STRUCTURAL OPTION

Mountain State Blue Cross Blue Shield Headquarters

Parkersburg, WV

Department of Architectural Engineering The Pennsylvania State University

FACULTY ADVISOR: DR. LEPAGE

PRESENTATION OUTLINE

• THESIS GOALS

• BUILDING INTRODUCTION

• STRUCTURAL DEPTH

ADDITIONAL FLOOR

RELOCATION TO UTAH

• ARCHITECTURAL BREADTH

COLUMN GRID ADJUSTMENT

CHANGES TO FLOOR PLAN

• CONSTRUCTION MANAGEMENT BREADTH

SCHEDULE IMPACT

COST ANALYSIS

• SUMMARY RECOMMENDATIONS

• THANKS

• QUESTIONS

DOMINIC MANNO

FACULTY ADVISOR: DR. LEPAGE

STRUCTURAL OPTION

STRUCTURAL OPTION

PRESENTATION OUTLINE

- THESIS GOALS
- BUILDING INTRODUCTION
- STRUCTURAL DEPTH
 ADDITIONAL FLOOR
 RELOCATION TO UTAH
- ARCHITECTURAL BREADTH
 COLUMN GRID ADJUSTMENT
 CHANGES TO FLOOR PLAN
- CONSTRUCTION MANAGEMENT BREADTH
 SCHEDULE IMPACT
 COST ANALYSIS
- SUMMARY RECOMMENDATIONS
- THANKS
- QUESTIONS

THESIS GOALS

- •ADD FLOOR FOR MORE OFFICE SPACE
- •RELOCATE THE BUILDING TO SALT LAKE
- CITY, UTAH
- •REDESIGN LATERAL SYSTEM
- •INVESTIGATE FOUNDATIONS
- •SCHEDULE IMPACT
- •COST ANALYSIS

FACULTY ADVISOR: DR. LEPAGE

STRUCTURAL OPTION

PRESENTATION OUTLINE

- THESIS GOALS
- BUILDING INTRODUCTION
- STRUCTURAL DEPTH
 ADDITIONAL FLOOR
 RELOCATION TO UTAH
- ARCHITECTURAL BREADTH
 COLUMN GRID ADJUSTMENT
 CHANGES TO FLOOR PLAN
- CONSTRUCTION MANAGEMENT BREADTH
 SCHEDULE IMPACT
 COST ANALYSIS
- SUMMARY RECOMMENDATIONS
- THANKS
- QUESTIONS

BUILDING STATISTICS

OFFICE BUILDING 4 FLOORS - 128,496 SQ. FT. TOTAL COST - 18 MILLION - DESIGN BID BUILD (ADDING FLOOR FOR THESIS REQUIREMENT)

STRUCTURAL SYSTEM

COMPOSITE STEEL FRAMING 4 CONCENTRICALLY BRACED FRAMES (2 IN EACH DIRECTION) TYPICAL BAY SIZE - 30' X 30'

PROJECT TEAM

OWNER: WOOD COUNTY DEVELOPMENT AUTHORITY ARCHITECT: BURT HILL STRUCTURAL: ATLANTIC ENGINEERING SERVICES CONTRACTOR: G.A. BROWN

PHOTO COURTESY OF ATLANTIC

FACULTY ADVISOR: DR. LEPAGE

• THESIS GOALS

• BUILDING INTRODUCTION

PRESENTATION OUTLINE

- STRUCTURAL DEPTH
 ADDITIONAL FLOOR
 RELOCATION TO UTAH
- ARCHITECTURAL BREADTH
 COLUMN GRID ADJUSTMENT
 CHANGES TO FLOOR PLAN
- CONSTRUCTION MANAGEMENT BREADTH
 SCHEDULE IMPACT
 COST ANALYSIS

STRUCTURAL OPTION

APRIL 13, 2009

- SUMMARY RECOMMENDATIONS
- THANKS
- QUESTIONS

ORIGINAL WEST VIRGINIA (4 STORIES) FLOOR PLAN

ORIGINAL WEST VIRGINIA (4 STORIES) 3D STRUCTURE

RAM STRUCTURAL SYSTEM

FACULTY ADVISOR: DR. LEPAGE

PRESENTATION OUTLINE

• THESIS GOALS

DOMINIC MANNO

- BUILDING INTRODUCTION
- STRUCTURAL DEPTH
 ADDITIONAL FLOOR
 RELOCATION TO UTAH
- ARCHITECTURAL BREADTH
 COLUMN GRID ADJUSTMENT
 CHANGES TO FLOOR PLAN
- CONSTRUCTION MANAGEMENT BREADTH
 SCHEDULE IMPACT
 COST ANALYSIS
- SUMMARY RECOMMENDATIONS
- THANKS
- QUESTIONS

