Technical Report 1: ASHRAE Standards 62.1 and 90.1 Analysis

Berks Classroom and Lab Building - Berks Campus Reading, PA

Authored by Julia Broskey - Mechanical Option Prepared for Dr. William P. Bahnfleth PE

Contents

1.		EXECUTIVE SUMMARY	4
2.		INTRODUCTION	4
	Sys	tem Description	5
3.		STANDARD 62.1 ANALYSIS	6
3	.1.	Section 5	6
	Sec	tion 5.1 - Natural Ventilation	6
	Sec	tion 5.2 - Ventilation Air Distribution	6
	Sec	tion 5.3 - Exhaust Duct Location	6
	Sec	tion 5.4 - Ventilation System Controls	6
	Sec	tion 5.5 - Airstream Surfaces	7
	Sec	tion 5.6 - Out Door Air Intakes	7
	Sec	tion 5.7 - Local Capture of Contaminates	7
	Sec	tion 5.8 - Combustion Air	7
	Sec	tion 5.9 - Particulate Matter Removal	7
	Sec	tion 5.10 - Dehumidification Systems	7
	Sec	tion 5.11 - Drain Pans	7
	Sec	tion 5.12 - Finned-Tube Coils and Heat Exchangers	7
	Sec	tion 5.13 - Humidifiers and Water-Spray Systems	7
	Sec	tion 5.14 - Access for Inspection, Cleaning and Maintenance	8
	Sec	tion 5.15 - Building Envelope and Interior Surfaces	8
	Sec	tion 5.16 - Buildings with Attached Parking	8
	Sec	tion 5.17 - Air Classification and Recirculation	8
	Sec	tion 5.18 - Requirements for Buildings Containing ETS Areas and ETS-Free Areas	8
3	.2.	Section 6	8
	Sec	tion 6.2.2.1 - Breathing Zone Outdoor Airflow (equation 6-1)	8
	Sec	tion 6.2.2.2 - Zone Air Distribution Effectiveness (Table 6-2)	9
	Sec	tion 6.2.2.3 - Zone Outdoor Airflow	9
	Sec	tion 6.2.5.1 - Primary Outdoor Air Fraction	9
	Sec	tion 6.2.5.2 - System Ventilation Efficiency	9
	Sec	tion 6.2.5.3 - Uncorrected Outdoor Air Intake	9
	Sec	tion 6.2.5.4 - Outdoor Air Intake	9
4 .		STANDARD 62.1 FINDINGS 1	10
5.		STANDARD 90.1 ANALYSIS1	0
5	.1.	Section 5 - Building Envelope1	10

5.2.	Section 6 - Heating, Ventilating, and Air Conditioning	12
5.3.	Section 7 - Service Water Heating	12
5.4.	Section 8 - Power	12
5.5.	Section 9 - Lighting	12
6.	STANDARD 90.1 FINDINGS	14
7.	APPENDIX A	15

Table of Figures

Table 1. Opaque Elements requirements	. 10
Table 2 Fenestration Requirements	. 11
Table 3 U-values of exterior elements compliance	. 11
Table 4 Lighting wattage summary	. 13

1. EXECUTIVE SUMMARY

This report was used to analyze the compliance of The Berks Classroom and Lab Building with ASHRAE Standards 62.1 and 90.1.

ASHRAE Standard 62.1 focuses on indoor air quality for buildings; the analysis for the standard was done only on the three roof top units. After analyzing the building it was found that the building is compliant with this standard.

ASHRAE Standard 90.1 sets an energy standard for buildings except low-rise residential buildings. The building is almost completely compliant with this standard the two anomalies being the glazing and the slab on grade.

2. INTRODUCTION

Burks Classroom and Lab Building is located on Penn State's Burks Campus, located near Reading, Pennsylvania in Berks County. Penn State Burks sits among rolling hill and tree-lined pathways. The campus has a rich history, considering it was not always part of the Penn State system. The campus started as Wyomissing Polytechnic Institute (WPI) and became part of the Penn State System in 1958. In 1972 it moved to the Spring Township location and added residence halls in 1990. Even though there is rich history with the campus Penn State did not have to follow any historical requirements.

Burks Classroom and Lab Building is 62,188 square feet with all three levels above ground the occupancy for the building is designated as Group B - Business. The building was started in April 2010 and is scheduled to be completed in either August or September of 2011. The delivery method was design-bid-build. As with the new buildings at Penn State, Burks Classroom and Lab Building is designed using LEED certification and after completion is anticipated to achieve a LEED Silver rating under LEED 2.2.

The design team is as follows:

Owner: The Pennsylvania State University Berks Campus

General Contractor: Alvin H Butz, Inc.

Construction Cost Estimator: Becker & Frondorf

Building Architect: RMJM Hiller

Engineers:

Structural: Greenman-Pedersen, Inc.

MEP: H.F. Lenz Company

Civil: Gannett Fleming Engineers
Lighting Consultant: Illumination Arts, LLC
Acoustical Consultant: Shen Milsom Wilke, Inc.

They used multiple codes in the design of Burks Classroom and Lab Building; the codes are mostly 2006 with one exception being 2003. The code are as follows: International Building Code, International Mechanical Code, International Plumbing Code, International Energy Conservation Code, International Code Council Electrical Code, International Fire Code, and Accessibility Code ICC/ANSI 117.1 2003. There were some zoning requirements which included a Land Development Permit (LDP) from Springs Township and an NPDES permit was required from Burks County Conservation District (BCCD).

The building façade of the first floor is consists of two different types of façade, the first and closest to grade are Architectural precast concrete panels backed with an airspace rigid insulation air space and finally a masonry wall. The second part of the first floor façade has an aluminum curtain wall system in place of the architectural precast concrete panels, the two airspaces and rigid insulation. Above the first floor the façade changes again to have an exterior finish of terracotta rain screen backed by rigid insulation backed by cold formed metal framing (CMFM).

The roof system consists of metal decking covered by rigid composite insulation and a Kee membrane. KEE stands for ketone ethylene ester and is gaining popularity in Southern California because of its great waterproofing protection and lightweight design. The KEE membrane is a single-ply, lightweight vinyl and is extremely easy to install. The install for most types of the KEE membrane requires the contractors to use a simple hot air bonding technique; this creates a seamless molecular bond between each sheet of the membrane. This makes the membrane easy to repair and remains highly flexible with age, making it easy to uncover the substructure for repairs if needed.

Considering the Burks Classroom and Lab Building is designed to achieve a LEED Silver rating at completion. The building utilizes a gray water system; this system is designed to supply the restrooms within the building with water for their water closets and urinals. Other things considered for LEED rating was using materials that are made within a 500 mile radius from the site.

System Description

The building utilizes a VAV system that has an air side and hydronic side to it.

AIR SIDE:

On the air side there are three roof top air handling units (AHUs) that range from 26 tons to 70 tons.

HYDRONIC SIDE:

The water side consists of two gas fired boilers with a 6.2 gallon capacity and an output of 850 MBH. The building utilizes four Split system air conditioning units with rated capacities of either 1 or 1.5 tons. There are supplemental heaters located in two vestibules, two corridors and a stair well to help regulate the temperature of these spaces.

ZONE CONDITIONING:

The spaces are supplied air from Variable Air Volume Boxes (VAV Boxes). The server room is served by a computer room air conditioning unit (CRAC).

3. STANDARD 62.1 ANALYSIS

3.1. SECTION 5

Section 5.1 - Natural Ventilation

The windows are not operational for this building, therefore this is not a valid means of ventilation.

Section 5.2 - Ventilation Air Distribution

All spaces are supplied air by ducts. According to documentation the system will be balanced prior to occupation.

Section 5.3 - Exhaust Duct Location

Exhaust ducts run up the building through similar spaces. At the exterior, the exhaust is not near any intakes.

Section 5.4 - Ventilation System Controls

The HVAC system is controlled by either Automated Logic Corporation or Johnson Controls Inc. control system.

Section 5.5 - Airstream Surfaces

The mineral-fiber board thermal insulation is designed to comply with ASTM C 612 type IB and the mineral-fiber blanked thermal insulation is designed to comply with ASTM C 553 type III since neither incorporate ASTM C 1338 this is not compliant.,

Section 5.6 - Out Door Air Intakes

All intakes are more than the minimum distance from the exhaust fans and exhaust air from the building.

Section 5.7 - Local Capture of Contaminates

The café and the kitchen lab on the first floor have ducted exhausts to the lower roof above the second floor.

Section 5.8 - Combustion Air

The kitchen lab and café have supply ducts that supply air very close to above the cooking surfaces.

Section 5.9 - Particulate Matter Removal

The roof top AHUs have two filters, the first filter is a pre-filter with a minimum efficiency reporting value or MERV of 7 and the final filter has a MERV of 13 since both are above the required MERV of 6 the AHUs are compliant. The computer room air conditioner and the split system air conditioning units do not have filter data listed, and therefore is hard to judge the compliance of these systems.

Section 5.10 - Dehumidification Systems

The AHU systems are compliant. This is a combination of the excess exhaust is made up by the supplemental systems located in the building and some of the lab spaces are negatively pressured.

Section 5.11 - Drain Pans

The roof top units are placed on the roof above slope to roof top drains.

Section 5.12 - Finned-Tube Coils and Heat Exchangers

Since only the three roof top units were analyzed in this report, the roof top units are place over roof top drains. this section is compliant.

Section 5.13 - Humidifiers and Water-Spray Systems

This section does not apply.

Section 5.14 - Access for Inspection, Cleaning and Maintenance

The Roof top AHUs have at minimum 48 inches around them to allow for inspection, cleaning and maintenance work to be done. Equipment located in the ceiling cavity is located above removable acoustic ceiling panels to provide access for any inspection, cleaning or maintenance required.

