Julia Broskey Mechanical Option AE 482 – Senior Thesis

Berks Classroom and Lab Building

Reading, Pennsylvania

Faculty Advisor : Dr. William P. Bahnfleth P.E.

Faculty •Size: 62,188 Sq Ft •Dates of Construction: April 2010 – August/September 2011

Building Statistics

- •Location: Penn State Berks Campus Reading, PA •Building Occupant: Penn State Berks Students &
- •Occupancy: New Building Group B Business
- •Project Delivery Method: Design Bid Build

Google Maps

•Owner: The Pennsylvania State University Berks Campus •General Contractor: Alvin H. Butz, Inc. Construction Cost Estimator: Becker & Frondorf •Building Architect: RMJM Hiller •Structural Engineer: Greenman-Pedersen, INC •MEP Engineer: H.F. Lenz Company •Civil: Gannett Fleming Engineers

Project Team

Consultants: Lighting: Illumination Arts, LLC

Acoustical: Shen Milsom Wilke, Inc.

The new facility is constructed using steel framing and is expected to be a LEED Silver certified building. The Berks Classroom and Lab Building is a 3 story building consisting of classroom and laboratory space for the Commonwealth Campus to utilize.

The white portion of the façade is a terracotta rain screen

The lower portion of the façade uses precast concrete panels

Architectural

Analyzed system •Variable Air Volume System

•3 electric roof top units •RTU-1: 281.1 load in ton •RTU-2: 98.7 load in ton •RTU-3: 59.1 load in ton

•VAV terminal units

Existing Mechanical

Other Equipment •Computer Room Air Conditioner – Server Room • 4 Split System Air-conditioning Units •1 ton unit – 1 •1.5 ton unit – 3 •Boilers 2 – 6.2 gallon boilers •Hot Water Pumps 3 – 2 duty and 1 stand-by Boiler •2 – 1 duty and 1 stand-by domestic hot water & VAV Boxes

Introduction Proposal Mechanical Depth Electrical & CM Breadth Mechanical Redesign Electrical Breadth CM Breadth Conclusion

•System: Ground Source Heat Pump System Type: Compare Closed Vertical & Horizontal

•Total Load: 439.1 Ton •For the 3 RTU

•Pipe: Polyethylene Pipe

•Units: Carrier 50YDS064NCP301

Proposal: Mechanical Depth

Introduction Proposal Mechanical Depth Electrical & CM Breadth Mechanical Redesign Electrical Breadth CM Breadth Conclusion

Proposal: Electrical Breadth

•Size the major electrical equipment needed to make the proposed mechanical system work

•Wire – Lowes 8 AWG

•Panels – SquareD

Proposal: Construction Breadth

•Cost and Schedule analysis •Does not include actual cost for the building •At owners request Included •Ground Source Heat Pump •Electrical Work Construction Equipment

Mechanical Redesign: Site

•Location: Penn State Berks Campus outside of Reading, PA

•Location for Pipe: Blue Circle

Mechanical Redesign: Site

•Flag: Location of Building

•Soil Types: •UmB: Urban Land Duffield Complex •Urban Land: •Depth: 10 – 100" lithic bedrock •Water: Very Low about 0" •Duffield Land: •Depth: 48 – 120" lithic bedrock •Water: High about 10.4"

RTU	Quantity of Pumps	Cost per Pump	Total Cost
RTU-1	57	\$6,066	\$345,762
RTU-2	20	\$6,066	\$121,320
RTU-3	12	\$6,066	\$72,792
Total	89		\$539,874

Mechanical Redesign: Pumps

•Manufacturer: Carrier •Unit: 50YDS064NCP301 •Size: 5 ton •Compressor: Copeland UltraTech Two Stage Scroll •Refrigerant: 168 ounces Puron •Connections: 5/8 inch •Weight: 265 pounds •Water Connections: 1 inch Swivel

Vertical Requirements

•Minimum Well Depth: 150 ft •Minimum Pipe: •1' Pipe: 14,670 ft @ \$14,097.87 •3/4" Pipe: 131,750 ft @ \$55,440.40 •Maximum Well Depth: 250 ft •Maximum Pipe: •1' Pipe: 14,670 ft @ \$14,097.87 •3/4" Pipe: 395,190 ft @ \$166,295.95

Mechanical Redesign: Pipe

Horizontal Requirements

•Minimum 1" Pipe: 175,640 ft @ \$168,790.04 •Maximum 1" Pipe: 263,460 ft @ \$253,185.06

•Area: 2,500 Sq ft per ton •Two Rows of horizontal pipe •Depth 1st layer: 3' •Depth 2nd layer: 5'

