

THE UNIVERSITY OF SCRANTON

SCRANTON, PA

DALE E. HOUCK MECHANICAL OPTION

SCRANTON, PA

THE UNIVERSITY OF SCRANTON

PROJECT SUMMARY

EXISTING CONDITIONS

• DEPTH STUDIES

SUSTAINABILITY BREADTH STUDIES

CONCLUSIONS

THE UNIVERSITY OF SCRANTON

SCRANTON, PA

INTRODUCTION PROJECT SUMMARY EXISTING CONDITIONS DEPTH WORK BREADTH WORK CONCLUSIONS

INTRODUCTION

PROJECT SUMMARY

THE UNIVERSITY OF SCRANTON

EINHORN YAFFEE PRESCOTT A&E, P.C.

QUANDEL ENTERPRISES, INC.

CECO ASSOC, INC.

M.L. BAIRD & CO.

ARCHITECTS AND ENGINEERS

OWNER

CONSTRUCTION MANAGER

SITE/CIVIL ENGINEER

LANDSCAPE ARCHITECT

PROGRAM

150,000 SF NEW CONSTRUCTION 50,000 SF RENOVATIONS 4 FULL FLOORS, PARTIAL GROUND FLOOR CONSTRUCTION: MAY 2009 - FALL 2011 **\$73 MILLION GMP CONTRACT**

DEPARTMENTS OF BIOLOGY, CHEMISTRY, COMPUTING SCIENCES, PHYSICS, ELECTRICAL ENGINEERING, AND MATHEMATICS

THE UNIVERSITY OF SCRANTON

SCRANTON, PA

INTRODUCTION PROJECT SUMMARY EXISTING CONDITIONS DEPTH WORK BREADTH WORK CONCLUSIONS

ARCHITECTURE

- •

- STRUCTURE

PROJECT SUMMARY

DESIGNED ACCORDING TO PRINCIPLES OF PROJECT KALEIDOSCOPE

 ENCOURAGES INTERDISCIPLINARY COLLABORATION MODERN DESIGN OF NEW CONSTRUCTION SEAMLESSLY INTEGRATES WITH RENOVATION OF EXISTING

DESIGNED FOR LEED SILVER CERTIFICATION

- STONE FAÇADE SUPPLIED BY LOCAL QUARRY
- RECYCLED MATERIALS
- CONSTRUCTION WASTE MANAGEMENT
- EFFICIENT LIGHTING AND MECHANICAL SYSTEMS
- EFFICIENT WATER FIXTURES

UNIFIED SCIENCE CENTER THE UNIVERSITY OF SCRANTON SCRANTON, PA INTRODUCTION **EXISTING CONDITIONS** AIRSIDE AHU 1 WATERSIDE AHU 2 DEPTH WORK AHU 3 BREADTH WORK AHU 4 CONCLUSIONS AHU 5

AIR SIDE

tal Fan CFM	Total Supply CFM	Heating Coil Capacity (MBH)	Cooling Coil Capacity (MBH)
52,626	50,000	3430.6	5364
52,626	50,000	3430.6	5364
52,626	50,000	3430.6	5364
52,626	50,000	3430.6	5364
5,746	5,150	323	525.5

AHUs 1 and 2

THE UNIVERSITY OF SCRANTON

SCRANTON, PA

INTRODUCTION **EXISTING CONDITIONS** AIRSIDE WATERSIDE DEPTH WORK BREADTH WORK CONCLUSIONS

AIR SIDE

AIR HANDLING UNITS

VARIABLE AIR VOLUME SUPPLY FANS

• ENTHALPY WHEELS

VARIABLE FREQUENCY DRIVE FANS

UNIFIED SCIENCE CENTER EXISTING THE UNIVERSITY OF SCRANTON SCRANTON, PA INTRODUCTION INTRODUCTION

EXISTING CONDITIONS

AIRSIDE WATERSIDE DEPTH WORK BREADTH WORK CONCLUSIONS

WATER SIDE

Water-Cooled Chillers

icity	Efficiency		Evaporator (°F)	Condenser (°F)	Electrical	
ns)	EER (BTU/W-h)	NPLV (kW/Ton)	EWT/LWT	EWT/LWT	MCA	моср
0	0.548	0.344	56/44	85/95	545	800
0	0.548	0.344	56/44	85/95	545	800