Section 5.15 - Building Envelope and Interior Surfaces

The building has a terra cotta rain screen that protects the exterior vertical surfaces from rain penetration and is backed by an air space to drain any rain that gets through. The roof is comprised of a Kee membrane system that keeps moisture from entering the roof structure.

Section 5.16 - Buildings with Attached Parking

This section does not apply to this building.

Section 5.17 - Air Classification and Recirculation

The air from the kitchen hoods are is not recalculated to the general building spaces.

Section 5.18 - Requirements for Buildings Containing ETS Areas and ETS-Free

Areas

This section does not apply; the building is a smoke-free building.

3.2. SECTION 6

For the purpose of section 6 analysis only the three roof top units (RTU) will be used.

Section 6.2.2.1 - Breathing Zone Outdoor Airflow (equation 6-1)

 $V_{bz}=R_p*P_z+R_a*A_z$

Where

 A_z = zone floor area: the net occupiable floor area of the zone in m2 (ft2)

 P_z = Zone population: the largest number of people expected to occupy the zone during typical usage. If the number of people expected to occupy the zone fluctuates, P_z may be estimated based on averaging approaches described in Section 6.2.6.2

R_p = Outdoor airflow rate required per person as determined from Table 6-1

R_a = Outdoor airflow rate required per unit area as determined from Table 6-1

Section 6.2.2.2 - Zone Air Distribution Effectiveness (Table 6-2)

E_z = 1

Section 6.2.2.3 - Zone Outdoor Airflow

 $V_{oz} = V_{bz}/E_z$

Section 6.2.5.1 - Primary Outdoor Air Fraction

 $Z_p = V_{oz}/V_{pz}$

Where

 V_{pz} is the zone primary airflow

Section 6.2.5.2 - System Ventilation Efficiency

 E_{ν} from Table 6-3

Section 6.2.5.3 - Uncorrected Outdoor Air Intake

 $V_{ou} = DS_{all \ zones}(R_p * P_z) + S_{all \ zones}(R_a * A_z)$

 $D = P_s/S_{all zones}P_z$

Section 6.2.5.4 - Outdoor Air Intake

 $V_{ot} = V_{ou}/E_v$

4. STANDARD 62.1 FINDINGS

The Berks Classroom and Lab Building is compliant with section 5 of 62.1 per the analysis above. Per the analysis of Section 6 above for the three roof top AHUs the Berks Classroom and Lab Building is compliant with the standard. Please refer to Appendix for the supporting calculations.

5. STANDARD 90.1 ANALYSIS

5.1. SECTION 5 - BUILDING ENVELOPE

Reading, PA is located in Berks County which by using both ASHRAE Figure B-1 and Table B-1 is in climate zone 5-A. This is consistent with most of the state. Being in climate 5-A there are some requirements that must be followed, see Table 1 for the opaque elements and Table 2 for the fenestration elements, information is from Table 5.5-5 in ASHRAE standard 90.1.

Opaque Elements	Assembly Maximum	Insulation Min R-Value
Roof: Insulation above Deck	U-0.048	R-20 c.i.
Walls, Above Grade: Steel Framed	U-0.064	R-13.0 + R-7.5 c.i.
Floors:		
Slab on Grade: Unheated	F-0.730	NR
Slab on Grade: Heated	F-0.860	R-15 for 24in
Opaque Doors: Swinging	U-0.700	-

TABLE 1. OPAQUE ELEMENTS REQUIREMENTS

Fenestration	Assembly Max U	Assembly Max SHGC
Vertical Glazing: Metal Framing (Curtainwall/Storefront)	U-0.45	0.40
Vertical Glazing: Metal Framing (Entrance Door)	U-0.80	0.40
Vertical Glazing: Metal Framing (All Other)	U-0.55	0.40
Vertical Glazing: Non-metal Framing (All)	U-0.34	0.40

TABLE 2 FENESTRATION REQUIREMENTS

Using the tables in appendix A of ASHRAE Standard 90.1 the values in Table 3 were obtained. Some assumptions were made in completing Table 3 and include a slight estimation of the thickness of materials and can affect the R-value for some materials. This was only done when a thickness was not indicated on the drawings and there is a slight difference from paper drawings to electronic pdf drawings.

Exterior Element	R-Value / max SHGC	U-Value for system	Compliant
Roof	R-20 insulation	U-0.060	U- Value compliant
			R-Value compliant
Walls	R-12.5 Terra Cotta	U-0.147 for walls	U-Value Walls is
			compliant
Glazing	0.30 SHGC	U- 0.19 for glazing	Not compliant
S.O.G.		U-5	
<u>1</u>			

TABLE 3 U-VALUES OF EXTERIOR ELEMENTS COMPLIANCE

5.2. SECTION 6 - HEATING, VENTILATING, AND AIR CONDITIONING

According to the specifications the duct work is designed to meet ASHRAE Standard 90.1. The roof top AHRs are in two categories two of the three have a required minimum efficiency of 12.1 EER and the third has a required minimum efficiency of 11.3 EER. The two smaller units have designed EERs of 13.9 and 14.1 the largest unit has a designed EER of 12.5 making the equipment compliant.

5.3. SECTION 7 - SERVICE WATER HEATING

The roof top units and VAV boxes are supplied hot water by two gas fired boilers the rest of the domestic hot water is supplied by electric water heaters.

5.4. SECTION 8 - POWER

According to the drawings the building's electrical system is designed using the International Code Council Electrical Code 2006 but the specifications are referencing NFPA 70 which is also known as the National Electric Code. Since the NEC it states that feeder conductors should have a maximum voltage drop of 2% and a maximum branch circuits to have a maximum voltage drop of 3% at the design load condition, the building is compliant. In addition to the voltage drop requirements the working drawings should include floor plans as well as single line diagrams, the drawing set includes both and there for is compliant.

5.5. SECTION 9 – LIGHTING

The lighting for the Berks Classroom and Lab Building is controlled by occupancy sensors and therefore is compliant with the first part of this section. The second part of compliance is analyzed by the building area method described in Section 9.5 of Standard 90.1 and is summarized in Table 4. Assuming that the Berks Classroom and Lab Building is primarily offices for faculty members the Watts per square foot should be under 1.0 to see the calculation and the numbers see Table 4 below,.

Lighting	1st	2nd	3rd	W /	total
Fixture				fixture	wattage
С	24	13	4	64	2624
D	8			64	512
E			9	64	576
LA	35	284	114	32	13856
LA-1	30			64	1920
LA-2	19	65	21	32	3360
LA-4	28			32	896
LA-6	14			32	448

LAA		2	13	85	1275
LB	102			32	3264
LB-1	60	59		32	3808
LC	12	20		64	2048
LC-1	6			32	192
LCC	4			4	16
LD	51	9	9	64	4416
LDD	1			32	32
LE	12	12	12	32	1152
LEE	2			50	100
LFF	4			50	200
LG		16		70	1120
LGG	3				0
IJ	2			64	128
LJ-3	2			64	128
LK	1	1		96	192
LK-1	1	13		64	896
LK-2	6	2	2	96	960
LK-3	9	12	4	32	800
LK-4		2		160	320
LK-5	3			64	192
LK-7	2	3	2	64	448
LK-8		1		32	32
LM			7	70	490
LN	9			8	72
LP	5	5	21	32	992
LP-1	10			64	640
LT	26			32	832
				Total	48937
			Bui	lding Area	62,188
				W/SF	0.79

TABLE 4 LIGHTING WATTAGE SUMMARY

Since the Wattage per square foot is 0.79 and it is less then both the office number of 1.0 and the school/university of 1.2 the building is compliant.

6. STANDARD 90.1 FINDINGS

The Berks Classroom and Lab building is mostly compliant with Standard 90.1. There are two items that are not compliant and the both reside in the building envelope analysis section. The glazing and the slab on grade are not compliant with the standard.