ADDITIONAL FLOOR FOR WEST VIRGINIA

WEST VIRGINIA (5 STORIES) 3D STRUCTURE

RAM STRUCTURAL SYSTEM

FACULTY ADVISOR: DR. LEPAGE

APRIL 13, 2009

STRUCTURAL OPTION

DOMINIC MANNOSTRUCTURAL OPTIONRELATIVE STIFFNESS FOR X DIRECTION2D MODEL FROM SAP 2000

PRESENTATION OUTLINE

- THESIS GOALS
- BUILDING INTRODUCTION
- STRUCTURAL DEPTH
 ADDITIONAL FLOOR
 RELOCATION TO UTAH
- ARCHITECTURAL BREADTH
 COLUMN GRID ADJUSTMENT
 CHANGES TO FLOOR PLAN
- CONSTRUCTION MANAGEMENT BREADTH
 SCHEDULE IMPACT
 COST ANALYSIS
- SUMMARY RECOMMENDATIONS
- THANKS
- QUESTIONS

X Direction		Frame 1									
Level	Left Col Shear	Right Col Shear	Hor. Component of Brace	Sum of Forces	Floor Deflection	Relative Rigidity					
Roof	0.48	0.49	56.49	57.46	0.387	148.4					
5th	0.46	0.45	57.46	58.37	0.280	208.2					
4th	0.32	0.40	57.23	57.95	0.183						
3rd	0.60	0.20	51.43	52.23	0.102	513.6					
2nd	0.05	-0.23	54.51	54.33	0.038	1437.3					
			Total of Sum of Forces	200.24	7						

X Direction		Frame 3											
Level	Left Col Shear	Right Col Shear	Hor. Component of Brace	Sum of Forces	Floor Deflection	Relative Rigidity							
Roof	0.77	0.77	41.80	43.34	0.387	111.9							
5th	0.65	0.65	40.31	41.61	0.280	148.4							
4th	0.50	0.50	47.03	48.03	0.183	262.2							
3rd	0.57	0.57	46.62	47.76	0.102	469.6							
2nd	-0.04	-0.04	46.59	46.51	0.038	1230.4							
			Total of Sum of Forces		7								

FRAME 1 FRAME 3 (30' SPAN FOR EACH BRACED FRAME)

FACULTY ADVISOR: DR. LEPAGE

DOMINIC MANNOSTRUCTURAL OPTIONRELATIVE STIFFNESS FOR Y DIRECTION2D MODEL FROM SAP 2000

PRESENTATION OUTLINE

- THESIS GOALS
- BUILDING INTRODUCTION
- STRUCTURAL DEPTH
 ADDITIONAL FLOOR
 RELOCATION TO UTAH
- ARCHITECTURAL BREADTH
 COLUMN GRID ADJUSTMENT
 CHANGES TO FLOOR PLAN
- CONSTRUCTION MANAGEMENT BREADTH
 SCHEDULE IMPACT
 COST ANALYSIS
- SUMMARY RECOMMENDATIONS
- THANKS
- QUESTIONS

Y Direction		Frame 2									
Level	Left Col Shear	Right Col Shear	Hor. Component of Brace	Sum of Forces	Floor Deflection	Relative Rigidity					
Roof	1.01	1.01	43.54	45.56	0.439	103.8					
5th	1.14	1.14	47.34	49.62	0.320	155.2					
4th	0.70	0.70	48.11	49.51	0.205	241.6					
3rd	0.76	0.76	48.08	49.60	0.115	430.2					
2nd	0.06	0.06	42.77	42.89	0.046	942.6					
			Total of Sum of Forces		7						

