTING	1	MECH/ELEC		va	0.95	1330	1400		
6 7	C	SPARE SPARE			0	W		0	0		
8	A	SPARE	<u> </u>		0	W		0	0		
9	В	SPARE			0	W		0	0		
10	В	SPARE			0	w		0	0		
11	С	SPARE			0	W		0	0		
12	С	SPARE			0	W		0	0		
13	Α	SPARE			0	W		0	0		
14	Α	SPARE			0	W		0	0		
15	В	SPARE			0	W		0	0		
16	В	SPARE	<u> </u>		0	W		0	0		
17	С	SPARE	1		0	W		0	0		
18 19	C A	SPARE SPARE	1		0	W		0	0		
20	A	SPARE			0	W		0	0		
21	В	SPARE			0	W		0	0		
22	В	SPARE			0	w		0	0		
23	Ċ	SPARE			0	w		0	0		
24	С	SPARE			0	W		0	0		
25	Α	SPARE			0	W		0	0		
26	Α	SPARE			0	W		0	0		
27	В	SPARE			0	W		0	0		
28	В	SPARE			0	W		0	0		
29	C	SPARE			0	W		0	0		
30	C	SPARE			0	W		0	0		
31	A	SPARE SPARE			0	W		0	0		
33	В	SPARE			0	W		0	0		
34	В	SPARE			0	W		0	0		
35	C	SPARE			0	w		0	0		
36	C	SPARE			0	W		0	0		
37	Α	SPARE			0	W		0	0		
38	Α	SPARE			0	W		0	0		
39	В	SPARE			0	W		0	0		
40	В	SPARE			0	W		0	0		
41	C	SPARE	1	<u> </u>	0	W		0	0		
42 DAN	С	SPARE OTAL	I		0	W		0	0	Amna	E 7
FAIN	EL I	OTAL						4.5	4.7	Amps=	5.7
РНА		OADING						kW	kVA	%	Amps
		HASE TOTAL	Α					0.9	0.9	19%	3.2
		ASE TOTAL	В	<u> </u>	ļ			2.3	2.4	51%	8.7
	PH	HASE TOTAL	С	<u> </u>	<u> </u>		<u> </u>	1.3	1.4	30%	5.1
LOA	D CA	TAGORIES		Conn	ected		De	mand			
				kW	kVA	DF	kW	kVA	PF		
1	flu	uorescent lighting		4.5	4.7	1.25	5.6	5.9	0.95		
2			<u> </u>	0.0	0.0	0.00	0.0	0.0			
3			1	0.0	0.0	0.00	0.0	0.0	-		
4			<u> </u>	0.0	0.0	0.00	0.0	0.0			
5			1	0.0	0.0	0.00	0.0	0.0	-	 	
7			1	0.0	0.0	0.00	0.0	0.0			
8			1	0.0	0.0	0.00	0.0	0.0			
	Total	Demand Loads	1	0.0	0.0	0.00	5.6	5.9			
	Spare Capacity			25%	1		1.4	1.5			
	OI.							1.0	I		

REVISED PANELBOARD NWB2-N04

		LIGHTING A		APPLIAN						SHEET	
	P	anel Tag			B-NWB2-E		anel Loc				LEVEL B2
	Nomi	nal Phase to Neutra	l Volta	age>	277		Phase		3		
N	lomir	nal Phase to Phase	Volta	ge>	480		Wires	S:	4		
Pos		Load Type	Cat.		Load	Units	I. PF	Watts	VA	Rer	narks
1	Α	LIGHTING		EXIT SIGNS		va	0.95	95	100		
3	A B	LIGHTING LIGHTING	1	STAIR 2 EGRESS	800 1900	va	0.95 0.95	760 1805	800 1900		
4	В	LIGHTING	1	STAIR 3	600	va va	0.95	570	600		
5	C	LIGHTING		MECH/ELEC		va	0.95	1330	1400		
6	C	SPARE			0	W		0	0		
7	Α	SPARE			0	W		0	0		
8	Α	SPARE			0	W		0	0		
9	В	SPARE			0	W		0	0		
10	В	SPARE			0	W		0	0		
11 12	C	SPARE SPARE			0	w		0	0		
13	A	SPARE			0	W		0	0		
14	Α	SPARE			0	w		0	0		
15	В	SPARE			0	w		0	0		
16	В	SPARE			0	W		0	0		
17	С	SPARE	1		0	W		0	0		
18	C	SPARE	-		0	W		0	0		
19 20	A	SPARE SPARE	1		0	w		0	0		
21	В	SPARE			0	W		0	0		
22	В	SPARE			0	w		0	0		
23	С	SPARE			0	w		0	0		
24	С	SPARE			0	W		0	0		
25	Α	SPARE			0	W		0	0		
26	A	SPARE	-		0	W		0	0		
27 28	B B	SPARE SPARE			0	w		0	0		
29	С	SPARE	1		0	W		0	0		
30	C	SPARE			0	w		0	0		
31	Α	SPARE			0	w		0	0		
32	Α	SPARE			0	W		0	0		
33	В	SPARE			0	W		0	0		
34	В	SPARE			0	W		0	0		
35 36	C	SPARE SPARE			0	W		0	0		
37	A	SPARE			0	W		0	0		
38	Α	SPARE			0	w		0	0		
39	В	SPARE			0	W		0	0		
40	В	SPARE			0	W		0	0		
41	С	SPARE			0	W		0	0		
42	С	SPARE OTAL			0	W		0	0	Amn-	E O
PAN	IEL I	OTAL						4.6	4.8	Amps=	5.8
PHA		OADING						kW	kVA	%	Amps
ļ		HASE TOTAL	A					0.9	0.9	19%	3.2
		HASE TOTAL	B					2.4	2.5	52%	9.0
		HASE TOTAL	C					1.3	1.4	29%	5.1
LOA	D CA	ATAGORIES	1	Conne				mand			
	£I.	ioroccont lighting	1	kW	kVA	DF 1.25	kW	kVA	PF 0.05		
2	III	uorescent lighting		4.6 0.0	4.8 0.0	1.25 0.00	5.7 0.0	6.0 0.0	0.95		
3			+	0.0	0.0	0.00	0.0	0.0		 	
4				0.0	0.0	0.00	0.0	0.0			
5				0.0	0.0	0.00	0.0	0.0			
6				0.0	0.0	0.00	0.0	0.0			
7				0.0	0.0	0.00	0.0	0.0	ļ		
8	Te4-1	Domondia	-	0.0	0.0	0.00	0.0	0.0			
-	Total Demand Loads Spare Capacity			50%			5.7 2.9	6.0 3.0			
-		al Design Loads	1	JU /0			8.6	9.0	0.95	Amps=	10.8
	. 010		1	<u> </u>	<u> </u>	<u> </u>	5.5	0.0	3.50	<i>.</i> po=	

Conduit Sizing Worksheets

			Condui	t Sizin	g Works	sheet -	60A Pan	el		
Total Cr	oss Sectio								0.2239	sq. inches
	ed EMT C			mum siz	e is 3/4")				1	" EMT
	ed IMC Co								3/4	" IMC
	ed RMC C								1	" RMC
	ed RNC C		,						1	" RNC
	5 NEC, T		,		,,,,					
	,	,							Т	otals
Wize Size	TW, T	HW	THWN,	THHN	XHF	lW	Bare W	'ire	No.	Area
	No.	Area	No.	Area	No.	Area	No.	Area	. 10.	,
14		0.004	0	0						
12		0.006	0	0						
10		0.011	1	0.0211						
8		0.017	0	0						
6		0.027	4	0.2028						
4		0.042	0	0						
3		0.1134		0.0973		0.0962		0.053	0	0
2		0.1333		0.1158		0.1146		0.067	0	0
1		0.1901		0.1562		0.1534		0.087	0	0
1/0		0.2223		0.1855		0.1825		0.109	0	0
2/0		0.2624		0.2223		0.2190		0.137	0	0
3/0		0.3117		0.2679		0.2642		0.173	0	0
4/0		0.3718		0.3237		0.3197		0.219	0	0
250		0.4596		0.3970		0.3904		0.260	0	0
300		0.5281		0.4608		0.4536		0.312	0	0
350		0.5958		0.5242		0.5166		0.364	0	0
400		0.6619		0.5863		0.5782		0.416	0	0
500		0.7901		0.7073		0.6984		0.519	0	0
600		0.9729		0.8676		0.8709		0.626	0	0
700		1.1010 1.1652		0.9887		0.9923		0.730	0	0
750	0.782	0	0							
800	0.834	0	0							
900		1.3561		1.2311		1.2351		0.940	0	0
1000		1.4784		1.3478		1.3519		1.042	0	0
Totals	0		5		0		0		5	0.2239
Note: "E	RROR" in	dicates	conduit si	<mark>ze large</mark>	r than 4" i	s require	ed.			


		Conduit	Sizing	y Works	heet -	150A Paı	nel							
Total Cro	oss Sectional of	Wire Area						0.7927	sq. inches					
Calculate	ed EMT Conduit	Size (mini	mum siz	e is 3/4")				1 1/2	"EMT					
Calculate	ed IMC Conduit	Size (minir	num siz	e is 3/4")				1 1/2	" IMC					
Calculate	ed RMC Condui	t Size (min	imum siz	ze is 3/4")				1 1/2	" RMC					
Calculate	ed RNC Condui	: Size (mini	mum siz	ze is 3/4")				1 1/2	" RNC					
Ref: 200:	5 NEC, Tables	4, 5 and 8												
								Т	otals					
Wize Size	TW, THW	THWN,	THHN	XHF	lW	Bare W	'ire	No.	Area					
	No. Area	No.	Area	No.	Area	No.	Area							
14	0.013	9	0.0097		0.0139		0.004	0	0					
12	0.018	1	0.0133		0.0181		0.006	0	0					
10 0.0243 0.0211 0.0243 0.011 0 0														
8 0.0437 0.0366 0.0437 0.017 0 0														
6 0.0726 1 0.0507 0.0590 0.027 1 0.0507														
4 0.0973 0.0824 0.0814 0.042 0 0														
3 0.1134 0.0973 0.0962 0.053 0														
2	0.133	3	0.1158		0.1146		0.067	0	0					
1	0.190	1	0.1562		0.1534		0.087	0	0					
1/0	0.222	3 4	0.1855		0.1825		0.109	4	0.742					
2/0	0.262	4	0.2223		0.2190		0.137	0	0					
3/0	0.311	7	0.2679		0.2642		0.173	0	0					
4/0	0.371	3	0.3237		0.3197		0.219	0	0					
250	0.459	3	0.3970		0.3904		0.260	0	0					
300	0.528	1	0.4608		0.4536		0.312	0	0					
350	0.595	3	0.5242		0.5166		0.364	0	0					
400	0.661	9	0.5863		0.5782		0.416	0	0					
500	0.790	1	0.7073		0.6984		0.519	0	0					
600	0.972	9	0.8676		0.8709		0.626	0	0					
700	1.101)	0.9887		0.9923		0.730	0	0					
750	1.165	2	1.0496		1.0532		0.782	0	0					
800	1.227	2	1.1085		1.1122		0.834	0	0					
900	1.356	1	1.2311		1.2351		0.940	0	0					
1000	1.478	4	1.3478		1.3519		1.042	0	0					
Totals	0	5		0		0		5	0.7927					
Note: "El	RROR" indicate	s conduit s	i <mark>ze large</mark>	r than 4" i	s require	ed.								


