University of Maryland, Baltimore New Administration Building Keith Meacham Construction Management

Project Overview

Goals and Conclusions

Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

Project Overview

•Location – Baltimore, MD

•Size – 107,000SF/6 Stories

•Schedule – March 2007 to September 2008

•Cost – \$27.5 Million (Est.)

•Structure – Cast in Place Post-Tension Concrete

•Façade – Majority Brick with 878 SF Curtainwall

Project Overview

Goals and Conclusions

Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

Collegiate Reaction to Escalating Energy Costs - could be displayed. That exception and you have a second memory to tapen the barry and the barry and the second behavior and the second second memory to the second behavior and the second secon

- Project Overview
- Goals and Conclusions
- Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

PROBLEM

"US uses 25% of the world's energy making up only 5% of the world's population," Penn State University, OPP website.
Colleges and universities are in a unique situation

- 24hr labs and libraries
- late classes
- recreational facilities

DUTLINE

- Project Overview
- Goals and Conclusions
- Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

PROBLEM

• "US uses 25% of the world's energy making up only 5% of the world's population," Penn State University, OPP website.

- •Colleges and universities are in a unique situation
 - 24hr labs and libraries
 - late classes
 - recreational facilities

GOAL

•To compare 3 colleges of different sizes and locations and determine vital steps to beginning a conservation plan.

100

185

- Project Overview
- Goals and Conclusions
- Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

Basics

ics
62 buildings, 61 acres
dental/medical clinics, labs, libraries, administration offices
2/3 of building spaces require 100% OA
2006 signed

> AMERICAN COLLEGE & UNIVERSITY PRESIDENTS CLIMATE COMMITMENT

Part of PJM's (Pennsylvania – New Jersey – Maryland) Demand Response Program
Between 06'-08' reduced electrical consumption by 20 million kWh

- Project Overview
- Goals and Conclusions
- Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

Basics

• 2006 signed

 62 buildings, 61 acres
 dental/medical clinics, labs, libraries, administration offices

•2/3 of building spaces require 100% OA

AMBRICAN COLLIGE & UNIVERSITY PRESIDENTS CLIMATE COMMITMENT

• Part of PJM's (Pennsylvania – New Jersey

- Maryland) Demand Response Program
- Between 06'-08' reduced electrical

consumption by 20 million kWh

Energy Projects

Real – Time Economic Load Response Program

Monitors 66,000 data points around campus

Capabilities

Monitors real – time market pricing
Develop load profiles
Create Customer Baselines
Energy audits to measure potential savings
Metering and system integration
Analyzing and graphing tools

- Project Overview
- Goals and Conclusions
- Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

Basics
62 buildings, 61 acres
dental/medical clinics, labs, libraries, administration offices
2/3 of building spaces require 100% OA
2006 signed

Part of PJM's (Pennsylvania – New Jersey – Maryland) Demand Response Program
Between 06'-08' reduced electrical consumption by 20 million kWh

Energy Projects

Central Command Center •Controls systems of all buildings on campus •Schedule lighting and air flow

- Project Overview
- Goals and Conclusions
- Collegiate Reaction to Rising

Energy Cost

- Building Envelope Analysis
 - Includes Depth and
 - Mechanical Breadth
- Photovoltaic Implementation
 - Includes Electrical Breadth
- Recommendation
- Questions

Basics
62 buildings, 61 acres
dental/medical clinics, labs, libraries, administration offices
2/3 of building spaces require 100% OA
2006 signed

Part of PJM's (Pennsylvania – New Jersey – Maryland) Demand Response Program
Between 06'-08' reduced electrical

consumption by 20 million kWh

Energy Projects

Looped Chill Water Plants

- Project Overview
- Goals and Conclusions
- Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

Basics • 62 buildings, 61 acres • dental/medical clinics, labs, libraries, administration offices • 2/3 of building spaces require 100% OA • 2006 signed

> AMERICAN COLLEGE & UNIVERSITY PRESIDENTS CLIMATE COMMITMENT

Part of PJM's (Pennsylvania – New Jersey – Maryland) Demand Response Program
Between 06'-08' reduced electrical consumption by 20 million kWh

Energy Projects

Heat Recovery Systems

- Project Overview
- Goals and Conclusions
- Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

Basics
62 buildings, 61 acres
dental/medical clinics, labs, libraries, administration offices
2/3 of building spaces require 100% OA
2006 signed

American College & University Presidents Climate Commitment

Part of PJM's (Pennsylvania – New Jersey – Maryland) Demand Response Program
Between 06'-08' reduced electrical consumption by 20 million kWh

New Construction

•LEED Energy Models •Emphasis on Task Lighting

- Project Overview
- Goals and Conclusions
- Collegiate Reaction to Rising

Energy Cost

- Building Envelope Analysis
 - Includes Depth and
 - Mechanical Breadth
- Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

Awareness

- Project Overview
- Goals and Conclusions
- Collegiate Reaction to Rising

Energy Cost

- Building Envelope Analysis
 - Includes Depth and
 - **Mechanical Breadth**
- Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

ENN <u>State</u>	 University Park Basics 647 buildings, 15,000 acres U.S. Environmental Protection Agency's (EPA) list of the top 10 college and university Green Power Partners Medlar Field at Lubrano Park fort LEED Corrified basehold studium
	 Energy Consumption (fiscal year 2005/2006) •400,000,000 kWh of Electricity •400,000 MCF of Natural Gas •75,000 tons of Coal

Energy Projects

ranteed Energy Saving Program (GESP)
•Very similar to ESCO
• UP - Initial Project Phase I
-investment of \$2,212,937
-annual energy cost avoidance
worth \$230,416 (2002 energy
dollars).

