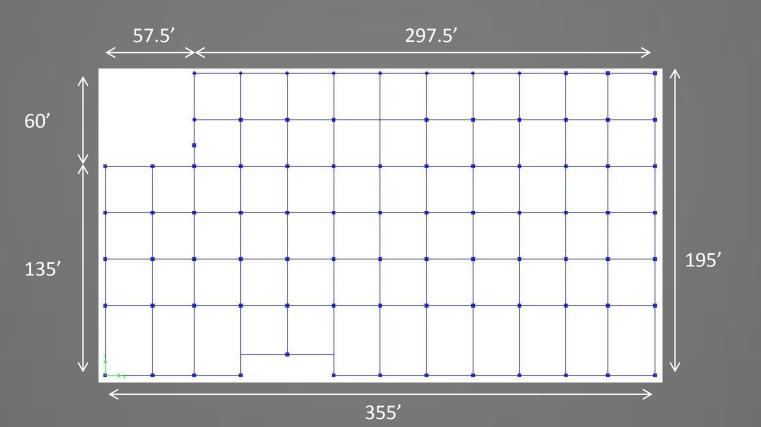
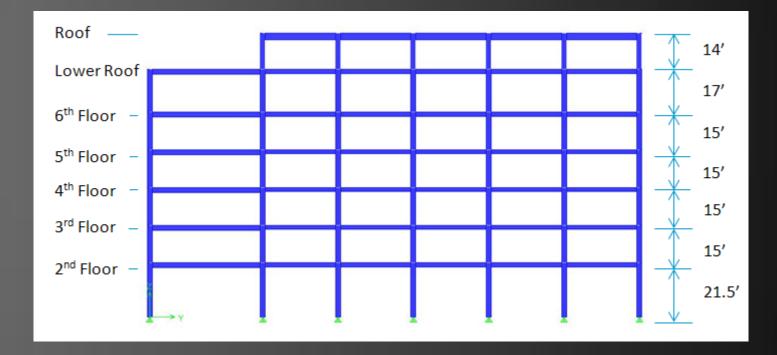
Houston, TX



Kevin Zinsmeister

Structural Option

Advisor - Dr. Hanagan


- Project Overview
- Existing Structural Conditions •
- Proposal
- Gravity Redesign
- Lateral Redesign •
- Steel Connection Design
- Architectural Breadth
- Cost and Schedule •
- Conclusions •

General Information

• Located in Houston, Texas' Energy Corridor Management District • Headquarters for BP's IST and Energy Trading Divisions • Composed of Offices, a Conference Center, and Trading Floors

- Rough Footprint of Building: 195' x 355'
- Overall Building Height of 113'
- Typical Story Height of 15'

- Project Overview
- Existing Structural Conditions •
- Proposal
- Gravity Redesign
- Lateral Redesign
- Steel Connection Design
- Architectural Breadth
- Cost and Schedule •
- Conclusions

- Project Team
 - Owner BP

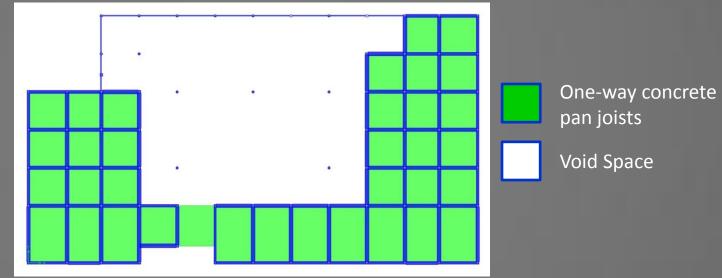
General Information

• Architect – Gensler

• CM – Bovis Construction Ltd

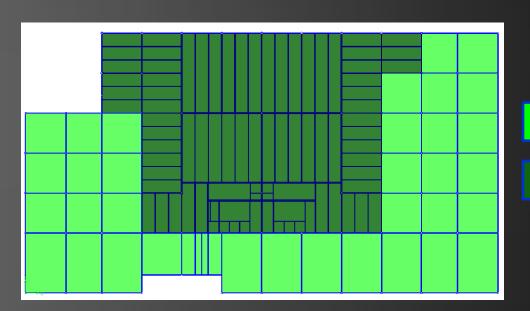
• Structural – Walter P. Moore & Associates, Inc.

• MEP – I.A. Naman + Associates, Inc.