7. APPENDIX A

Duibling	Dette	No.		A Dubling								
System Tag Name : Operating Condition Description: Units (select from pull-down list)	RTU-1 Design IP	Peak co										
Inputs for System Floor area served by system Propulation of uses served by system (including diversity) Daugin primary supply fram artiflow rate Dauged per unit area for system (Weighted searage) OA werd per present are system area. (Weighted searage) Inputs for Potentiath Collicel Inner	As Ps Vpsd Ras	Units S ^d dm dm f		100%, diversity	Syste 3021	5.3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5						
Ziona Nama	Zano é			a few mitigand scenarios		Learning Loft	Department	Classroom	Classroom	Classroom	Classroom	Classroom
Z one Tag		distant in the		o an onital standay		Ozos Common	Common	244 acture	245	246	247 Office space	248 Office space
Space type		Select in		lown list		corridors	corridors	classroom	classroom	classroom	ourse shares	anada anii lo
Floor Areas of zone	2	1 101.				2406	430	1149.75	1152	1638	1992-25	1003.75
Design population of zone Design total supply to zone (primary plus local regirculated)	V dad	₽ "	(default)	value listed; may be ove	mdden)	2.000	220 4	1200	1220	1600	1500	920
Induction Terminal Unit, Dual Fan Dual Duot or Transfer Fan? Local reports air % representative of ave system return air	Π.	Select fr	ompulld	lown list or leave blank	E N/A		784	XSX	1914	192	15%	15%
Inputs for Operating Condition Analyzed	7	\$				1000	1000					
Percent or total design amow rate at conducted analyzed Air distribution type at conditioned analyzed	5	Select fr	om pull-d	lown list		100%	100%	100%	100%	1997 28	100%	CS CS
Z one air distribution effectiveness at conditioned analyzed Primary air fraction of supply air at conditioned analyzed	5 5					1.00	1.00	1.00	1.00	1.00	1.00	1.00
Results Ventilation System Efficiency	P.					5						
Outdoor air intaike required for system Outdoor air per unit floor areas	Wot/As				- 5	9 91						
Outdoor air per person served by system (including) diversity) Outdoor air as a % of design primary supply: air	Y _{pd} P _p	۴ پ ا			78	9 G						
Detailed Calculations Initial Calculations for the System as a whole												
Primary supply air flow to system at conditioned analyzed	, N	r Br	-		200	50						
Initial Calculations for individual zones	Xs		- Vot	u/ Vps		25						
OA rate per unit area for zone OA rate per conson						0.00 90.0	0.00	0.06	0.06	0.06	0.06	5,00
Total supply air to zone (at condition being analyzed) Unused CA nor'd to breathing zone	2 A A	} }	- 2	z Piz + Razz Az	•	2000	220	1200	1230	1600	1500	215.2
Unused OA requirement for zone	Voz	₽			1	150	i M	249	302	56	315	215
Fraction of zone supply from fully mixed primary air	3		ۍ د د	+ (n-epter	• •	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fraction of zone CA not directly reduc, from zone Instant CA traction required in surely air to zone	22			1-Ez)(1-Ep)(1-Er)		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Unused OA traction required in primary air to zone	Ζp		- Vo	z/ Vpz	1	10.0	0.11	0.21	0.25	0.35	0.21	0.23
Z one Ventilation Efficiency (App A Method)	Evz		-	+ FbXs - FcZ) / Fa	1	1.18	1.14	1.04	1.01	0.90	1.04	1.02
System Ventilation Efficiency (App A Method) Ventilation System Efficiency (Table 6.3 Method)	T T		 ∑⊒	n (Ever) tua from Tabla 6:3	••	5.8						
Minimum outdoor air intaks sirflow Outdoor Air Intaks Flaw required to System	Vot	₽	- Vo	u/ Ev		2						
OA intake req'd as a traction of primary SA	4		- Vot	Vps	-	69						
Outdoor Air Intake Flew required to System (Table 6.3 Method) OA intake regid as a traction of primary SA (Table 6.3 Method)	≺ %	ľ	••• 88									
OA Tamp at which Min OA provides all cooling			5	JT-D / WOT- JT-		5						
CONTINUED DE LA MONTON CONTINUED DE LA MONTONIA		L Part	-	Protocol (1997)		đ						

BunAteg: System Tag Name : Operating Condition Description: Unna: select rom pui-cown issu	Bunka C RTU-1 Design	Roak ooo	ing L	dr Building									
Incust for Surban Floor area served by system (including diversity) Design process served to system (including diversity) Design process server that such areas Design process and the system weather areas DArroyd per unit area for system weather diversity) DArroyd per person for system weather diversity) autors for Processing collect across	Red P and	dinits dinits		1005, dvanby		<u>55 10 00 17 15 10</u>				Puler	rilarity Cr Niccal 2		
Zong Name	Zone H	a lans p	ngala Mal	o for altical zone(s)		8	nactor Graph	Tos MM	Learing Loft	Classroom	Classroom	Seminar	Bits & Bytes
Zona Tag						9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	240 Xiter lab	Critics space	120	121 Liotuna	122 Lecture hal	123 Calationia/fast-
Spana type		Salactin		Sown list						riasunom	risternom	(fired south)	tood dining
Floor Areaof zone	12	51				Π		1022	2456	10545	774	436	640.5
Design population of z one Resign total superior increase indexes nice local portraciation	1	17	default	value lated; may be one	midden)		1 20	3 12	11	1400	4700	21	1
Induction Terminal Unit, Dual Fan Dual Duct or Transfer Fan?	4	Salactite	mpulo	fown list or leave blank	INA	Π	2						
Inputs for Operating Condition Analyzed					1								
Persent of total design antixe raiset conditioned analyzed Air distribution type at conditioned analyzed Zone air distribution offectiv energis at conditioned analyzed	N 8	Salaci to	mpulo	Sown list	10	8	100%	ភ័នទី	10 10 10	19 19 19 19 19 19 19 19 19 19 19 19 19	100%	1005	100%
Results													
Vertilation By stamEtholency Outdoor at intelse required for system	s v	Ť			1 e	ឌ ೫							
Outdoor all per person served by system (including diversity)	VOIP5	5			86	5 4							
Outdoor at as a % of design primity supply air	Ŕ	ł,			7	2							
Detailed Calculations Initial Calculations for the System as a whole													
Primary supply air flow to system a conditioned assigned UncorrectedOA requirement for system	é k	33	25	dDs Pa + Rea Aa	2 12	ā ģ							
Unconnected OA negici as altraction of primary SA	ž		- 10	u/ Vpa		N							
CALIZING ALL DATE AND TOT TOTAL	Ā						uus	0.12	NUN	U.Ub	ann a	aru	SLN S
OAnata per parson	Ħ	din b					5.00	10.00	5.01	7.50	7.50	7.30	750
Total suppy air to cone (at condition being analyzied) Unised CR regid to breathing zone	ส์ล์		27	z Pz + Raz Az	1		8	972.6	2091	1150 2058	508.9	530 186.7	140
Unused OA requirement for zone	Ā	Ì	.≦		1			373	211	20	504	117	212
Fraction of zone supply from tutly interest from zone	73		••• 873	+ () () -	• •		1.00		5		1.0	5	150
Fraction of zone CA not directly radire, from zone	8				1		1.00	1.00	1.01	1.0	1.00	1.10	100
Unused Of fraction required in supply air to zone Unused Of fraction required in primary state years	H N		-	2/Vdr	1		0.00		10.0	A B	0.23		019
System Ventilation Efficiency	ł			and a loss	1			-					
2019 Ventilition Enclandy wipp A Memory	EMZ		1	1+H085-H02//H0	ļ	;	1.25	13KT	2011	U.20	80.00	arn	111/
System Vesteason Entering (App A Method) Vestilation System Efficiency (Table 6.3 Method)	2 2		5	h (evz.) Luo from Tabla 5.3		2 8							
Winimum outdoor air intaka airliow	1			and them is allowed a	ľ	1							
Outdoor Air Intaka Flow required to System	ģ	Ť	: 5	U/EV	-	9 2							
Outdoor Air Intake Flow required to System (Table 6.3 Mehod)	a	ŧ.	5	u/ By		2							
OA Temp at which Mn OA provides all coding	1				1								
Contractor which an interview is the internation		- Per	- 10	period (1-1) for the	•	8							

Super/ assistant Equipment issage Englow Autom Citiba space Strange rooms Office a rooms 202.75 Strange rooms Office a rooms 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1.00 1.00 1.00 1.00 0.15 0.01 0.15 0.01 1.10 0.04	India generation Nume Units System India generation Nume India generation System India generation Nume Nume India generation India generation Nume Nume Nume Nume India generation System Stand from System Stand from System Stand from System India generation Nume Nume Nume Nume Stand from System India generation Stand from System Stand from System Stand from System Stand from System India generation Stand from System Stand from System <td< th=""><th>d supph air al conditioned analyzed Da %. 1074 1074 1074 1074 1074 1074 1074 1074</th><th>Asem CRistency Ex 0.30 Mails caplined to system Volk clm Mails caplined to system Volk clm r particip sarved by yintem (including devently) VolPis dialy a % of dealigit primuly supply all Vpd clm a % of dealigit primuly supply all Vpd clm</th><th>r in System as a whole pip at flw to system at on rditoned a valyzed V pis cfm = V piCs = 20550 3C4 night an untitor system C4 night as a function of primuly C4 X = V ou / Vpis = 5161 a whole as not as a function of primuly C4 X = V ou / Vpis = 0.22</th><th>Full availabrization Fair Chinh Chinh Clinic <</th><th>Support profile Your Your Fill Your Your</th><th>kon mapuheekin suppoy atribuzone Zd = Voor Voor = 0.00 0.10 0.10 0.10 0.15 0.01 kon napuheekin pumpanya laho zone Zp = Voor Voor = 0.89 0.12 0.08 0.15 0.31</th><th>nov hove a second secon</th><th>na Eriolanov (Augo A Martined) EV – min (Szr) – 136 na Eriolanov (Augo A Martined) EV – min (Szr) – 136</th><th>se Flow required to System Vot ofm - Vou/EV - 14257</th><th>Air manage annown. Air manage annown. Air manage Thanton of primary SA. Y – Vol Vitra – (4267)</th><th>Oor Air Trades Baltroom Vol Cfm Vou/Ev - 14267 barde nords as handror of prinary SA V Cfm Vou/Ev - 14267 brade nords as handror of prinary SA V - Vol/Vp - 0.60 brade nords as handror of prinary SA V - Vol/Vp - 0.60 brade nords as handror of prinary SA V - Vol/Vp - 0.60 brade nords as handror of prinary SA V - Vol/Vp - 0.60</th></td<>	d supph air al conditioned analyzed Da %. 1074 1074 1074 1074 1074 1074 1074 1074	Asem CRistency Ex 0.30 Mails caplined to system Volk clm Mails caplined to system Volk clm r particip sarved by yintem (including devently) VolPis dialy a % of dealigit primuly supply all Vpd clm a % of dealigit primuly supply all Vpd clm	r in System as a whole pip at flw to system at on rditoned a valyzed V pis cfm = V piCs = 20550 3C4 night an untitor system C4 night as a function of primuly C4 X = V ou / Vpis = 5161 a whole as not as a function of primuly C4 X = V ou / Vpis = 0.22	Full availabrization Fair Chinh Chinh Clinic <	Support profile Your Your Fill Your Your	kon mapuheekin suppoy atribuzone Zd = Voor Voor = 0.00 0.10 0.10 0.10 0.15 0.01 kon napuheekin pumpanya laho zone Zp = Voor Voor = 0.89 0.12 0.08 0.15 0.31	nov hove a second secon	na Eriolanov (Augo A Martined) EV – min (Szr) – 136 na Eriolanov (Augo A Martined) EV – min (Szr) – 136	se Flow required to System Vot ofm - Vou/EV - 14257	Air manage annown. Air manage annown. Air manage Thanton of primary SA. Y – Vol Vitra – (4267)	Oor Air Trades Baltroom Vol Cfm Vou/Ev - 14267 barde nords as handror of prinary SA V Cfm Vou/Ev - 14267 brade nords as handror of prinary SA V - Vol/Vp - 0.60 brade nords as handror of prinary SA V - Vol/Vp - 0.60 brade nords as handror of prinary SA V - Vol/Vp - 0.60 brade nords as handror of prinary SA V - Vol/Vp - 0.60
Supervision Engline 110Ap Autor 100Ap Autor 0.34 Autor 0.34 Autor 0.34 Autor	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.00			150 46.5	100	0.51	0.94				
Searing Instance Electroniza Instance 111 110 111 100 111 100 111 100 111 100 111 100 111 100 111 100 111 100 1100 100 1100 100 1100 100 1100 100 1100 100 1100 100 1100 100 1100 100 1100 100 1100 100 1100 100 1100 100 1100 100	samy Ekonoska space Electronical internation Lib internation Electronical internation Electronical international international international international international international international international international i	01. 011 0 80 01 9001			510 510 510 510 510		020					