Cooling Towers

Nominal Capacity (Tons)	Design WBT (°F)	EWT (°F)	LWT (°F)	Fan Motor (HP)	
550	76	95	85	25	
550	76	95	85	25	

THE UNIVERSITY OF SCRANTON

SCRANTON, PA

INTRODUCTION **EXISTING CONDITIONS** AIRSIDE WATERSIDE DEPTH WORK BREADTH WORK CONCLUSIONS

	Gas Input (MBH)	Net IBR Output (MBH)	EWT (°F)	LWT (°F)	Min/Max Flow (GPM)	Efficiency (%)	Electrical FLA
B-x	1999	1760	150	180	25/120	87	11

WATER SIDE

Natural Gas Fired Boilers (typ.)

THE UNIVERSITY OF SCRANTON

SCRANTON, PA

INTRODUCTION EXISTING CONDITIONS **DEPTH WORK** SENSIBLE WHEEL CHILLED BEAMS VAV SYSTEM BREADTH WORK CONCLUSIONS

HEAT RECOVERY WHEEL

EXISTING ENTHALPY WHEEL TRANSFERS LATENT AND SENSIBLE HEAT BETWEEN EXHAUST AND SUPPLY AIR

THE UNIVERSITY OF SCRANTON

SCRANTON, PA

INTRODUCTION EXISTING CONDITIONS **DEPTH WORK** SENSIBLE WHEEL CHILLED BEAMS VAV SYSTEM BREADTH WORK CONCLUSIONS

ADDITION OF SENSIBLE WHEEL ELIMINATES NEED FOR HEATING COIL

HEAT RECOVERY WHEEL

EXISTING ENTHALPY WHEEL TRANSFERS LATENT AND SENSIBLE HEAT BETWEEN EXHAUST AND SUPPLY AIR

Enthalpy Wheel

Sensible Wheel

THE UNIVERSITY OF SCRANTON

SCRANTON, PA

INTRODUCTION EXISTING CONDITIONS **DEPTH WORK** SENSIBLE WHEEL CHILLED BEAMS VAV SYSTEM BREADTH WORK CONCLUSIONS

HEAT RECOVERY WHEEL

	Cooling Required (Tons)	Reheat Energy Required (MBTUh)
nsible Wheel	168	12,800
nsible Wheel	122	7,400
uction	27%	42%

Enthalpy Wheel

Sensible Wheel

THE UNIVERSITY OF SCRANTON

SCRANTON, PA

INTRODUCTION EXISTING CONDITIONS **DEPTH WORK** SENSIBLE WHEEL CHILLED BEAMS VAV SYSTEM BREADTH WORK CONCLUSIONS

SIMPLE PAYBACK PERIOD: 8-9 YEARS

HEAT RECOVERY WHEEL

FIRST COST: + \$400,000

ENERGY SAVINGS: \$45,000/YEAR

Enthalpy Wheel

Sensible Wheel

THE UNIVERSITY OF SCRANTON

SCRANTON, PA

INTRODUCTION EXISTING CONDITIONS DEPTH WORK SENSIBLE WHEEL CHILLED BEAMS VAV SYSTEM BREADTH WORK CONCLUSIONS

PROJECT DEPTH

CHILLED BEAMS

THE UNIVERSITY OF SCRANTON

SCRANTON, PA

INTRODUCTION EXISTING CONDITIONS **DEPTH WORK** SENSIBLE WHEEL CHILLED BEAMS VAV SYSTEM BREADTH WORK CONCLUSIONS

FIR

ENERGY SAVINGS: \$75,000/YEAR

SIMPLE PAYBACK PERIOD: 3-5 YEARS

CHILLED BEAMS

Energy Usage	Current Design	Chilled Beams	Reduction	
Natural Gas (kBTU)	24,231,448	15, 935,939	33%	
Heating Accessories (kWh)	44,633	22,622	50%	
Supply Fans (kWh)	1,024,174	410,261	60%	