Y Direction	Frame 4										
Level	Left Col Shear	Right Col Shear	Hor. Component of Brace	Sum of Forces	Floor Deflection	Relative Rigidity					
Roof	1.07	1.07	53.07	55.21	0.439	125.8					
5th	1.21	1.21	47.92	50.34	0.320	157.5					
4th	0.73	0.73	49.01	50.47	0.205	246.3					
3rd	0.81	0.81	48.76	50.38	0.115	436.9					
2nd	0.05	0.05	56.99		0.046	1254.7					
			Total of Sum of Forces	200-10							

FRAME 4 FRAME 2
(30' SPAN FOR EACH BRACED FRAME)

FACULTY ADVISOR: DR. LEPAGE

PRESENTATION OUTLINE
• THESIS GOALS

- BUILDING INTRODUCTION
- STRUCTURAL DEPTH
 ADDITIONAL FLOOR
 RELOCATION TO UTAH
- ARCHITECTURAL BREADTH
 COLUMN GRID ADJUSTMENT
 CHANGES TO FLOOR PLAN
- CONSTRUCTION MANAGEMENT BREADTH
 SCHEDULE IMPACT
 COST ANALYSIS
- SUMMARY RECOMMENDATIONS
- THANKS
- QUESTIONS

X DIRECTION

	X Direction									
Direct Shear	V*Ri	/ ΣR	Torsional Shear	V*e*Ri*C/ΣR*C²						
V (k)	Frame 1	Frame 3	V (k)	Frame 1	Frame 3					
55.24	30.38	24.86	55.24	4.31	7.42					
164.74	90.61	74.13	164.74	12.73	22.29					
113.74	62.56	51.18	113.74	9.08	14.99					
66.88	36.78	30.10	66.88	5.57	8.45					
22.65	12.46	10.19	22.65	2.11	2.54					
			Total Shear		423.17					

DIRECT AND TORSIONAL SHEAR ANALYSIS

Y DIRECTION

	Y Direction											
Direct Shear	V*Ri	/ ΣR	Torsional Shear	V*e*Ri*C/ΣR*C²								
V (k)	Frame 2	Frame 4	V (k)	Frame 2	Frame 4							
55.25	25.97	29.28	55.25	5.44	5.66							
164.36	77.25	87.11	164.36	16.01	17.03							
113.39	53.29	60.10	113.39	11.14	11.65							
66.69	31.34	35.35	66.69	6.70	6.69							
22.65	10.65	12.00	22.65	2.61	2.25							
			Total Shear		422.47							

X DIRECTION

	Controlling Seismic Drift X Direction													
				Allowable	Allowable Story Drift (ft.) $\Delta_{SSISMIC} =$			Allowable Total Drift (ft.) Δ _{st}						
Story	Story Ht.(ft.)	Story Displacement (ft.)	Story Drift (ft.)	0.025H _{sx}			Total Drift (ft.)	0.025H _{sx}						
Roof	67.30	0.0900	0.00435	<	0.34	Acceptable	0.022	<	1.68	Acceptable				
5th	53.83	0.0800	0.00483	<	0.35	Acceptable	0.018	٧	1.35	Acceptable				
4th	39.83	0.0583	0.00476	<	0.33	Acceptable	0.013	<	1.00	Acceptable				
3rd	26.67	0.0358	0.00436	٧	0.33	Acceptable	0.008	٧	0.67	Acceptable				
2nd	13.33	0.0150	0.00366	<	0.33	Acceptable	0.004	<	0.33	Acceptable				

5 STORY WEST VIRGINIA BUILDING DRIFTS

Y DIRECTION

	Controlling Seismic Drift Y Direction												
				Allowable	Story Drift (ft.) $\Delta_{\text{SEISMIC}} =$		Allowable Total Drift (ft.) Δ _{SEI}					
Story	Story Ht.(ft.)	Story Displacement (ft.)	Story Drift (ft.)	0.025H _{sx}			Total Drift (ft.)	0.025H _{sx}					
Roof	67.30	0.0942	0.00455	<	0.34	Acceptable	0.022	<	1.68	Acceptable			
5th	53.83	0.0800	0.00483	<	0.35	Acceptable	0.018	<	1.35	Acceptable			
4th	39.83	0.0583	0.00476	<	0.33	Acceptable	0.013	<	1.00	Acceptable			
3rd	26.67	0.0358	0.00436	<	0.33	Acceptable	0.008	<	0.67	Acceptable			
2nd	13.33	0.0150	0.00366	<	0.33	Acceptable	0.004	<	0.33	Acceptable			

