

Pearland Recreation Center and Natatorium

Matt Smiddy **BAE/MAE** Construction Option **Concurrent Economics Major**

AE Senior Thesis Presentation 4/12/2010

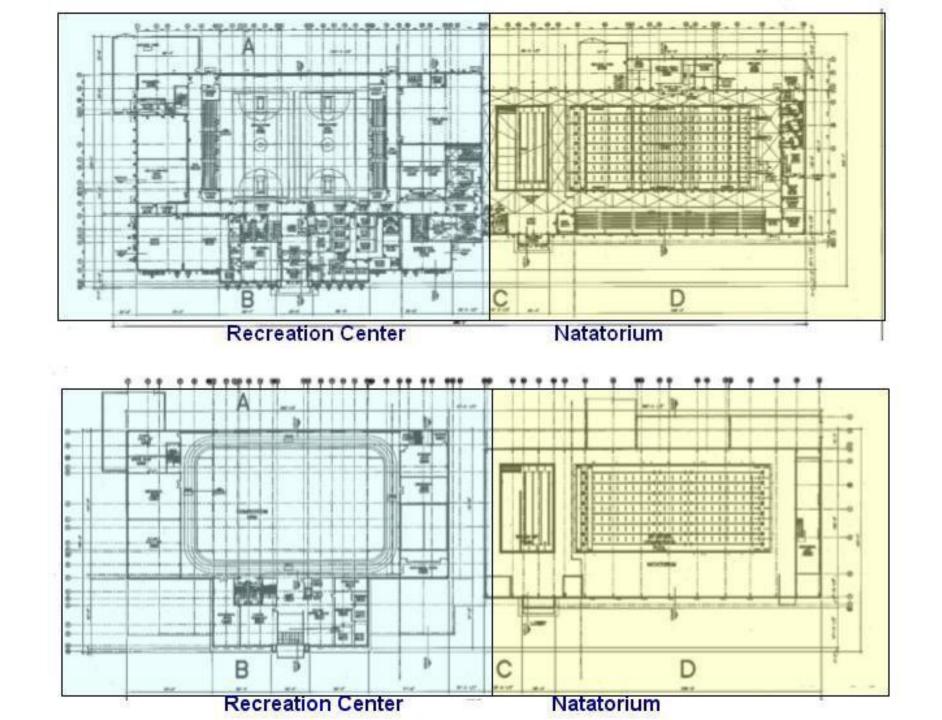
Presentation Outline

- **Building Overview**
- Analysis #1 Natatorium Structural Redesign ۲
- Analysis #2 Mechanical System Modification ۲
- Analysis #3 Project Delivery Systems on Public Projects
- Analysis #4 Glulam Connection Modification
- Conclusion and Recommendations •
- Acknowledgments and Questions

- <u>Building Overview</u>
- Analysis #1 Natatorium Structural Redesign
- Analysis #2 Mechanical System Modification
- Analysis #3 Project Delivery Systems on Public Projects
- Analysis #4 Glulam Connection Modification
- Conclusion and Recommendations
- Acknowledgments and Questions

Building Overview

- 105,000 SF
- Building houses: Gymnasium Offices Classrooms Weight Room Locker Rooms

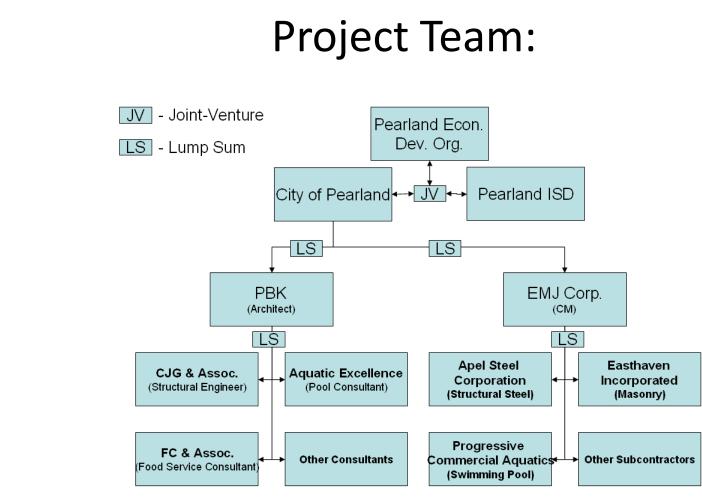

Located in Pearland, Texas; about 15 miles south of Houston, TX

Multi-Purpose Rooms

Aerobics Room

(1) 25-yard X 50-meter Competition Pool

(1) 4 Lane X 25-yard instructional pool



- **Building Overview**
- Analysis #1 Natatorium Structural Redesign
- Analysis #2 Mechanical System Modification
- Analysis #3 Project Delivery Systems on Public Projects
- Analysis #4 Glulam Connection Modification
- Conclusion and Recommendations •
- Acknowledgments and Questions