Equipment	Cost/Unit	# of Units	Savings
VAV Terminal boxes	800	425	340,000
Fan Coil Units	1,100	48	52,800
Chilled Beams	1,000	600	-600,000

THE UNIVERSITY OF SCRANTON

SCRANTON, PA

INTRODUCTION EXISTING CONDITIONS DEPTH WORK SENSIBLE WHEEL CHILLED BEAMS VAV SYSTEM BREADTH WORK CONCLUSIONS

TRADITIONAL VAV SYSTEM

• POOR ENERGY USE

POOR USE OF PLENUM SPACE

UNKNOWN VENTILATION PERFORMANCE

THE UNIVERSITY OF SCRANTON

SCRANTON, PA

INTRODUCTION EXISTING CONDITIONS **DEPTH WORK** SENSIBLE WHEEL CHILLED BEAMS VAV SYSTEM BREADTH WORK CONCLUSIONS

System

AHUs 1 8

AHUs 3 8

AHI

PROJECT DEPTH

TRADITIONAL VAV SYSTEM

	Existing CFM	VAV CFM	Increase
2	100,000	178,400	78 %
4	100,000	167,500	68%
5	5,150	9,200	79 %

Load	Existing	VAV	Increase
Heating	64	83	30%
Cooling	168	194	16%

	Ar	nnual Energ	gy Consump	tion		
Load Electricity (kWh)		ricity Wh)	Natural Gas (kBTU)		Water (1,000 gal)	
	DOAS	VAV	DOAS	VAV	DOAS	VAV
Heating						
Primary			21,234,448	28, 241, 815		
Other	127,024	156,921				
Cooling						
Compressor	1,615,573	1,874,064				
Cooling Tower/ Condenser Fans	398,595	458,384			16,550	17,442
Condenser Pump	220,635	258,142				
Auxiliary						
Supply Fans	3,489,151	4,361,438				
Pumps	569,932	683,918				
Other						
Lighting	1,425,080	1,425,080				
Receptacles	820,778	820,778				
Totals	8,666,768	10,038,725	21,234,448	28,241,815	16,550	17,442