Building		Berks	Classroo	m an	d Lab Building				
System T	ag Name :	RTU-1					_	t	
Ope ratin	Condition Description:	Design	Peak co	oling				t	
Units (se	act from pull-down list)	IP							
Incuster do	- Bush -	Marrow	Unite				Ducinen	r	
inputs to	r system	Name	unns			H	system	-	
	Pilot area served by system	AS	51		10000		30217.5	-	
	Population of allea served by system (including diversity) Design primary supply fan aliffan min	Mond	-t-		TOUN UNDERY		20.500	-	
	Of and participation for purpose Michigan and	Dee	of male 1				20,000	-	
	OA metid per unit alva for system (w eighted average)	Dre	cimin				0.07	-	
Inputs to	r Poin stially Critical zones	ripe	cump				0.0	L	
ingrata to								Resource	Seminar
	Zone Name	Zone t	te turns p	wpk	Italic for critical zone(s)			Center	Classroom
	Zone Tag							111	112
								Office space	Lecture
	Space type		Colord		and shows that				classroom
	Energy and a second second		CHINCE	ion p	JUE-COWIT IDL				
	Proof Area of 2019	AZ	51	(state)	and and an interior and the sec	-	(mark)	475	589
	Design population of zone	PZ Nater	at an	(061	aux value issed; may be ov	umdo	wit)	5	1/
	Lesign total supply to zone (primary plus local recirculated)	Adad	Colorit	-	will down list or lower block	an Maria	. 8	540	700
	Local social air 5/ accessibility of automatical critical air	Ex	OWNER	ion b	ADD-COMPTIBLE OF THAT'S DISTR	II NO	•		
inputs fo	r Operating Condition Analyzed	EI				10			
	Percent of total design airflow rate at conditioned analyzed	Ds	%				100%	100%	100%
	Air distribution type at conditioned analyzed		Select t	tom p	ull-down list			CS	CS
	Zone air distribution effectiv eness at conditioned analyzed	Ez						1.00	1.00
	Primary air fraction of supply air at conditioned analyzed	Ep							3
Results									
	Ventilation System Efficiency	EV					0.36		
	Outdoor air intake required for system	Vat	ctm				14267		
	Outdoor air per unit floor area	Vot/As	ctm/st				0.47		
	Outdoor air per person served by system (including diversity)	Vot/Ps	ctm/p				30.3		
	Outdoor air as a % of design primary supply air	Ypd	ctm				70%		
Detailed	Calculations			_		_			
Initial Ca	culations for the System as a whole								
	Primary supply air flow to system at conditioned analyzed	Vps	ctm	-	VpdDs	-	20550		
	UncorrectedOA requirement for system	Vou	ctm	-	Ros Ps + Ras As	-	5161		
	Uncorrected OA regid as a fraction of primary SA	Xs		-	Vou/ Vps	-	0.25		
Initial Ca	iculations for individual zones								
	OA rate per unit area for zone	Rat	ctm/st					0.06	0.06
	OA rate per person	Bpz	ctm/p					5.00	7.50
	Total supply air to zone (at condition being analyzed)	Vdz	ctm					540	700
	Unused CA regid to breathing zone	Vbr	ctm	-	Rpz Pz + Raz Az	-		68.5	162.8
	Unused OA requirement for zone	Vaz	ctm	-	Vbz/Ez	-		69	163
	Fraction of zone supply not directly recirc. from zone	Fa		-	Ep + (1-Ep)Er	-		1.00	1.00
	Fraction of zone supply from fully mixed primary air	Fb		-	Ep	-		1.00	1.00
	Fraction of zone OA not directly recirc. from zone	Fo		-	1-(1-Ez)(1-Ep)(1-Er)	-		1.00	1.00
	Unused OA fraction required in supply air to zone	Zd		-	Voz / Vdz	-		0.13	0.23
	Unused OA fraction required in primary air to zone	Zp		-	Voz / Vpz	-		0.13	0.23
System V	Ventilation Efficiency								
	Zone Ventilation Efficiency (App A Method)	Evz		-	(Fa + FbKs - FcZ) / Fa	-		1.12	1.02
	System Ventilation Efficiency (App A Method)	EV		-	min (Evz)	-	0.36		
	Ventilation System Efficiency (Table 6.3 Method)	EV		-	Value from Table 6.3	-	n/a		
Minimum	outdoor air imake airflow								
	Outdoor Air inclike Flow required to System	Vot	cim	-	VOU/ EV	-	14267		
	OA intake regid as a fraction of primary SA	1		-	Vot/ Vps	-	0.60		
	Outdoor Air intake How required to system (Table 6.3 Method)	Vot	eim	-	VOU/ EV	-	n/a		
-	CA make regid as a fraction of primary SA (Table 6.3 Method)	1.		-	Vot/ Vps		nva		
OA TEMP	OAT below which OA Intoke free is O minimum		Dee		ITTO ATTAC IS MORTH ATTA		1.140		
	CALL DAVA AND IN THIS IN THE WITH THE		Degr	-	(()p-0150+(1-T)-(11+011		48		

Building: System Tag Name: Operating Condition Description:	Barks (RTU-2 Dvolum	lassroot	t and Lab Building								
Obst (Marcelling III) (1990) (1990)											
Inputs for System Fierra and concertive evidem	Name	" Into		System Materia	<u>-</u>						
Population of area served by system (including diversity)	3		10% dversity	1	deate						
OA redd per unit area for system (Weighted average)	R S	1		12,0	No.						
INPUTS TO: HORE-TRAINFUTURED ZONKS	Pps B	8									
Zone Name	7000		ento dallo fre cellost sensitei		Comp Lab	Loopy	Comp Lab	IT Store	Comp Lab	Twels Lab	Compor
Zong Tag					200	F301	209	207/207A	201	300	0901
Stars Alter			down line		Contraction of		(Dupped party	and the second se	(m)	of printing	
Floor Area of zone	A.		all particular line		8	877.5	962.5	431.5	1402.25	910	88
Design population of zone indexervative local region (which	Ĩ	} "	detault value listed; may be ove	middan)	8 08		2	8.0	19	an 19	
Induction Lemmina Unit, LUasi Han Uka Ukot or Litarsherhanin		2000110	ULT DIRITORNAL RECO. 1990 N DISTRICT	NA							
Incute for Operating Condition Assigned					9	0	3				3
Percent of bial design alflow alle alconditioned analyzed	0	¢ *	on roll down lint	100	10%	100%	100%	10%	100%	10%	100%
Zons air dshbutiin effectiv enass at conditioned analy zvd	1				1.00	100	1.00	100	1.00	15	1.00
Finally an actual of staticy and containing analysis.	8										
Ventilation 3/ sten Efficiency Outhor all intake regularity for system	a V	1		£8							
Outdoor air per unit floor area	Volues	1		8							
Contoor all per person services y system (neuroni) conversity / Outdoor all as a % of dasign primary supply all	Ŕ	9		8							
Detailed Calculations Initial Calculations for the System as a Whole											
Primary supply airflow to system at conditioned analyzed	R	3	- VpdDs	-							
Unormated CA replanament of system Unormated CA replate a traction of primay SA	Xs	8	 Mos P3 + Mas A3 Wou/ Vps 	28	00						
OA rate per unit area for zone	P	S.			0.12	006	90.0	012	0.12	66	0.05
OA rate per person	P	ł			10.00	510	5.00	1000	10.00	5	00
Tutat subjer an income (at construction demy analyzed) Unused CA read to breathing cone	R R	8 6	Rep Pt + Rep Ar	•	365.5	52.7	162.8	527	458.3	140.6	99 A
Unused CA requirementter zone	Ŕ	ŝ	- Vitanii 2	1	396	1	163	8	t,	ŝŝ	
Franking of cone supply not grady typic, rom zone Franking of cone supply from fully indeed primary sh	72				1.00	5	100	88	8	ŝ	
Fraction of none OA not directly redit, from zione	2.5		 1-(1-E)(1-E)(1-E) 		1.00	5	1.00	18	1.00	5	1.00
Unused CA traction required is supply air to zone Unused CA traction required is primary air to zone	22		 Voz /Vpz 		0.45	0.36	0.19	016	220	55	0.23
System Ventilation Efficiency	ŝ			•	-	1 20	1	112	1 2 2	i	ţ
System Variilation Efficiency (App A Mathod)	V		 min (Exz.) 	-							
Ventilation System Efficiency (Fiddle 3.0 Method)	2		 Valuetrom Table CD 	- 20	Ĭ						
Outprise Air Interest annual annual of the System		3	- Vnu/ Pv		~						
OA Intake radid as a fraction of primary SA	1		 Vot/ Vps 	' 8							
Outdon All Intelle Row required to System (Table 6.3 Nathod OA Intelse radid as a fraction of primary SA (Table 6.3 Nathod)	× a	8	- Vol/ Sv - Vol/ Vps	 20	NJ 44						
OA Temp at which Min OA provides all cooling			ITTO ATTA		J						
	l		- Not starting of the second s								