		Conduit	Sizing	y Works	heet -	225A Paı	nel							
Total Cro	ss Sectional of V	Vire Area						1.3772	sq. inches					
Calculate	ed EMT Conduit S	Size (minin	num siz	e is 3/4")					"EMT					
Calculate	ed IMC Conduit S	Size (minim	ium siz	e is 3/4")				2	" IMC					
Calculate	ed RMC Conduit	Size (minir	num si	ze is 3/4")				2 1/2	" RMC					
Calculate	ed RNC Conduit	Size (minir	num siz	ze is 3/4")				2 1/2	" RNC					
Ref: 200	5 NEC, Tables 4,	5 and 8												
								Т	otals					
Wize Size	TW, THW	THWN, 1	THHN	XHF	IW	Bare W	'ire	No.	Area					
	No. Area	No.	Area	No.	Area	No.	Area							
14	0.0139	0.004	0	0										
12	0.0181	0.006	0	0										
10	10 0.0243 0.0211 0.0243 0.011													
8														
6	0.0726	0.027	0	0										
4	0.0973	1	0.0824											
3	0.1134	0.053	0	0										
2	0.1333		0.1158		0.1146		0.067	0	0					
1	0.1901		0.1562		0.1534		0.087	0	0					
1/0	0.2223		0.1855		0.1825		0.109	0	0					
2/0	0.2624		0.2223		0.2190		0.137	0	0					
3/0	0.3117		0.2679		0.2642		0.173	0	0					
4/0	0.3718	4	0.3237		0.3197		0.219	4	1.2948					
250	0.4596		0.3970		0.3904		0.260	0	0					
300	0.5281		0.4608		0.4536		0.312	0	0					
350	0.5958		0.5242		0.5166		0.364	0	0					
400	0.6619		0.5863		0.5782		0.416	0	0					
500	0.7901		0.7073		0.6984		0.519	0	0					
600	0.9729		0.8676		0.8709		0.626	0	0					
700	1.1010		0.9887		0.9923		0.730	0	0					
750	1.1652		1.0496		1.0532		0.782	0	0					
800														
900	0	0												
1000	1.4784		1.3478		1.3519		1.042	0	0					
Totals	0	5		0		0		5	1.3772					
Note: "El	RROR" indicates	conduit siz	ze large	r than 4" i	s require	ed.								

		Conduit	Sizino	n Works	heet -	400A Pai	ام								
Tatal Cu	oss Sectional o		OIZIII	VVOIRS	ilicet -	700A i ai	ici	4 4074	an inabaa						
				i- 2/4"\				2	sq. inches						
	ed EMT Condui							2	" IMC						
	ed IMC Conduit							2	" RMC						
	ed RMC Condu							2	" RNC						
	5 NEC, Tables		imum Siz	<u>ze is 3/4)</u>				2	RINC						
Rei. 200	5 NEC, Tables	4, 5 and 6													
	T)A/ TI DA/	T 1104/41	T	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	D A /		,		otals						
Wize Size	TW, THW	THWN,	Area	XHF No.	Area	Bare W	I re Area	No.	Area						
14	0.013		0.0097	NO.	0.0139	NO.	0.004	0	0						
12	0.018	0.006	0	0											
10	0.024	0.011	0	0											
$\overline{}$			0	0											
	8 0.0437 0.0366 0.0437 0.017 6 0.0726 0.0507 0.0590 0.027														
4															
3	0.113	0.053	0	0											
2	0.133	0.067	1	0.1158											
1	0.190		0.1158 0.1562		0.1146 0.1534		0.087	0	0						
1/0	0.222	3	0.1855		0.1825		0.109	0	0						
2/0	0.262	4	0.2223		0.2190		0.137	0	0						
3/0	0.311	7 4	0.2679		0.2642		0.173	4	1.0716						
4/0	0.371	8	0.3237		0.3197		0.219	0	0						
250	0.459	6	0.3970		0.3904		0.260	0	0						
300	0.528	1	0.4608		0.4536		0.312	0	0						
350	0.595	8	0.5242		0.5166		0.364	0	0						
400	0.661	9	0.5863		0.5782		0.416	0	0						
500	0.790	1	0.7073		0.6984		0.519	0	0						
600	0.972	9	0.8676		0.8709		0.626	0	0						
700	1.101		0.9887		0.9923		0.730	0	0						
750	1.165 1.227		1.0496		1.0532 1.1122		0.782 0.834	0	0						
800	0	0													
900 1.3561 1.2311 1.2351 0.940 0															
1000	1.478	4	1.3478		1.3519		1.042	0	0						
Totals	0	5		0		0		5	1.1874						
Note: "E	RROR" indicate	s conduit s	ize large	er than 4"	is require	ed.									

Appendix C

Existing One-Line Diagram

								FEEDE	R SCHED	JLE	
FEEDER	NO. OF	RACEWAY	CONDUCTO	RS (PER RA	CEWAY)	FEEDER	NO. OF	RACEWAY	CONDUC	TORS (PER RA	CEWAY)
NUMBER	RACEWAYS	SIZE	PHASE	NEUTRAL	GROUND	NUMBER	RACEWAYS	SIZE	PHASE	NEUTRAL	GROUND
	3 PHASE,	3 WIRE, WITH							TH GROUND - S	SERIES Y:	
25D	1	3/4"	3#10	-	1#10	50Y	1	1-1/4"	3#6	1#6	1#10
50D	1	1"	3#6 - 1#10 70Y 1 1-1/4" 3#4 1#4								
75D	1	1-1/4"	3#4	-	1#8	100Y	1	2"	3#3	1#3	1#8
110D	1	1-1/2"	3#1	-	1#6	125Y	1	1#6			
150D	1	1-1/2"	3# 1/0	-	1#6	150Y	1	2"	3#1/0	1#1/0	1#6
175D	1	2"	3# 2/0	-	1#6	175Y	1	2"	3#2/0	1#2/0	1#6
225D	1	2"	3# 4/0	-	1#4	200Y	1	2	3#3/0	1#3/0	1#6
250D	1	2-1/2"	3#250KCMIL	-	1#4	225Y	1	2-1/2"	3#4/0	1#4/0	1#4
350D	1	4"	3#250KCMIL	-	1#2	350Y	1	3"	3#500KCMIL	1#500KCMIL	1#3
400D	2	2"	3# 3/0	-	1#2	400Y	2	2-1/2"	3#3/0	1#3/0	1#2
600D	2	3"	3#350KCMIL	-	1#1	500Y	2	2-1/2"	3#250KCMIL	1#250KCMIL	1#2
800D	3	2-1/2"	3#300KCMIL	-	1#1/0	600Y	2	3"	3#350KCMIL	1#350KCMIL	1#1
1200D	4	3"	3#350KCMIL	-	1#3/0	800Y	3	3"	3#300KCMIL	1#300KCMIL	1#1/0
400D	2	2"	3# 3/0	-	1#2	1200Y	4	3"	3#350KCMIL	1#350KCMIL	1#3/0
800D	3	2-1/2"	3#300KCMIL	-	1#1/0	1600Y	5	3-1/2"	3#500KCMIL	1#500KCMIL	1#4/0
1200D	4	3"	3#350KCMIL	-	1#3/0	2000Y	6	3-1/2"	3#500KCMIL	1#500KCMIL	1#250KCMIL
1600D	5	4"	3#500KCMIL	-	1#4/0						

FEEDER	NO. OF	RACEWAY	CONDUCT	ORS (PER RACI	EWAY)
NUMBER	RACEWAYS	SIZE	PHASE	NEUTRAL	GROUND
3 F	PHASE, 4 WIRE,	DOUBLE NEU	JT, GRD & ISOL	GRD - SERIES () :
100C	1	2"	3#1	2#1	2#8
150C	1	2-1/2"	3#1/0	2#1/0	2#6
225C	1	2-1/2"	3#4/0	2#4/0	2#4
250C	1	3"	3#250KCMIL	2#250KCMIL	2#4
400C	2	3"	3#4/0	2#4/0	2#2
500C	2	3"	3#250KCMIL	2#250KCMIL	2#2
600C	2	3-1/2"	3#350KCMIL	2#350KCMIL	2#1
1600C	5	5"	3#600KCMIL	2#600KCMIL	2#4/0

K Factor Transformers

January 2003 Three-Phase Vol. 1, Ref. No. [0336]

K Factor Transformers

Transformers

Three-Phase, Type KT, 60 Hz, for **Non-Linear Loads**

Type KT

Product Description

- Suitable for indoor or outdoor applications (with weathershield).
- Ventilated enclosures (DT-3).
- 220°C Insulation system, 150°C Rise standard (self extinguishing).
- Type DT-3 is available in ratings of 15 - 1000 kVA and up to 4160 volts.

Application Description

Cutler-Hammer KT Transformers by Eaton Corporation include several major design improvements that address the problems caused by nonlinear loads and harmonics. They are designed to withstand the effects of harmonic currents without exceeding the temperature rating of the insulation system. The KT design compensates for the stresses on a transformer's winding insulation which prevents insulation breakdown and premature failure. The net result is longer transformer life.

Design Features

Core

A high grade, nonaging, grain-oriented silicon steel with high magnetic permeability provides reduced core induction levels, preventing saturation as a result of the higher frequency harmonics and resultant peak voltages. In a core approaching saturation, the current in the coil will increase as voltage drops because the core cannot absorb the additional magnetic flux. This core also provides reduced eddy currents or induced currents in the steel caused by the high ratios of peak-to-rms currents and voltages found in harmonic loads.

Coils

Windings are continuous wound aluminum or optional copper construction sized and configured to reduce overheating caused by harmonic currents. These coils reduce skin and proximity effect losses which occur when current carrying conductors next to each other and coiled around steel generate magnetic fields. These magnetic fields push the currents in the conductors away from each other causing increased losses and additional heating.

Neutral Bus

The neutral bus is sized and configured to accommodate at least 200% of the rated current. This compensates for the increased neutral currents found in non-linear loads thus reducing heat.