FACULTY ADVISOR: DR. LEPAGE

APRIL 13, 2009

STRUCTURAL OPTION

PRESENTATION OUTLINE

• THESIS GOALS
• BUILDING INTRODUCTION
• STRUCTURAL DEPTH
ADDITIONAL FLOOR
RELOCATION TO UTAH
• ARCHITECTURAL BREADTH
COLUMN GRID ADJUSTMENT
CHANGES TO FLOOR PLAN
• CONSTRUCTION MANAGEMENT BREADTH

FACULTY ADVISOR: DR. LEPAGE

THANKSQUESTIONS

SCHEDULE IMPACT COST ANALYSIS

• SUMMARY RECOMMENDATIONS

(X DIRECTION)

BRACED FRAME 5

BRACED FRAME 6 -(X DIRECTION)

BRACED FRAME 4

DOMINIC MANNO

FACULTY ADVISOR: DR. LEPAGE

STRUCTURAL OPTION

PRESENTATION OUTLINE

• THESIS GOALS

DOMINIC MANNO

- BUILDING INTRODUCTION
- STRUCTURAL DEPTH
 ADDITIONAL FLOOR
 RELOCATION TO UTAH
- ARCHITECTURAL BREADTH
 COLUMN GRID ADJUSTMENT
 CHANGES TO FLOOR PLAN
- CONSTRUCTION MANAGEMENT BREADTH
 SCHEDULE IMPACT
 COST ANALYSIS
- SUMMARY RECOMMENDATIONS
- THANKS
- QUESTIONS

X DIRECTION

	X Direction												
Direct Shear		V*Ri / ΣR		Torsional Shear V*e*Ri*C/			^k C ²						
V (k)	Frame 4	Frame 5	Frame 6	V (k)	Frame 4	Frame 5	Frame 6						
249.95	71.77	96.52	81.67	55.24	0.65	4.03	4.51						
756.70	217.27	292.19	247.24	164.74	1.56	11.49	13.91						
548.38	157.46	211.75	179.17	113.74	1.05	7.90	9.62						
338.53	97.20	130.72	110.61	66.88	0.34	4.23	5.91						
145.09	41.66	56.02	47.41	22.65	0.14	1.46	1.99						
				Total Shear			20/11 73						

DIRECT AND TORSIONAL SHEAR ANALYSIS

Y DIRECTION

	Y Direction												
Direct Shear		V*Ri / ΣR		Torsional Shear	٧*	C ²							
V (k)	Frame 1	Frame 2	Frame 3	V (k)	Frame 1	Frame 2	Frame 3						
249.95	97.48	92.48	59.99	55.24	5.62	1.39	5.26						
756.70	295.11	279.98	181.61	164.74	17.32	3.68	15.44						
548.38	213.87	202.90	131.61	113.74	12.93	1.62	10.06						
338.53	132.03	125.26	81.25	66.88	7.66	0.89	5.87						
145.09	56.59	53.68	34.82	22.65	3.13	0.21	1.65						
				Total Shear			2039.26						

X DIRECTION

	Controlling Seismic Drift X Direction												
				Allowable	Story Drift (ft.) A _{SEISMI}		Allowable	Total Drift (ft.) Δ _{SEISMIC}					
Story	Story Ht.(ft.)	Story Displacement (ft.)	Story Drift (ft.)	= 0.025H _{sx}		Total Drift (ft.)	= 0.025H _{sx}						
Roof	67.30	0.1480	0.00220	<	0.34 Acceptabl	0.0094	<	1.68 Acceptable					
5th	53.83	0.1290	0.00240	<	0.35 Acceptabl	0.0072	<	1.35 Acceptable					
4th	39.83	0.0967	0.00243	<	0.33 Acceptabl	0.0048	<	1.00 Acceptable					
3rd	26.67	0.0575	0.00216	<	0.33 Acceptabl	0.0023	<	0.67 Acceptable					
2nd	13.33	0.0023	0.00017	<	0.33 Acceptabl	0.0002	<	0.33 Acceptable					

