

Senior Thesis 2011

Faculty Advisor: Andrés Lepage

Kathryn Gromowski | Structural Option

Building Introduction Existing Structural System Problem Statement Proposed Solution Moment Frame Designs Viscous Fluid Damper Design Comparison of Designs Sustainability Breadth: Viability Study Questions/Comments

□ 138,000 SF

BUILDING INTRODUCTION

- New Laboratory/Classroom building
- Located in Northeast USA
- □ Maximum Height: 94'-3"
- Construction Cost: \$50 Million
- August 2009-September 2011
- □ LEED Gold (version 2.2)

Building Introduction

- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

- Owner: Not Released
- - Design
- **General Contractor:** Turner Construction
- **Structural Engineer:** Halcrow Yolles
 - Associate Structural Engineer: Keast and Hood Co.
- Mechanical Engineer: CEL International, Inc.
- **Electrical Engineer:** CEL International, Inc.
- **Civil Engineer:** Stantec Consulting Services, Inc.

PROJECT TEAM

- Architect: Diamond & Schmitt Architects, Inc.
 - Associate Architect: H2L2 Architecture Planning Interior

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

- Departure from surrounding campus architecture
- Façade is unique
 - Stone/Aluminum Panels
 - Windows
- 5-story atrium with biowall

ARCHITECTURAL FEATURES

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

Bay sizes

EXISTING STRUCTURAL SYSTEM

BAY SIZES

Cast-in-place concrete pile foundations

Building Introduction Existing Structural System Bay sizes Problem Statement Proposed Solution Moment Frame Designs Viscous Fluid Damper Design Comparison of Designs Sustainability Breadth: Viability Study Questions/Comments

EXISTING STRUCTURAL SYSTEM

FILIGREE SLAB DETAILS

Cast-in-place concrete pile foundations

Filigree slab construction

Structural steel mechanical levels

Building Introduction	Cast-in-pl
Existing Structural System	Bay sizes
Problem Statement	
Proposed Solution	Filigree sl
Moment Frame Designs	Structural
Viscous Fluid Damper Design	- Cast in Pl
Comparison of Designs	
Sustainability Breadth: Viability Study	
Questions/Comments	

EXISTING STRUCTURAL SYSTEM

lace concrete pile foundations

- lab construction
- steel mechanical levels
- lace Concrete Shear Walls
- frames at mechanical levels

Building Introduction	6 Roof Hei
Existing Structural System	Office Ro
Problem Statement	
Proposed Solution	
Moment Frame Designs	Atrium Ro
Viscous Fluid Damper Design	□ 5 th Level
Comparison of Designs	G Chiller Po
Sustainability Breadth: Viability Study	
Questions/Comments	□ AHU Mec

ROOF HEIGHTS

ROOF HEIGHTS PLAN

- ights
- oof
- Roof
- oof
- Mech. Rm. Roof
- oom Roof
- ch. Rm. Roof

Questions/Comments

- Interest in seismic design
- New scenario created
 - Building commissioned by California State University, Northridge (CSUN) instead
 - Very clos 1994)
 - Geotechnical report found for site on the CSUN campus
 - Very similar to Northeast USA site

PROBLEM STATEMENT

Very close to Northridge fault (Northridge Earthquake in

CALIFORNIA SITE

- Code Minimum Moment Frame in Northeast USA (NE USA S-3)
- Code Minimum Moment Frame in California (CA S-3)
- Immediate Occupancy Moment Frame in California (CA S-1)
- Code Minimum Moment Frame augmented with Viscous Fluid Dampers to achieve Immediate Occupancy in California (CA S-3 with VFD)

PROPOSED SOLUTION

4 Designs undertaken in steel

- Comparison between different designs
 - Original to NE USA S-3 (Concrete vs. Steel in current location)
 - CA S-3 to NE USA S-3 (high seismic vs. low seismic)
 - CA S-1 to CA S-3 (high performance, traditional method vs. minimum performance)
 - CA S-3 with VFD vs. CA S-3 (high performance, high-tech method) vs. minimum performance)
 - CA S-3 with VFD to CA S-1 (traditional vs. high-tech)

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

GRAVITY REDESIGN

MOMENT FRAME LAYOUT

NE USA S-3 SUMMARY

STORY DRIFT RATIOS

- N-S Direction 450 k
- E-W Direction 652 k
- Both Directions 456 k

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

□ Weight – 12,300 k Seismic Base Shear W21x18 Both Directions – 815 k REDUCED BEAM (1) 1" THICK -A36 PLATE EACH SIDE SECTION. TYP. CA S-3 - X-Direction - Code Load Drifts CA S-3 - Y-Direction - Code Load Drifts └╾─ "b"=15" ---|- "a"=6 1/4" -Drift -Drift DETAIL A-A -Allowable Allowable