System Tag Name: System Tag Name: Cps wing Condition Description. Units (solidet frompull-down list)	Barts (RTU-2 Design	That Oc	m and Lab Building soling								
Inputs for System.	Name	Units		Syste	<u>=</u>						
Ficer ana sawed by system Population of a war sawed by system (Instability Unwrality) Rector where a same to be strikted at	578	1 - 1	Viscondo Nation	14566							
OA medit per unit area the system (W-alphad swampd) OA medit per person the system area. (W-alphad swampd)		₿₿									
Zone Name					Super / Assistance	Lobby P	rolotype Lab	Receiving/ Storage	Design Lab	Projects Lab P	esearch Lat
Jone Tag	2008		(c)each research and set		101 101	F103	108	109 / 109A	103	1 8	114
ediț ecede					areds com a	100000	e0e	Bundan	e8a Interviewe	999	olo united and
Floor Assa of zone	Az	st	rom pull-down list		150	456	aboratories	574	aborationes 938.875	lacoratorias 1226.1	aboratorias 705
Design xopulation of zone Design volation of zone infimery plus boat restructed)	S R	- -	(dataulivalue listed; may be ov	amiddan)	3 10		720		8 M	8 14	s
Induction Terminal User, Dual Fan Dual Dect or Transfer Fan? Local ratio: at % representative of ave system whum air	Ψ	Sdoot t	ron pull-down list or leave blank	INA	257	784	201	7.57	XXX	792	152
Inputs for Operating Condition Analyzed		1			-						
Heroencor total cestigit aintide rate a concritories analysed At utati futbori type at uuristiismed anelysed	US	Selection	run pull-down Isl		0% 100%	100%	83	100%	1075	005	201
Acres all distriction electiveness a conditioned analyzed Primary all fraction of supply all all conditioned analyzed	7 R				ULL	1.00	00.1	1.00	1.00	tur,	1.00
Fesults Ventilaton By dom Eficience	Đ				*						
Outdoor air intaka negulrad for systam	No.	1		. *	: 23						
Outdoor at the person served by spatem (including diversity) Outdoor at the person served by spatem (including diversity)		1		. 2 6	8 -						
- fotos famos diama su na control por tran	i										
Initial Calculations for the System as a whole Primary supply air flow to system a conditioned analyzed		₽	- VMDs	n Di	110						
Uncorrected CA requirement for system Uncorrected CA reads as a fraction of privacy CA) III	- Rps Ps + Ras As	• 14	88						
Initial Calculations for Individual zones	i	ŧ	1		2	2	*	2	2	5	
OA ratepar parson	귀	and a			5.00	5.00	12.00	0.00	1020	10.00	10.00
Unused CA regular to zone (at contains being analytical) Unused CA regular breakhing zone	i i	6 8	 Plac Piz + Plazz Az 	1	0/	200	1/50	420	429.6	470.7	208.9
Unused CA requirement for zone	Å	₽	- Violez	ľ	19	. 11	362	. 8	8	471	N
Fraction of zone supply from fully need primary sin	7			•	1.00	1.00	1.00	1.00	150	1.00	1.0
Fraction of zone OA not directly redire. from zone Unused CA fraction required in supply air to zone	27		 1-(1-5z)(1-Ep)(1-Er) Vez / Vez 		1.00	0.14	1.00	0.16	043	1.8	1.00
Unused CA traction required in prinary all to zone	Zp		 Vez / Vpz 	1	0.27	0.14	131	0.16	0.43	0.47	0.30
Cystem Vestilation Efficancy (App A Vathor)	Evz		 (Fa + FbKs - FoZ) / Fa 	•	1.01	1.15	198	1.12	3610	0.81	660
System Ventilation Eficiency (Aco A Method) Ventilation System Eficiency (Table 6.3 Nethod)	22		 mn (Byz) Value from Table 6.3 	• •	8 2						
Minimum outdoor air Intiska airfiow Outdoor Air Intiska Hew Required to System	N CI	3	- YOU/ EV		Ē						
OA Intaka req16 as a hadion of primary SA	4	ł	 Vet/ Vps 	1	81						
OA intake regid as a fraction of primary SA (Table 6.3 Nethod)	1		- Vet/Vps		15						
OA temp at which Min GA provides all cooling OAT beaw which GA Infake flow is @ minimum		Dig F	 ([]pdTs}(I-Y](Tr+d)f 	•	12						

Buildina:	Berks	Classroor	m an	d Lab Building			2	
System Tag/Name :	RTU-2						t	
Operating Condition Description:	Design	Peak Co	olin	9			1	
Units (select from pull-down list)	IP.						120	
Inputs for System	Name	Units			1	System	Т	
Floor area served by system	As	st		3	1	4565.48	I	
Population of area served by system (including diversity)	Ps	P		100% dversity		212	I	
Design primary supply fan airflow rate	Vpsd	ctm				12,810	T	
OA regid per unit area for system (Weighted average)	Ras	ctm/st				0.12		
OA regid per person for system area (Weighted average)	Rps	cfm/p				8.7	T	
inputs for Polentially Critical zones							-	
Zono Namo							Measurement	Seminar
	Zone t	le tirns p	urpk	Halic for critical zone(s)				Charles Oohin
Zone Tag							105	308
							University/coll	Lecture
Space type							ege	classroom
		Select fr	om p	oull-down list			laboratories	
Floor Area of zone	Az	st					1256.25	791
Design population of zone	Pz	P	(dat	ault value listed; may be ov	emidd	en)	13	25
Design total supply to zone (primary plus local recirculated)	Voted	ctm					1410	1500
Induction Terminal Unit, Dual Fan Dual Duct or Transfer Fan?		Select fr	om p	oull-down list or leave blank	II NV		3	
Local recirc, air % representative of ave system return air	Er		_	66			75%	C 7 EK
nouts for Operating Condition Analyzed Research of Intel design aidlaw rate of conditioned analyzed	De	97				1009	1009/	1009/
Air distribution have at conditioned analyzed	US	To Colorit to	-	tell down list		100%	100%	100%
Zone air dairibution offertikenear at conditioned analyzed	E.e.	CHINGEN	on ,	ALC-SOME TO:			1.00	100
Drimmar air fraction of surply air at conditioned analyzed	En						1.00	1.00
Printery an inaction of supply an at conditioned analyzing	- EP							
Vantilation System Efficiency	Ev					0.81		
Outrinor air intako roquirod for system	Vot	cim.				4483		
Outrinor air nar unit finor area	Vot/As	cimist				0.31		
Outdoor air par parson savad by system (including diversity)	Vot/Ps	ctmip				21.1		
Outdoor air as a % of design primary supply air	Ypd	ctm				35%		
pitaled Calculations Initial Calculations for the System as a whole								
Drimay surply air flow in surion at conditioned analyzed	Mee	eter.	122	VedDe	28	10010		
Linearmented DA manimum for surfam	Vou	cim.		Des De . Des As		9660		
Lincorrected OA registered to system	Xe	C. C	-	Vou/Vos		0.28		
atial Calculations for individual zones	~							
OA rate nor unit area for zone	Bar	cimist					0.18	0.05
OA rate per person	Box	ctmin					10.00	7.50
Total supply air to zone (at condition being analyzod)	Vdr	ctm					1410	1500
Linused CA realit in breathing zone	Vhr	ctm		Bry Pr + Bar Ar			356.1	235.0
Linused CA requirement for zone	Vor	ctm		Vhr/Fr			355	235
Fraction of zone supply not directly regime from zone	Fa		12	En + (1-En/Er			1.00	1.00
Fraction of zone supply from fully mixed orimany air	Eh			En			1.00	1.00
Fraction of zone QA not directly recirc, from zone	Fo			1-(1-Ez)(1-Ep)(1-Er)			1.00	1.00
Unused OA fraction required in supply air to zone	Zd		12	Voz /Vdz			0.25	0.16
Unused CA fraction required in primaw air to zone	ZD		12	Voz /Voz			0.25	0.16
System Ventilation Efficiency								
Zone Ventilation Efficiency (App A Method)	Evz		-	(Fa + FbKs - FcZ) / Fa			1.03	1.13
System Ventilation Efficiency (App A Method)	EV		-	min (Evz.)	-	0.81		
Ventilation System Efficiency (Table 6.3 Method)	EV		-	Value from Table 6.3	-	0.68		
Animum outdoor air intake airflow								
Outdoor Air Intake Flow required to System	Vat	ctm	-	Vou/ Ev	-	4483		
OA intake regid as a fraction of primary SA	Y		-	Vot/ Vps	-	0.35		
Outdoor Air Intake Flow required to System (Table 6.3 Method)	Vot	cfm	-	Vou/ Ev	-	5374		
OA intake regid as a fraction of primary SA (Table 6.3 Method)	Y		-	Vot/ Vps	-	0.42		
DA Temp at which Min OA provides all cooling								
OAT below which OA Intake flow is @ minimum		Deg F	-	hTD+1T)*(Y-1)-(1ETD-qT)	-	23		