5 STORY UTAH BUILDING DRIFTS

Y DIRECTION

	Controlling Seismic Drift Y Direction													
				Allowable !	Story Drift (ft.) $\Delta_{SEISMIC}$		Allowable	ft.) ∆ _{seisMic}					
Story	Story Ht.(ft.)	Story Displacement (ft.)	Story Drift (ft.)	= 0.025H _{sx}			Total Drift (ft.)	= 0.025H _{sx}						
Roof	67.30	0.1530	0.00227	<	0.34	Acceptable	0.0102	<	1.68	Acceptable				
5th	53.83	0.1220	0.00227	<	0.35	Acceptable	0.0080	<	1.35	Acceptable				
4th	39.83	0.0875	0.00220	<	0.33	Acceptable	0.0057	<	1.00	Acceptable				
3rd	26.67	0.0530	0.00199	<	0.33	Acceptable	0.0035	<	0.67	Acceptable				
2nd	13.33	0.0200	0.00150	<	0.33	Acceptable	0.0015	<	0.33	Acceptable				

FACULTY ADVISOR: DR. LEPAGE

APRIL 13, 2009

STRUCTURAL OPTION

DRILLED CAISSON WV CAPACITY AND UT LOADS

CHANGES MADE TO FOUNDATIONS (5 STORY UT BLDG.)

DOMINIC MANNO

FACULTY ADVISOR: DR. LEPAGE

STRUCTURAL OPTION

PRESENTATION OUTLINE

• THESIS GOALS

DOMINIC MANNO

- BUILDING INTRODUCTION
- STRUCTURAL DEPTH
 ADDITIONAL FLOOR
 RELOCATION TO UTAH
- ARCHITECTURAL BREADTH
 COLUMN GRID ADJUSTMENT
 CHANGES TO FLOOR PLAN
- CONSTRUCTION MANAGEMENT BREADTH
 SCHEDULE IMPACT
 COST ANALYSIS
- SUMMARY RECOMMENDATIONS
- THANKS
- QUESTIONS

TOTAL DURATION

Super Structure	Days to Complete One Floor	Original Building	Additional Floor
Steel Fabrication	36	144	180
Steel Erection A-C	7	28	35
Steel Erection C-E	10	40	50
Steel Erection E-J	6	24	30
Deck and Detail A-C	14	56	70
Deck and Detail C-E	14	56	70
Deck and Detail E-J	30	120	150
Conc. Slab	32	128	160
Total Days	149	596	745

CRITICAL SCHEDULE IMPACT OF ADDITIONAL FLOOR

40 ADDITIONAL DAYS

SCHEDULE FOR ORIGINAL BUILDING

FACULTY ADVISOR: DR. LEPAGE

APRIL 13, 2009

STRUCTURAL OPTION

 DOMINIC MANNO
 STRUCTURAL OPTION
 BUILDING COMPARISON
 COST ANALYSIS

PRESENTATION OUTLINE

- THESIS GOALS
- BUILDING INTRODUCTION
- STRUCTURAL DEPTH
 ADDITIONAL FLOOR
 RELOCATION TO UTAH
- ARCHITECTURAL BREADTH
 COLUMN GRID ADJUSTMENT
 CHANGES TO FLOOR PLAN
- CONSTRUCTION MANAGEMENT BREADTH
 SCHEDULE IMPACT
 COST ANALYSES
- SUMMARY RECOMMENDATIONS
- THANKS
- QUESTIONS

Structural Component	Original Building	WV Addition	UT Building
Beam / Joists	696392 lbs	879530 lbs	864401 lbs
Studs	14684 lbs	19548 lbs	19325 lbs
Columns	107416 lbs	141560 lbs	125413 lbs
Frame Members	87880 lbs	125061 lbs	211465 lbs
Floor Decking	93966 ft ²	125288 ft ²	125288 ft ²
Roof Decking	31322 ft ²	31322 ft ²	31322 ft ²
Slab On Deck	1523 yd ³	2030 yd ³	2030 yd ³
Slab On Grade	387 yd ³	387 yd ³	387 yd ³
Caisson Drilling	3153 Lin. Ft.	3297 Lin. Ft.	3512 Lin. Ft.
Caisson Concrete	1227 yd ³	1273 yd ³	1661 yd ³

Structural Component	Cost
Steel Cost per Ton	\$4,117.00
Decking Cost per ft ²	\$2.28
Slab On Deck Cost per yd3	\$319.00
Slab On Grade Cost per yd3	\$621.00
Caisson Drilling Cost per Lin. Ft.	\$122.74
Caisson Conc. Cost per yd3	\$154.60