CA S-3 SUMMARY

CA S-3 CONNECTIONS

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

Seismic Base Shear

CA S-1 SUMMARY

CA S-1 CONNECTIONS

Both Directions – 849 k

DETAIL A-A

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

VFD INTRODUCTION

VFD LAYOUT

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

PRELIMINARY SIZING

MODELING PARAMETERS

CA S-3 with VFD - Frame 7 - Required Damper Properties					
Level	Size (k)	Velocity (in/s)	α	C _{req}	
AHU Roof	N/A	11.114	0.6	N/A	
Chiller Roof	220	11.114	0.6	51.87	
Atrium Roof	N/A	11.114	0.6	N/A	
Penthouse	110	11.114	0.6	25.93	
5th	165	11.114	0.6	38.90	
4th	220	11.114	0.6	51.87	
3rd	330	11.114	0.6	77.80	
2nd	900	11.114	0.6	212.18	

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

- Earthquake history records selected and scaled for nonlinear analysis
- - Records selected were recommended in FEMA P695
 - Scaling was done in a two-step process

INITIAL SCALING

HISTORY APPLICATION

verify earthquake selection Records scaled for 1.5% drifts Histories applied to CA S-3 with VFD model Dampers sized to achieve 0.7% drift

Histories first applied to CA S-3 model as linear loads to

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

CA S-3 with VFD - Frame 7 - Required Damper Properties					
Level	С	Velocity (in/s)	α	F _{req}	Size (k)
AHU Roof	N/A	31.370	0.6	N/A	N/A
Chiller Roof	5.19	31.370	0.6	41.00	55
Atrium Roof	N/A	31.370	0.6	N/A	N/A
Penthouse	2.59	31.370	0.6	20.50	55
5th	3.89	31.370	0.6	30.75	55
4th	5.19	31.370	0.6	41.00	55
3rd	7.78	31.370	0.6	61.50	110
2nd	21.22	31.370	0.6	167.73	220

FINAL PARAMETERS

CA S-3 with VFD - Frame 7 - Actual Force Required a				
\langle	T			

and Damper Size

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

- □ Weight 12,500 k
- Seismic Base Shear

CA S-3 WITH VFD SUMMARY

CA S-3 WITH VFD CONNECTIONS

Both Directions – 815 k

-Drift

-Allowable

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

CAS-3

CA S-3 VS. CA S-3 WITH VFD

CA S-3 with VFD

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

CM Breadth Summary				
System	Cost	Schedule Duration (months)		
Original	\$39.4 million	22		
NE USA S-3	\$37.2 million	24		
CA S-3	\$37.8 million	24		
CA S-1	\$40.1 million	25		
CA S-3 with VFD	\$38.3 million	25		

CM BREADTH SUMMARY

COMPARISONS

□ NE USA S-3 structure 5.6% less expensive, 50% lighter than original Longer duration unacceptable \square CA S-3 structure 1.6% more expensive, 4.5% heavier than NE USA S-3 Same duration as NE USA S-3

- Cost associated with moving to a seismic region is small

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design

Comparison of Designs

- Sustainability Breadth: Viability Study
- Questions/Comments

- □ CA S-1 structure is 6% more expensive, 9.7% heavier
 - than CA S-3 structure
 - Impractical method to achieve higher performance
- □ CA S-3 with VFD is 1.5% more expensive, 1.5%
 - heavier than CA S-3 structure
 - Very efficient method of increasing performance
 - Cost minimal in comparison to cost of replacing damaged system following an earthquake
 - System very specialized and difficult to design

COMPARISONS

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs

Sustainability Breadth: Viability Study

Questions/Comments

- Building is now in California
- Feasibility of a solar photovoltaic system
 - Life Cycle Assessment
 - Payback Period
 - Carbon Footprint (net after one year)
 - Additional LEED points earned
- Feasibility of a green roof system
 - Life Cycle Assessment
 - Payback Period
 - Carbon Footprint (net after one year)
 - Additional LEED points earned

INTRODUCTION

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs

Sustainability Breadth: Viability Study

Questions/Comments

- Carried out using Google Sketchup
- Critical Days
 - Winter Solstice, Summer Solstice, and Equinox
- Critical Times
 - Sunrise, Sunset, and 1:00 PM (peak hour)
- Determined that Office Roof was the only suitable
 - location

PV DESIGN – SOLAR STUDY

SHADING IMAGES

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs

Sustainability Breadth: Viability Study

Questions/Comments

PV DESIGN – SYSTEM SELECTION

PV DESIGN – PANELS

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs

Sustainability Breadth: Viability Study

Questions/Comments

PV ANALYSIS – LIFE CYCLE COST

PV ANALYSIS – PAYBACK PERIOD

	Life-Cyc	le Cost - PV Sys	tem			
	General Rate: 0.04					
		Energy Rate:	0.03			
	Cost/year	Single Cost Year	Recurring Cost Years	Present Value Factor	Present Value	
ation	\$105,139.63	0		1.000	\$105,139.63	
	-\$31,541.89	1		0.962	-\$30,343.30	
	\$100.00		20	13.590	\$1,359.00	
its						
	\$8,000.00	10		0.676	\$5,408.00	
	-\$21,027.93	20		0.456	-\$9,588.73	
				Total:	\$71,974.60	