Building: System TagName - Operating Condition Description: Units (select from pull-down its)	Barks (Pasign P	Classroom a	nd Lab Building ad								
Impos for 3ystem Floor susta son wid by system (Including diversity) Deceptorations are served by ystem (Including diversity) Deceptorations supply frameworks Deceptorations supply frameworks Deceptorations are by statem area (Weighted severage) DA need per particular zerves DA need per particular zerves	R S S S S	damb g	100% dvosty	System 13345.3 10,79 5,79 5,79							
Zona Name					Faculity Office /	Faculty Offices	Faculty Offices	Faculity Office	Continence	Faculty Offices	Corridor
Zone Tag					335 / 0304	233, 334 & 335	330, 331 & 332	319	5	324, 326 Ł 327	0303
Space ype		Salad form	pul-down ist		Office space	Office space 0	million space	office space (or the second	Office space	Comidors
Floor Area of zono Resident roculation of zono	₽ ≧	-	fault using listed; may be our		502	20.5	370/2	. 8	183	, H	5
Design total supply to zone (primary plus local recirculated)	Vitrd	•			蔎,	330	330	280	18	33	200
Local recirc. at % representative of ave system return air	Ψ				2	3	2		2	3	2
Inputs for Deerating Coedition Analyzed Percent of tota design airflow rate at conditioned analyzed	8	1		1029	109	100%	100%	100%	100%	104%	100%
Even an use fuctor whether were a sub- primary air thattion of supply air all conditioned analyzed	00				100		1.00	1.00	1.00	18	00.I
Pesults Ventilation By dam Efficiency	W			0.75							
Dutdoor air intaka raquinad tor system Dutdoor air por unit ficor area	Value V	Ì		e 18							
Duidoor air po: penson served by system (induding diversity) Duidoor air as a %, of deelgn primary supply air	Vales Vales	۹ ژ		21 12							
Debiled Calculations Initial Calculations for the Rysitim as a whole											
Incorned supply air now to system at constantion analysis Uncorned solid. A sequitament for system	22	•	Aps Ps - Ras As	172							
Initial Calculations for individual zones	8	din di	1		105	200	0.06	0.06	0.05	075	105
DA rate per person		đ			500	5.00	5.00	5.00	5.00	15	16
Total supply at to zone (at construction being analyzing) Unitated OA trep'd to breakling zone	N N	f 1	Rue Pa - Read As	1	40.0 40.0	52.2	32.2	197	401	81 B	0.0
Unused CA requirement for zone	N N	11 -	VIII III	1	45	100	10	8		g ⊑2	
Fraction of zone supply not directly redro, fram zone Fraction of zone supply from fully mixed primary all	77		中+(1-5)EF		100	1.00	1.00	1.00	120	100	1.00
Fraction of zone CA not directly regim, from zone	12		1-(1-Ez)(1-Ep)(1-Ep)	ľ	100	1.00	1.00	1.00	1.00	150	1.00
Unused CA traction required in primary air to zone	55		Voz /Vpz	• •	59	0.16	0.16	0.07	0.29	0.14	100
System Ventilation Efficiency Zona Ventilation Efficiency (Ago A Method)	Eaz		(Fa + Pb(s - Pd) / Fa	•	105	1.00	1.00	1.09	0.57	1122	1.16
System Ventilation Efficiency (App A Method) Ventilation System Pfiniancy (Table 3.3 Method)	2 2		Value from Table 5 3								
Minimum outdoor air Intake airflow Dutdoor Air Intake Flow required to System	N.	•	You/ Ev	5	en.						
DA tridewineqViso a hadron vi prinery SA Dutdog Air Inteke Flow required to System (Table 53 Method)	s ×	Ĵ	You/ Yos		- w						
DA Intake roof's as a fraction of primary SA (Table 63 Mathod) OA Temp at which Nin OA provides all cooling	۲		Vot/ Vps	- 0.2	-						
DAT below which CA intake fow is @ minimum		Dag F -	(Tp-dTs)-(1-Y)(Tr+dTd		2						

System Tag Name : Consting Condition Josofistion: Units (select form pul-down list)	Barks C R1U-3 Design IP	Cooling	Load	ab Billding								
Inputs for System Ever zona oovarity ayetan Population it area server by aytan (including Oversity) Deep provide serve to system Weighted average OA edd servers ave to system area (Weighted average) Inpute for Petermiany-Centent zerver.	광광 문문 문문	daniya		10%, dventy	System 19945 99 10750 0.08 5.1							
Zons Nams				In Freedom Instantin		Lobby	Dopy/ Fax / Printer	PT Faculty Office	Comtor	Faculity Offices	Faculity	Faculty Offices
Zone Tag						1064	22	319	0301	320, 321 &	304	305 & 306
Sinaka Mina						Lobbes	This space (office space	Corridors	Office space	Office space	Office space
Floor Area of zons	A.	10001		down ist						35	130.5	8
Design population of z one	P	-0	dataut	value listed; may be over	rddan)			m			t-a	*
Induction Terminal Unit, Dual Fan Dual Duct or Transfer Fan?	100	Salacit	mpul	down list or leave blank, if	WA	and and a	ē		8	5		200
I need name an Autoprocession of averages of the internal Incuts for Oceanting Condition Analyzed	4					2	3			2	3	3
Percent of bital design aliflow rais at conditioned analyzed Air ostnouton type at conditioned analyzed	P	2000		down list	102%	100%	100%	10%	100%	100%	100%	100%
Zone air dishibution eifediv eness at conditioned analy zed Primary air haction of supply air at conditioned analyzed	88					1.00	1.0	1.00	1.00	1.00	1.00	1.00
Results Venilation 3ystem Efficiency	V				675							
Outdoor air intaka required for system	N.	Î			2296							
Outdoor all por preven served by system (including diversity)	Valle	t i			83							
Outdoor air as a % of design primary supply air	ť	Ĵ			13							
Initial Calculations for the Systemas a whole												
UncornectedDA requirement for system	ēi	1	। स	os Ps + Ras As	1728							
Linovnariat cua rugidias a traction of pernary sta Initial Calculations for Individual zones	×.		1	uit Wps								
OA alle per unit alea for cone	ΞĨ					0.05		800	0.06	0.06	006	1005
Total supply air to zone (at condition being analyzed)	A.	Ť.	,			SHO	: 10	120	290	360	110	120
Unused CA requirement for zone	A 3	•	• • 54			•		30		5 S	18	36
Fradion of cone supply not directly reade. from zone	727		• •#7)+(1-Ep)Er		1.00	10	1.00	1.8	1.0		1.00
Fraction of cone GA not dreatly redire, from zone	77		1 1 2 4	(1-E2(1-E2)(1-E))		1.00	5	1.00	1.00	1.00	8	1.00
Unuted CA traction required in supply air to z one	N		-	sz /Wdz		0.00	2	0.36	0.00	0.14	0.16	0.11
Unused CA traction required in primary air to zone	Zp		-	at / Vipe		0.00	0.00	0.25	0.00	0.14	0.16	0.11
System Ventilation Efficiency (App & Mathod) Zony Ventilation Efficiency (App & Mathod)	Eve		D	a + FBKs - FGZ) / Fa		1.16	1.15	0.91	1.16	1.02	0.99	1.05
System Vartilation Ethciancy (App A Method)	V			n (Bvz)								
Venimun outdoor air Intaka airflov	2		1		5							
Outdoor Air Intaka Flow required to System OA Intaka racid as a fraction of primary SA	< d d	Î	**		12106							
Outborr Air Intaks Row required to System (Table 6.3 Method)	ď	Î	1	W/Br								
CA Temp at which Min OA provides all cooling	1		1									
OAT holes which "A letiko few is @ ninimum		Deg F	-	D-STREAT ALL AND A STREAT A								