Exterior View of Southeast Corner

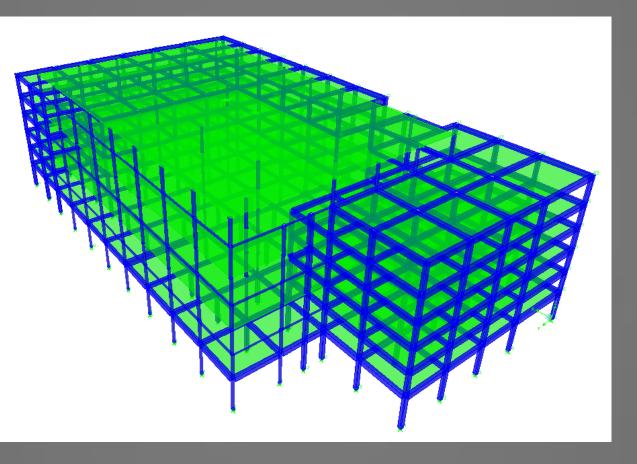
- Project Overview
- **Existing Structural Conditions**
- Proposal
- Gravity Redesign •
- Lateral Redesign •
- Steel Connection Design
- Architectural Breadth
- Cost and Schedule
- Conclusions •

Existing Gravity System

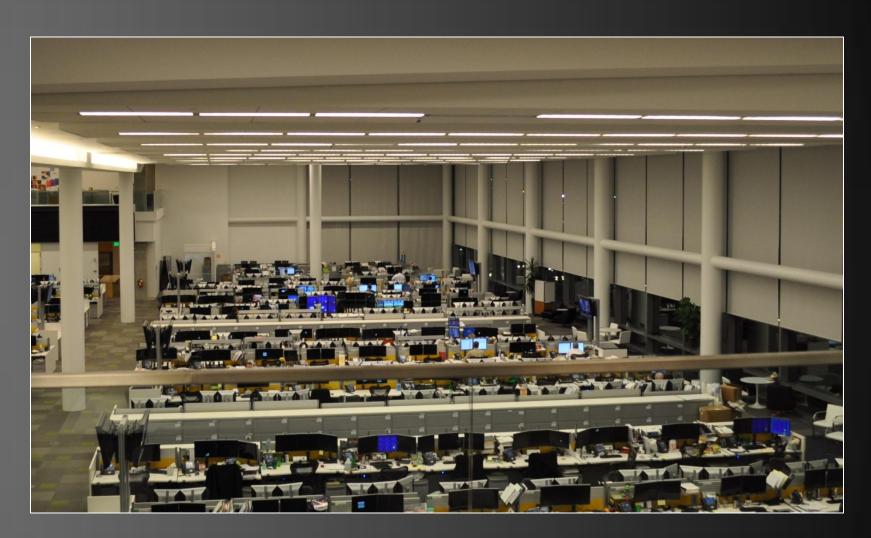

• Two main systems employed

• One-way pan joist concrete system for majority of building • Square concrete columns used for support • Post-tensioned girders used in long span situations

Floor Plan One Level Above Trading Floor


- Composite Deck with steel framing members for trading floors
 - Concrete filled circular HSS columns used for support
 - Castellated wide flanges used in long span situations

Floor Plan at Trading Floor Level


One-way concrete pan joists Composite deck on steel frame

- Project Overview
- Existing Structural Conditions
- Proposal
- Gravity Redesign
- Lateral Redesign
- Steel Connection Design
- Architectural Breadth
- Cost and Schedule •
- Conclusions

Existing Lateral System

• Lateral loads mainly resisted by ordinary concrete moment frames • Moment connected HSS Members resist lateral loads in trading areas

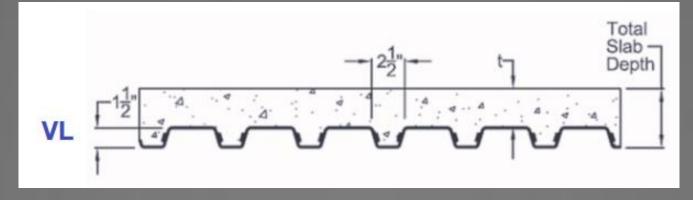
3-D Representation of Lateral System

View of Trading Floor From Level Above

- Project Overview
- Existing Structural Conditions •
- Proposal
- Gravity Redesign •
- Lateral Redesign •
- Steel Connection Design
- Architectural Breadth
- Cost and Schedule
- Conclusions

Goals

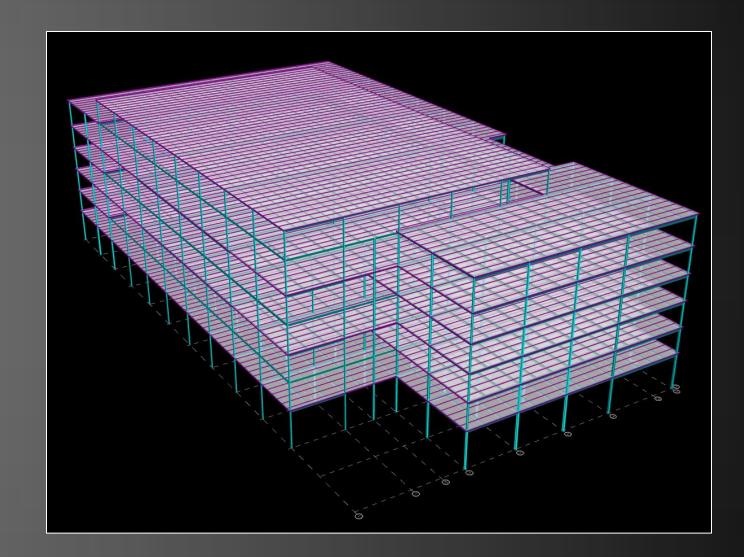
- 1. Reduce the overall building weight
- 2. Eliminate the controlling seismic base shear in the East-West direction
- 3. Minimize floor plan impacts
- 4. Design aesthetically compatible braces
- 5. Reduce the construction schedule
- 6. Determine if foundation savings will offset increased steel structure cost
- Proposed Solution
- Switch concrete superstructure to steel superstructure
- Design braced frames to resist lateral loads
- Maintain existing column layouts
- Maintain existing steel portions of building