Building Overview

- Construction began in May 2009 and is scheduled for completion in June 2010
- Design-Bid-Build delivery method
- Competitive bid/lump sum contract with general contractor
- \$17 million project (Contract with general contractor)

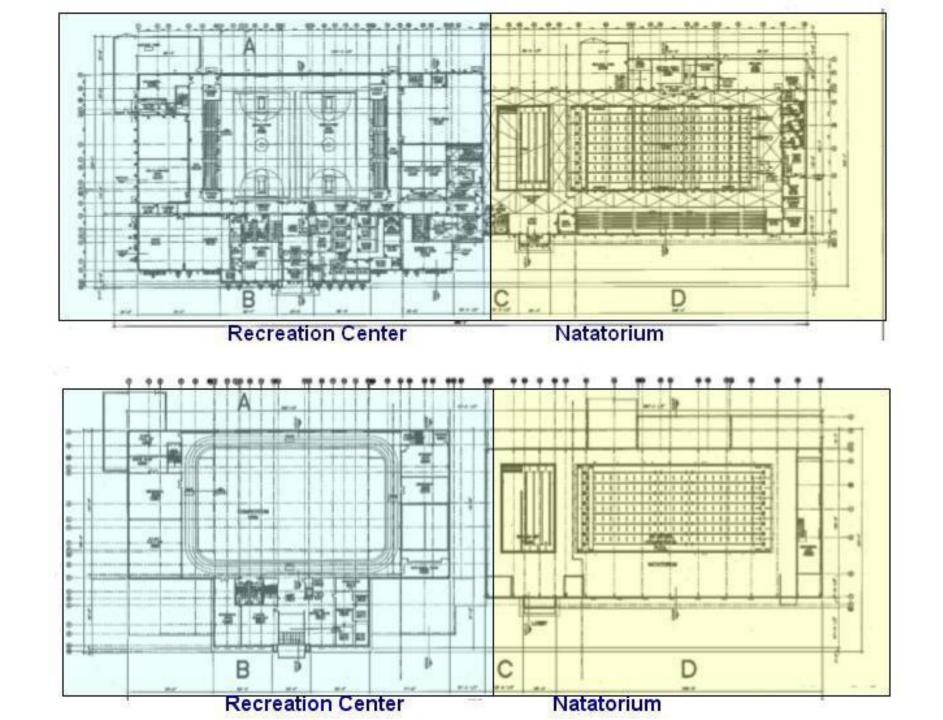
- <u>Building Overview</u>
- Analysis #1 Natatorium Structural Redesign •
- Analysis #2 Mechanical System Modification
- Analysis #3 Project Delivery Systems on Public Projects
- Analysis #4 Glulam Connection Modification
- Conclusion and Recommendations
- Acknowledgments and Questions

Building Overview

Structural System:

Mechanical System:

Electrical System:


Fire Protection System:

Steel in Recreation Center and Glulam in the Natatorium

Chillers (2 Air-Cooled) and Air Handling Units (12) with VAV boxes

3000 A Source, 29 Surface Mounted Panel Boards (15-408/277V and 14-208/120V), emergency generator

Wet pipe pre-action fire sprinkler system

- **Building Overview** •
- <u>Analysis #1 Natatorium Structural Redesign</u>
- Analysis #2 Mechanical System Modification
- Analysis #3 Project Delivery Systems on Public Projects
- Analysis #4 Glulam Connection Modification
- Conclusion and Recommendations
- Acknowledgments and Questions

Problem:

The glulam structural system in the natatorium is very expensive.

Goal:

Identify an economical alternative structural system in the natatorium that will be of the same quality as the current glulam system.