Q	OA Tamp at w	8	21		Minimum outs	14	200	Zon Zon				1	2	21			Trit	Q	Q	Initial Calculat			Pin	Initia Calculat	Dotalod Cake	9	2	8	g	Van	Post in a		Zon	Alto	Pan	Inputs for Ope	6	Ind			Floo	-	1	Zon		Zon		Inputs for Pet	21		Pap	MI	Inputs for Bys	Units (sole of t	Operating Con	NOW WASKE	
IT below which CA listaxe fow s @ maimum	which Win OA provides all coviling	Intakeredid as a fraction of primary SA (Table 6.3 Method)	tobor Air Intako Flow required to System (Table 6.3 Method)	ideological and the first of the first of the second	door ar intaks airflow	ntistini System Etistenny (Talia 6 3 Method)	stem Vintilation Efficiency (Apr A Method)	ne Ventilation Efficiency (App A Mothod)	used UA traction required in primary at to zona	used On tradition provided in support white provide	TOTAL A TANK ON THE TANK AND A TANK AND	and a second state of the	which it some supply from high mixed missory sin	ction of zone supply net directly regire, from zone	used CA requirement for mine	used CA read to breathing zone	tal supply air to zone (at condition heing analyzed)	rate per person	rate per unit area for sone	tions br individual zones	corrected OA regid as a fraction of primary SA	DOMEGRACIA REQUIREMENTS FOR SISSEM	may sipply allflow to system it conditioned analyzed	ntions for the System as a whole	ulations	roor ar as a % or oesgn prinary suppy an	topor at per person served by system including diversity)	toor at par unit foor area	marking includes the process of the process	riflation By stam Efficiency	THE WE I HAVE A PRACT OF THE AT A VALUE AND A THE AT AN A PRACT	man at inaction of success air a conditioned analyzed	ne air detribution offied veness at conditioned analy zed	distribution type at conditioned analyzed	mant of total design airline rate at conditionad analyzed	enting Condition Analyzed	cal necto, air % representative of ave system nitum air	luction Terminal Unit, Dual FanDual Duct or Transfer Fan?	sign total supply to zona (primary plus local natioulated)	NUO ZIO NOTZIO NOTZION	or Area of zone	and for any		na Tag		na Nama		antially Critical zones	red ber person for system area. (Weighted everage)	and which a state of the state	putation of area served by system (including diversity)	or anas saworthy system		from pull-down list)	ndition Description:	NATIO:	
		1	a '	19	i	2	V	Evz	cþ	7 2	12	7 8	7	7		Ā	Ş.	R	刀刷		×	0	2		l	Ĩ	00175	VolVes	ģ	2	ł	6	Y		2		Ψ			1	A.							1	in a		7	a.	Name	p	Design	RIN'S V	
- Ben			8	8	ł										ł	ł	•	ł	din si			8	ł		l	1	3		8					Salacth	۴			Salacth	3	٦	51	Salactho							Ĵ	1	7	4	Units		Cooling I	1001000	
-					f	- 18	31	2	- 102		-	1	5 4			इ						- 7	- Vpd		l									om pul-d				p-Ind up		A Inteled		p-Ind uuc									Г	1			Load		
Utilitie		VIII I	2		2	in from T	(Ba	+ FbXs-	MAL		11/1-0				1	Pr - Re							0		l									own ist				own ist o		GISI BUE		own ist									100% d					D DUNI	
D+11/17						ante a se		Fei)/ Fa			Ana-Me											SAS .			l													r lowa bi		o; nay bo											venty					2	
		•				ŝ	•		•	•	•	•				•					•	•	•		l									1		1		ank II N/A		00mevo								Г	Т	Т	Т	-					
4		21	2	2290		075	075														0.16	1/28	11002		l	215	13.0	0.17	1225	0.75		_	_		10290					ā			~		_		_		2	10,750	176	1245	metal				
								0.81	er.n	0.00	T.L.		8		1	417	190	5.00	0.05														1.00	CS	1004		3		120	ø	195.75	gating	Dominia mostrini O	-	917		Continance										
								0.75	0.40			i i	ŝ	i i	6	40.4	5	50	20.0													i	i	8	100%		19		18	æ	174		Office apace O	-	5	Office	PT Faculity										
								650	0.16			4 00	10	1.00	\$	181	;;	5.00	90.0														1.00	8	100%		75%		1.5	2	541		other abace o	000	802	Office	Feculity										
								0.82	MCD.				8		-	409	190	5.00	0.06														1.00	CS	1074		191		120	σ	182.25	eating	ontennoe/m		244A		Conference										
								104	200		Duri I		8	5	10	119	5	500	90.0														100	CS	100%				081	N	141.5		Office apage	2010	ALIA	Assistant	Admin										
								101	05		-	-	3	8	2	8.7	5	500	66														100	CS	100%		2		40		528		Office space	0 100		Office	Changellors										
								1.94	121						1	47.1	200	500	1.05														:00	8	10092		1		220	o	367.5	aneas	Te ca ption	2	202		Reception	Folds									

Pailding.	Ponts (Issunor	m and 1 ah Ruildinn								
System Tag Name : Ope reting Condition Description. Usits (select from pull-down list)	RTU3 Design IP	Ooding	Lovd								
injuns tot system Floor area served by system	As Name	st unts	1000	1334E.3							
Population of use several by system (including diventity) Design primal supply that an after rate CA reach per unit arealtor system (Weighted average) CA reach per prevent the system area. (Weighted average) https://doc.org/	Par and Para		Aprile ap 1900.	10,150 10,150	Titaly Critical Zor	*5					
Zona Nama	Zone II		worke Marke for contenal zonae(s)		Centerance	Faculty Officers	Faculty Officers	Faculty	Comfoor	Computer Wurknaum	Storage
Zone Tag					311	315 316 & 3	10, 312 & 314	300	0301	200A	210A
Space kpps		Solar to	nmpullutinan liet		Contain a mailing (D eseds equit	o esta co	eoeds south	Comidons	Computer lab	Storige
Floor Area of zone	Az	1 11			243	351	35	148.5	993	133,125	258.75
Design total supply to zone (primary plus local rectrouisted)		1	(default value listed; may be over	ndden)	200 6	800	6	1 1 1 1 1 1 1	80.	150 2	220
Induction Terminal Unit, Dual Fan Dual Duct or Transfer Fan? Local racin. at % recessoriative of ave system roturn air	ų	Salad In	ompuli-down list or leave blank, if	WA		22	1921	192		194	192
Incuss 101.009.09100, CONDISION ANALY280	2	٩		1000	1000		ine i		1000	time	1002
Air distribution type at conditioned analyzed Zone air distribution affortiveness at conditioned analyzed	W 1	Salact to	ompuli-down list		500	58 88	ŝs	8 G	: : :	100	100
Primar air tradion of supply air al conditioned analyzed	Ð										
Ventilation By dam Efficiency	EV			075							
Outdoor air intaka required for system	Va	1		226							
Outdoor air per una seor urea Outdoor air per person servedby system (including dhensity)	VolPs	Ĵ		12.5							
Outdoor air as a %, of design primary supply air	Ŕ	ł		219							
oktalied Calculations Initial Calculations for the System as a whole											
inningi suppy an now a system at considering analysis. UnconsidedDA requirement for system		8	 Pps Ps + Ras As 	1728							
Uncorrected CA regid as a traction of primary 3A Initial Calculations for Individual zones	Xe		- Vou/Vpe								
OA rate per unit area for zone		ł			30.0	306	30.0	0.06	0.06	0.12	0.12
Total supply at to zone (at condition tailing analyzed)	N.	i i			200	360	8	ŝ	290	150	12
Unused CA requirement for zone		-	 Hpz Pz + Hac Az VbpFz 		45	513	5	189	500	38 A	31.1
Fraction of zone supply not directly redro, from zone	27		· 中+1-42m	Ì	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fraction of zone suboy from twy most primary air Fraction of zone CA not directly redire from zone	23		 1-(1-02)(1-09)(1-09) 		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Unused OA fraction required is supply air to z ena	2		- Voz Ndz		0.22	0.14	014		0.21	0.26	14
System Vantilation Efficiency	×p		adau zoa	Ì	2010	41.14	41.W	1110	1.00	-110	-10
Zone Ventilation Efficiency (App A Method)	Evz		 (Fa + PbKs - PcZ) / Fa 		0.93	1.02	1.02	1.04	0.95	0.90	1.02
oyseen vulleader Situation y (444 A sector) Vantilation By stem Efficiency (Fable 63 Mathod)	Q 9		 Value from Table 6.3 	25							
Minimumoutdoor air intaka aintow Outdoor Air Intaka Row required to System	Vat	ł	- Vou/Ev								
OA Intaka raq'é as a fraction d' primair SA	1	ł	 Vot/ Vps 								
CA Intake rapid as a fraction of primary SA (Table 6.3 Method)	1		 Vot/ Vps 	5							
OA Tempat which Min GA provides allocoling OAT been which GA telefor live to @retrienum		Dag F	 {(Tp-dTaf) (5-Y)/(Tr+dTr) 								

System Tag Name: System Tag Name: Cap wing Condition Description. Units (see from pull-down list)	Bents (RTU-3 Design IP	Ocoling	h and La	ib Building								
Inputs for System Foor stats sowned by system Projections of the second by system Design orders supply that and source of Design orders supply that and source of Design of the weather sections area. (Weighted second DA red() per parameter system area. (Weighted second DA red() per parameter system area. (Weighted second DA red) per parameter system area. (Weighted second DA red) per parameter second second	Name A S A S A S A S A S A S A S A S A S A S	dm dm dm dm dm dm		Var an 1000	System 13345.3 10,75 10,75 5							
Zone Name				o for collinat meaning		Admin Assistant	Office	Faculty Offices	Faculity Offices	Faculty Offices	Faculty Offices	Faculty Office
Zona Tag						2108	210	211, 212&	214, 215 &	217,218 8	21, 225 &	220
edul ecodo				fragen liet		Cittoe spece	Citico spaca	office space	office space	Officia space	Office space	office spece
Floor Assa of zone	Az	ST COMPANY				195.5	210	371.25	371.25	3712S	371.25	135
Design population of zone	P	1	datauty	value listed; may be over	fiéden)	1.2	200	9		3		100
Induction Terminal Unit, Dual Fan Dual Duct or Translet Fan?		Sdooth	anpullo	fown list or lwave blank, if	NA		-		5			
Local racim, at % representative of ave system joium air Inputs for Ocerating Condition Analyzed	Ψ					15%	794	1991	791	764	79%	75%
Percent of total design at they rate at concitionec analyzed	Ds	8			102	100%	100%	10%	100%	100%	100%	1003
Jone all distribution offectiveness at conditioned analyzed Petrova all facilities of surrey, all of surrelivened analyzed	7 W					1.00	1.00	1.00	1.00	100	1.00	1.00
Fesults Ventilaton By sam Efficience	EV				07							
Outdoor air intaka required for system	Vot	9			229							
Outdoor air per person served by spatem (including diversity)	V di V				:25							
Outdoor alf ass a %, of design primary supply all	Ŕ	9										
Initial Calculations for the Bystem as a whole Permay supply air flow to sed am a conditioned analyzed		3		\$	1100	3						
UncornactedCA requirement for system	Vou	₿	- 7	s Ps + Ras As	- 172	1 85						
Initial Calculations for Individual zones	2			and a loss		c						
OA rateper unit areafor zone OA rateper person		olan olan olan olan olan olan olan olan				5.00	5.00	5.00	5.00	5100	5.00	5.00
Total supply at to zone (at condition being analyced)	i i	8				220	300	33	330	1	330	120
Unused CA requirement for cone	R I	8	i i ≨i			12	± 1	53	KS L	KS Å	13	18
Fraction of more supply and directly racion from more	7 27		, , , ,	+ (1-Fp)Fr	1	100	55		33			
Fraction of zone outpay more twy moved pressery an	7 2		 	1_Ez)(1_Eo)(1_En)		100	1			1	88	1.0
Unused CA fraction required in supply air to zone	Zd		11	z/Wdt		0.10	0.12	1.16	0.16	0.12	0.16	0.15
Unused CA traction required in primary all to zone	Zp		- 10	z/Vpz	Ì	0.10	0.12	1.16	0.16	0.12	0.16	0.15
Zone Vertilation Efficiency (App A Vertiloc)	Evz		7	1+ PbKs- PdZ) / Fa		1.05	1.03	1.00	1.00	113	1.00	1.0
System Ventilation Efficiency (App A Method) Ventilation By stem Efficiency (Table 6.3 Method)	88		• • ≦∎	ue from Table 6.3	35							
Minimum outdoor air intaka airfiow outdoor Air maxa Hew Required to system	VQ	8	1	U/ EV		•						
OA Intaka req16 as a hadion of primary SA	4	ł		1/ Vpa	10	. =						
OA Intalia radio as a haction of primary SA (Table 6.3 Method)	× 8	8	• • ≤ •	1/ Vbs	 64	- - x						
OA Temp at which Min OA provides all cooling			5	NATES & WITCH		Þ						
titettiin 🖉 m annannin Les Innin annan 1140	l		1	the second for the second second	ľ							

