

- Introduction
 - ➢ Building Overview
 - Existing Conditions
 - System Evaluation
- Ventilation Load Reduction
- Electrical System Integration
- Conclusions

- Introduction
 - ➢ Building Overview
 - Existing Conditions
 - System Evaluation
- Ventilation Load Reduction
- Electrical System Integration
- Conclusions

Presentation Outline	entation	Outline	Ś
----------------------	----------	---------	---

- Introduction
 - >Building Overview
 - Existing Conditions
 - System Evaluation
- Ventilation Load Reduction
- Electrical System Integration
- Conclusions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE	Johnathan Peno Mechanical Option
Size:	194,000 SF
Construction Period:	Spring 2011 - Fall 2013
Occupancy Type:	Lab, Education, Office
Project Budget:	\$140M
Construction Budget:	\$105M
Project Delivery Method:	Design-Bid-Build
Architect:	Ayers Saint Gross
Mechanical Engineer:	Mueller Associates
Owner:	The University of Delaware

- Introduction
 - ➢ Building Overview
 - Existing Conditions
 - System Evaluation
- Ventilation Load Reduction
- Electrical System Integration
- Conclusions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

Ľ,

Johnathan Peno

Ν

Mechanical Option

N

- Introduction
 - ➢ Building Overview
 - Existing Conditions
 - System Evaluation
- Ventilation Load Reduction
- Electrical System Integration
- Conclusions

N

- Introduction
 - ➢ Building Overview
 - Existing Conditions
 - System Evaluation
- Ventilation Load Reduction
- Electrical System Integration
- Conclusions

- Introduction
 - ➢ Building Overview
 - Existing Conditions
 - System Evaluation
- Ventilation Load Reduction
- Electrical System Integration
- Conclusions

N

- Introduction
 - ➢ Building Overview
 - Existing Conditions
 - System Evaluation
- Ventilation Load Reduction
- Electrical System Integration
- Conclusions

Newark, DE

Johnathan Peno Mechanical Option

- Introduction
 - ➢ Building Overview
 - Existing Conditions
 - System Evaluation
- Ventilation Load Reduction
- Electrical System Integration
- Conclusions

N

- Introduction
 - ➢ Building Overview
 - Existing Conditions
 - System Evaluation
- Ventilation Load Reduction
- Electrical System Integration
- Conclusions

Newark, DE

Introduction

- Building Overview
- Existing Conditions
- System Evaluation
- Ventilation Load Reduction
- Electrical System Integration
- Conclusions

Interdisciplinary Science & Engineering Building (ISEB)

Johnathan Peno

Mechanical Option

Newark, DE

Water/Steam Side

- CHW to Building from ECUP (1350 tons)
 - Building Cooling
 - HX to Lab Process CHW
- Steam-Water HX Fed by Campus Steam Loop (19,000 PPH)
 - Heat/Preheat Needs
 - Domestic HW
- Electric Standby Chiller for Critical Spaces
 - Condenser Heat in Preheat/Reheat Loop
 - Fluid Coolers on Roof

- Introduction
 - Building Overview
 - Existing Conditions
 - System Evaluation
- Ventilation Load Reduction
- Electrical System Integration
- Conclusions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

<u>Air Side</u>

Johnathan Peno

Mechanical Option

- 10 Total Air Handling Units
 - AHU 1, 2 & 10 = Recirculating
 - Rest = 100% Outdoor Air
 Enthalpy Wheel/Heat Pipe
 - VAV with terminal reheat (HW coils)
 - Building Direct Digital Control System

Introduction

- Building Overview
- Existing Conditions
- ➤ System Evaluation
- Ventilation Load Reduction
- Electrical System Integration
- Conclusions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

Johnathan Peno

Mechanical Option

System Evaluation

- Lab Buildings = High Ventilation Loads
- Instructional Laboratories
 - Less Stringent Environmental Constraints
 - Labs & Non-Labs on Same AHUs (3 & 4)
- Goals:
 - Reduce Ventilation Energy Consumption
 - Maintain Occupant Safety

Introduction

- Building Overview
- Existing Conditions
- ➤ System Evaluation
- Ventilation Load Reduction
- Electrical System Integration
- Conclusions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

System Evaluation

Johnathan Peno

Mechanical Option

- Lab Buildings = High Ventilation Loads
- Instructional Laboratories
 - Lower Hood Densities
 - Less Stringent Environmental Constraints
 - Labs & Non-Labs on Same AHUs (3 & 4)

Goals:

- Reduce Ventilation Energy Consumption
- Maintain Occupant Safety

Introduction

- Ventilation Load Reduction
 - > Approach 1
 - Separate Spaces
 - Demand Based ACH
 - Passive Chilled Beams
 - Approach 2
- Electrical System Integration
- Conclusions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

Redesign Approach 1

Johnathan Peno

Mechanical Option

- 3 Step Process to Reduce Building Ventilation Loads
- Separate Lab and Non-Lab Spaces
- Lower Air Change Rates
- Implement Chilled Beam System