Proposal

Tools

- Computer Modeling
- RAM for gravity design
- ETABS for lateral design confirmation
- Revit for architectural rendering
- Design Guides
- Vulcraft deck catalog
- AISC Steel Construction Manual
- AISC Seismic Design Guide

- Project Overview
- Existing Structural Conditions
- Proposal
- Gravity Redesign
- Lateral Redesign
- Steel Connection Design
- Architectural Breadth
- Cost and Schedule
- Conclusions

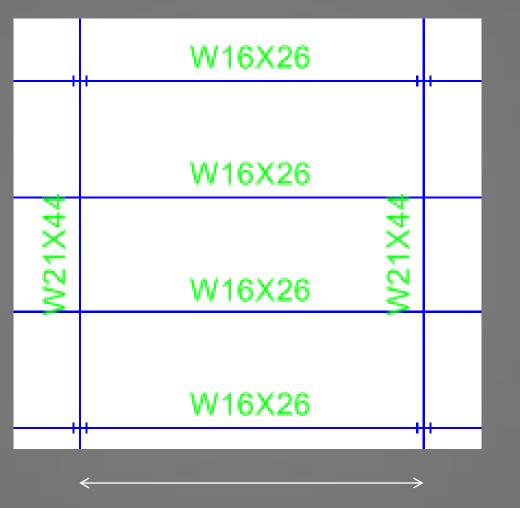


- 37 psf self-weight

Deck Choice

• Vulcraft 1.5 VL with 3 ¼" LWC topping for 2 hour fire rating

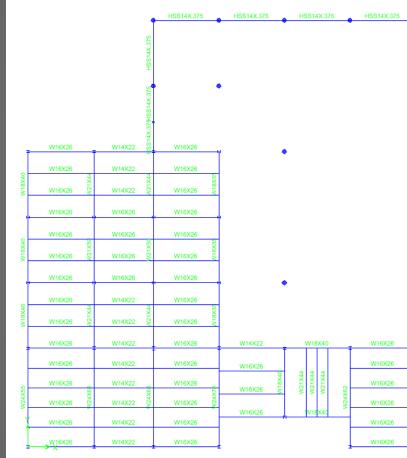
• 10' and 9' spans for unshored construction



RAM Model

- Project Overview
- Existing Structural Conditions
- Proposal
- Gravity Redesign
- Lateral Redesign
- Steel Connection Design
- Architectural Breadth
- Cost and Schedule •
- Conclusions

Typical Bay Framing Plan



10′

10'

10'

30'

3rd Floor Plan

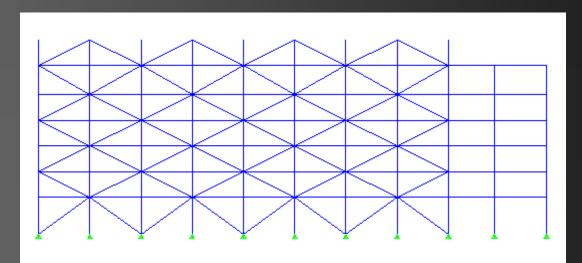
	HSS14X.375	HSS14X.375	HSS14X.375	HSS14X.375	W14X22	W16X26
Ĩ	Ĩ	Ĭ			W14X22	W16X26
				W21X44	21X44	8X40
				ZM	W14X22 🕅	W16X26 5
				W16X26	W16X26	W16X26
				W16X26	W16X26	W16X26
					ŝ	ž.
			5	₩16X26 💱	W16X26	W16X26 Ş
		•	•	W16X26	W16X26	W16X26
				W16X26	W14X22	W16X26
				W16X26	W14X22	W16X26
				W16X26	W16X26	W16X26
				W16X26	W16X26	W16X26
				W16X26	W16X26	W16X26
н				W16X26	W16X26	W16X26
		Ĭ		W16X26	W14X22	W16X26
				W16X26	W14X22	W16X26
	W16X26	W16X26	W16X26	W16X26	W14X22	W16X26
	W16X26	W16X26	W16X26	W16X26	W14X22	W16X26
	W16X26	W16X26	W16X26	W16X26	W14X22	W16X26
V24X76	W16X26	W16X26	W16X26		W14X22	W16X26
	W16X26	W16X26	W16X26	W16X26	W14X22	W16X26
	W16X26	W16X26	W16X26	W16X26	W14X22	W16X26

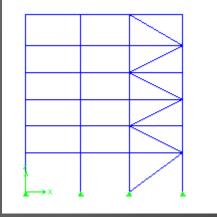
 Project Overview • Column splices occur every other level for construction purposes • W14 shapes used for first two floors Existing Structural Conditions • W12 shapes mainly used for remaining floors Proposal • Columns initially designed for gravity load only Gravity Redesign • Columns checked for combined axial and bending load in ETABS after lateral loads determined Lateral Redesign Steel Connection Design Architectural Breadth Cost and Schedule • Conclusions •