	Total Cost for Super	2
Building	Structure	Cost per ft ²
Original Building	\$3,454,297.29	\$22.06
WV Addition	\$4,246,040.83	\$22.59
UT Building	\$4,445,426,38	\$23.65

FACULTY ADVISOR: DR. LEPAGE

STRUCTURAL OPTION

PRESENTATION OUTLINE

- THESIS GOALS
- BUILDING INTRODUCTION
- STRUCTURAL DEPTH
 ADDITIONAL FLOOR
 RELOCATION TO UTAH
- ARCHITECTURAL BREADTH
 COLUMN GRID ADJUSTMENT
 CHANGES TO FLOOR PLAN
- CONSTRUCTION MANAGEMENT BREADTH
 SCHEDULE IMPACT
 COST ANALYSIS
- SUMMARY RECOMMENDATIONS
- THANKS
- QUESTIONS

STRUCTURAL

- ✓YES DESIGN ADDITIONAL GRAVITY FLOOR
- ✓YES REDESIGN LATERAL SYSTEM FOR UTAH
- **✓YES** INVESTIGATE FOUNDATIONS

ARCHITECTURAL

- ✓YES REDESIGN COLUMN GRID LAYOUT
- ✓YES MINIMIZE CHANGES TO FLOOR PLAN

CONSTRUCTION MANAGEMENT

- ✓YES DETERMINE SCHEDULE IMPACT
- ✓YES COST ANALYSIS
- ✓YES RECOMMEND IF SITUATION WAS PRESENTED

FACULTY ADVISOR: DR. LEPAGE

STRUCTURAL OPTION

PRESENTATION OUTLINE

- THESIS GOALS
- BUILDING INTRODUCTION
- STRUCTURAL DEPTH
 ADDITIONAL FLOOR
 RELOCATION TO UTAH
- ARCHITECTURAL BREADTH
 COLUMN GRID ADJUSTMENT
 CHANGES TO FLOOR PLAN
- CONSTRUCTION MANAGEMENT BREADTH
 SCHEDULE IMPACT
 COST ANALYSIS
- SUMMARY RECOMMENDATIONS
- THANKS
- QUESTIONS

I WOULD LIKE TO EXTEND A SPECIAL THANKS AND ACKNOWLEDGEMENTS TO THE FOLLOWING FOR INPUT CONCERNING THIS THESIS:

ATLANTIC ENGINEERING SERVICES:
ROBERT BERTOCCHI
TIMOTHY JONES
ANDY VERRENGIA

BURT HILL ARCHITECTS

THE PENNSYLVANIA STATE UNIVERSITY:
DR. ANDRES LEPAGE
PROF. PARFITT
PROF. HOLLAND
ENTIRE AE FACULTY AND STAFF

A SPECIAL THANKS TO MY FRIENDS, AND FELLOW STUDENTS.

AN EXTRA SPECIAL THANKS TO MY MOTHER AND FATHER, FOR ALL THE OPPORTUNITIES THEY HAVE PROVIDED ME WITH AND ALWAYS MOTIVATING ME TO BE MY BEST.

I WOULD ALSO LIKE TO STATE THAT BODYBUILDING REALLY HELPED ME STAY FOCUSED AND TAUGHT ME A LOT OF DISCIPLINE. STRICT WORKOUT SCHEDULES AND DIETING FOR 16 WEEKS IS A COMMITMENT IN ITSELF. I BELIEVE IT HELPED ME A GREAT DEAL TO STAY FOCUSED THROUGHOUT THIS THESIS AND ON TASK.

FACULTY ADVISOR: DR. LEPAGE

STRUCTURAL OPTION

PRESENTATION OUTLINE

- THESIS GOALS
- BUILDING INTRODUCTION
- STRUCTURAL DEPTH
 ADDITIONAL FLOOR
 RELOCATION TO UTAH
- ARCHITECTURAL BREADTH
 COLUMN GRID ADJUSTMENT
 CHANGES TO FLOOR PLAN
- CONSTRUCTION MANAGEMENT BREADTH
 SCHEDULE IMPACT
 COST ANALYSIS
- SUMMARY RECOMMENDATIONS
- THANKS
- QUESTIONS

QUESTIONS?

FACULTY ADVISOR: DR. LEPAGE