The K Factor

A common industry term for the amount of harmonics produced by a given load is the K Factor. The larger the K Factor, the more harmonics are present. Linear loads, for example have a K Factor of 1. Transformers may carry a K Factor rating to define the transformer's ability to withstand the additional heating generated by harmonic currents.

Calculating the K Factor

All nonlinear waveforms can be broken down mathematically into a fundamental frequency and its harmonics. IEEE C57.110 establishes a direct relationship between these harmonics and transformer heating. Underwriters Laboratories has established a similar relation-ship, the K Factor, which is

derived by summing the square of the percentage current at a given harmonic level multiplied by the square of the harmonic order.

 $K = \sum (lh)^2(h)^2$

Ih = Percent Current at Harmonic h

h = Harmonic Order, i.e., 3rd, 5th, 7th

For example, a load that is 90% of the fundamental, 30% of the third harmonic, and 20% of the fifth harmonic would yield $(.9)^2(1)^2 + (.3)^2(3)^2 + (.2)^2(5)^2$ or a K Factor of 2.62. This load would require an Eaton's Cutler-Hammer KT-4 Transformer with a K Factor rating of 4.

Transformers that carry a K Factor rating define the transformer's ability to withstand a given harmonic load while operating within the transformer's insulation class.

An analysis of harmonic loads and a calculation of the K Factor must be made to properly apply transformers in any building or facility. Note that the calculated K Factor is not constant since non-linear loads change throughout the day as equipment and lighting is turned off and on. These harmonic loads also change over the life of the building or facility as equipment is added or removed.

Harmonic Currents

Harmonic currents are found in nonlinear loads. These currents are generated by various types of equipment including switching mode power supplies that abruptly switch current on and off during each line cycle. Switching mode power supplies or diodecapacitor

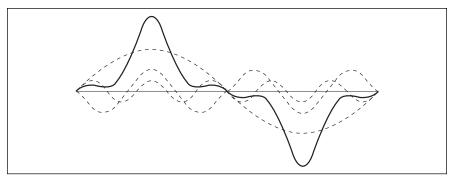


Figure 9-1. Harmonic currents found in non-linear loads cause wave shape distortion and create added stresses on transformers.

Transformers K Factor Transformers

9-39

January 2003 Vol. 1, Ref. No. [0339]

Three-Phase

Table 9-41. Type KT-13 — Transformers for Non-Sinusoidal Current Loads with K Factor Up to 13

kVA	Full Cap.	Taps	Туре	°C	Dimen	sions (Ind	ches)	Wt.	Dime	nsions	(mm)	Wt.	Frame	Wiring	Weathers	shield	Catalog	Price
	FCAN	FCBN		Temp. Rise	Н	w	D	Lbs.	Н	w	D	kg		Diagram Number	Catalog Number	Price U.S. \$	Number	U.S. \$
80 ∆ V	olts to 208	Y/120 Volts	·					!						I.				
15	2@+2.5%	4@-2.5%	KT	150	30-1/8	20-1/8	14-1/8	230	765	511	359	104	FR910A	283B	WS31	350.	N48M28T15A	1,970
30	2@+2.5%	4@-2.5%	KT	150	30-1/8	20-1/8	14-1/8	310	765	511	359	140	FR912A	283B	WS31	350.	N48M28T30A	2,845
45	2@+2.5%	4@-2.5%	KT	150	39-3/8	26-1/8	19-1/8	480	1000	663	485	217	FR914B	283B	WS33	350.	N48M28T45A	3,370
75	2@+2.5%	4@-2.5%	KT	150	39-3/8	26-1/8	19-1/8	600	1000	663	485	272	FR915B	283B	WS33	350.	N48M28T75A	4,660
112.5	2@+2.5%	4@-2.5%	KT	150	46-1/8	28	23	760	1171	712	585	344	FR916A	283B	WS19	350.	N48M28T12A	6,535
150	2@+2.5%	4@-2.5%	KT	150	56	31-1/4	24-1/4	1100	1422	793	616	499	FR917	283B	WS34	800.	N48M28T49A	8,780
225	2@+2.5%	4@-2.5%	KT	150	62-1/4	31-1/4	30-1/4	1600	1581	794	768	728	FR918A	283B	WS34	800.	N48M28T22A	12,140
300	2@+2.5%	4@-2.5%	KT	150	75	44-1/2	36	2400	1905	1130	914	1088	FR919	292A	WS35	1,360.	N48M28T33A	17,870
500	2@+2.5%	4@-2.5%	KT	150	90	69	42	4500	2286	1752	1066	2041	FR922	292A	WS36	1,360.	N48M28T55A	27,570
15	2@+2.5%	4@-2.5%	KT	115	30-1/8	20-1/8	14-1/8	230	765	511	359	104	FR910A	283B	WS31	350.	N48M28F15A	2,410
30	2@+2.5%	4@-2.5%	KT	115	30-1/8	20-1/8	14-1/8	310	765	511	359	140	FR912A	283B	WS31	350.	N48M28F30A	2,985
45	2@+2.5%	4@-2.5%	KT	115	39-3/8	26-1/8	19-1/8	480	1000	663	485	217	FR914B	283B	WS33	350.	N48M28F45A	3,890
75	2@+2.5%	4@-2.5%	KT	115	39-3/8	26-1/8	19-1/8	600	1000	663	485	272	FR915B	283B	WS33	350.	N48M28F75A	5,315
112.5	2@+2.5%	4@-2.5%	KT	115	46-1/8	28	23	760	1171	712	585	344	FR916A	283B	WS19	350.	N48M28F12A	8,120
150	2@+2.5%	4@-2.5%	KT	115	56	31-1/4	24-1/4	1100	1422	793	616	499	FR917	283B	WS34	800.	N48M28F49A	9,560
225	2@+2.5%	4@-2.5%	KT	115	62-1/4	31-1/4	30-1/4	1600	1581	794	768	728	FR918A	283B	WS34	800.	N48M28F22A	13,390
300	2@+2.5%	4@-2.5%	KT	115	75	44-1/2	36	2400	1905	1130	914	1088	FR919	292A	WS35	1,360.	N48M28F33A	20,100
500	2@+2.5%	4@-2.5%	KT	115	90	69	42	4500	2286	1752	1066	2041	FR922	292A	WS36	1,360.	N48M28F55A	30,400
15	2@+2.5%	4@-2.5%	KT	80	30-1/8	20-1/8	14-1/8	230	765	511	359	104	FR910A	283B	WS31	350.	N48M28B15A	2,840
30	2@+2.5%	4@-2.5%	KT	80	30-1/8	20-1/8	14-1/8	310	765	511	359	140	FR912A	283B	WS31	350.	N48M28B30A	3,730
45	2@+2.5%	4@-2.5%	KT	80	39-3/8	26-1/8	19-1/8	480	1000	663	485	217	FR914B	283B	WS33	350.	N48M28B45A	4,755
75	2@+2.5%	4@-2.5%	KT	80	46-1/8	28	23	760	1171	712	585	344	FR916A	283B	WS33	350.	N48M28B75A	6,160
112.5	2@+2.5%	4@-2.5%	KT	80	56	31-1/4	24-1/4	1100	1422	793	616	499	FR917	283B	WS19	350.	N48M28B12A	8,840
150	2@+2.5%	4@-2.5%	KT	80	62-1/4	31-1/4	30-1/4	1600	1581	794	768	728	FR918A	283B	WS34	800.	N48M28B49A	12,565
225	2@+2.5%	4@-2.5%	KT	80	75	44-1/2	36	2400	1905	1130	914	1088	FR919	292A	WS35	1,360.	N48M28B22A	17,140
300	2@+2.5%	4@-2.5%	KT	80	75	44-1/2	36	3600	1905	1130	914	1636	FR919	292A	WS35	1,360.	N48M28B33CU	26,780
	olts to 208				<u> </u>												1	
15	2@+2.5%	4@-2.5%	KT	150	30-1/8	20-1/8	14-1/8	300	65	511	359	136	FR910A	283B	WS31	350.	N48M28T15CU	2,540
30	2@+2.5%	4@-2.5%	KT	150	30-1/8	20-1/8	14-1/8	370	765	511	359	168	FR912A	283B	WS31	350.	N48M28T30CU	2,890
45	2@+2.5%	4@-2.5%	KT	150	39-3/8	26-1/8	19-1/8	575	1000	663	485	261	FR914B	283B	WS33	350.	N48M28T45CU	4,270
75	2@+2.5%	4@-2.5%	KT	150	39-3/8	26-1/8	19-1/8	675	1000	663	485	306	FR915B	283B	WS33	350.	N48M28T75CU	5,690
112.5	2@+2.5%	4@-2.5%	KT	150	46-1/8	28	23	850	1171	712	585	386	FR916A	283B	WS19	350.	N48M28T12CU	7,460
150	2@+2.5%	4@-2.5%	KT	150	56	31-1/4	24-1/4	1200	1422	793	616	545	FR917	283B	WS34	800.	N48M28T49CU	9,770
225 300 500	2@+2.5% 2@+2.5% 2@+2.5%	4@-2.5% 4@-2.5% 4@-2.5%	KT KT KT	150 150 150	62-1/4 75 ①	31-1/4 44-1/2 ①	30-1/4 36 ①	2150 3100 ①	1581 1905 ①	794 1130 ①	768 914 ①	977 1409 ①	FR918A FR919	283B 292A ①	WS34 WS35	800. 1,360. —	N48M28T22CU N48M28T33CU N48M28T55CU	13,440 22,330 28,930
15	2@+2.5%	4@-2.5%	KT	115	30-1/8	20-1/8	14-1/8	300	65	511	359	136	FR910A	283B	WS31	350.	N48M28F15CU	2,785
30	2@+2.5%	4@-2.5%	KT	115	30-1/8	20-1/8	14-1/8	370	765	511	359	168	FR912A	283B	WS31	350.	N48M28F30CU	3,295
45	2@+2.5%	4@-2.5%	KT	115	39-3/8	26-1/8	19-1/8	575	1000	663	485	261	FR914B	283B	WS33	350.	N48M28F45CU	4,430
75	2@+2.5%	4@-2.5%	KT	115	39-3/8	26-1/8	19-1/8	675	1000	663	485	360	FR915B	283B	WS33	350.	N48M28F75CU	6,290
112.5	2@+2.5%	4@-2.5%	KT	115	46-1/8	28	23	850	1171	712	585	386	FR916A	283B	WS19	350.	N48M28F12CU	9,025
150	2@+2.5%	4@-2.5%	KT	115	56	31-1/4	24-1/4	1200	1422	793	616	545	FR917	283B	WS34	800.	N48M28F49CU	11,950
225 300 500	2@+2.5% 2@+2.5% 2@+2.5%	4@-2.5% 4@-2.5% 4@-2.5%	KT KT KT	115 115 115	62-1/4 75 ①	31-1/4 44-1/2 ①	30-1/4 36 ①	2150 3100 ①	1581 1905 ①	794 1130 ①	768 914 ①	977 1409 ①	FR918A FR919	283B 292A ①	WS34 WS35	800. 1,360. —	N48M28F22CU N48M28F33CU N48M28F55CU	16,300 24,560 31,850
15	2@+2.5%	4@-2.5%	KT	80	30-1/8	20-1/8	14-1/8	300	65	511	359	136	FR910A	283B	WS31	350.	N48M28B15CU	3,125
30	2@+2.5%	4@-2.5%	KT	80	30-1/8	20-1/8	14-1/8	370	765	511	359	168	FR912A	283B	WS31	350.	N48M28B30CU	4,140
45	2@+2.5%	4@-2.5%	KT	80	39-3/8	26-1/8	19-1/8	575	1000	663	485	261	FR914B	283B	WS33	350.	N48M28B45CU	5,570
75	2@+2.5%	4@-2.5%	KT	80	46-1/8	28	23	950	1171	712	585	431	FR916A	283B	WS33	350.	N48M28B75CU	7,100
112.5	2@+2.5%	4@-2.5%	KT	80	56	31-1/4	24-1/4	1200	1422	793	616	545	FR917	283B	WS19	350.	N48M28B12CU	10,270
150	2@+2.5%	4@-2.5%	KT	80	62-1/4	31-1/4	30-1/4	2150	1581	794	768	977	FR918A	283B	WS34	800.	N48M28B49CU	13,480
225 300	2@+2.5% 2@+2.5% er to your	4@-2.5% 4@-2.5%	KT KT	80 80	75 75	44-1/2 44-1/2	36 36	3100 3600	1905 1905	1130 1130	914 914	1409 1636	FR919 FR919	292A 292A	WS35 WS35	1,360. 1,360.	N48M28B22CU N48M28B33CU	20,520 26,780