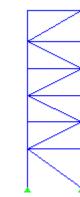
Column Design

Typical Elevation

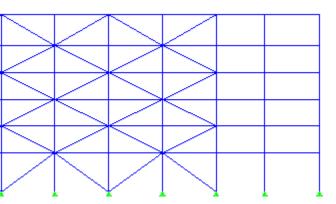
_	W30X90	W24X55	W24X55	W24X55	W24X55	W24X55
W12X50	19 87 W24X68	8927LM W21X44	82721M W21X50	89X7LM W21X44	89 87 87 87 87 87 87 87 87 87 87 87 87 87	09 W12X44
W12X50	W24X68	۲۵ W21X44	89X7LA W21X50	8272FM W21X44	۲۵ W21X50	09 X21X44
W12X65	W24X68	62X21M W21X44	62X7FM W21X50	62X71M W21X44	۵۲ ۷۷21X50 W21X50	85X7LM W21X44
W12X65	06X71X W24X68	64X21M W21X44	62X21 W21X50	62X21M W21X44	۵۲ ۲۵ W21X50	821X44
W14X99	941X41X W24X68	071X44 W21X44	W14X120 W14X120	021X44 W21X44	W21X20 W14X120	06X 7 LM W21X44
W14X99	W14X145	W14X120	W14X120	W14X120	W14X120	W14X90
	→Y .					. 🔺


- Project Overview
- Existing Structural Conditions •
- Proposal
- Gravity Redesign •
- Lateral Redesign
- Steel Connection Design
- Architectural Breadth
- Cost and Schedule •
- Conclusions •

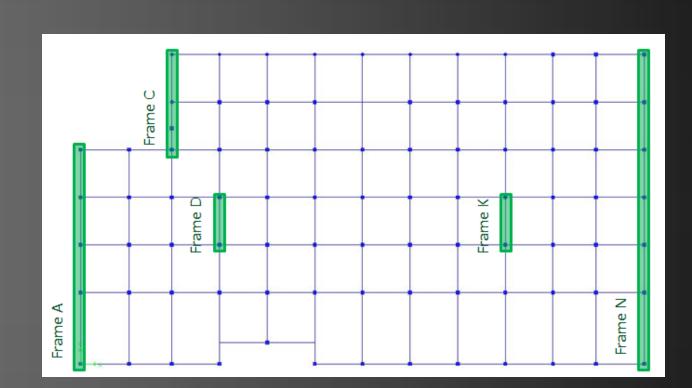

- East-West Frames


- Braces designed by hand using AISC Seismic Provisions Guide as a reference • Initially designed with strength based on wind story shear forces • Once braces designed, preliminary building weight tabulated and new seismic story shears calculated
- New seismic forces reduced, but still control for some levels
- Braces redesigned in East-West direction for seismic provisions

Seismic Forces									
		Original		Redesign					
Level	Weight (k)	F _x (k)	Shear (k)	Weight (k)	F _x (k)	Shear (k)			
roof	1089	78.8	78.8	1329	88.2	88.2			
lower roof	2961	178.8	257.6	1918	106.9	195.2			
6	6332	298.1	555.7	4447	194.9	390.1			
5	4304	155.1	710.7	2255	76.3	466.4			
4	6332	163.0	873.7	4455	109.0	575.4			
3	4304	70.5	944.2	2270	35.9	611.3			
2	7146	58.3	1002.5	4116	33.2	644.5			
Total	32468	1002.5	-	20790	644.5	-			


Brace Design

East-West Frames


- Project Overview
- Existing Structural Conditions •
- Proposal
- Gravity Redesign •
- Lateral Redesign
- Steel Connection Design
- Architectural Breadth
- Cost and Schedule •
- Conclusions •

- Preliminary sizes worked in strength design
- Wind serviceability controls final design
- Braces increased in size, but not enough stiffness achieved
- Two interior x-braced frames added to limit roof deflection
- Allowable Deflection: H/400= 3.39" • Preliminary Brace Design Deflection:=3.94"
- Final Brace Design Deflection= 3.24"

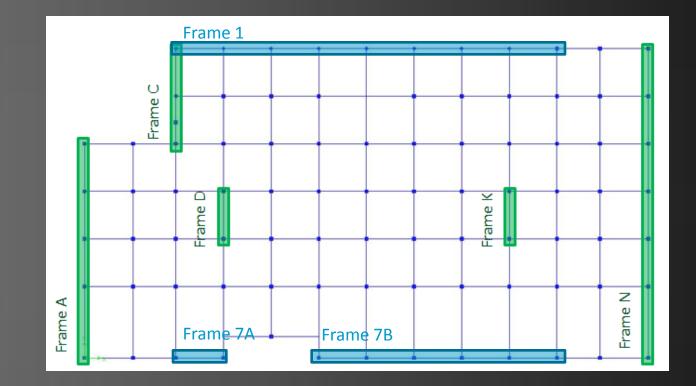
Brace Design

North-South Frames In Plan

• North-South Frames

- Project Overview
- Existing Structural Conditions
- Proposal
- Gravity Redesign
- Lateral Redesign
- Steel Connection Design
- Architectural Breadth
- Cost and Schedule
- Conclusions