Analysis #1 – Structural System Structural - Breadth Topic #1

- **Building Overview** •
- <u>Analysis #1 Natatorium Structural Redesign</u>
- Analysis #2 Mechanical System Modification
- Analysis #3 Project Delivery Systems on Public Projects
- Analysis #4 Glulam Connection Modification
- Conclusion and Recommendations •
- Acknowledgments and Questions

Analysis #1 – Structural System

Structural - Breadth Topic #1

Steel

- Cheapest

Steel Joists and Concrete Columns – Selected System! Less Corrosive

- •
- accessible.

Alternative Structural System Comparisons:

Paint on steel can chip, particularly on accessible columns, causing steel corrosion.

Concrete columns would not corrode

Paint on steel joists would not chip since they are not easily

- **Building Overview** •
- <u>Analysis #1 Natatorium Structural Redesign</u>
- Analysis #2 Mechanical System Modification
- Analysis #3 Project Delivery Systems on Public Projects
- Analysis #4 Glulam Connection Modification
- Conclusion and Recommendations
- Acknowledgments and Questions

System Redesign:

Using 2003 IBC Code:

Design*:

Member **Concrete Columns** Steel Joists Steel Beams

Institute Manual

Analysis #1 – Structural System

Structural - Breadth Topic #1

	Type of Load	Design Load
•	Roof	20 lb/SF
	Dead Weight	20 lb/SF
	Wind	120 mph for 30 sec gust – exposure C – importance factor of 1.15

Quantity	Size	Spacing/Reinforcing
28	10" X 10"	25' on center/4-#5s
468	25' - 14k1	4' on center
14	104' - 104SLH22	25' on center

*Sized using the Steel Joist Institute Handbook and Concrete Reinforcing Steel

- **Building Overview** •
- <u>Analysis #1 Natatorium Structural Redesign</u>
- Analysis #2 Mechanical System Modification
- Analysis #3 Project Delivery Systems on Public Projects
- Analysis #4 Glulam Connection Modification
- Conclusion and Recommendations
- Acknowledgments and Questions

Structural - Breadth Topic #1

Cost:

As-Designed System - Glulam

Members	
All Glulam	
Total	

System Cost Comparison

System

As-Designed System (Glulam)

Proposed System (Concrete and

Savings with Proposed System

Analysis #1 – Structural System

Cost
\$1,070,000
\$1,070,000

	Cost
	\$1,070,000
d Steel)	\$469,738
	\$600,262

Proposed System – Concrete and Steel

Members	Cost
Concrete Columns	\$22,320
Steel Beams	\$165,620
Steel Joists	\$143,910
Metal Decking	\$107,888
Additional connection and coatings	\$30,000
Total	\$469,738

- **Building Overview** •
- <u>Analysis #1 Natatorium Structural Redesign</u>
- Analysis #2 Mechanical System Modification
- Analysis #3 Project Delivery Systems on Public Projects
- Analysis #4 Glulam Connection Modification
- Conclusion and Recommendations
- Acknowledgments and Questions

Analysis #1 – Structural System

Structural - Breadth Topic #1

- Save over \$600,000
- Maintain durability

Recommendation: Replace the glulam structural system in the natatorium with a concrete and steel system

Eliminate problematic connection

No change to construction duration

- **Building Overview** •
- Analysis #1 Natatorium Structural Redesign
- <u>Analysis #2 Mechanical System Modification</u>
- Analysis #3 Project Delivery Systems on Public Projects
- Analysis #4 Glulam Connection Modification
- Conclusion and Recommendations
- Acknowledgments and Questions

Problem:

Owner was persuaded to use (2) air-cooled chillers instead of a water-cooled chiller and cooling tower mechanical system

Goal:

Determine if a water-cooled chiller and cooling tower system should have been used instead of an air-cooled chiller system.

Analysis #2 – Mechanical System Mechanical – Breadth Topic #2

- **Building Overview** •
- Analysis #1 Natatorium Structural Redesign •
- <u>Analysis #2 Mechanical System Modification</u>
- Analysis #3 Project Delivery Systems on Public Projects
- Analysis #4 Glulam Connection Modification
- Conclusion and Recommendations
- Acknowledgments and Questions

Analysis #2 – Mechanical System Mechanical – Breadth Topic #2

Design Criteria:

Chiller:

- Capacity: 276 Tons

- Flow Rate: 240 GPM

Cooling Tower:

General:

- Dry Bulb Temp: 92d F
- Wet Bulb Temp: 77d F

Entering Water Temperature: 56d F Leaving Water Temperature: 42d F

Leaving Water Temperature: 95d F Entering Water Temperature: 85d F Flow Rate: 3 GPM/Ton = 828 GPM

- **Building Overview** •
- Analysis #1 Natatorium Structural Redesign •
- <u>Analysis #2 Mechanical System Modification</u>
- Analysis #3 Project Delivery Systems on Public Projects
- Analysis #4 Glulam Connection Modification
- Conclusion and Recommendations
- Acknowledgments and Questions

Analysis #2 – Mechanical System Mechanical – Breadth Topic #2

Cost Analysis:

New System Costs

Item	Cost	Source	Item
Cooling Tower - Material	\$30,171	Chesapeake Systems	Old System Cost
Cooling Tower – Labor	\$2,650	RS Means	Proposed System Cost
Additional Pumps & Piping (Labor and Material)	\$26,082	RS Means	Construction Cost Savings with Pro System
Water-Cooled Chiller (Material)	\$93,840	Boland-Trane	
Water-Cooled Chiller (Labor)	\$11,700	RS Means	
Additional Structural Support for Cooling Towers (Labor & Material)	\$15,557	Estimate from Southland	
Total Cost for Proposed System (Labor & Material)	\$180,000		

Systems Cost Comparison

- Building Overview •
- Analysis #1 Natatorium Structural Redesign
- <u>Analysis #2 Mechanical System Modification</u>
- Analysis #3 Project Delivery Systems on Public Projects
- Analysis #4 Glulam Connection Modification
- Conclusion and Recommendations •
- Acknowledgments and Questions

Energy Costs:

Old System – (2) Air Cooled Chillers at 1.3 KW/Ton each Energy Usage = 2 X 1.3 KW/Ton X 138 Tons = 358 KW

Chiller Energy Usage = 0.667 KW/Ton X 276 Tons = 184 KW Cooling Tower Energy Usage = 0.879 KW/Ton X 276 Tons = 243 KW Total Energy Usage = 427 KW

Total Additional Energy Costs^{**} with Proposed System: 427 KW – 358 KW = 69 KW

Energy Added Costs^{**}: 69 KW X 24 Hours X \$0.1/KWHr = \$165.6/Day Additional Cost

**This is assuming 100% load all day

Analysis #2 – Mechanical System Mechanical – Breadth Topic #2

New System – (1) Water Cooled Chiller at 0.667 KW/Ton (1) Cooling Tower at 0.879 KW/Ton

- **Building Overview** •
- Analysis #1 Natatorium Structural Redesign •
- <u>Analysis #2 Mechanical System Modification</u>
- Analysis #3 Project Delivery Systems on Public Projects
- Analysis #4 Glulam Connection Modification
- Conclusion and Recommendations
- Acknowledgments and Questions

Analysis #2 – Mechanical System Mechanical – Breadth Topic #2

Payback Period:

293 days operating 24 hours/day at full load

System would likely not be run at full load, much less all day

Additional energy adjustments required

- **Building Overview** •
- Analysis #1 Natatorium Structural Redesign •
- <u>Analysis #2 Mechanical System Modification</u>
- Analysis #3 Project Delivery Systems on Public Projects
- Analysis #4 Glulam Connection Modification
- Conclusion and Recommendations
- Acknowledgments and Questions

Analysis #2 – Mechanical System Mechanical – Breadth Topic #2

energy costs.

Recommendation: Selection of an ideal system would require additional research on

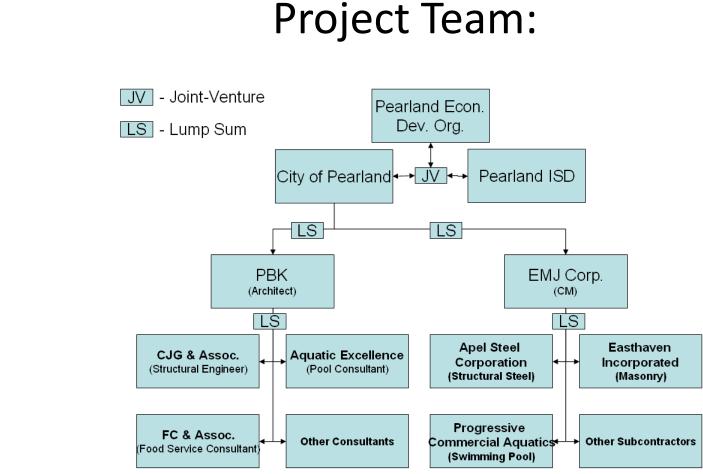
Save \$48, 523 in construction costs

Increase energy costs

Have no effect on the duration of construction

Additional construction considerations

- **Building Overview** •
- Analysis #1 Natatorium Structural Redesign •
- Analysis #2 Mechanical System Modification
- <u>Analysis #3 Project Delivery Systems on Public</u> <u>Projects</u>
- Analysis #4 Glulam Connection Modification
- Conclusion and Recommendations •
- Acknowledgments and Questions •