① Refer to your Cutler-Hammer sales office.

Note: For single-phase K-factor transformers, contact your local Cutler-Hammer sales office. **Note:** Contact your local Cutler-Hammer sales office for CE Mark transformer requirements.

Note: For Energy Star labeled K-factor transformers, contact your local Cutler-Hammer sales office.

For other ratings or styles not shown, or for special enclosure types (including stainless steel) refer to Eaton's Cutler-Hammer.

Appendix D

Motor Control Center

January 2003 Vol. 1, Ref. No. [0991]

Product Description

IT. Motor Control Centers

IT. MCC

Product Description

Eaton's offerings for motor control centers feature the Cutler-Hammer Intelligent Technologies (IT.) MCC. This product offers the highest density of motor control in the industry along with the most functionality. Its innovative design, as well as its enhanced fault performance and protective features, make it the new benchmark in the industry.

Application Description

Cutler-Hammer Motor Control Centers by Eaton Corporation are custommade assemblies of conveniently grouped control equipment primarily used for control of motors and power distribution. Motor Control Centers are designed for 3-phase, 230-volt applications up to 200 horsepower, or 3-phase, 480-volt applications up to 400 horsepower.

Features, Benefits and Functions

Structure Design

Eaton's Cutler-Hammer Motor Control Centers are 20 inches (508 mm) wide and 90 inches (2286 mm) high with vertical compartments having 72 inches (1829 mm) of unit mounting space in 6-inch (152 mm) increments.

Structure depth is 16 inches (406 mm) or 21 inches (533 mm) deep front mounted only, and 21 inches (533 mm) deep for back-to-back mounted units.

The unique framed design permits the highest flexibility in component and structure configuration.

Accessibility

All parts and wiring are front accessible. Terminal blocks are side mounted in each unit. Vertical wireways separate from control units provide safe and convenient access to wiring and conduits without de-energizing any equipment.

Flexibility

Modular, framed design permits structure arrangements to be tailored to exactly meet any control requirements with a minimum of unusable space. Vertical compartments are incremented for maximum space utilization and unit interchangeability. A 6-inch (152 mm) size 1-2 starter unit provides users with the ability to solve demanding space requirements and still meet all NEMA and UL standards.

Safety

Design tested at Eaton's Cutler-Hammer power laboratory to assure maximum protection for control equipment. Engineered to minimize hazards to operating personnel.

Control Design

IT. Motor Control Centers are available in two basic control configurations:

- Hardwired for connection to traditional local/remote devices, PLC's DCS systems.
- DeviceNet Motor Control Centers which provide the optimal integrated package for control, communication, diagnostics and simplified wiring. Eaton's Cutler-Hammer DeviceNet MCC Solution provides users with significantly reduced installation time and increased uptime through the integration of intelligent devices and advanced software tools.
- Control products include: ODVA Compliant Motor Starters, Variable Speed Drives, Operator Interface and Block I/O.

Standards and Certifications

UL Listing

Standard structures and units are provided with UL label.

Options and Accessories

The *IT*. MCC features 24V DC control supplied to each control unit using a structure-mounted DC bus. The DC bus is fed from a power supply unit or by a separate customer-supplied DC source. Units feature fuseless self-protecting DC stabs which distribute control power to each unit. Optional motor lead terminal blocks can be provided through NEMA size 4 starters. The motor lead terminal block remains in the structure when a unit is withdrawn. This makes unit withdraw easy and safe.

IT. communication can be accomplished in two different configurations.

Direct DeviceNet Connection to Each Unit

Each unit will have a DeviceNet connection and will communicate the following information:

- % FLA.
- Status.
- Cause of trip.
- Breaker status.
- Run, stop, reset.

Each unit is one node on the network.

DeviceNet Using QCPort to Each Starter Unit

Each starter unit will have a QCPort interface. Each structure will contain a QCPort backplane, which will be located in the vertical bus area. Connection to the QCPort backplane will be made automatically through a QCPort stab when the unit is inserted into the MCC. The starter units connected on QCPort link to DeviceNet through a QCPort DeviceNet adapter (QCPort DNA). The QCPort DeviceNet Adapter can connect up to 21 starters and only uses one node on the DeviceNet network. One QCPort DNA module is required for every two structures. QCPort units will communicate the following information:

- % FLA.
- Status.
- Cause of trip.
- Breaker status.
- Run, stop, reset.

LC

Description

Motor Control Centers

January 2003 **Product Selection** Vol. 1, Ref. No. [0992]

Product Specifications

Structure

- NEMA 1A, 2, 3R or 12 enclosure.
- Copper horizontal bus 600 3200A.
- Fully rated copper vertical bus 300 - 1200A.
- Labyrinth optional.
- Labyrinth barriers for insulated and isolated vertical bus.
- Optional isolating barriers between structures.
- 65 kA and 1000 kA bus bracing.
- Plug-in DC, ground and communication bus.

Units

- IT. Motor Starters:
 - □ NEMA size 1 through 7.
 - □ Heaterless overload relay with Class 10, 20 and 30 overload protection
 - □ Built-in phase loss, single-phase
 - □ Compact size
 - □ Longer contact life
 - Communications
 - □ Extended ride-through
- HMCP with combination starter ratings of 65 kAIC and 100 kAIC at 480 volts.
- Plug-in units up to 400 amperes.
- Handle mechanism with positive trip indication.
- Side-mounted positive latch terminal block.
- 6-inch (152.4 mm) NEMA size 1 and 2 units with HMCP.
- Solid-State Reduced Voltage Starters:
 - □ Intelligent Technologies (IT.) (20 - 800 hp)
- Adjustable Frequency Drives:
 - □ SV9000 (2 1100 hp)
- K-Switch visible blade disconnect:
 - □ 30 800A
 - □ 100 kAIC at 600 volts
- Surge protection:
 - □ Clipper Visor TVSS (100 500 kA)
- Energy monitoring:
 - □ IQ 320 (amperes, volts, Hz, watts, PF)
 - □ IQ DP-4130 (adds THD, Contact I/O)
 - IQ Analyzer (adds trending, waveform display)

Product Selection

Incoming Line

Table 18-70. Incoming Line — Main Lugs Only

Bus Rating	X-Space	Price U.S. \$
600	2	262
600	2 3	262.
600		361.
600	4	572.
800	3	361.
800	4	461.
800	6	662.
1000	4	461.
1000	6	662.
1000	8	914.
1200	5	1000.
1200	6	1000.
1600	12	5,444.
2000	12	5,444.
2500	12	5,444.
3200 ^①	12	8,167.
1 NEMA 1 gasketed only		

NEMA 1 gasketed only.

Table 18-71. Incoming Line — **Main Circuit Breaker**

Frame Size (Amps)	Circuit Breaker Type	Unit Size	Enclo- sure Width	Price U.S. \$
150	HFD FDC	18 (457.2)	20 (508.0)	1,203. 1,934.
225	HFD FDC	18 (457.2)		1,518. 4,389.
250	HJD JDC	30 (762.0)		1,897. 5,486.
400	HKD KDC CHKD ② CKDC ②	30 (762.0)		3,232. 6,107. 6,228. 9,732.
600	HLD LDC CHLD 23 CLDC 23	24 (609.6) 56		4,149. 4,880. 7,346. 8,238.
800	HMDL CHMDL 23 NDC CHND 2 CNDC 2	30 (762.0) [®] 48 (1219.2) [®] 42 (1066.8) [®] 72 (1828.8) 72 (1828.8)		6,389. 10,080. 9,488. 10,080. 11,580.
1200	HND ⁴ NDC ⁴ CHND ² ³ CNDC ² ³	42 (1066.8) [®] 42 (1066.8) [®] 72 (1828.8) 72 (1828.8)		7,174. 11,387. 10,932. 13,993.
2000	RD ⁴ RDC ⁴ CRD ² CRDC ²	72 (1828.8) ⑦		14,368. 16,796. 17,529. 19,918.
2500	RD RDC	72 (1828.8) ®	24 (609.6)	21,886. 24,868.

- 2 100% rated when 90° cable applied at 75° ampacity for 100% rating. Digitrip 310 LS is required and included in the price.
- 3 NEMA 1 gasketed only.
- 4 Digitrip 310 LS is standard and included in the pricing.
- Add 6-inch (152.4 mm) for top entry of incoming cables.
- Install at top for cable top entry or at bottom for bottom cable entry.
- The main breaker requires the complete vertical section. The rear is unusable.

Structure Modifications

Table 18-72. Structure Modifications

Description	U.S. \$
Enclosure	
NEMA 1 Gasketed	—
NEMA 12 — Dust Tight	426.
NEMA 3R Front Mounted Only	3,240.
NEMA 3R Front & Rear	3,749.
Space Heater	528.
Thermostat	343.
Bottom Plate	75.
Channel Sills	75.
12-inch (304.8 mm) Pull Box	724.
100K Bracing	594.
DC Bus and Vertical Ground Bus	361.
QCPort Communication Bus	1,950.
Vertical Bus	

300A	_
600A	268.
800A	268.
1200A	538.