- Building Torsion


	1000	k Load In Y	-Directior	
Frame	Δ	K (k/in)	K _{relative}	K _{relative} (%)
А	9.650	103.6	0.2834	28.34
С	22.906	43.7	0.1194	11.94
D	31.919	31.3	0.0857	8.57
К	31.912	31.3	0.0857	8.57
Ν	6.423	155.7	0.4258	42.58
	Total	365.6	1	100

Brace Design

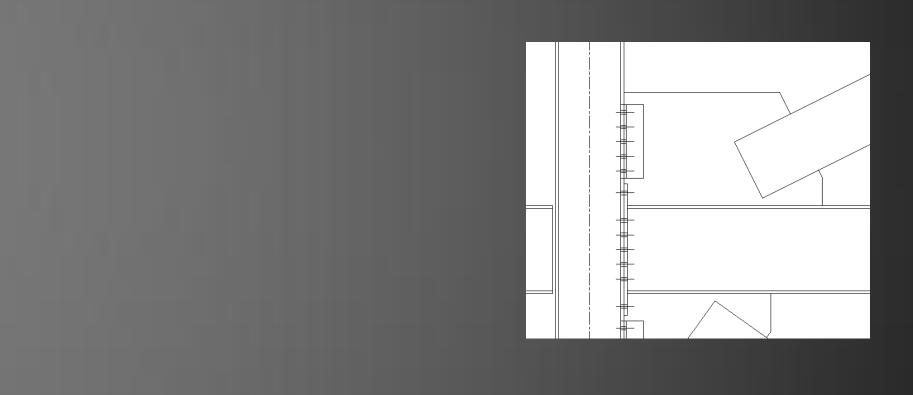
Frames In Plan

• Relative stiffness of frames computed for load distribution

	1000 k Load In X-Direction											
Frame	Δ	K (k/in)	K _{relative}	K _{relative} (%)								
1	6.965	143.6	0.5934	59.34								
7A	73.507	13.6	0.0562	5.62								
7B	11.797	84.8	0.3504	35.04								
	Total	241.9	1	100								

- Project Overview
- Existing Structural Conditions •
- Proposal
- Gravity Redesign •
- Lateral Redesign
- Steel Connection Design
- Architectural Breadth
- Cost and Schedule •
- Conclusions •

Steel Connection Area of Interest

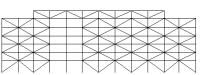

• Interface of braces, columns and beams Designed for as many shop fitted connections as possible

W14x90 W18x40 ⊖ 1/4V Ę) 12 x Pipe 1/4 3/16

Non-Eccentric Connection Layout

• Issues

- Long welds necessary for non-eccentric connection
- Gusset plate approximately 2'x3'-6"

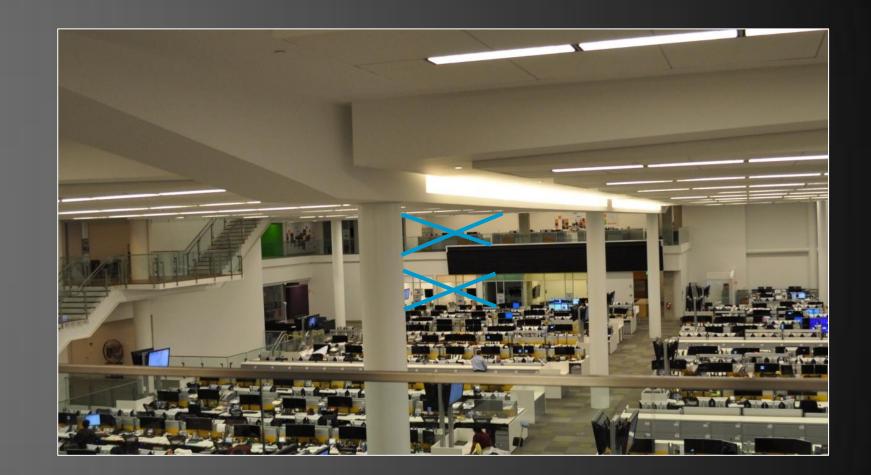

- Project Overview
- Existing Structural Conditions •
- Proposal
- Gravity Redesign •
- Lateral Redesign
- Steel Connection Design
- Architectural Breadth
- Cost and Schedule \bullet
- Conclusions •

- Brace Locations
- Only exterior braces in the East-West direction
- Interior braces located in minimal impact areas
 - Occur at the edges of the trading floor where only one levels floor plan is impacted
 - X-bracing used to limit number of bays impeded

Floor Plan Impact

• Two interior braces in the North-South direction

 /	\sim	/	/	/	\sim		
				 \sim	\sim		
				 \sim			
			 \square	 \geq	\setminus	\sim	\geq
			\sim	 \geq	/		
\bigvee			 \bigtriangledown	 			