Analysis #3 – Project Delivery MAE Focus Topic

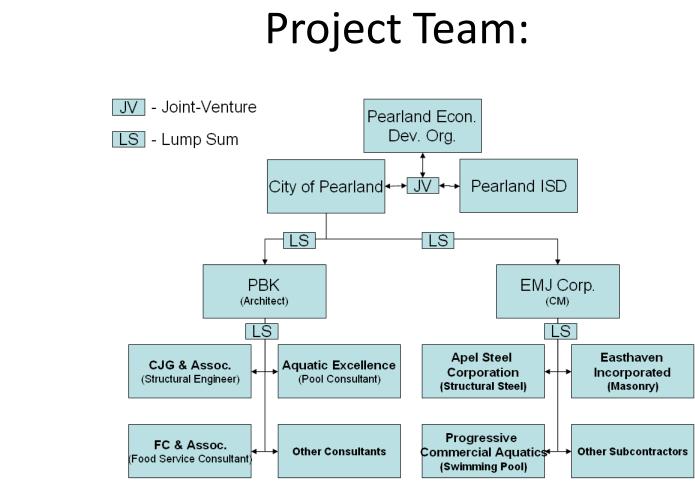
Problem:

Design-Bid-Build delivery methods frequently result in adversarial relationships between project team members.

Goal:

Determine when it is best to use a Design-Bid-Build delivery method.

- **Building Overview** •
- Analysis #1 Natatorium Structural Redesign •
- Analysis #2 Mechanical System Modification
- <u>Analysis #3 Project Delivery Systems on Public</u> <u>Projects</u>
- Analysis #4 Glulam Connection Modification
- Conclusion and Recommendations •
- Acknowledgments and Questions •


Analysis #3 – Project Delivery MAE Focus Topic

Analysis Process:

Issued questionnaires

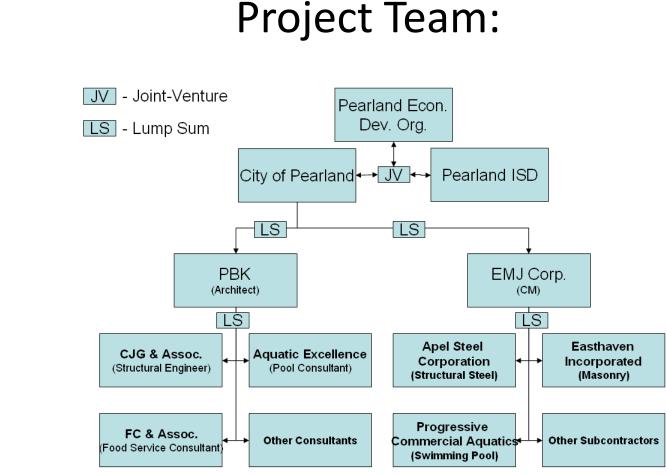
Interviewed select team members

Interviewed project team members from similar projects using different delivery methods.

- **Building Overview** •
- Analysis #1 Natatorium Structural Redesign
- Analysis #2 Mechanical System Modification
- <u>Analysis #3 Project Delivery Systems on Public</u> <u>Projects</u>
- Analysis #4 Glulam Connection Modification
- Conclusion and Recommendations •
- Acknowledgments and Questions

Analysis #3 – Project Delivery MAE Focus Topic

Project Comparison:


Recreation Center and Natatorium (DBB):