- Introduction
- Ventilation Load Reduction
 - Approach 1
 - ➤Separate Spaces
 - Demand Based ACH
 - Passive Chilled Beams
 - Approach 2
- Electrical System Integration
- Conclusions

- Introduction
- Ventilation Load Reduction
 - > Approach 1
 - Separate Spaces
 - >Demand Based ACH
 - Passive Chilled Beams
 - Approach 2
- Electrical System Integration
- Conclusions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

Lab Occupant Safety:

Minimum Air Change Rates In Labs

Current Design: 12/6 ACH (Occ/UnOcc)

Redesign: Adjust ACH Rate Based on Demand

Approximate Hourly ACH Reduction

- Introduction
- Ventilation Load Reduction
 - Approach 1
 - Separate Spaces
 - ▷Demand Based ACH
 - Passive Chilled Beams
 - Approach 2
- Electrical System Integration
- Conclusions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

> Step 2) Implement Demand Based ACH Control System

- Room Sensors
- Data Routers
- Sensor Suite
- DDC System

Johnathan Peno Mechanical Option

System Diagram

Illustration Provided by Aircuity

- Introduction
- Ventilation Load Reduction
 - Approach 1
 - Separate Spaces
 - Demand Based ACH
 - Passive Chilled Beams
 - Approach 2
- Electrical System Integration
- Conclusions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

Step 3) Lab Passive Chilled Beam System

- 12ACH \rightarrow Ventilation Load Dictates
- Lower ACH → Cooling Load May Dictate
- Implement Parallel Cooling System instead of bringing in excess OA

Johnathan Peno Mechanical Option

Passive Chilled Beam

Chilled Beam

• Introduction

- Ventilation Load Reduction
 - Approach 1
 - Separate Spaces
 - Demand Based ACH
 - ➢Passive Chilled Beams
 - Approach 2
- Electrical System Integration
- Conclusions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

CFD Analysis

Johnathan Peno

Mechanical Option

<u>Goal:</u> Feasibility of Passive Chilled Beam System

Design Variables:

- Diffuser Pattern
- Chilled Beam Layout

Model:

Turbulence Model: Standard K-e Differencing Scheme: Hybrid

Interdisciplinary Science & Johnathan Peno **Presentation Outline Engineering Building (ISEB)** Mechanical Option Vertical Patterns Horizontal Patterns Newark, DE Introduction VersaTec with adjustable blade face VersaTec with adjustable blade face **Diffuser Pattern** • Ventilation Load Reduction • Approach 1 Vertical vs. Horizontal ontal Setting Separate Spaces Vertical Setting Vertical Setting • Demand Based ACH ► Passive Chilled Beams • Approach 2 • Electrical System Integration Conclusions

- Introduction
- Ventilation Load Reduction
 - Approach 1
 - Separate Spaces
 - Demand Based ACH
 - ➢Passive Chilled Beams
 - Approach 2
- Electrical System Integration
- Conclusions

- Introduction
- Ventilation Load Reduction
 - Approach 1
 - Separate Spaces
 - Demand Based ACH
 - ➢Passive Chilled Beams
 - Approach 2
- Electrical System Integration
- Conclusions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

CFD Analysis Conclusion

Perimeter Beam + Horizontal Pattern

- Effectively Cooled Room to Design 72F
- Acceptable Temp. Gradient (Standard 55 +/- 3°C)

• Introduction

- Ventilation Load Reduction
 - Approach 1
 - Separate Spaces
 - Demand Based ACH
 - Passive Chilled Beams
 - Approach 2
- Electrical System Integration
- Conclusions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

Approach 1 Conclusions

and the second	Approach 1	
Chilled Water	-2%	
Steam	-15%	
Electricity	-1%	and the second s
Payback Period	4.1	w/ Chilled Beams
	1.2	w/o Chilled Beams

Johnathan Peno Mechanical Option

- Introduction
- Ventilation Load Reduction
 - Approach 1
 - Approach 2
 - ≻Design
 - Savings
- Electrical System Integration
- Conclusions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

Approach 2

Johnathan Peno

Mechanical Option

- Introduction
- Ventilation Load Reduction
 - Approach 1
 - Approach 2
 - ≻Design
 - Savings
- Electrical System Integration
- Conclusions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

Approach 2

Johnathan Peno

Mechanical Option

- Introduction
- Ventilation Load Reduction
 - Approach 1
 - Approach 2
 - ≻Design
 - Savings
- Electrical System Integration
- Conclusions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

Approach 2

Johnathan Peno

Mechanical Option

- Introduction
- Ventilation Load Reduction
 - Approach 1
 - Approach 2
 - ≻Design
 - Savings
- Electrical System Integration
- Conclusions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

Approach 2

Johnathan Peno

Mechanical Option

- Introduction
- Ventilation Load Reduction
 - Approach 1
 - Approach 2
 - ≻Design
 - Savings
- Electrical System Integration
- Conclusions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

Approach 2

• Transfer air from Non-Labs to Labs as Make-Up Air In lieu of O.A.