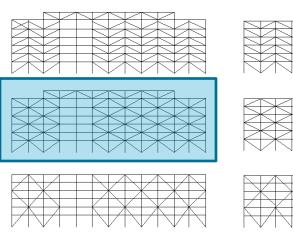


/				/	\sim	/	/		\sim	/
/	\geq	/		\langle	/	\geq	/	\sim	Ζ	\geq
\geq	/			/		/		/		/
/	\sim	/		\sim	Ϊ	\geq	/	\sim	Ζ	
\sim	/	\sim		/		/	\geq	/	\square	/
	\square	$\overline{\ }$			\times			\checkmark	\geq	/

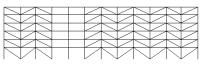
	\sim	\square	
			\triangle
		$\square \vee \square \vee$	\sim
			Δ
$ V \vee $	$ \vee$	$ \lor \lor$	$^{\prime}$ I N

\sum									\mathbb{N}]
\square					\langle	$\overline{\nabla}$			\square	1
\Box									$\Box \Lambda$	1
]
		\backslash						- /	$N \mid Z$	1
\square	∇	\square		\square	\square	\square	\square		$\Gamma \nabla \Gamma$]

\square	∇	\square	∇
	$\langle \rangle$	$\wedge \mid \land$	
	\bigvee		\bigvee
	$\langle /$	$\wedge \perp \wedge$	
	\mathbf{V}		\vee L

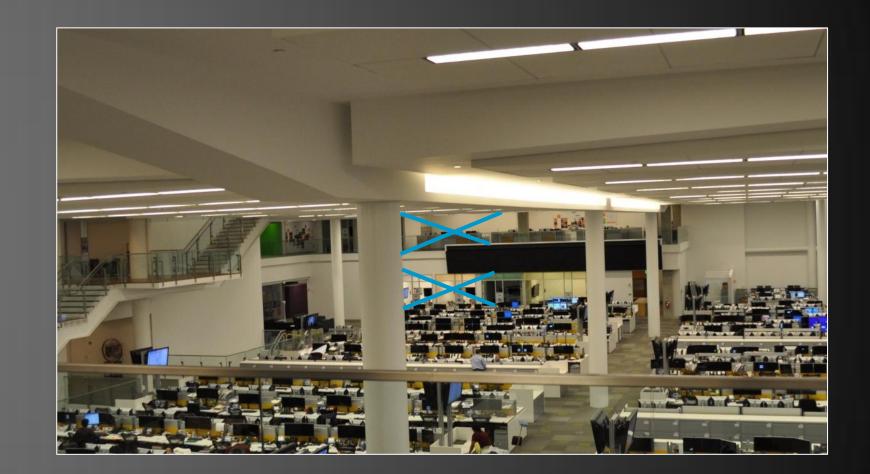

Interior Brace Location

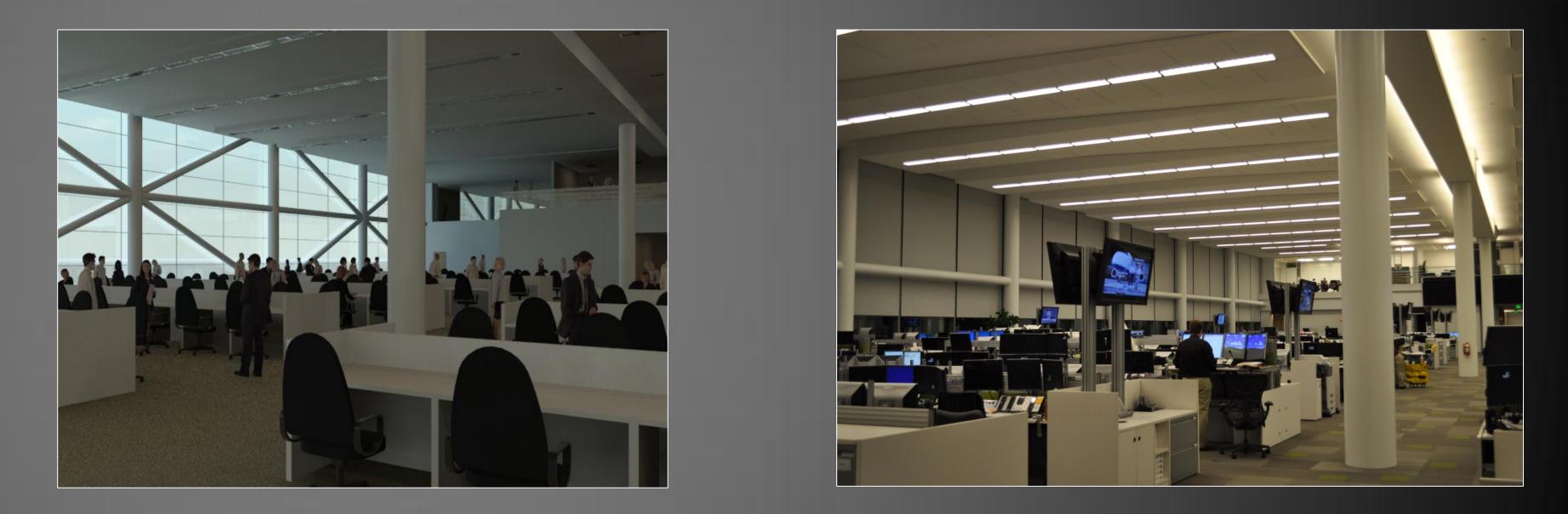
- Project Overview
- Existing Structural Conditions •
- Proposal
- Gravity Redesign •
- Lateral Redesign
- Steel Connection Design
- Architectural Breadth
- Cost and Schedule \bullet
- Conclusions •