THE UNIVERSITY OF SCRANTON

SCRANTON, PA

INTRODUCTION EXISTING CONDITIONS DEPTH WORK SENSIBLE WHEEL CHILLED BEAMS VAV SYSTEM BREADTH WORK CONCLUSIONS

INCREASED MECHANICAL SPACE

TRADITIONAL VAV SYSTEM

FIRST COST: COMPARABLE TO EXISTING SYSTEM

ENERGY COST INCREASE: \$200,000/YEAR

• POOR INDOOR AIR QUALITY

THE UNIVERSITY OF SCRANTON

SCRANTON, PA

INTRODUCTION EXISTING CONDITIONS DEPTH WORK BREADTH WORK LIGHT SHELVES SOLAR PANELS RAINWATER REUSE CONCLUSIONS

LIGHT SHELVES

THE UNIVERSITY OF SCRANTON

SCRANTON, PA

INTRODUCTION EXISTING CONDITIONS DEPTH WORK BREADTH WORK LIGHT SHELVES SOLAR PANELS RAINWATER REUSE CONCLUSIONS

LIGHT SHELVES

THE UNIVERSITY OF SCRANTON

SCRANTON, PA

INTRODUCTION EXISTING CONDITIONS DEPTH WORK BREADTH WORK LIGHT SHELVES SOLAR PANELS RAINWATER REUSE CONCLUSIONS

PROJECT BREADTH

LIGHT SHELVES

THE UNIVERSITY OF SCRANTON

SCRANTON, PA

INTRODUCTION EXISTING CONDITIONS DEPTH WORK BREADTH WORK LIGHT SHELVES SOLAR PANELS RAINWATER REUSE CONCLUSIONS

SOLAR PANELS

THE UNIVERSITY OF SCRANTON

SCRANTON, PA

INTRODUCTION EXISTING CONDITIONS DEPTH WORK BREADTH WORK LIGHT SHELVES SOLAR PANELS RAINWATER REUSE CONCLUSIONS

Month	Solar	AC	Energy	
	Radiation (kWh/m²/day)	Energy (kWh)	Value (\$)	
1	2.86	714	68.30	
2	3.57	792	75.76	
3	4.49	1073	102.64	
4	4.75	1064	101.78	
5	5.12	1136	108.67	
6	5.26	1102	105.42	
7	5.31	1125	107.62	
8	5.14	1100	105.23	
9	4.62	982	93.94	
10	4.06	925	88.49	
11	2.65	586	56.06	
12	2.31	550	52.61	
Year	4.18	11150	1066.61	

THE UNIVERSITY OF SCRANTON

INTRODUCTION EXISTING CONDITIONS DEPTH WORK

BREADTH WORK

LIGHT SHELVES SOLAR PANELS RAINWATER REUSE

CONCLUSIONS

SCRANTON, PA

SOLAR PANELS

900 SF 10 KW SOLAR ARRAY:

- INITIAL COST: \$90,000
- ENERGY SAVINGS: \$1,066/YEAR
- SIMPLE PAYBACK PERIOD: 90 YEARS

Month	Solar Radiation	AC Energy	Energy Value	
	(kWh/m²/day)	(kWh)	(\$)	
1	2.86	714	68.30	
2	3.57	792	75.76	
3	4.49	1073	102.64	
4	4.75	1064	101.78	
5	5.12	1136	108.67	
6	5.26	1102	105.42	
7	5.31	1125	107.62	
8	5.14	1100	105.23	
9	4.62	982	93.94	
10	4.06	925	88.49	
11	2.65	586	56.06	
12	2.31	550	52.61	
Year	4.18	11150	1066.61	

THE UNIVERSITY OF SCRANTON

INTRODUCTION EXISTING CONDITIONS DEPTH WORK BREADTH WORK LIGHT SHELVES

SOLAR PANELS RAINWATER REUSE

SCRANTON, PA

RAINWATER COLLECTION

11,000 SF ROOF AREA

FIRST COST: \$437,500

UTILITY SAVINGS: \$2,750/YEAR

SIMPLE PAYBACK PERIOD: 160 YEARS

	Month	Average Precipitation (in.)	Volume (ft ³)	Volume (gallons)	
	January	2.1	1925	14,438	
	February	2.3	2108	15,813	
	March	2.6	2383	17,875	
	April	3.0	2750	20,625	
	May	3.7	3392	25,438	
·	June	4.0	3667	27,500	
	July	3.8	3483	26,125	
	August	3.3	3025	22,688	
	September	3.3	3025	22,688	
	October	2.8	2567	19,250	
	November	3.1	2842	21,313	
	December	2.5	2292	17,188	
	Totals	36.5	33458	250,938	

THE UNIVERSITY OF SCRANTON

INTRODUCTION EXISTING CONDITIONS DEPTH WORK BREADTH WORK CONCLUSIONS

SCRANTON, PA

HEAT RECOVERY WHEELS GOOD OPTION CHILLED BEAMS UNCERTAINTY OF LATENT LOADS VAV SYSTEM OUTPERFORMED IN INITIAL AND ANNUAL COST

LIGHT SHELVES SUBJECT TO PLENUM SPACE SOLAR PANELS NOT ECONOMICALLY VIABLE RAINWATER COLLECTION NOT ECONOMICALLY VIABLE

CONCLUSIONS

THE UNIVERSITY OF SCRANTON

SCRANTON, PA