Atherton	Artı
Ceramics	Computer
Frear South	Mateer
Materials Research Lab	Mueller
Munic	Noll
Osmend	Pattee/Paterno Library
Penő	Porter
Shunk	

Energy S	Bavings (va	alue of avo	ided energy in	2002 dollars)
Commodity	Savings	Avoided Cost		
Electric	2.89M kWh	\$127,403		
Water	5.36M gallons	\$31,933		
Steam	5.88M pounds	\$71,079		

Avoided Emissions					
Туре	Amount				
CO2	1959 tens				
NO.	5 tens				
90 _x	15 tons				
00	291 lbs				
PM	587 lbs				
1000	87 B.				

- Project Overview
- Goals and Conclusions
- Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

Energy Projects

Enterprise Utility Management Solution •More than just a Building Automation System •Data takes the form of diagnostics, analyses,

and monitoring

- Project Overview
- Goals and Conclusions
- Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

Energy Projects

Continuous Commissioning Program

Goals

•optimize the operation of existing systems •improve building comfort within the capabilities of the installed system •reduce building energy cost •solve indoor air quality problems •guarantee continuous optimal operation for years to come •reduce operational and maintenance costs

Project Overview

Goals and Conclusions

Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

College

West Las Angoles Callege

Los Acostos Soulicared Calinan e A

Les Angeles Rathur Cullege

Aller Sales

tes Anacles failer sollars

Non-Walking Made

Care Las Assais

Married Woman

a choile offer Lee Regime

LACCD Basics

• 9 cities, 200,000 students effort in the U.S.

AMERICAN COLLEGE & UNIVERSITY PRESIDENTS CUMATE COMMITMENT

•Goal – "off the grid" by June '09

Energy Projects

•Training, Renewable Energy Curriculum, Hands on Experience

Project Overview

Goals and Conclusions

Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

9 cities, 200,000 students
Largest public sector sustainable build <u>effort in</u> the U.S.

LACCD Basics

₩. (°, 1 → 1)) I (00

•Goal – "off the grid" by June '09

Energy Projects

Renewable Central Plant •1 on each of the 9 campuses

Project Overview

Goals and Conclusions

Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

LACCD Basics • 9 cities, 200,000 students •Largest public sector sustainable bu effort in the U.S.

Goal – "off the grid" by June '09

Energy Strategies

Awareness: Sustainable Development Curriculum

Renewable Central Plant

Demand Management through Performance Contracts
Energy Service Company (ESCO)
Similar to GESP

- Project Overview
- Goals and Conclusions
- Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

San Parmanala Intelling

and Diver

West Las Angeles College

Los Angeles Enuthment Callege

Los Angeles Harbor College

Pierce College

C. Angeles

Last Las Bea

District Office Los Angeles Trade-Technical Callege

College

-

Los Angeles Valley College

LACCD Basics

• 9 cities, 200,000 students effort in the U.S.

AMERICAN COLLEGE & UNIVERSITY PRESIDENTS CUMATE COMMITMENT

- Project Overview
- Goals and Conclusions
- Collegiate Reaction to Rising
 - Energy Cost
- Building Envelope Analysis
 - Includes Depth and
 - Mechanical Breadth
- Photovoltaic Implementation
 - Includes Electrical Breadth
- Recommendation
- Questions

Energy Plan Essentials

Educate community, create awareness of what the school is doing and what the individuals can do to help
If possible have one chiller plant
Analyze existing buildings and determine best way to improve conservation
Put buildings on lighting and HVAC schedules
Monitor all buildings new and old to ensure systems are working properly

Project Overview

Goals and Conclusions

Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

Building Envelope and Space Heating Analysis – Mechanical Breadth Included

- Project Overview
- Goals and Conclusions
- Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

PROBLEM

Great amount of heat transfer through the building envelope -Often where conservation efforts begins
Space heating in the form of finned tube radiant heater s can lose a lot of heat through the fenestration

Project Overview

Goals and Conclusions

Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

PROBLEM

Great amount of heat transfer through the building envelope -Often where conservation efforts begins
Space heating in the form of finned tube radiant heater s can lose a lot of heat through the fenestration

GOAL

•To compare multiple scenarios that attempt to make the building more efficient and select the one with the greatest savings

•Reduce the building's energy consumption through envelope improvements and analyzing the current space heating efficiency