Johnathan Peno

Mechanical Option

Ν

- Introduction
- Ventilation Load Reduction
 - Approach 1
 - Approach 2
 - ≻Design
 - Savings
- Electrical System Integration
- Conclusions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

Approach 2

• Transfer air from Non-Labs to Labs as Make-Up Air In lieu of O.A.

Johnathan Peno

Mechanical Option

N

- Introduction
- Ventilation Load Reduction
 - Approach 1
 - Approach 2
 - Design
 - Savings
- Electrical System Integration
- Conclusions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

	-
	Savings
Chilled Water	24,898 ton-hrs
Steam	256 Mbtu

Johnathan Peno

Mechanical Option

	Approach 2
Chilled Water	-2%
Steam	-5%
Electricity	0%
Payback Period	3.3

- Introduction
- Ventilation Load Reduction
- Electrical System Integration
 - > Existing Conditions
 - Approach 1
 - Approach 2
- Conclusions

Interdisciplinary Science & Johnathan Peno Engineering Building (ISEB) Mechanical Option Newark, DE Mechanical Option		Existing Conditions				
• 34.5 kV service entrance feeders	<u>al</u>	100A MLD -	HOD PLUG-IN BREAKER BREAKER SREAKER SREAKER SREAKER		400 MOP PAKELBDARDS	
Dual primary-secondary doubled end	ed unit substation			FROM BUILDING SUBSTATION		
(2) medium voltage fused switches, I	ndoor substation		·	TU 408V,1000A INSTRUCTIONAL WING BUSWAY		
• Transformers Step 34.5 kV \rightarrow 480Y/	277 V		MAIN 4000A) 1000A TIE	MAIN 3 6 1	
30004 main-tie-main distribution ser	tion		34.5kV 480Y/277 XFRMR	BUILDING SUBSTATION 3000A	34.5kV 480Y/277 XFRMR	

34.5kV 480Y/277 PRIMARY

• 3000A main-tie-main distribution section.

- Introduction
- Ventilation Load Reduction
- Electrical System Integration
 - > Existing Conditions
 - Approach 1
 - Approach 2
- Conclusions

Interdisciplinary Science & Johnathan Peno Electrical Equipment Affected **Presentation Outline Engineering Building (ISEB)** Mechanical Option Newark, DE Introduction • Ventilation Load Reduction Approach 1 Additions 112.5KVA XFORMER 100A PLUG-IN BREAKER 250A PLUG-IN BREAKER ____ 100A MLD 400 TO FLOOR MDP PANELBOARDS • Electrical System Integration Fan Coil Unit 490P/20 • Existing Conditions Blower Motors MDP ➤ Approach 1 FROM BUILDING • Electric Heaters DRGC • Approach 2 Location Elec Rm 115 Conclusions Size 400 Amps Previous Load 110,082 VA Added Load 26,704 New Amp Draw 379 Amps Okay? Yes Future Growth 5%

Presentation Outline	Interdisciplinary Science & Engineering Building (ISEB) Newark, DE		Johnathan Pe Mechanical Opt	no ion	Electri	ical Equipme	ent Affected
IntroductionVentilation Load Reduction	Approach	2 Additions			100A PLUG-IN C50A BREAKER BREAK	II2.5KVA XFURMER	
 Electrical System Integration Existing Conditions Approach 1 	Transfer Fan Motors Fan Coil Units • Blower Motors		MDP DRGC	100A MLD		P BUSWAY	400 Hor HARLBOARDS
 Approach 2 Conclusions 	Electric Heaters	Location Size Previous Load Added Load	Elec Rm 115 400 Amps 110,082 VA 29,767				
		New Amp Draw Okay? Future Growth	388 Amps Yes 3%				

- Introduction
- Ventilation Load Reduction
- Electrical System Integration
- Conclusions
 - ➢ Recommendations
 - Acknowledgements
 - Questions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

Recommendations

Johnathan Peno

Mechanical Option

Approach 1 (minus Chilled Beams)

- Most Economical (1.2 years)
- Highest Level of Occupant Safety (IEQ)
 Thanks to Room Sensors

- Introduction
- Ventilation Load Reduction
- Electrical System Integration
- Conclusions
 - Recommendations
 - > Acknowledgements
 - Questions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

Acknowledgements

Johnathan Peno

Mechanical Option

Family Friends AE Department Mueller Associates AIG Architects University of Delaware

- Introduction
- Ventilation Load Reduction
- Electrical System Integration
- Conclusions
 - Recommendations
 - Acknowledgements
 - > Questions

Interdisciplinary Science & Engineering Building (ISEB) Newark, DE

Questions?

Johnathan Peno Mechanical Option