System Tag Name : Operating Condition Description : Units (select from put-oown list)	RTU-3 Design	Claesroom and Lab Building n Cooling Load								
Inputs for System Filter and served by system Projulation of ana served by yistem (including diversity) Design promovy supply an aution rate CA read pair serves the system (W eighted sevenge) CA read pair secon to system sees. (W eighted sevenge) Inputs for Preventable Critical sources	As Ps Ps Ras	units P chm thy thy thy thy thy thy thy thy thy thy	Crater 2010 1010 1010 1010 1010 1010 1010 101							
znyousa nor in winxaary curacaar zoowa. Zona Nana				mail Support	Panulity P Offices	Con Con	Parality Offices	Contenents	Family	Faculty Offices
	Zone t	tio turns jumple Nafo for ontice	(acmo(s)	22	205 205 8	201 & U2UZ	230, 232 &	3	2 462, A62	231. 229 &
Zona Tag				ł	228	200 B 200	203	5	238	241
State of the second sec		Salad from pull-down list		Dup! wow,Buildiug	Office space	Office space	ottice apace	ading	Office space	Office (peak
Fixor Area of zone Design providion of zone	22	st P (datult value liste	: may be overridder)	210	371.25 6	2103.75	971.25	210	371.25	371.25
Design total supply to zone (primary plus local rectinuiated) Induction Terminal Unit, Dual Pan Dual Ductor Transfer Pan?	Voted	ofm Soloot from pull down list or	lowoblank / N/A	10	330	440	330	140	330	28
Local recto, all % representative of are system rotum air	Ψ.			75	77	100	793	2	3	3
Incuts for Overation Condition Analyzed Percent d total design sificer rate at conditioned analyzed	0	8	102%	100%	109%	100%	100%	10%	100%	100%
Air distribution type at conditioned analyzied Zone air distribution effectiv ensas at conditioned analyzed	R	Select from pull-down list		i co	ន៍ន	50	:e CS	100	1.00	i s
Pesuits Venilation System Ethionov	2		0.75							
Outdoor at initials required forsystem	Vot	d and a second	2296							
Outdoor air per person sew adby system (including diversity)	VolPs	dmp	13.0							
Othoor at as a % or design (crimary supply an	8	9	205	-						
Detailed Cakulations Initial Lacuations for the by stam as a whole										
Primary supply dir flow to system at conditioned analyzed Uncorrected/DA requirement for system	Ĩ	ofm - VpdDs ofm - Res Fig. Ras	A 11002							
Uncornected OAneq'd as a traction of primary SA	Xs	 Vou/Vps 	- 0.16							
OA rate per unit area for zone	201	dmys		0.12	605	0.06	80.0	800	0.06	206
OA rate per person Total supply air to zone (at condition being enalyzed)		at any		110	500	5.00	5.00	¥00	000	202
Unused OA req14 to breathing cone	¥.	ofm - Rez Pz + Raz	Az -	25.2	52.3	161.2	52.3	42.6	52.3	52.5
Unused GA requirement for zone Fraction of zone supply not directly regire, from zone	a A	ctm = Vtx/8z	•••	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i s	1.00	1.00	ī 8 8	.1 18 12	10 55
Fraction of zone supply from fully moad primary air	7	- -	•	1.0	1.00	1.00	1.00	100	1.8	1.00
Eraction et zone GA not directly recirc. Itomiciona L'isusad GA fraction rocultad is supply all' foir ona	1 7	- Ver /Ver		0.23	1.00	25.0	1.00	100	0.16	1.00
Usused OA traction required is primary air to zone System Ventilation Efficiency	Σp	 Voz /Voz 	•	0.23	C.16	0.57	0.16	030	0.16	0.20
Zone VertilationEfficiency (App A Method)	Evz	= (Fa + PbXs - I	62)/Fa -	82.0	1.000	0.79	1.00	085	1.00	360
Oyawan wasaaban Catavanay (quju A wasavq Vantilation By sticm Etholonoy (Table 6.3 Mathod)	22	 Value from Te 	bia 63 - 0.75							
Minimum outdoor at intake airflow. Outdoor Air Intake Flow required to System	Vat	ctm _ Vou/Ev	- 2296							
OA intake requires a fraction of primary SA	1	- Vot/ Vps	- 0.21							
OA intake reqid as a fraction of primary SA (Fable E.S Mathod)	1	- Vol/ /bs	- 0.21							
OA Tamp at which Win OA pany/ses all nonling OAT below which OA latake flow is @ minimum		Dog F = {(Tp-dTst)-(1)	97(TridTri =9							

Building:	And the fe	Berks	Classroo	m ar	id Lab Building			3
System Ta	ag Name :	RTU-3						
Ope rating	Condition Description:	Design	Cooling	Loa	d			
Units (see	act nom pan-down risp	IF.						
Inputs for	System Floor area served by system Population of area served by system (including diversity) Design primary supply fan airflow rate OA reqid per unit area for system (Weighted average) OA reqid per unit area for system (Weighted average) Poin triality Critical zones	Name As Ps Vpsd Ras Rps	Units st p ctm ctm/st ctm/p		100% dversity		Bystem 13346.38 176 10,750 0.06 5.1	
285	Tone Name							Faculity
	2.016 Patrix	Zone t	te turns p	urph	a Italic for critical zone(s)			Umces
	Zone Tag						[240 & 243
1	Space type		Select t	tom r	ull.down list			Office space
	Floor Area of zone	Az	st					249.75
	Design population of zone	Pz	P	(def	ault value listed; may be ov	errido	ian)	4
	Design total supply to zone (primary plus local recirculated) Induction Terminal Unit, Dual Fan Dual Duct or Transfer Fan?	Votrd	ctm Select t	rom (pull-down list or leave blank	INV		220
inputs for	Operating Condition Analyzed	E1		_				
0.000000	Percent of total design airflow rate at conditioned analyzed Air distribution type at conditioned analyzed	Ds	% Select t	tom (oull-down list		102%	100% CS
	Zone air distribution effectiveness at conditioned analyzed	Ez						1.00
	Primary air fraction of supply air at conditioned analyzed	Ep						
Results								
	Ventilation Bystem Efficiency	EV					0.75	
	Outdoor air make required for system	Vot	cim/et				0.17	
	Outdoor air par bin noor anna Outdoor air nor norson sorvori hy system (including diversity)	Volles	cim/n				13.0	
	Outdoor air as a % of design primary supply air	Ypd	ctm				21%	
Detailed C	Calculations			_		_		().
Initial Cald	culations for the System as a whole							
1000000000	Primary supply air flow to system at conditioned analyzed	Vps	ctm		VpdDs	-	11002	
	UncorrectedDA requirement for system	Vou	ctm	-	Rps Ps + Ras As	-	1728	
	Uncorrected OA regid as a fraction of primary SA	Xs		-	Vou/Vps	-	0.16	
Initial Cak	culations for individual zones	200	10000					1.000
	OA rate per unit area for zone	Raz	ctm/st					0.05
	OA rate per person	HIE	cimp					5.00
	Linused (A realid to breathing some	When	cim.		Der Dr., Dar & .			220
	Unused OA requirement for zone	Vor	de	-	Vhr/Fr	-		35
	Fraction of zone supply not directly recirc, from zone	Fa	100	- 2	ED + (1-ED/Er	-		1.00
	Fraction of zone supply from fully mixed primary air	Fb			ED	-		1.00
	Fraction of zone OA not directly recirc. from zone	Fo		-	1-(1-Ez)(1-Ep)(1-Er)	-		1.00
	Unused CA fraction required in supply air to zone	Zd		-	Voz / Vdz	-		0.16
	Unused CA fraction required in primary air to zone	Zp		-	Voz / Vpz	-		0.16
System Ve	antilation Efficiency	200			1000			100
and the second sec	Zone Ventilation Efficiency (App A Method)	Evz		-	(Fa + FbXs - FcZ) / Fa	-		1.00
	System versiedon Etholency (App A Method)	EV		-	Marking (EVZ.)	-	0.75	
Minimum	outdoor air intake airflow	2		-	Value nom Lable 6.3	-	0.75	
and the second life	Outdoor Air Intake Flow required to System	Vot	ctm		Vou/ Ev	-	2206	
	OA intake redid as a fraction of primary SA	Y		-	Vot/ Vos	-	0.21	
	Outdoor Air Intake Flow required to System (Table 6.3 Method)	Vot	ctm	-	Vou/ Ev	-	2318	
- warmen	OA intake regid as a fraction of primary SA (Table 6.3 Method)	Y	1000	-	Vot/ Vps	-	0.21	
OA Temp	at which Min OA provides all cooling				The second second second			
1	OAT below which OA Intake flow is @ minimum		Deg F	-	{(Tp-dTsf)-(1-Y)*(Tr+dTrf	-	-9	