Payback Period - PV System					
Description	High Season	Low season			
Total Power (kWh) *	8650	11456			
High Peak Period Power (kWh) **	6920	9164.8			
Low Peak Period Power (kWh) **	1730	2291.2			
Value of High Peak Period Power	\$927.33	\$969.25			
Value of Low Peak Period Power	\$182.17	\$226.70			
Total Value of Power	\$1,109.51	\$1,195.95			
Total Value per Year	\$2,305.46				
Payback Period	31.22 years				

* = Found using PVWatts results
** = 80% of total power was assumed to be generated during the High Peak
Period. The reamining 20% was assumed to be generated during the Low Peak
Period.

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs

Sustainability Breadth: Viability Study

Questions/Comments

- Carbon Footprint
 - 2,570 lb CO_{2e}
- Additional LEED points earned
 - 1 credit E&A Credit 2: On-Site Renewable Energy

PV ANALYSIS – OTHER ANALYSES

- Building Introduction
 Existing Structural System
 Problem Statement
 Proposed Solution
 Moment Frame Designs
 Viscous Fluid Damper Design
- Comparison of Designs

Sustainability Breadth: Viability Study

Questions/Comments

- Extensive system chosen
 - Shallower, lighter
 - Not accessible, no occupied floors above
- Modular system chosen
 - Ease of installation
 - Ease of maintenance (both green roof and roof below)
- □ GreenGrid Roof

GREEN ROOF DESIGN – SYSTEM

SAMPLE INSTALLATION

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs

Sustainability Breadth: Viability Study

Questions/Comments

Cost Descriptio
nitial Costs
System Purchase & Installa
Maintenance Costs
nspections
Repair & Replacement Cos
25% Module Replacement
Roof Membrane Non-Repla
Salvage Value
Salvage

GREEN ROOF ANALYSIS – LCA

GREEN ROOF ANALYSIS - PP

	Life-Cycle Cost	- Green Roof S	ystem		
		General Rate:	0.04		
		Energy Rate:	0.03		
	Costhugar	Single Cost	Recurring Cost	Present Value	Dresent Value
11	Cost/year	Year	Years	Factor	Present value
tion	\$60,742.50	0		1.000	\$60,742.50
	\$400.00		20	13.590	\$5,436.00
3					
	\$15,185.63	10		0.676	\$10,265.48
acement	-\$26,032.50	15		0.550	-\$14,317.88
	-\$12,148.50	20		0.456	-\$5,539.72
				Total:	\$56,586.39

Payback Period - Green Roof		
Description	High Season	Low season
Power Saved	12000	24000
High Peak Period Power (kWh) *	9600	19200
Low Peak Period Power (kWh) *	2400	4800
Value of High Peak Period Power	\$1,286.47	\$2,030.55
Value of Low Peak Period Power	\$252.73	\$474.94
Total Value of Power	\$1,539.20	\$2,505.49
Total Value per Year	\$4,044.69	
Carbon Saved (lb CO _{2e})	54,000	
Run-off Saved (CF)	4,810.00	
Cost of Run-Off (\$/CF)	\$0.038	
Value of Run-Off Saved per Year	\$182.78	
Payback Period	13.39 years	

* = 80% of total power was assumed to be generated during the High Peak Period. The reamining 20% was assumed to be generated during the Low Peak Period.

GREE

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs

Sustainability Breadth: Viability Study

Questions/Comments

- Carbon Footprint
 - 154,500 lb CO_{2e} to install
 - 54,000 lb CO_{2e} saved per year
 - 100,500 lb CO_{2e} net at 1 year
 - Will eventually go negative
- Additional LEED points earned
 - 1 credit SS Credit 6.1: Stormwater Quantity Control

GREEN ROOF ANALYSIS – OTHER

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs

Sustainability Breadth: Viability Study

Questions/Comments

Description
Life Cycle Asse
Net Carbon Fo
Payback Perio
LEED Points (\
Weight (psf)
Structural Imp

SUSTAINABILITY SUMMARY

orabidamilationing bire		
	PV System	Green Roof
sment	\$71,974.60	\$56,586.39
otprint (lb CO _{2e})	2,570.92	100,459.50
d (years)	31.22	13.39
ersion 2.2)	1	1
	2.03	18-22
act	Minimal	Moderate

LEED – systems are the same

All other analyses favor green roof

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Moment Frame Designs
- Viscous Fluid Damper Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

- Family and Friends
- Turner Construction
 - Amy Cavanaugh
 - Roger Gentry
 - Scott Frank
- HGA Architects and Engineers
 - Johanna Harris
 - Paul Asp
- All AE Faculty and Staff
 - Dr. Andrés Lepage

ACKNOWLEDGEMENTS