- Brace Locations
- Only exterior braces in the East-West direction
- Interior braces located in minimal impact areas
 - Occur at the edges of the trading floor where only one levels floor plan is impacted
 - X-bracing used to limit number of bays impeded

Floor Plan Impact

• Two interior braces in the North-South direction


_/	$\langle \rangle$			$\langle \rangle$		\wedge				
/									\sim	
_/				$\langle \rangle$	_/					
/										\square
-7		-7			7		7	\backslash	7	
/					/				\langle	


/					\langle				
				$\langle \rangle$					
_									
		\backslash				Ν			
\angle	7				$\overline{\}$	 \square	 \square	\square	

				_/		$\langle \rangle$			
$\overline{\ }$					$\overline{\}$	 $\overline{\ }$		\square	\sim
				_/					
_						 			\sim
				_/	$\langle \rangle$				
/	$\langle \rangle$				\backslash	\backslash	/	$\left[\right]$	\square

Interior Brace Location

- Project Overview
- Existing Structural Conditions
- Proposal
- Gravity Redesign
- Lateral Redesign
- Steel Connection Design
- Architectural Breadth
- Cost and Schedule
- Conclusions

Interior Rendering

Similar Interior View

- Project Overview
- Existing Structural Conditions
- Proposal
- Gravity Redesign
- Lateral Redesign
- Steel Connection Design
- Architectural Breadth
- Cost and Schedule
- Conclusions

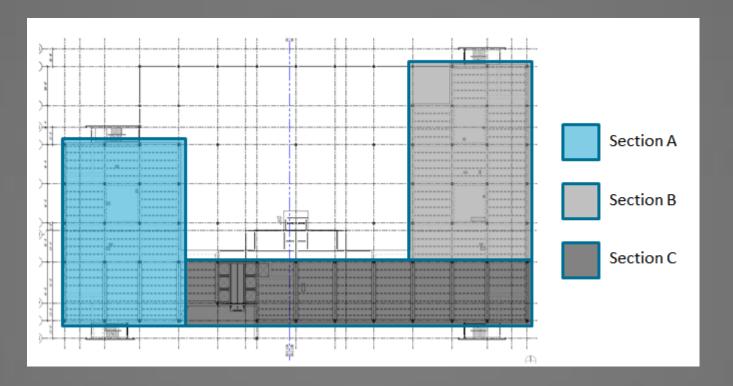
Concrete
Formwork
Reinforce
Steel Mer
Decking
Wide Flan
Braces and
Shear Stud
Decking
Concrete (
Fireproofir

Detailed Cost Breakdown

Foundation Cost Breakdown

Existing Structure Cost Breakdown						
Description		Cost				
	\$	1,733,912.15				
[.] k	\$	2,128,486.74				
ement	\$	509,997.90				
mbers	\$	1,345,288.34				
	\$	169,344.96				
Total	\$	5,887,030.09				

Redesign Cost Breakdown								
Description	Cost							
nge Members	\$ 3,402,132.71							
d HSS Members	\$ 922,388.34							
ds	\$ 50,855.40							
	\$ 805,674.65							
(including formwork and reinforcement)	\$ 976,387.92							
ing	\$ 709,220.76							
Total	\$ 6,866,659.78							


Foundation Savings									
	Cost								
Original Design	2012	16131	\$ 319,779.62						
Redesign	1756	14355	\$ 280,321.94						
Savings	256	1776	\$ 39,457.68						

• Summary

- Increase in cost: \$ 979,629.69
- Foundation reduction not enough to offset increase in superstructure cost
- Majority of cost increase due to fireproofing

o offset increase in superstructure cost proofing

- Project Overview
- Existing Structural Conditions •
- Proposal
- Gravity Redesign •
- Lateral Redesign
- Steel Connection Design
- Architectural Breadth
- Cost and Schedule
- Conclusions •

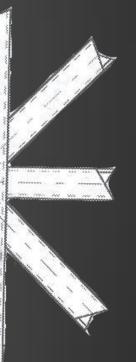
- **Existing Structure**
- Broken down into three sectors for construction
- 8 crews typically used for most tasks
- Total number of construction days: 194

Schedule Impact

- Redesign
- 4 crews typically used for most tasks
- Crew sizes generally based on 2 crane assumption
- Total number of construction days: 143
- Total Savings
- 51 days of schedule
- 31 working days
- 992 man hours