Project Overview

Goals and Conclusions

Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

Existing Envelope Thermal Characteristics

Existing Wall Assembly				
Wall Construction	Thickness	R-Value (ft ² ·°F·hr/BTU)		
Brick Veneer	4"	0.44		
Air Space	2"	1		
Rigid Insulation	1"	5		
Air Infiltration Barrier				
Exterior Sheathing	5/8"	0.77		
R-19 Batt Insulation	6.25*	17		
Gypsum Board	5/8"	0.56		
Total	13.75"	24.77		
U-Value (BTU/(t²·°F·hr) = 0.040				

	Existing Windows		
U-value			U-Value
Winter	0.41	Roof	0.033
Summer	0.39	Curtainwall	0.66
Shading Coefficient	0.44		

Proposed Envelope Thermal Characteristics

Existing Wall Assembly			Proposed Wall Assembly		
Wall Construction	Thickness	R-Value (ft ² ·°F·hr/BTU)	Wall Construction	Thickness	R-Value (ft ² ·°F·hr/BTU)
Brick Veneer	4"	0.44	Brick Veneer	4"	0.44
Air Space	2"	1	Air Space	1"	0.5
Rigid Insulation	1"	5	Rigid Insulation	2"	10
Air Infiltration Barrier	-		Air Infiltration Barrier	-	
Exterior Sheathing	5/8*	0.77	Exterior Sheathing	5/8"	0.77
R-19 Batt Insulation	6.25"	17	R-21 Batt Insulation	5.5"	21
Gypsum Board	5/8*	0.56	Gypsum Board	5/8"	0.56
 Total	13.75"	24.77	Total	13.75*	33.27
	U-Value (E	TU/ft ^{2.} °F·hr) = 0.040		U-Value (E	STU/ft ^{2.} °F·hr) = 0.030

	Existing Windows	Proposed Clear Windows	Proposed Grey Windows
U-value			
Winter	0.41	0.25	0.25
Summer	0.39	0.2	0.2
Shading Coefficient	0.44	0.29	0.19

- Project Overview
- Goals and Conclusions
- Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

- Project Overview
- Goals and Conclusions
- Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

eQuest Comparison - Combination

- Project Overview
- Goals and Conclusions
- Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

Cost and Schedule Implications Annual Materical Stradigueges

			Daine	Damand T	atal Cast Anna	al Cassimon	1
пİ		Tetal Material Cost	Total Material	Total Installation	Total Annual Energy	Total Initial	Savings After 1
Н		Total Material Cost	Savings	Savings	Savings	Savings	Yr
H	Building E	\$94,276	\$350,852	\$77,789	\$10,677	\$334,365	\$345,042
2	Building F	\$120,416	\$350,852	\$77,789	\$14,266	\$308,225	\$322,491

Cost and Schedule Implications

nstallation Savings

	Amount of Work (LF)	Total Days Required
HVAC PIPING LOOP -		
MAINS & BRANCHES		80
SET/CONNECT FIN TUBE		
HEATER	3437	52

	Amount of Work (LF)	Total Days Required
FIN TUBE RADIATION		
PIPING	6900	48
SET/CONNECT FIN TUBE		
HEATER	3437	52

	Amount of Work (LF)	Durations (Days)	Crew Size	Combined Wage (/day)	Total Savings
Fin Tube Radiation Piping	6900	48	4	\$1,051.20	\$50,457.60
Set/Connect Fin Tube					
Heater	3437	52	2	\$525.60	\$27,331.20

- Project Overview
- Goals and Conclusions
- Collegiate Reaction to Rising
 - Energy Cost
- Building Envelope Analysis
 - Includes Depth and
 - Mechanical Breadth
- Photovoltaic Implementation
 - Includes Electrical Breadth
- Recommendation
- Questions

Photovoltaic Implementation – Electrical Breadth Included

Project Overview

Goals and Conclusions

Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

PROBLEM

• Owner would like to explore conservation through renewable energy

GOAL

•Design a photovoltaic system that will be efficient and yield a savings after a short payback period.

Project Overview

Goals and Conclusions

Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

Granker

Array SizeParop & Sod Signeration

- Project Overview
- Goals and Conclusions
- Collegiate Reaction to Rising

Energy Cost

Building Envelope Analysis

Includes Depth and

Mechanical Breadth

Photovoltaic Implementation

Includes Electrical Breadth

Recommendation

Questions

•\$14,000/month Est.	Benefits of you
•40% Paid by Incentive	Estimated System
•12,571 kWh Produced Annually	Federal / State Tax
•Savings of \$1,949 Annually	Net Cost
•Approximately 14yr Payback	Cumulative Lifetim
	Investment Return

	Benefits of your BP Solar system	
	Estimated System Cost	\$70,000
alla	Federal / State Tax Credit	\$21,107
my	State / Utility Rebate	\$10,000
	Net Cost	\$38,893
	Cumulative Lifetime Savings	\$93,000 over 25 years

Cost Analysis

7.8%

Conclusion

makes the photovoltaic implementation practical