Mechanical Redesign: Annual Energy Comparison

Introduction Proposal Mechanical Redesign Site Pumps Pipe **Energy Comparison** Recommendation Electrical Breadth CM Breadth Conclusion

Design	Energy Type	Consumption	Total Cost
Original Design	Electrical	8,620,166 kWh	\$ 877,249.75
Original Design	Gas	903,312 kBtu	\$ 6.77
Proposed Design	Electrical	7,812,779 kWh	\$ 795,731.31
Proposed Design	Gas	0 kBtu	\$ 0

•Total Original Cost: \$877,256.52
•Cost per Square Foot Original: \$14.12

Total Proposed Cost: \$795,731.31Cost per Square Foot Proposed: \$12.80

Savings: \$82,240.50Cost per Square foot: \$1.32

•Payback period: 37 years

•72 Pumps would need another location besides the mechanical room •Result: Structural Analysis of the roof to enclose the roof for at least 72 pumps of the 89 pumps

•Total cost of system installed: \$3,039,707.31 •Result: cost is in addition to the total building cost, who pays for it?

Mechanical Redesign: Recommendation

- •37 years to see any payback on energy savings

- **Overall Recommendation:** •good idea for one or all of the roof top units, if design was utilized prior to construction
- 37 year payback not bad considering the university park campus still has buildings build in the 1950s or earlier on campus

					Max	Supply '	Wire (2)
	HWG	External	Total	Min	Fuse/		Max
Model	Pump	Pump	Unit	Circuit		Min	
	FLA	FLA	FLA	Amps	HACR	AWG	Length
					(2)		ft. (3)
064	0.4	4.0	30	36.4	60	8	81

Electrical Breadth

•Total FLA 30

•Min circuit Amps 36.4

NEC 2008

•30 Amps is the max for 10 AWG wire

•Min circuit amps is greater than 30 but less than the max for 8 AWG wire

Material	Total	Cost per unit	Total cost
	Quantity		
8 AWG wire	3,693.5 LF	\$176 /125 LF	\$5,200.45
Panels	5 Panels	\$205.07/Panel	\$1,025.35

Electrical Breadth

Assumptions: •Panels are located in the mechanical room •All units are to be located in the mechanical room •Panels can take up to 20 circuits

Material	Amount	Unit Cost	Total Cost
1" PE Pipe	263,460 LF	\$ 0.961/ LF	\$ 253,185.06
Carrier 50YDS, 5 ton Unit	89 Units	\$ 6,066 / Unit	\$ 539,874
Excavation work	127,055 CY	\$ 6.74 / CY	\$ 856,276
Wire	3,693.50 LF	\$ 176 / 125 LF	\$ 5,200.45
Panels	5 Panels	\$ 205.07 / Panel	\$ 1,025.35
Total			\$ 1,655,560.86

Construction Breadth

Material	Amount	Labor	Crew	Total Time	Cost	Total Co
1" PE Pipe	2,179,800 LF	79.923 LF / Day / Plumber	3 Plumbers	1,099 Days	\$33.25 / Hr / Plumber	\$1,096,252
Carrier 50YDS, 5 ton Unit	89 Units	9 Hrs / Unit	1 HVAC tech	81 Days	\$ 33.25 / hr	\$ 26,932.
Excavation work	127,055 CY	1 Excavator 6 Dozers	1 driver 6 drivers	80 Days	\$28.50 / driver / hr	\$ 22,80 \$ 135.09
Wire	3,693.50 LF	79.923 LF / Day / Electrician	1 Electrician	47 Days	\$ 33.00 / hr/ electrician	\$ 15,51
Panels	5 Panels	8 hrs / panel	1 Electrician	4 Days	\$ 33.00 / hr/ electrician	\$ 1,320
Total						\$ 1,297,9

Construction Breadth

Material	Amount	Total Time
1" PE Pipe	2,179,800 LF	1,099 Days
Carrier Units	89 Units	81 Days
Excavation work	127,055 CY	80 Days
Wire	3,693.50 LF	47 Days
Panels	5 Panels	4 Days

Construction Breadth

Equipment	Total Used	Total Time
Excavator	1	80 Days
Dozers	6	79 Days
Crane	1, 25 Ton	103 Days Rented 89 Days on Site

- Proposed system would save on energy costs
- Total cost is over \$3 million more than building costs
- Additional mechanical space would be required
- Payback period is 37 years
- Critical Item on schedule is the pipe installation

Conclusions

Horizontal GSHP is used due to low depth of bedrock 2 layers were used due to lack of space around the

•2 layers were used due to lack building