- Project Overview Existing Structural Conditions • Proposal Gravity Redesign • Lateral Redesign • Steel Connection Design • Architectural Breadth Cost and Schedule •
- Conclusions

• Goals met:


- 1. Reduce the overall building weight
 - 36% reduction in weight
- 2. Eliminate the controlling seismic base shear in the East-West direction
 - Seismic base shear smaller than wind base shear, but seismic
 - forces still control design of several floors
- 3. Minimize floor plan impacts
 - Two interior bays impeded
 - Large gusset plates could use reduction
- 4. Design aesthetically compatible braces
 - Similar cross-sections blend well with existing architecture
- 5. Reduce the construction schedule
 - 51 days of schedule saved
- 6. Determine if foundation savings will offset increased steel structure cost
 - Foundation savings account for only \$ 39.457.68

Conclusions

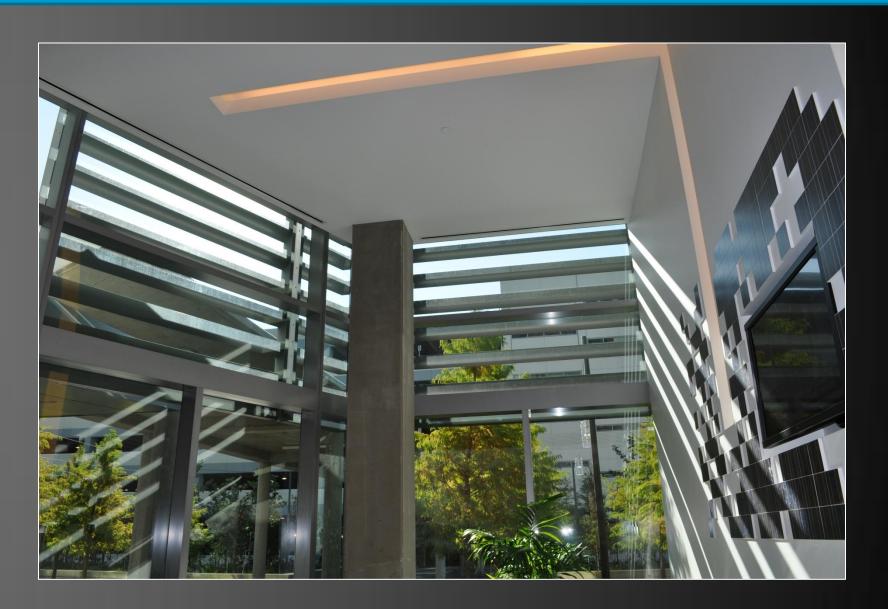
Recommendations

- Recommendations: •
 - Switch to chevron bracing to achieved more efficient brace connections; or,
 - Switch brace connections to slotted welds

•	Project Overview	•	AS	Specia
•	Proposal Gravity Redesign Lateral Redesign		•	BP • Da
	Architectural Breadth Steel Connection Design Cost and Schedule		•	Gensle • Riv
•	Conclusions		•	Walter • De
			•	The AE

Acknowledgements

I Thanks To:

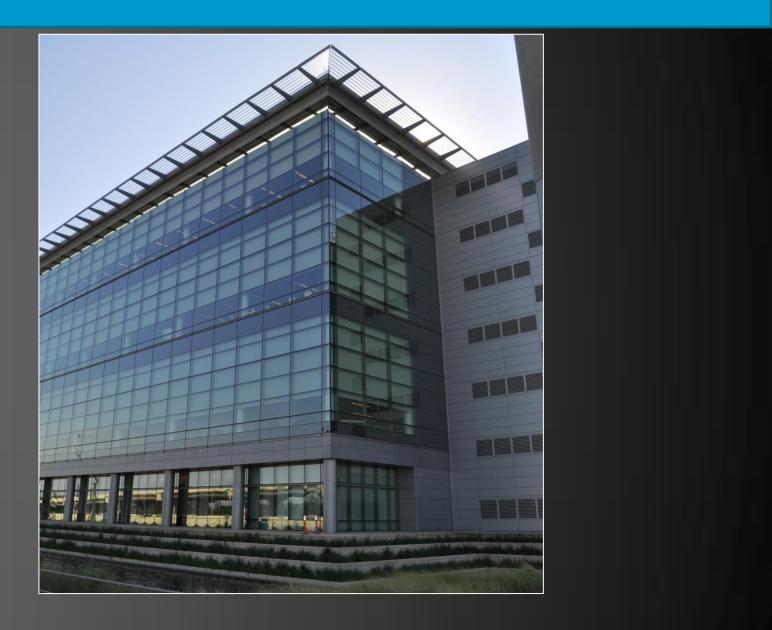

avid Kinnaird – Coordinator

ves Taylor – General Consulting

P. Moore & Associates, Inc. ennis Wittry – Project Document Delivery

E Faculty

• Friends and family for their continued support



- Project Overview
- Proposal
- Gravity Redesign
- Lateral Redesign
- Architectural Breadth
- Steel Connection Design
- Cost and Schedule
- Conclusions

Questions/Comments

Thank You

Any Questions/Comments?