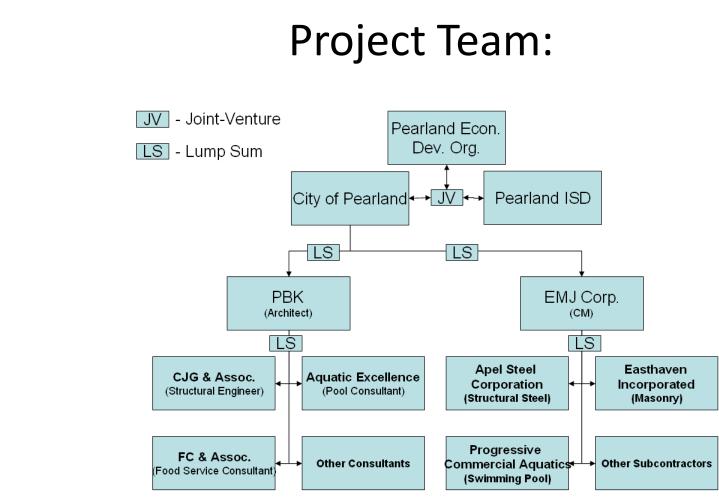
- Financial risk. **Pro** •
- Better Design- Pro •
- Cost and Schedule were managed **Pro**
- Long Construction Duration– **Con** •

longer construction duration.

In Summary: Quality, on budget project with

- Public Safety Building (DB):
- Owner bears financial responsibility– Con
- Design falls behind– **Con**
- Short construction duration **Pro**
- **In Summary:** A quickly constructed building, lacking in quality and resulting in cost overruns

- **Building Overview** •
- Analysis #1 Natatorium Structural Redesign •
- Analysis #2 Mechanical System Modification
- <u>Analysis #3 Project Delivery Systems on Public</u> <u>Projects</u>
- Analysis #4 Glulam Connection Modification
- Conclusion and Recommendations •
- Acknowledgments and Questions •


Analysis #3 – Project Delivery MAE Focus Topic

Recommendation: Use a Design-Bid-Build delivery method for public projects!

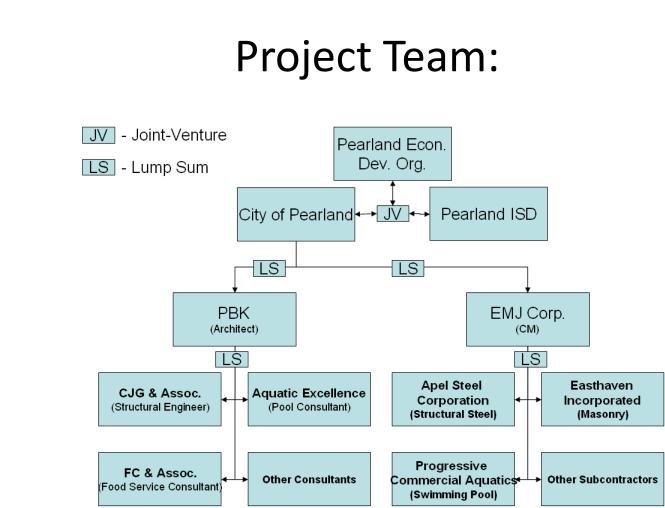
- taxpayer's monies.

For a public project the owner's number one priority is to be a good steward of

DBB efficiently allocates financial risk away from the owner.

- **Building Overview** •
- Analysis #1 Natatorium Structural Redesign •
- Analysis #2 Mechanical System Modification
- <u>Analysis #3 Project Delivery Systems on Public</u> <u>Projects</u>
- Analysis #4 Glulam Connection Modification
- Conclusion and Recommendations •
- Acknowledgments and Questions •

Analysis #3 – Project Delivery MAE Focus Topic


MAE Course Applications:

- AE 572 Project Development and Delivery Planning:
 - Delivery Methods
 - Contracting Methods

AE 597I – CII Best Practices

- Pre-project planning
- Change Management
- CE 531 Legal Aspects of Engineering and Construction **Risk Allocation**
- - Contract Interpretation

- Equitable Risk Allocation

- Building Overview
- Analysis #1 Natatorium Structural Redesign
- Analysis #2 Mechanical System Modification
- Analysis #3 Project Delivery Systems on Public Projects
- <u>Analysis #4 Glulam Connection Modification</u>
- Conclusion and Recommendations
- Acknowledgments and Questions

Analysis #4 – Glulam Connection

Problem: A bolted connection between the glulam columns and the concrete footers in the natatorium proved difficult during erection.

Goal:

Determine the feasibility of using a welded connection in place of a bolted connection between the glulam columns and concrete footers in the natatorium.