105.

Ground Bus 300A

Horizontal — Copper

Standard Structures	
16-inch (406.4 mm)	1,422.
Front Mounted Only	
21-inch (533.4 mm)	1,578.
Front Mounted Only	
21-inch (533.4 mm)	2,182.
Front & Rear	

Main Horizontal Bus

600A Copper	294.
800A Copper	751.
1200A Copper	1,158.
1600A Copper	1,757.
2000A Copper	1,882.
2500A Copper	2,321.
3200A Copper	3,318.

Vertical Bus Barrier

Labyrinth Barrier with Shutters	Std.

Table 18-73. Neutral Bus (bottom)

Ampere Rating	Price U.S. \$ Per Structure
300	197.
600 or 800	226.
1000	291.
1200	387.
1600	525.
2000	759.
2500	1,204.
3200 ®	1,886.

 Available NEMA 1 gasketed enclosures only. Note: 1/2 size Main Bus Copper.

Discount Symbol 1CD-2

Table 18-74. Incoming Line Metering

IQ Meter	X-Space	Price U.S. \$
IQ 100	2	2,070.
IQ 320	2	4,050.
IQ DP-4130	2	6,257.
IQ Analyzer	2	9,823.

Note: Does not include Current Transformers pricing.

Table 18-75. Transient Voltage Surge Suppression (Clipper Supervisor) — 18-inch Units with Circuit Breaker Disconnect ⊙

Includes power quality meter for volts, sag, swell, outage, transient counter, Form C contact, alarm.

Surge Current Per Phase	Unit Size	Price U.S. \$
100 kA Model CPS ② 120 kA Model CPS ② 160 kA Model CPS ② 200 kA Model CPS ②	18 (457.2)	6,172. 6,670. 8,680. 10,891.
250 kA Model CPS (4) 300 kA Model CPS 400 kA Model CPS 500 kA Model CPS		14,654. 17,840. 23,980. 29,980.

- ① Available in 12-inch (304.8 mm) unit (2X) without circuit breaker disconnect.
- ② Optional integral IQ 200 meter in 18-inch (457.2 mm) unit for 100 kA 200 kA = \$3,900.
- 3 Recommended branch entrance.
- 4 Recommended service entrance.

Table 18-76. CPS — Control Power Supplies ®

Ampere Rating	Description	X-Space	Price U.S. \$
6.5 6.5	Single Power Supply Dual Redundant Power Supplies	1	1,430. 2,950.
12	Single Power Supply	2	3,750.

^⑤ Required in all structures that will contain a starter, drive or soft start.

Combination Starters

Table 18-77. Full Voltage Non-Reversing — HMCP (T206)

Size	X-Space	Price U.S. \$
1	1	1,111.
3	2	1,342. 1,956.
4	2	3,742.
5	6	3,742. 7,454. 12,330.
6	9	12,330.

Table 18-78. Full Voltage Reversing — HMCP (T216)

Size	X-Space	Price U.S. \$
1	2	1,565.
2	2	2,175.
3	3	3,125.
4	4	5,725.
5	10	11,026.
6	12	18,906.

Table 18-79. Non-Reversing 2S, 1W HMCP (T946)

Size	X-Space	Price U.S. \$
1	2	2,443.
2	3	3,918.
3	4	4,641.
4	4	9,260.

Table 18-80. Non-Reversing 2S, 2W, HMCP (T956)

Size	X-Space	Price U.S. \$
1	2	2,025.
2	2	3,855.
3	3	4,074.
4	4	7,715.

Table 18-81. Fusible Disconnect Starters

Size	X-Space	Price U.S. \$
Full Voltage	Non-Reversing (T20	04)
1	2	989.
2	2	1,332.
3	4	2,089.
4	5	4,074.
5	10	6,662.
Full Voltage	Reversing (T214)	
1	3	1,580.
2	3	2,293.
3	5	3,243.
4	6	6,132.
Fusible, Non	-Reversing 2S, 1W	(T944)
1	3	2,428.
2	3	3,664.
3	6	4,749.
4	7	8,884.
Fusible, Non	-Reversing 2S, 2W	(T954)
1	3	2,103.
2	3	3,662.
	5	4,052.
4	6	7.494.

Table 18-82. Contactor Only Units

Size	X-Space	Price U.S. \$
Circuit Brea	ker (T208)	•
1	1	1,072.
2	1	1,297.
3	2	1,682.
4	2	3,522.
5	5	6,740.
6	9	11,225.
Fusible (T20	9)	•
1	2	1,072.
2	2 2 3	1,297.
3	3	1,682.
4	4	3,522.
5	9	6,740.

January 2003 Vol. 1, Ref. No. [0991]

Product Description

IT. Motor Control Centers

IT. MCC

Product Description

Eaton's offerings for motor control centers feature the Cutler-Hammer Intelligent Technologies (IT.) MCC. This product offers the highest density of motor control in the industry along with the most functionality. Its innovative design, as well as its enhanced fault performance and protective features, make it the new benchmark in the industry.

Application Description

Cutler-Hammer Motor Control Centers by Eaton Corporation are custommade assemblies of conveniently grouped control equipment primarily used for control of motors and power distribution. Motor Control Centers are designed for 3-phase, 230-volt applications up to 200 horsepower, or 3-phase, 480-volt applications up to 400 horsepower.

Features, Benefits and Functions

Structure Design

Eaton's Cutler-Hammer Motor Control Centers are 20 inches (508 mm) wide and 90 inches (2286 mm) high with vertical compartments having 72 inches (1829 mm) of unit mounting space in 6-inch (152 mm) increments.

Structure depth is 16 inches (406 mm) or 21 inches (533 mm) deep front mounted only, and 21 inches (533 mm) deep for back-to-back mounted units.

The unique framed design permits the highest flexibility in component and structure configuration.

Accessibility

All parts and wiring are front accessible. Terminal blocks are side mounted in each unit. Vertical wireways separate from control units provide safe and convenient access to wiring and conduits without de-energizing any equipment.

Flexibility

Modular, framed design permits structure arrangements to be tailored to exactly meet any control requirements with a minimum of unusable space. Vertical compartments are incremented for maximum space utilization and unit interchangeability. A 6-inch (152 mm) size 1-2 starter unit provides users with the ability to solve demanding space requirements and still meet all NEMA and UL standards.

Safety

Design tested at Eaton's Cutler-Hammer power laboratory to assure maximum protection for control equipment. Engineered to minimize hazards to operating personnel.

Control Design

IT. Motor Control Centers are available in two basic control configurations:

- Hardwired for connection to traditional local/remote devices, PLC's DCS systems.
- DeviceNet Motor Control Centers which provide the optimal integrated package for control, communication, diagnostics and simplified wiring. Eaton's Cutler-Hammer DeviceNet MCC Solution provides users with significantly reduced installation time and increased uptime through the integration of intelligent devices and advanced software tools.
- Control products include: ODVA Compliant Motor Starters, Variable Speed Drives, Operator Interface and Block I/O.

Standards and Certifications

UL Listing

Standard structures and units are provided with UL label.

Options and Accessories

The *IT*. MCC features 24V DC control supplied to each control unit using a structure-mounted DC bus. The DC bus is fed from a power supply unit or by a separate customer-supplied DC source. Units feature fuseless self-protecting DC stabs which distribute control power to each unit. Optional motor lead terminal blocks can be provided through NEMA size 4 starters. The motor lead terminal block remains in the structure when a unit is withdrawn. This makes unit withdraw easy and safe.

IT. communication can be accomplished in two different configurations.

Direct DeviceNet Connection to Each Unit

Each unit will have a DeviceNet connection and will communicate the following information:

- % FLA.
- Status.
- Cause of trip.
- Breaker status.
- Run, stop, reset.

Each unit is one node on the network.

DeviceNet Using QCPort to Each Starter Unit

Each starter unit will have a QCPort interface. Each structure will contain a QCPort backplane, which will be located in the vertical bus area. Connection to the QCPort backplane will be made automatically through a QCPort stab when the unit is inserted into the MCC. The starter units connected on QCPort link to DeviceNet through a QCPort DeviceNet adapter (QCPort DNA). The QCPort DeviceNet Adapter can connect up to 21 starters and only uses one node on the DeviceNet network. One QCPort DNA module is required for every two structures. QCPort units will communicate the following information:

- % FLA.
- Status.
- Cause of trip.
- Breaker status.
- Run, stop, reset.

LC

Description

Motor Control Centers

January 2003 **Product Selection** Vol. 1, Ref. No. [0992]

Product Specifications

Structure

- NEMA 1A, 2, 3R or 12 enclosure.
- Copper horizontal bus 600 3200A.
- Fully rated copper vertical bus 300 - 1200A.
- Labyrinth optional.
- Labyrinth barriers for insulated and isolated vertical bus.
- Optional isolating barriers between structures.
- 65 kA and 1000 kA bus bracing.
- Plug-in DC, ground and communication bus.

Units

- IT. Motor Starters:
 - □ NEMA size 1 through 7.
 - □ Heaterless overload relay with Class 10, 20 and 30 overload protection
 - □ Built-in phase loss, single-phase
 - □ Compact size
 - □ Longer contact life
 - Communications
 - □ Extended ride-through
- HMCP with combination starter ratings of 65 kAIC and 100 kAIC at 480 volts.
- Plug-in units up to 400 amperes.
- Handle mechanism with positive trip indication.
- Side-mounted positive latch terminal block.
- 6-inch (152.4 mm) NEMA size 1 and 2 units with HMCP.
- Solid-State Reduced Voltage Starters:
 - □ Intelligent Technologies (IT.) (20 - 800 hp)
- Adjustable Frequency Drives:
 - □ SV9000 (2 1100 hp)
- K-Switch visible blade disconnect:
 - □ 30 800A
 - □ 100 kAIC at 600 volts
- Surge protection:
 - □ Clipper Visor TVSS (100 500 kA)
- Energy monitoring:
 - □ IQ 320 (amperes, volts, Hz, watts, PF)
 - □ IQ DP-4130 (adds THD, Contact I/O)
 - IQ Analyzer (adds trending, waveform display)

Product Selection

Incoming Line

Table 18-70. Incoming Line — Main Lugs Only

Bus Rating	X-Space	Price U.S. \$
600	2	262
600	2 3	262.
600		361.
600	4	572.
800	3	361.
800	4	461.
800	6	662.
1000	4	461.
1000	6	662.
1000	8	914.
1200	5	1000.
1200	6	1000.
1600	12	5,444.
2000	12	5,444.
2500	12	5,444.
3200 ^①	12	8,167.
① NEMA 1 gasketed only		

NEMA 1 gasketed only.

Table 18-71. Incoming Line — **Main Circuit Breaker**

Frame Size (Amps)	Circuit Breaker Type	Unit Size	Enclo- sure Width	Price U.S. \$
150	HFD FDC	18 (457.2)	20 (508.0)	1,203. 1,934.
225	HFD FDC	18 (457.2)		1,518. 4,389.
250	HJD JDC	30 (762.0)		1,897. 5,486.
400	HKD KDC CHKD ② CKDC ②	30 (762.0)		3,232. 6,107. 6,228. 9,732.
600	HLD LDC CHLD 23 CLDC 23	24 (609.6) 56		4,149. 4,880. 7,346. 8,238.
800	HMDL CHMDL 23 NDC CHND 2 CNDC 2	30 (762.0) [®] 48 (1219.2) [®] 42 (1066.8) [®] 72 (1828.8) 72 (1828.8)		6,389. 10,080. 9,488. 10,080. 11,580.
1200	HND ⁴ NDC ⁴ CHND ² ³ CNDC ² ³	42 (1066.8) [®] 42 (1066.8) [®] 72 (1828.8) 72 (1828.8)		7,174. 11,387. 10,932. 13,993.
2000	RD ⁴ RDC ⁴ CRD ² CRDC ²	72 (1828.8) ⑦		14,368. 16,796. 17,529. 19,918.
2500	RD RDC	72 (1828.8) ®	24 (609.6)	21,886. 24,868.

- 2 100% rated when 90° cable applied at 75° ampacity for 100% rating. Digitrip 310 LS is required and included in the price.
- 3 NEMA 1 gasketed only.
- 4 Digitrip 310 LS is standard and included in the pricing.
- Add 6-inch (152.4 mm) for top entry of incoming cables.
- Install at top for cable top entry or at bottom for bottom cable entry.
- The main breaker requires the complete vertical section. The rear is unusable.

Structure Modifications

Table 18-72. Structure Modifications

Description	U.S. \$
Enclosure	
NEMA 1 Gasketed	—
NEMA 12 — Dust Tight	426.
NEMA 3R Front Mounted Only	3,240.
NEMA 3R Front & Rear	3,749.
Space Heater	528.
Thermostat	343.
Bottom Plate	75.
Channel Sills	75.
12-inch (304.8 mm) Pull Box	724.
100K Bracing	594.
DC Bus and Vertical Ground Bus	361.
QCPort Communication Bus	1,950.
Vertical Bus	

300A	_
600A	268.
800A	268.
1200A	538.

105.

Ground Bus 300A

Horizontal — Copper

Standard Structures	
16-inch (406.4 mm)	1,422.
Front Mounted Only	
21-inch (533.4 mm)	1,578.
Front Mounted Only	
21-inch (533.4 mm)	2,182.
Front & Rear	

Main Horizontal Bus

600A Copper	294.
800A Copper	751.
1200A Copper	1,158.
1600A Copper	1,757.
2000A Copper	1,882.
2500A Copper	2,321.
3200A Copper	3,318.

Vertical Bus Barrier

Labyrinth Barrier with Shutters	Std.

Table 18-73. Neutral Bus (bottom)

Ampere Rating	Price U.S. \$ Per Structure	
300	197.	
600 or 800	226.	
1000	291.	
1200	387.	
1600	525.	
2000	759.	
2500	1,204.	
3200 ®	1,886.	

 Available NEMA 1 gasketed enclosures only. Note: 1/2 size Main Bus Copper.

Discount Symbol 1CD-2

Table 18-74. Incoming Line Metering

IQ Meter	X-Space	Price U.S. \$
IQ 100	2	2,070.
IQ 320	2	4,050.
IQ DP-4130	2	6,257.
IQ Analyzer	2	9,823.

Note: Does not include Current Transformers pricing.

Table 18-75. Transient Voltage Surge Suppression (Clipper Supervisor) — 18-inch Units with Circuit Breaker Disconnect ⊙

Includes power quality meter for volts, sag, swell, outage, transient counter, Form C contact, alarm.

Surge Current Per Phase	Unit Size	Price U.S. \$
100 kA Model CPS ② 120 kA Model CPS ② 160 kA Model CPS ② 200 kA Model CPS ②	18 (457.2)	6,172. 6,670. 8,680. 10,891.
250 kA Model CPS (4) 300 kA Model CPS 400 kA Model CPS 500 kA Model CPS		14,654. 17,840. 23,980. 29,980.

- ① Available in 12-inch (304.8 mm) unit (2X) without circuit breaker disconnect.
- ② Optional integral IQ 200 meter in 18-inch (457.2 mm) unit for 100 kA 200 kA = \$3,900.
- 3 Recommended branch entrance.
- 4 Recommended service entrance.

Table 18-76. CPS — Control Power Supplies ®

Ampere Rating	Description	X-Space	Price U.S. \$
6.5 6.5	Single Power Supply Dual Redundant Power Supplies	1	1,430. 2,950.
12	Single Power Supply	2	3,750.

^⑤ Required in all structures that will contain a starter, drive or soft start.

Combination Starters

Table 18-77. Full Voltage Non-Reversing — HMCP (T206)

Size	X-Space	Price U.S. \$
1	1	1,111.
3	2	1,342. 1,956.
4	2	3,742.
5	6	3,742. 7,454. 12,330.
6	9	12,330.

Table 18-78. Full Voltage Reversing — HMCP (T216)

Size	X-Space	Price U.S. \$
1	2	1,565.
2	2	2,175.
3	3	3,125.
4	4	5,725.
5	10	11,026.
6	12	18,906.

Table 18-79. Non-Reversing 2S, 1W HMCP (T946)

Size	X-Space	Price U.S. \$
1	2	2,443.
2	3	3,918.
3	4	4,641.
4	4	9,260.

Table 18-80. Non-Reversing 2S, 2W, HMCP (T956)

Size	X-Space	Price U.S. \$
1	2	2,025.
2	2	3,855.
3	3	4,074.
4	4	7,715.

Table 18-81. Fusible Disconnect Starters

Size	X-Space	Price U.S. \$
Full Voltage	Non-Reversing (T20	04)
1	2	989.
2	2	1,332.
3	4	2,089.
4	5	4,074.
5	10	6,662.
Full Voltage	Reversing (T214)	
1	3	1,580.
2	3	2,293.
3	5	3,243.
4	6	6,132.
Fusible, Non	-Reversing 2S, 1W	(T944)
1	3	2,428.
2	3	3,664.
3	6	4,749.
4	7	8,884.
Fusible, Non-Reversing 2S, 2W (T954)		
1	3	2,103.
2	3	3,662.
	5	4,052.
4	6	7.494.

Table 18-82. Contactor Only Units

Size	X-Space	Price U.S. \$
Circuit Brea	ker (T208)	•
1	1	1,072.
2	1	1,297.
3	2	1,682.
4	2	3,522.
5	5	6,740.
6	9	11,225.
Fusible (T209)		
1	2	1,072.
2	2 2 3	1,297.
3	3	1,682.
4	4	3,522.
5	9	6,740.

January 2003 Vol. 1, Ref. No. [0994]

Starter Modifications

Table 18-83. Control Options

Description	Price U.S. \$
Auxiliary Switch — In Breaker	128.
ETM Mini Meters	288.
Timer — Pneumatic	1,313.
Timer — Solid State	502.
Relay — AR — 600V	245.
Relay — General Purpose 300V	193.
AC Estop Relay	186.

Motor Control Centers

Table 18-84. DeviceNet Options

Description	Price U.S. \$
QCPort DeviceNet Adapter ① QCPort for <i>IT</i> . Starter ② DeviceNet for <i>IT</i> . Starter ③	6,410. 400. 1,429.
5 Amp — 24V DC Power Supply	3,495.
20 Amp — 24V DC Power Supply	6,950.
Trunk Cable and Tee	399.
Drop and Auxiliary Cable, Tee	239.
Terminating Resistors	156.

- ① One adapter required for every 21 starters.
- ② Communications bus must be added to each structure and QCPort DNA must be added.
- ③ Includes drop cables.

Table 18-85. Pilot Control Modules

Description	Price U.S. \$
Stop Stort/Store	42.
Start/Stop	85.
HOA	85.
Fast Slow-Stop	164.
Fwd/Rev-Stop	164.
Fast/Slow/Off/Auto	110.
Fwd/Rev/Off/Auto	110.
Pilot Lights — Run (Red) Stop (Green) OL Trip (Red) CB Trip (Red) Ground Fault Trip (Red) Fwd/Rev (Red) Fast/Slow (Red)	135. 135. 135. 240. 135. 220. 270.

Table 18-86. Intelligent Technologies (IT.) **SSRV Starters with Integral Bypass**

Maximum Hp	X-Space	Price U.S. \$	
IT06 Solid-State Reduced Voltage Starters — HMCP 65 kAIC — 1.15 Service Factor — Standard Duty			
20	2	7,108.	
40	2	8,275.	
60	3	10,440.	
75	3	11,600.	
125	6	14,390.	
150	6	14,990.	
200	6	18,680.	
300	9	29,440.	
350	9	30,330.	
450	12	32,440.	
500	12	42,000.	
600	12	53,300.	
700	12 ④	68,200.	
IT06 Solid-State Reduced Voltage Starters — HMCP			

65 kAIC — 1.15 Service Factor — Severe Duty

7,108.
8,275.
10,440.
12,800.
15,120.
15,550.
21,320.
26,120.
27,380.
28,450.
32,440.
42,000.
68,200.

@ Requires 24-inch wide, rear is unusable, bottom exit only.

Note: Consult the Cutler-Hammer Consulting Application Guide, 13th Edition for more complete information including fusible type disconnects and severe duty-rated design.

Table 18-87. IT. SSRV Control Options (5)

Description	Price U.S. \$
Pump Control	2,000.
MOV Protection	380.
DeviceNet — Standard	785.
DeviceNet — Enhanced	3,200.

[©] Options apply to both HMCP and thermalmagnetic breaker models.

Table 18-88. IT. SSRV Power Options ®

NEMA Bypass Starter	Price U.S. \$
Size 1	686.
Size 2	826.
Size 3	1,197.
Size 4	2,409.
Size 5	4,830.
Size 6	7,859.
Size 7	13,850.

⁶ Options apply to both HMCP and thermalmagnetic breaker models.

Table 18-89. Motor Isolation Contactors

Table 16 cel meter rectation contactors		
NEMA Isolation	Price	
Contactor	U.S. \$	
Size 1	554.	
Size 2	694.	
Size 3	1,065.	
Size 4	2,277.	
Size 5	4,398.	
Size 6	7,427.	
Size 7	13,160.	

Table 18-90. SV9000 Adjustable Frequency Drives — Plug-in Units NEMA 1 480V Constant / Variable Torque Rated

Нр	X-Space	Price U.S. \$	
		VT	СТ
3 5 7.5	3 4 4 4	7,306. 8,680. 8,878.	7,306. 8,680. 9,459.
10 15 20 25 30	4 6 6 6	9,459. 10,449. 12,193. 15,270. 17,627.	10,449. 12,193. 15,270. 17,627. 19,760.

Note: SV9000 Plug-in Units with HMCP disconnect, 3% input line reactor, 3% output line reactor, door mounted Keypad, CPT.

Table 18-91 SV9000 Ontions — Plug-in Units

Table 10-31. 3 v 3000 Options — Flug-in Onits		
Description	Price U.S. \$	
DeviceNet Communications Profibus Communications	964. 2,620.	
2000-foot (609.6 m) dV/dT Filter (3 hp) 2000-foot (609.6 m) dV/dT Filter (5 – 15 hp) 2000-foot (609.6 m) dV/dT Filter (20 – 30 hp)	1,431. 1,540.	
Input Line Fuses (3 – 30 hp) RFI Filter (3 – 30 hp)	454. 486.	

January 2003 Vol. 1, Ref. No. [0994]

Starter Modifications

Table 18-83. Control Options

Description	Price U.S. \$
Auxiliary Switch — In Breaker	128.
ETM Mini Meters	288.
Timer — Pneumatic	1,313.
Timer — Solid State	502.
Relay — AR — 600V	245.
Relay — General Purpose 300V	193.
AC Estop Relay	186.

Motor Control Centers

Table 18-84. DeviceNet Options

Description	Price U.S. \$
QCPort DeviceNet Adapter ① QCPort for <i>IT.</i> Starter ② DeviceNet for <i>IT.</i> Starter ③	6,410. 400. 1,429.
5 Amp — 24V DC Power Supply	3,495.
20 Amp — 24V DC Power Supply	6,950.
Trunk Cable and Tee	399.
Drop and Auxiliary Cable, Tee	239.
Terminating Resistors	156.

- ① One adapter required for every 21 starters.
- ② Communications bus must be added to each structure and QCPort DNA must be added.
- ③ Includes drop cables.

Table 18-85. Pilot Control Modules

Description	Price U.S. \$
	ບ.ວ. ຈ
Stop	42.
Start/Stop	85.
HOA	85.
Fast Slow-Stop	164.
Fwd/Rev-Stop	164.
Fast/Slow/Off/Auto	110.
Fwd/Rev/Off/Auto	110.
Pilot Lights —	
Run (Red)	135.
Stop (Green)	135.
OL Trip (Red)	135.
CB Trip (Red)	240.
Ground Fault Trip (Red)	135.
Fwd/Rev (Red)	220.
Fast/Slow (Red)	270.

Table 18-86. Intelligent Technologies (IT.) **SSRV Starters with Integral Bypass**

Hp	A-Space	U.S. \$	
IT06 Solid-State Reduced Voltage Starters — HMCP 65 kAIC — 1.15 Service Factor — Standard Duty			
20	2	7,108.	
40	2	8,275.	
60	3	10,440.	
75	3	11,600.	
125	6	14,390.	
150	6	14,990.	
200	6	18,680.	
300	9	29,440.	
350	9	30,330.	
450	12	32,440.	
500	12	42,000.	
600	12	53,300.	
700	12 ④	68,200.	
IT06 Solid-State Reduced Voltage Starters — HMCP			

65 kAIC — 1.15 Service Factor — Severe Duty

10	2	7,108.
25	2	8,275.
40	3	10,440.
50	3	12,800.
75	6	15,120.
100	6	15,550.
125	6	21,320.
150	9	26,120.
200	9	27,380.
250	9	28,450.
300	9	32,440.
350	9	42,000.
450	12 [®]	68,200.

@ Requires 24-inch wide, rear is unusable, bottom exit only.

Note: Consult the Cutler-Hammer Consulting Application Guide, 13th Edition for more complete information including fusible type disconnects and severe duty-rated design.

Table 18-87. IT. SSRV Control Options (5)

Description	Price U.S. \$
Pump Control	2,000.
MOV Protection	380.
DeviceNet — Standard	785.
DeviceNet — Enhanced	3,200.

[©] Options apply to both HMCP and thermalmagnetic breaker models.

Table 18-88. IT. SSRV Power Options ®

NEMA Bypass Starter	Price U.S. \$
Size 1	686.
Size 2	826.
Size 3	1,197.
Size 4	2,409.
Size 5	4,830.
Size 6	7,859.
Size 7	13,850.

⁶ Options apply to both HMCP and thermalmagnetic breaker models.

Table 18-89. Motor Isolation Contactors

NEMA Isolation	Price
Contactor	U.S. \$
Size 1	554.
Size 2	694.
Size 3	1,065.
Size 4	2,277.
Size 5	4,398.
Size 6	7,427.
Size 7	13,160.

Table 18-90. SV9000 Adjustable Frequency Drives — Plug-in Units NEMA 1 480V Constant / Variable Torque Rated

Нр	X-Space	Price U.S. \$	
		VT	СТ
3 5 7.5	3 4 4 4	7,306. 8,680. 8,878.	7,306. 8,680. 9,459.
10 15 20 25 30	4 6 6 6	9,459. 10,449. 12,193. 15,270. 17,627.	10,449. 12,193. 15,270. 17,627. 19,760.

Note: SV9000 Plug-in Units with HMCP disconnect, 3% input line reactor, 3% output line reactor, door mounted Keypad, CPT.

Table 18-91 SV9000 Ontions — Plug-in Units

iable 10-51. 545000 options — i lug-in onits	
Description	Price U.S. \$
DeviceNet Communications Profibus Communications	964. 2,620.
2000-foot (609.6 m) dV/dT Filter (3 hp) 2000-foot (609.6 m) dV/dT Filter (5 – 15 hp) 2000-foot (609.6 m) dV/dT Filter (20 – 30 hp)	1,431. 1,540.
Input Line Fuses (3 – 30 hp) RFI Filter (3 – 30 hp)	454. 486.

Motor Control Centers

January 2003 Vol. 1, Ref. No. [0995]

Product Selection

SV9000

Table 18-92. SV9000 Adjustable Frequency Drives — Non-Plug-in Units **NEMA 1 480V Constant / Variable Torque Rated**

Нр	X-Space	Price U.S. \$	
-		VT	СТ
40	9	20,442.	23,292.
50	9	23,473.	25,186.
60	9	29,103.	32,319.
75 ①	9	32,319.	38,269.
100	12	39,748.	44,972.
125	12	48,516.	54,199.
150	12	54,199.	59,103.
200	12	68,647.	74,025.
250	12	76,725.	88,987.
300	12	89,437.	109,237.
400	12	109,237.	174,956.
500	12	174,756.	207,469.
600	12	198,039.	245,700.

① X-Space for 75 hp CT rated drive is 12X.

Note: Consult the Cutler-Hammer Consulting Application Guide, 13th Edition for complete details on Drive / Option Assembly

Note: SV9000 Non-Plug-in Units with HMCP disconnect, 3% input line reactor, 3% output line reactor, door mounted Keypad, CPT.

Note: VT — Variable Torque drives are capable of producing 200% starting torque for 10 seconds and are rated for 10 seconds, and are rated 110% overload for one minute.

Note: CT — Variable Torque drives are capable of producing 200% starting torque for 10 seconds and are rated for 10 seconds, and are rated 150% overload for one minute.

Table 18-93, SV9000 Options — **Non-Plug-in Units**

Description	Price U.S. \$
DeviceNet Communications Profibus Communications	964. 2,620.
2000-foot (609.6 m) dV/dT Filter (40 – 75 VT hp) 2000-foot (609.6 m) dV/dT Filter	4,100. 5,250.
(100 – 150 VT hp) 2000-foot (609.6 m) dV/dT Filter (200 – 250 VT hp)	6,810.
2000-foot (609.6 m) dV/dT Filter (300 – 400 VT hp) 2000-foot (609.6 m) dV/dT Filter (500 – 600 VT hp)	8,500. 10,970.
Input Line Fuses (40 – 150 VT hp) Input Line Fuses (200 – 250 hp) Input Line Fuses (300 – 400 hp)	714. 1,176. 2,245.

Table 18-94. Active Harmonic Correction for AC Drives

Description	X-Space	Price U.S. \$
50A Harmonic Correction	12②	48,813.
100A Harmonic Correction	12②	76,107.

² Requires 24-inch (609.6 mm) wide structure.

Table 18-95. 18-Pulse Clean Power Drives — **NEMA 1, 480 Variable Torque Duty**

Нр	X-Space, Inches Wide	Price U.S. \$
100	12, 90	36,420.
150	12, 90	53,480.
200	12, 98	69,836.
250	12, 98	78,004.
300	12, 130	102,180.
400	12, 130	104,820.
500	12, 138	115,290.
600	12, 138	119,688.

Note: Includes, 5% Input Line reactor, 18pulse rectifier, Delta differential transformer. Price standard SV9000 drive separately.

Feeders

Table 18-96. Circuit Breaker

Amperes	X-Space	Price U.S. \$
Standard Circui	it Breakers	•
E125 50	1	667.
E125 125	1	981.
J250 225	1	1,465.
J250 250	1	1,816.
HKD 400	4	2,993.
HLD 600	4	3,842.
HND 800	7	5,916.
HND 1200	7	6,643.

Table 18-97. Fusible Switch

Amperes	X-Space	Price U.S. \$
30 or 60 100	2 3	427. 577.
200 400 600	6 6 8	695. 1,919. 3,140.

Table 18-98. Dual Fusible Switches

Amperes	X-Space	Price U.S. \$
30	2	956.
60	3	968.

Transformers

Note: Must have primary breaker. Must be located at bottom of structure.

Table 18-99. Transformers

kVA	X-Space	Price U.S. \$				
Single-Phase	Single-Phase					
5	4	1,865.				
10	4	2,445.				
15	5	3,142.				
20	5	4,452.				
30	6	5,846.				
45	7	8,851.				
Three-Phase						
15	6	4,366.				
30	6	6,111.				
45	9	8,297.				

Panelboards

Table 18-100. Panelboards (240V Maximum)

Circuit	X-Space	Price U.S. \$
18	4	1,305.
30	5	1,892.
42	6	2,075.

Note: Space and price for MLO. Branch breakers included.

Table 18-101. ATS — Automatic Transfer Switches — Open Transition 3-Pole Only

Ampere	Unit	Unit	Price
Rating	Width	Size	U.S. \$ 3
100 ⁴	20	36	11,840.
150 ⁴	(508.0)	(914.4)	15,174.
100	20	48	12,313.
150	(508.0)	(1219.2) (8X)	15,780.
225	20		16,032.
300	(508.0)		16,032.
400 600 800 1000	24 (609.6) ^⑤	72 (1828.8)	20,454. 25,527. 29,601. 41,216.
1000	44		73,369.
1200	(1117.6) [©]		73,869.
1600	44		76,373.
2000	(1117.6) ⑦		80,002.

- 3 Price includes option group OG9.
- 4 Manually operated switch: NTVS = Electronically operated non-automatic. MTVX = Single handle manual operation.
- © Requires 21-inch (533.4 mm) deep structure.
- ® Requires 37-inch (939.8 mm) deep structure, flush at the rear. 4-inch (101.6 mm) filler required.
- ^⑦ Requires 42-inch (1066.8 mm) deep structure. 4-inch (101.6 mm) filler required.

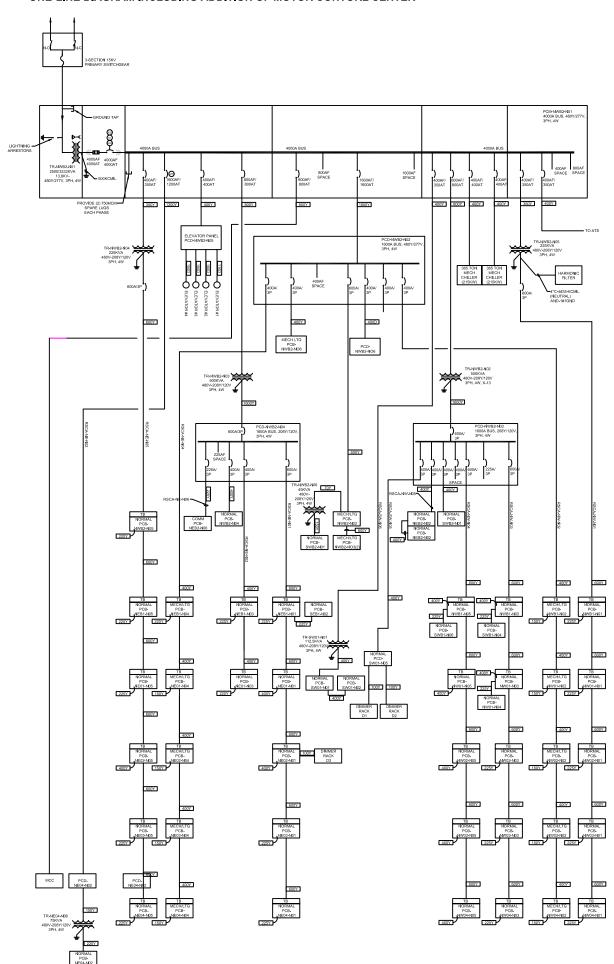
January 2003 Vol. 1, Ref. No. [0996]

Application Guide

Table 18-102. Motor Circuit Protector Selection Guide

NEMA	Maximum Horsepower						
	200V	208V	230V	380V	460V	575V	НМСР
1	_	_	_	3/4	3/4	1	3
	3/4	1	1	2	2	3	7
	2	2	2	3	5	7-1/2	15
	5	5	5	10	10	10	30
	7-1/2	7-1/2	7-1/2	-	-	<u> </u>	50
2	_	_	_		_	15	30
	10	10	10	15	20	25	50
	_	_	15	25	25	_	70
3	_	_	_	_	_	30	50
	15	20	20	30	40	50	100
	25	25	30	50	50	_	150
4	40	40	40	60	100	100	150
	 -	_	50	75	-	-	250
5	50	50	60	_	125	150	250
	75	75	75	150	200	200	400
	-	_	100	<u> </u>	<u> </u>	-	600
6	150	150	200	300	350	400	600
	_	-	-	<u> </u>	400	<u> </u>	1200

Note: Suitable for use with NEMA Design B and D (High Efficiency) Motors.

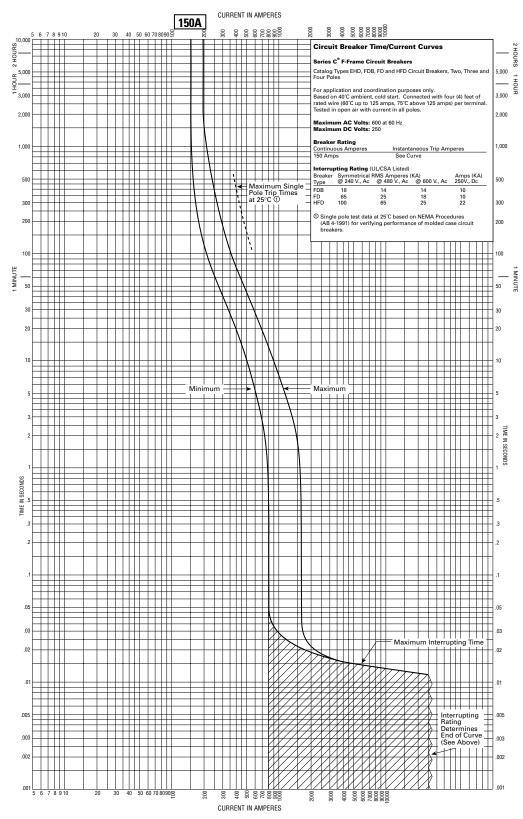

Table 18-103. Circuit Breaker Application Chart

Frame	Frame Rating	Interrupting Rating (kA Symmetrical Amperes)					
	(Amperes)	208/240V	480V	600V			
Standard Rating N	Standard Rating Molded Case Circuit Breakers						
E125H	125	65	65	25			
HFD	150	100	65	25			
HJD	250	100	65	25			
J250	250	65	65	25			
HKD	400	100	65	35			
HLD	600	100	65	35			
HND	800	100	65	35			
HND	1200	100	65	35			
RD	2000	100	65	50			
High Interrupting	Rating Molded Cas	e Circuit Breakers					
FDC	150	100	100	35			
JDC	250	100	100	35			
KDC	400	100	100	50			
LDC	600	100	100	50			
NDC	800	100	100	50			
NDC	1200	100	100	50			
RDC	2000	100	100	65			
RDC	2500	100	100	65			
Current Limiting N	Nolded Case Circui	t Breakers					
HFD/CL	150	100	100	100			
NBTRIPAC	300 – 800	100	100	100			
Magnum DS Air Circuit Breakers							
MDS-608	800	65	65	65			
MDS-C08	800	100	100	100			
MDS-616	1600	65	65	65			
MDS-C16	1600	100	100	100			
MDS-620	2000	65	65	65			
MDS-C20	2000	100	100	100			
MDS-632	3200	65	65	65			
MDS-C32	3200	100	100	100			

Table 18-104. Control Power Requirements (IT. Only)

Table 16-104. Collicol Power nequirements (11. Only)						
NEMA Size	Continuous Current	Inrush				
FVNR, 252W, FVR						
Size 1	.39	3.8				
Size 2	.45	5.4				
Size 3	.47	5.8				
Size 4	.47	5.8				
Size 5	.62	7.8				
Size 6	.41	3.3				
Size 7	.41	3.3				
2S1W						
Size 1	.54	7.6				
Size 2	.66	10.8				
Size 3	.70	11.6				
Size 4	.70	11.6				
Size 5	1.00	15.6				
SSRV						
24A	.45	3.8				
33 – 304A	1.24	10				
360 – 850A	1.64	10				

Motor Control Center One-Line

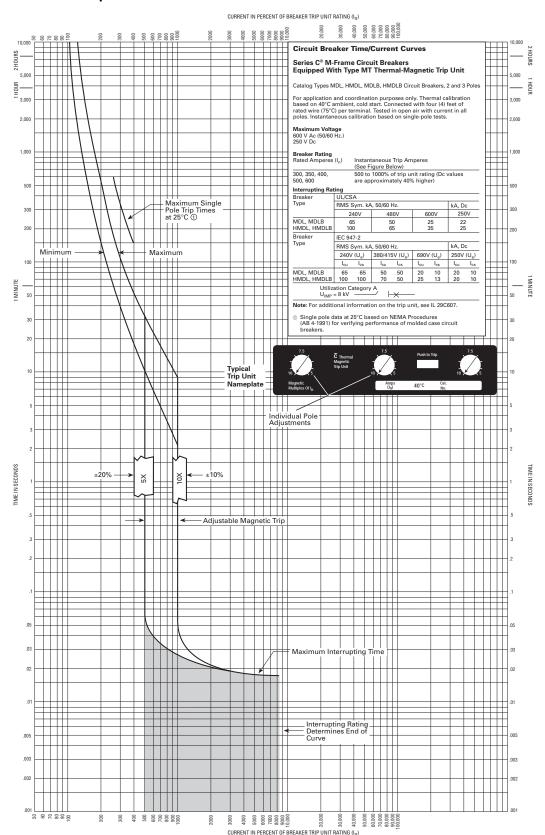


Appendix E

Œı

AB DE-ION Circuit Breakers

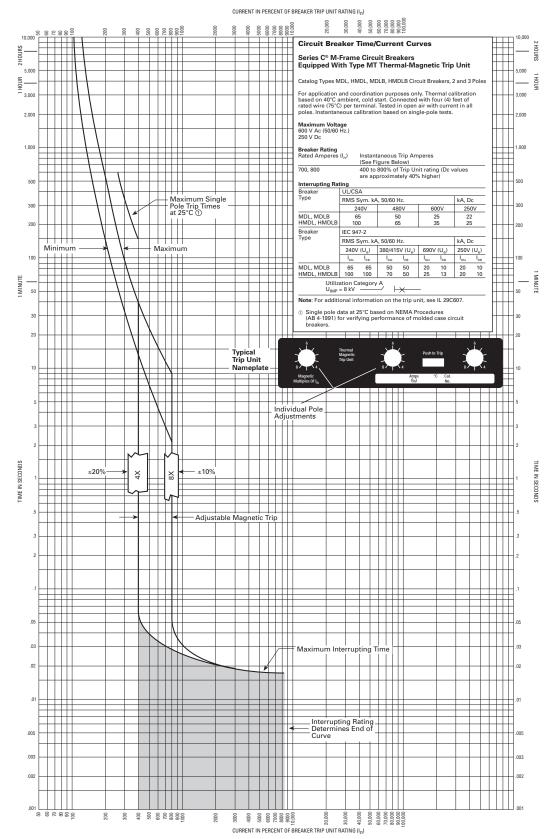
Types FDB, FD and HFD 150 Amperes



Series C® Molded Case
y 1999 Circuit Breakers
M-Frame

Effective: February 1999

Types MDL, HMDL, MDLB, and HMDLB Equipped with Type MT Thermal-Magnetic Trip Unit, 300 to 600 Amperes


300-800 Amperes

Circuit Breakers Effective M-Frame

Types MDL, HMDL, MDLB, and HMDLB Equipped with Type MT Thermal-Magnetic Trip Unit, 700 and 800 Amperes

300-800 Amperes

Technical Data