- **Building Overview** •
- Analysis #1 Natatorium Structural Redesign
- Analysis #2 Mechanical System Modification
- Analysis #3 Project Delivery Systems on Public Projects
- <u> Analysis #4 Glulam Connection Modification</u>
- Conclusion and Recommendations •
- Acknowledgments and Questions •

Analysis #4 – Glulam Connection

Design Analysis:

Steel contact area with (12) 1" diameter anchor bolts:

Quantity of 1/8" weld required to obtain equivalent strength:

 $12 \times 3.14 \times (.5'')^2 = 9.42 \text{in}^2$

9.42in² / (1/8") = 75.36" of 1/8" weld

- Building Overview
- Analysis #1 Natatorium Structural Redesign
- Analysis #2 Mechanical System Modification
- Analysis #3 Project Delivery Systems on Public Projects
- <u>Analysis #4 Glulam Connection Modification</u>
- Conclusion and Recommendations
- Acknowledgments and Questions

Analysis #4 – Glulam Connection

Cost Analysis:

The costs associated bolted connection.

Schedule Analysis:

Assuming 60" of 1/8" weld can be performed per hour, each connection would take 1.25 hours and with 28 connections a total of 35 man-hours of welding would be added. This addition is small enough that it can be neglected

The costs associated with using a welded connection are equivalent to the cost of a

- **Building Overview** •
- Analysis #1 Natatorium Structural Redesign •
- Analysis #2 Mechanical System Modification
- Analysis #3 Project Delivery Systems on Public Projects
- <u> Analysis #4 Glulam Connection Modification</u>
- Conclusion and Recommendations •
- Acknowledgments and Questions •

Analysis #4 – Glulam Connection

Recommendation: Use a welded connection in place of a bolted connection.

Have no effect on construction cost

Not change the construction duration

Simplify erection of the glulam columns

- **Building Overview** •
- Analysis #1 Natatorium Structural Redesign
- Analysis #2 Mechanical System Modification
- Analysis #3 Project Delivery Systems on Public Projects
- Analysis #4 Glulam Connection Modification
- **Conclusion and Recommendations**
- Acknowledgments and Questions

- \$600,000 cost savings
- No change in durability
- No change in construction duration

- \$48,500 construction cost savings
- No change in construction duration
- Higher energy costs

Conclusions and Recommendations

Analysis #1 – Structural Modification:

Use a Concrete & Steel System

Analysis #2 – Mechanical Modification

More research on energy costs required to determine ideal system

- **Building Overview** •
- Analysis #1 Natatorium Structural Redesign
- Analysis #2 Mechanical System Modification
- Analysis #3 Project Delivery Systems on Public Projects
- Analysis #4 Glulam Connection Modification
- **Conclusion and Recommendations**
- Acknowledgments and Questions

Conclusions and Recommendations

Analysis #4 – Glulam Column Connection

- Easier to construct
- No change in construction duration

Analysis #3 – Project Delivery Method

Use Design-Bid-Build delivery method for public projects

Owner wants to avoid financial risk on public projects Design-Bid-Build efficiently allocates risk away from owners

Use a welded connection instead of a bolted connection

No effect on cost

- Building Overview (3-5) •
- Analysis #1 Natatorium Structural Redesign (6-10)
- Analysis #2 Mechanical System Modification (11-16)
- Analysis #3 Project Delivery Systems on Public Projects (17-21)
- Analysis #4 Glulam Connection Modification (22-25)
- Conclusion and Recommendations (26-27) •
- Acknowledgments and Questions

Acknowledgments and Questions

Questions?

EMJ Corporation: Scott Stoltz Matt Luna Phillip Crissman Kevin Huff

City of Pearland: Andrew Brinkley Skipper Jones

Penn State OPP: John Bechtel

Chris Musser

Van Franks – PBK Mike Parks – RM Rogers Ashley Rohrscheib – Apel Steel Corporation Jamie Knise – Facchina Construction of Florida LLC Carlo Calella – U of Maryland Dept. of Capital Projects Martin Powers – Johnson Controls Tim Robinson – Carrier Corporation Joe Mulligan – Boland-Trane Nathan Patrick – Southland Industries Pete Medford – Fort Bend Mechanical

PSU AE Department:

Jim Faust Chris Magent Moses Ling Kevin Parfitt Robert Holland David Riley

Thank you to: