[Helios Plaza]

Houston, Texas

Kevin Zinsmeister Structural Option Adviser: Dr. Linda Hanagan April 7, 2011

[THESIS FINAL REPORT]

Helios Plaza

201 Helios Way

Houston, Texas

General Building Data

Size: Height:

113'

cupancy: Office, Conference Center

423,500 GSF

Structure

Framing System: 24 in² concrete columns and posttensioned concrete girders with cylindrical steel columns and long span steel W-shapes.

Lateral System: Concrete moment frames in combination with rigid diaphragm floor system.

Floor System: Two systems typically used. Composite 20 gage decking with lightweight concrete topping and one-way pan joist systems.

Foundation: Spread concrete footings with 4000 psi strength.

Project Team

Owner: BP p.l.c. Architect: Gensler CM: Bovis Lend Lease Construction Ltd Structural: Walter P. Moore & Associates, Inc. MEP: I.A. Naman + Associates, Inc. Vertical Transportation: Persohn/Hahn Associates, Inc. Security: CPP and Associates CHPP: Turbine Air Systems

Architecture

The design principle is based upon functional, pragmatic design. Utilizing a simple box shape, the building is built in a three stack design to accommodate for two-story trading floors. A true campus environment is achieved by incorporating large expanses of Katy Prairie land in addition to multiple International Cafes on every floor of the six-story complex.

MEP Systems

Mechanical: VAV systems with 555,500 CFM exchange rate. 5 MW natural gas fired combined heat and power system in combination with chillers.

Electrical: 3φ 208Y/120V service voltage. 2 UPS Systems with 3-500kVa modules.

Lighting: Aggressive lighting scheme with high efficiency direct/indirect fixtures. 82% of regularly occupied spaces day lit.

Structural Option

Kevin Zinsmeister

http://www.engr.psu.edu/ae/thesis/portfolios/2011/kzz5000/

Table of Contents

Acknowledgements
BP
Gensler 4
Walter P. Moore4
PSU AE Faculty4
Executive Summary
Introduction
Existing Structural System Overview7
Foundation
Columns
Floor Systems
Lateral Systems
Existing Lateral Load Conditions11
Structural Redesign Philosophy
Codes and References13
Original Design Codes13
Thesis Design Codes14
Materials14
Redesign Goals14
Structural Redesign
Initial Design
Lateral Design
Relative Frame Stiffness
Controlling Load Cases
Brace Connection Design
Architectural Breadth – Brace Selection and Layout 25
Construction Management Breadth – Cost and Schedule 27

28
29
29
30
31
32
33
34
37
46
53
55

Acknowledgements

I would like to thank the following individuals for supporting my thesis project with their time and understanding.

BP

David Kinnaird

Gensler

Rives Taylor

Walter P. Moore

Dennis Wittry

PSU AE Faculty

Dr. Linda Hanagan

Professor Kevin Parfitt

Professor Bob Holland

I would also like to thank my family and friends for the constant support and belief. I hope that I will always be able to repay your kindness with my own.

Executive Summary

The purpose of this report is to present the investigations conducted on Helios Plaza as part of its redesign. Helios Plaza is an office building that houses the IST and oil trading divisions of its owner BP. The plaza is located in Houston, Texas in an area zoned for office buildings and suburban housing. The overall building height is 113' with a typical floor-to-floor height of 15'.

With respect to the structural system of Helios Plaza, the gravity system mainly consists of a one-way concrete pan joists system supported on concrete columns, but certain areas are composite steel deck supported on long-span, castellated steel wide flanges. Lateral forces in the building are resisted by concrete moment frames and some steel moment frames composed of HSS beams welded to concrete filled steel pipe columns. The overall effect of this design results in a relatively high building self-weight, requiring the use of large spread footing foundations and seismic loads controlling design in one direction.

In an attempt to remedy the large building weight, a composite steel system was designed as an alternative to the existing system. Prior investigations had shown that a composite steel system was feasible in strength design and had potential to reduce the weight of the building. The redesign successfully reduced the weight of the building.

The entire structure was redesigned in RAM and ETABS and checked with hand calculations. Steel pipe braces were used as the lateral resisting system and were chosen for their aesthetic and strength properties. A typical brace was chosen to be representative of the brace to beam to column connection and was designed by hand.

Two depths are presented in this report that are related to the lateral braces in particular. Architectural considerations of the braces will be addressed and analyzed. The analysis shows why certain decisions were made in placing the braced frames in the building.

The second breadth presented deals with construction management principles. The cost and schedule of the redesign were compared with the original structure. The findings showed that the redesign was more expensive, but was able to be constructed much quicker.

As part of the MAE requirements, coursework from Computer Modeling of Building Structures was utilized in creating the computer models. Additionally, principles from Earthquake Resistant Design of Buildings were used to design the lateral bracing system and the braces' connections were designed using Design of Steel Connection course notes.

Introduction

Helios Plaza is a corporate campus located in Houston, Texas that is comprised of three main structures. The first structure, which is the focus of this report, is a six-story office building that houses the IST and oil trading divisions of BP, the building owner. In addition to the office building, there is a 1,909 car capacity parking deck adjacent to a five megawatt combined heat and power plant separate from the office building. Construction was completed in September 2009. The office building will be referred to as Helios Plaza throughout the rest of this document.

The six-story office building is 423,500 gross square feet with an overall building height of 113 feet. The typical floor-to-floor height is 15 feet with exception at the first floor, the lower roof level and the roof level. The first floor height is 21.5 feet, the lower roof level is 17 feet and the roof level is 14 feet higher than the lower roof. Figure 1 represents these dimensions below.

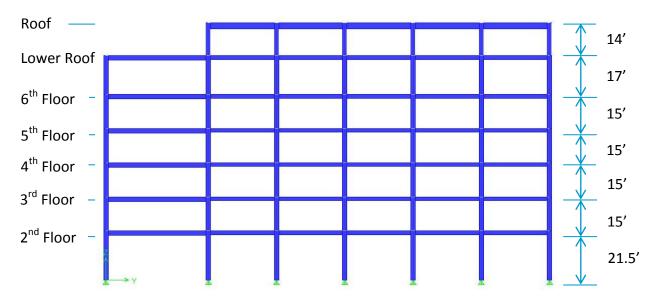


Figure 1: Building Frame Section

One of the more unique aspects of the office building is a result of the oil trading division wishes. The traders requested large, open areas to work in and these spaces are accommodated on the second, fourth and sixth floors. To make these areas more open, the floors above (i.e. the third floor, fifth floor, and lower roof level) are cut out over the trading floors to create double story spaces. To further the open feeling, the number of columns used is limited, which in turn creates long-span situations. Figures 2 and 3 on the next page illustrate simplified versions of the floor plans.

[THESIS FINAL REPORT] Kevin Zinsmeister

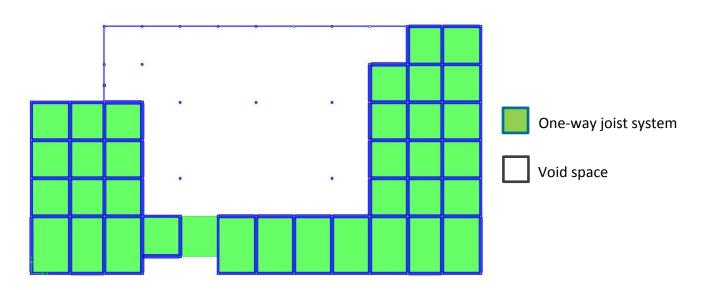
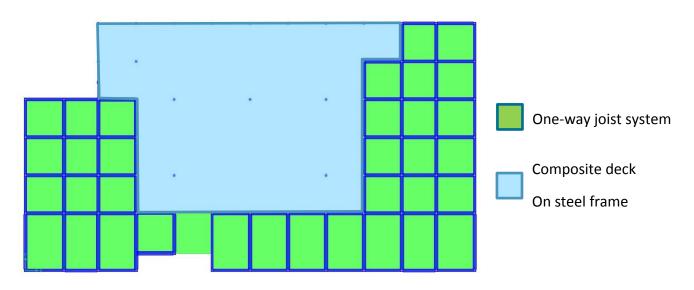



Figure 2: Cut-out Floor over Trading Floor

Existing Structural System Overview

For better understanding of the main redesign, some existing structural conditions will be addressed. The main structural system of Helios Plaza is framed in reinforced concrete and gravity loads are handled largely by square concrete columns, although concrete filled steel pipe columns are used for aesthetics in larger spaces. For shorter spans, averaging thirty feet, concrete girders in combination with pan beams are used. For longer spans of forty-five feet, post tensioned girders are employed. Finally, for spans of sixty feet, castellated wide flanges shapes are used to reduce the weight-span ratio while maintaining strength.

The floor is mainly a concrete one-way system that uses 66" span, 6" wide skip joists typically. In mechanical rooms, two-way slabs are used to distribute the larger live loads more evenly to the supporting members. Composite decking with lightweight concrete is used over the long span steel members in the trading rooms.

To resists lateral loads, the building relies on the typical framing members to perform as concrete moment frames. In the trading floor areas, steel moment frame comprised of 2' diameter steel pipe columns are filled with 7000 psi concrete and 14" Ø HSS steel beams run the perimeter of the building to transfer lateral load.

Foundation

The site had to be extensively dewatered prior to the excavation for the project because of the porosity of the soil in Houston. Despite the initial site conditions, the bearing capacity of the soil was determined to be 6500 psf.

Spread concrete footings are placed at the base of all grade level columns. The typical depth of the footings is six feet below the member that they are supporting. Their sizes range from $4' \times 4' \times 15''$ to $17' \times 17' \times 57''$.

Retaining walls are only used in the southeast corner of the building where there is a sub-grade basement with access to the adjacent parking structure via a tunnel. At level one, the floor is a slab on grade with thickness ranging from 5" to 12". Grade beams are also implemented at level one sized at 42" x 30".

One of the focal points of this thesis investigation regards the reduction of the foundations due to decreased building weight. This topic will be addressed later in the report.

Columns

Rectangular concrete columns are the predominant system used in Helios Plaza. For the most part these normal weight columns are 24" x 24" in size at all floors except level one where there is an increase in size to 30" x 30". The concrete strength decreases as the levels increase from 6000 psi at the basement level and level one to 5000 psi at levels two and three to 4000 psi for levels four through six. The basement level only occurs in the southeast corner of the building to allow access from the underground tunnel to the rest of the building and accounts for only fifteen percent of the ground floor area. This space is spanned at level one by posttensioned girders and one-way pan joists and can be seen in Figure 4.

[THESIS FINAL REPORT] Kevin Zinsmeister

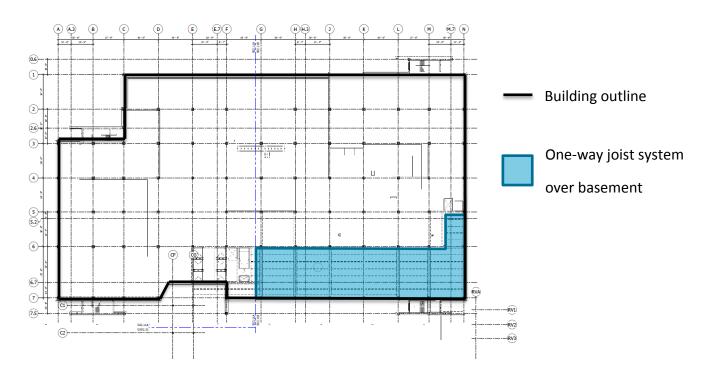


Figure 4: Basement Area

In addition to the rectangular concrete columns, concrete filled steel pipe columns are used in the double story trading spaces. These columns are 24Ø and are filled with 7000 psi strength concrete.

Floor Systems

As with the rest of the structural systems in Helios Plaza, the floor system is split into two main categories, one-way pan joists and composite deck. The one-way pan joist system is a 4" slab that rests on 16" deep pan typically. The one-way system frames into girders that range from 20" to 33" deep with a width ranging from 24" to 36". Girders also span in the same direction as the one-way joist system, but these members are there to create concrete moment frames to resist lateral loads.

Post-tensioned girders are used all along the south face of the building that span in the North-South direction. This is necessary to meet the strength requirements for the 45' distance that these members span. The tendons are typically bundled in groups of four and the minimum final post-tension force is 351 kips. Their locations can be seen in Figure 5 on the next page.

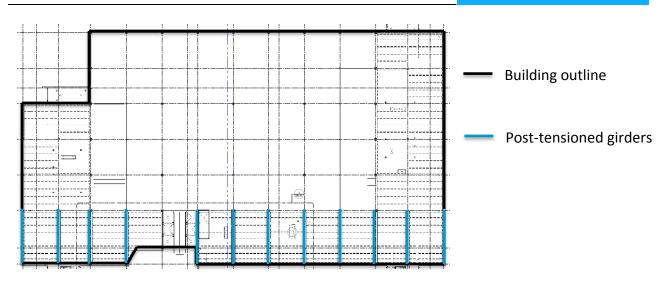


Figure 5: Post-Tensioned Girder Locations

Two-way slabs are implemented in areas where mechanical equipment is housed on every floor. The slabs are typically 10" thick, but in some cases they are 12" thick. Bathrooms usually share the same bays as the mechanical rooms because cutting holes in this system is efficiently achievable.

The second main floor system used in Helios Plaza is a composite deck on w-shapes. The change occurs because of the move to long span castellated beams to accommodate open, double story spaces for the trading floors. Spans of 60' dominate these spaces and the castellated beams vary between CB24x100 and CB30x44/62. In addition to the weight saving caused by punching out parts of the web, the beams are cambered 1.5" and 1.75" to meet deflection limits. The composite section used is typically 3 1/2" light weight concrete over 2" composite deck. Figure 6 below shows all three of the floor systems in adjacent bays of the building.

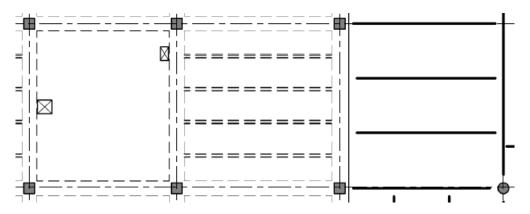
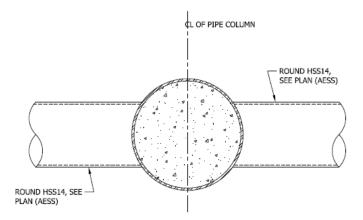
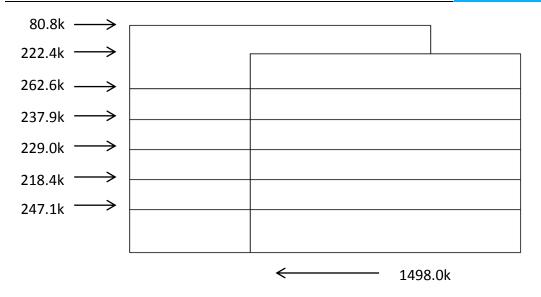
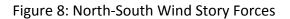


Figure 6: All Three Floor Systems in Adjacent Bays

Lateral Systems

Lateral forces are resisted in Helios Plaza by concrete moment frames. As mentioned before, girders run in the same direction as the one-way joist system to make up the frames in the East-West direction, while girders running in the North-South direction carry the pan joist loads in addition to transferring lateral load. When a double story occurs, several lateral resisting frames are interrupted and load transfers from the building's enclosure directly to moment frames are not possible. The force is instead transferred perpendicularly by horizontal circular HSS members to the one-way joists or to the floors above and below by the steel pipe columns. These beams are welded to the steel pipe columns and a detail can be seen below in Figure 7.


Figure 7: Round HSS Members Framing Into Each Other

Steel members that compose the floor system for the trading areas are not effective lateral members. They are not framed with moment connections and essentially only function to make a rigid diaphragm and to carry gravity loads. Overall, the building consists of twenty-two moment frames. Floor plans can be found in Appendix A.

Existing Lateral Load Conditions

Calculations in Technical Report I showed that the controlling load cases for the East-West and North-South directions were resultant of seismic loading and wind loading respectively. The relatively short width of the building compared to its length in combination with the building's large mass led to the seismic control in the East-West direction. Story force diagrams can be seen in Figures 8, 9 and 10.

The figures were not drawn to scale, which makes the drastic difference between the story forces seem peculiar. In actuality, the North-South facades have a tributary width of 355' as compared to the East-West facades which have a tributary width of 195'. This ratio of approximately 1.8 accounts for the nearly doubled forces in the North-West direction for wind.

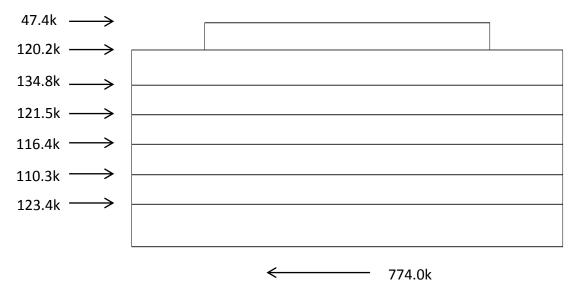


Figure 9: East-West Wind Story Forces

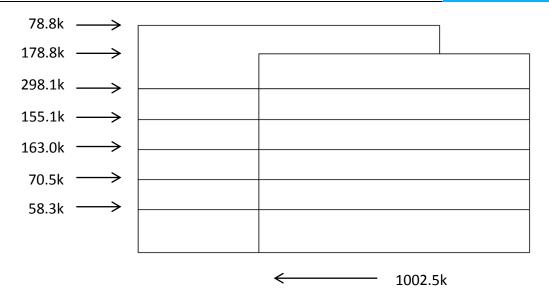


Figure 10: Seismic Force Diagram

Structural Redesign Philosophy

In an attempt to unify the structural system of Helios Plaza, the existing concrete framing system was redesigned in steel. Of the spaces in the building, only the trading floors were kept the same due to their unique design. For lateral resistance, a concentric diagonal braced frame system was picked for design due to potential efficiency and the generally higher cost of steel moment frames. With these decisions in mind, the design of the gravity system was approached first, but parameters for design needed to be defined first.

Codes and References

Helios Plaza was designed following all of the applicable guidelines for the state of Texas as well as the city of Houston. For the purpose of these thesis investigations, the latest design codes were utilized without specific regional additions.

Original Design Codes

- National Model Code:
 - o 2003 International Building Code with City of Houston Amendments
- Design Codes:
 - o Texas Architectural Barrier Act Standard
 - ANSI/AWS Structural Welding Code
- Structural Standards:
 - American Society of Civil Engineers, SEI/ASCE 7-02, Minimum Design Loads for Buildings and Other Structures

Thesis Design Codes

- National Model Code:
 - 2009 International Building Code
- Design Codes:
 - \circ Steel Construction Manual 13^{th} edition, AISC
 - o ACI 318-05, Building Code Requirements for Structural Concrete
- Structural Standards:
 - American Society of Civil Engineers, SEI/ASCE 7-10, Minimum Design Loads for Buildings and Other Structures

Materials

In selecting the materials to design with, assumptions were made based upon both the existing structure and code requirements. Of particular importance was the material strength of the bracing members. For seismic design requirements, the steel pipe used in bracing needed to be ASTM A53 grade B steel. A summary of the rest of the design values can be seen in Table 1.

Cond	f'c (psi)	
Spread Footings	4000	
Basement Walls		6000
Slabs	On-Grade	3500
21902	Metal Deck	3500
Reinfor	Fy (ksi)	
Rebar		60
Welded Wire Smooth		65
Structu	Fy (ksi)	
Wide Flange Shapes	50	
HSS	42	
Edge Angles/Bent Pla	36	
Plates	36	
Pipe	35	

Table 1: Redesign Material Strengths

Redesign Goals

Prior investigations in Technical Report II showed that there were many potential benefits in switching the structure from concrete to steel. This thesis attempted to maximize these benefits while limiting the negative effects of the steel frame. Amongst the detriments of the

composite steel deck system was higher cost and a larger floor depth. Based upon these findings, the desired goals of the redesign investigation were as follows:

- 1) Reducing the overall building weight;
- 2) Eliminating the controlling seismic base shear in the East-West direction;
- 3) Minimizing floor plan impacts;
- 4) Creating aesthetically compatible braces;
- 5) Reducing the construction schedule; and
- 6) Offsetting the increased steel structure cost with foundation savings.

Parameters for the design of gravity members were determined at the beginning to select trial sizes. Prior investigations in Technical Report II showed that a Vulcraft 1.5VL17 composite deck with a 3.25" light weight concrete topping was adequate for the spans and fire-rating requirements. Not only was this deck more than sufficient to carry the loads placed upon it, but was also able to span between all of the framing members without the use of shoring for construction. The depth of the topping also allowed for a fire rating of two hours, which would benefit the cost of the building by eliminating the need for fireproofing on the underside of the metal deck. The composite deck constituted a majority of the dead load on the structure; however, additional superimposed dead loads and beam self-weight allocations were added for gravity design of beams and columns.

Structural Redesign

The main focus of this section of the report is on the redesign of the building from a predominantly concrete moment frame system to a steel braced frame system. Additionally, the structural depth involved designing the connection interface of the lateral braces, columns and beams.

Initial Design

To aid the design of the new system, two computer programs, RAM Structural System and ETABS, were utilized. To begin the design, typical framing members were designed by hand with the live load assumptions determined in Technical Report I and the dead load assumptions addressed above. Once these trial member sizes were determined, a model was built in RAM to perform initial member sizing for gravity loading to confirm the hand design for beams and columns. When the columns were laid out, the same centerline locations as the existing 24" square concrete columns used in Helios plaza were referenced. Hand calculations can be found in Appendix B.

In building the model, concepts learned in the Computer Modeling of Building Structures course were drawn on for accurate input. Column local axis orientations and beam member end releases were employed to ensure a proper output from the program's black box. One snafu in the design process that would need correction after several runs was the orientation of the steel decking. This initial error resulted in the program placing the entire load on the girders and columns and designing beams that were mainly W8x10s. Other input parameters that needed to be addressed were deflection and camber limitations. Without user guidance, the program would select the member size with least weight within a certain tolerance and camber the shape to meet standard deflection requirements. Once these program nuances were dealt with, the output was at a standard acceptable to the user. The completed model can be seen in Figure 11.

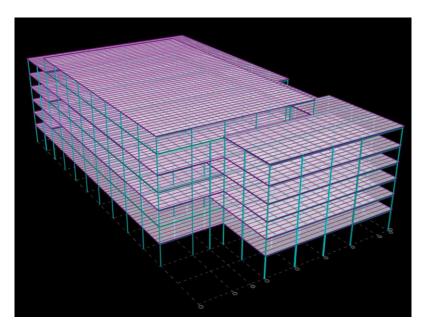


Figure 11: RAM Gravity Design Model

Minor size differences existed between the hand designed framing members and the RAM model output. The RAM output sizes were favored in several instances due to plastic neutral axis considerations (PNA) assumptions of the composite section. Hand designs relied on a PNA that was conservatively chosen at the lowest possible point, resulting in lower load resistance values. Additionally, the distance from the top of the steel beam to the concrete flange force was conservatively chosen in hand analysis. RAM was able to calculate the PNA location and flange force distance more accurately and usually resulted in one size smaller of a member.

Lateral Design

Moving on to lateral resistance of the structural system, initial sizes for the braces were determined utilizing the seismic provisions guide provided by the American Institute of Steel

Construction and supplemented by notes from the Earthquake Resistant Design of Buildings course. Steel pipe sections were chosen for aesthetic purposes and initial design forces were based on the wind forces in the North-South direction and the East-West since a building weight had yet to be established. The layout chosen was based upon exterior appearance and is addressed in the architectural breadth section of this report. In an attempt to limit torsional effects, the braces in each direction were made equal. This presented a problem in the North-South direction where there are only five bays. To account for this, the braces in the 45' bay were laid out as x-braces as can be seen in Figure 12.

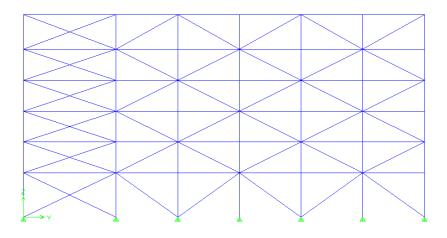


Figure 12: Brace Layout of East Facade

Brace sizes initially ranged from 6 Standard pipe to 12 x pipe based upon the preliminary brace locations. At this point in the design, the braces were only required to have a slenderness, $\frac{kL}{r}$, less than 200. The braces were only located on the perimeter of the building in an attempt to limit their effect on the floor plan of Helios Plaza. Their relative strengths were designed to distribute the lateral load between the frames as evenly as possible given the geometry.

Taking these brace designs forward, a computer model was built in the program ETABS to analyze the lateral brace design. Several assumptions were made when creating this model. First of all, both the beams and the braces were modeled with major axis moment released to simulate purely pinned conditions. In defining the material properties used in the building, the weights and masses were also removed and instead applied by the user to the diaphragm as unit dead load and unit mass respectively. Another assumption concerning the diaphragm was assuming that the composite steel deck and concrete were rigid, and thus formed a rigid diaphragm. The analysis showed that under wind loading, and all load combinations defined by ASCE 7-10 that included wind, the braces were sufficient in strength. A summary of the basic load combinations can be seen in Table 2.

Load Combination	Equation
1	1.4D
2	1.2D + 1.6L + 0.5(L _r or S or R)
3	1.2D + 1.6(L _r or S or R) + (L or 0.5W)
4	1.2D + 1.0W + L + 0.5(L _r or S or R)
5	1.2D + 1.0E + L + 0.2S
6	0.9D + 1.0W
7	0.9D + 1.0E

Table 2: ASCE7-10 2.3.2 Basic Load Combinations

With the members all accounted for, a preliminary building weight could be determined, and new seismic loads could be calculated. Besides changing the weight of the building, the Response Modification Coefficient, R, of Helios plaza was increased from R=3 for ordinary reinforced concrete moment frames to an R=3 ¼ for steel ordinary concentrically braced frames. This alteration in turn led to changes in the seismic response coefficient, C_s, as well as the approximate fundament period of the building, T_a. The combination of all of these changes resulted in much lower seismic design forces than originally encountered in previous investigations. A comparison of the final and original seismic design forces and weights can be seen in Table 3.

Seismic Forces						
		Original		Redesign		
Level	Weight (k)	F _x (k)	Shear (k)	Weight (k)	F _x (k)	Shear (k)
roof	1089	78.8	78.8	1329	88.2	88.2
lower roof	2961	178.8	257.6	1918	106.9	195.2
6	6332	298.1	555.7	4447	194.9	390.1
5	4304	155.1	710.7	2255	76.3	466.4
4	6332	163.0	873.7	4455	109.0	575.4
3	4304	70.5	944.2	2270	35.9	611.3
2	7146	58.3	1002.5	4116	33.2	644.5
Total	32468	1002.5	-	20790	644.5	-

Table 3: Building Weight and Seismic Force Comparison

These results, although successful in reducing the seismic base shear, did not reduce the loading enough to eliminate seismic forces as the controlling load case in the East-West

direction. As a result, the braces needed to be redesigned to meet all of the criteria of steel ordinary concentrically braced frames. The main repercussion of this switch was ensuring that the braces met more stringent slenderness requirements. Now the seismic provisions stated

that $\frac{kL}{r} \leq \frac{\overline{E}}{Fy}$, which in the case of ASTM A53 Grade B steel simplifies to $\frac{kL}{r} \leq 115$. With the unbraced lengths that these pipes needed to span regularly being on the larger side of 30', the minimum pipe size that could be used was 10 Standard. The new members were entered into the ETABS model and the seismic forces were placed on the building. Analysis showed that the braces all had adequate load resistance so other issues with the design could be addressed.

The addition of so much weight from the braces as well as the effect of lateral forces on the structure caused several columns to fail. The RAM output as well as hand calculations did not account for excessive lateral loads and the interaction equation for combined axial and bending in columns was exceeding 1.0 for many ground floor columns. To correct these failures, the axial forces in the columns was retrieved from the ETABS output and new members were sized based on unbraced length using Table 4-1 of the AISC Steel Construction Manual. After the members were upsized, analysis was run again and forces were checked again. This process was iterated until no more members failed under any load combination.

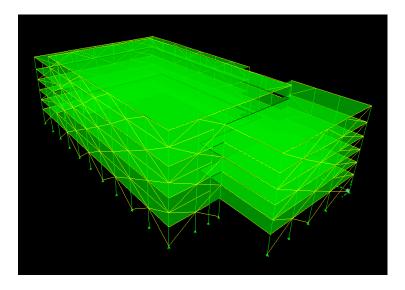


Figure 13: Preliminary Bracing Locations in ETABS I

The next check was for deflection limitations. Under wind loading, the deflection of the roof level was compared to $\frac{H}{400}$. The allowable limit for Helios Plaza was 3.39" and this was far exceeded by the building with a deflection of over 4.5" in the North-South direction. Brace sizes in the North-South direction were increased to 12 Standard pipe above the third floor and

to 12 x pipe from the ground to the third floor. Heavier members (the 12x pipes) were used in the lower stories because these levels saw the most interstory drift. The effect of increasing the brace size was a decreased deflection, but the value still did not fall below the acceptable maximum.

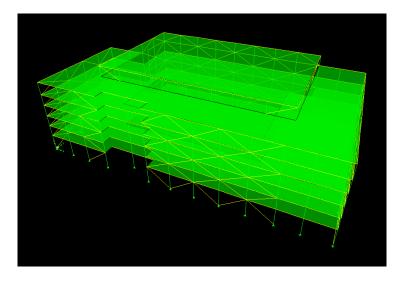


Figure 14: Preliminary Bracing Locations in ETABS II

At this point, 12 x pipe was the maximum strength pipe that still met slenderness requirements. This meant that either more frames were needed or a different section type needed to be picked as bracing members to lower the deflection of the building to an acceptable level. As mentioned before, the steel pipe sections were chosen for aesthetic purposes and were part of the architectural breadth of this thesis, so the option of more frames was chosen. Placement of the braces would ultimately affect the floor plan of the building so a maximum amount of stiffness per floor area was a priority. To achieve this, x-bracing was placed in two bays that had as minimal effect on the floor plan as possible. The braces would occur on every floor up until the sixth floor and would be 12 Standard pipe sections. The end result of the addition of these frames was a maximum deflection of 3.24".

Relative Frame Stiffness

With the frames finalized for strength and serviceability requirements, the relative stiffness of the frames was able to be determined. A 1000 kip load was assessed at the top of each frame and the deflections recorded for each frame. With this data, the relative stiffness of each frame could be compared for distribution of forces within the building.

The locations of each of the frames in plan can be seen in Figure 15 for the North-South direction and in Figure 16 for the East-West Direction. A summary of the relative stiffness of each frame can be seen in Table 4 and 5.

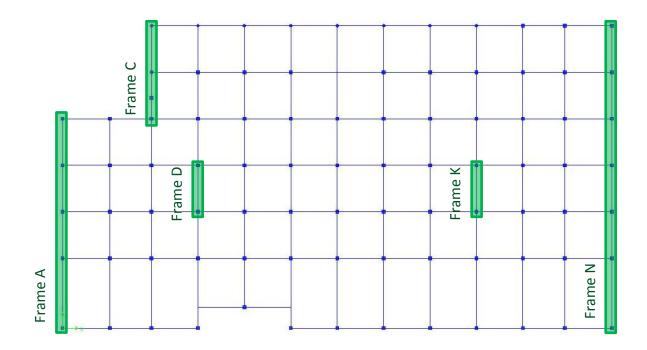


Figure 15: North- South Braced Frame Locations

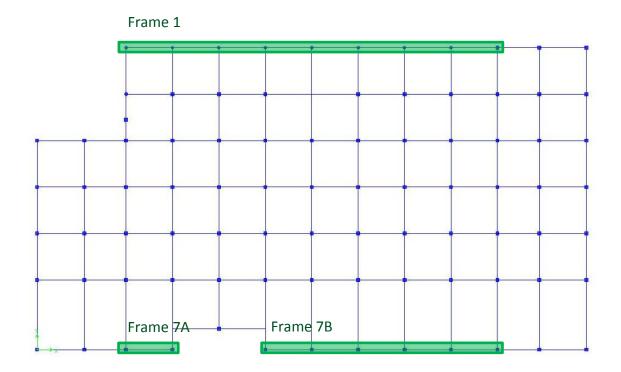


Figure 16: East-West Braced Frame Locations

1000 k Load In Y-Direction				
Frame	Δ	K (k/in)	K _{relative}	K _{relative} (%)
А	9.650	103.6	0.2834	28.34
C	22.906	43.7	0.1194	11.94
D	31.919	31.3	0.0857	8.57
К	31.912	31.3	0.0857	8.57
N	6.423	155.7	0.4258	42.58
	Total	365.6	1	100

Table 4: Relative Stiffness in North- South Direction

1000 k Load In X-Direction				
Frame	Δ	K (k/in)	K _{relative}	K _{relative} (%)
1	6.965	143.6	0.5934	59.34
7A	73.507	13.6	0.0562	5.62
7B	11.797	84.8	0.3504	35.04
	Total	241.9	1	100
Table F. Deletive Stiffmann in Fast West Direction				

Table 5: Relative Stiffness in East-West Direction

Despite the approximate ten percent imbalance in the relative stiffness in the x-direction the effects were not strong enough to cause serious torsional problems in the redesign of Helios Plaza. Analysis showed that the mode shapes for both mode one and two were x- and y-translation respectively. One effect that the stiffness imbalance did have was one column's local axis needed to be rotated. Once this rotation was applied to the member, the member was well under 1.0 for the combined axial and bending interaction equation.

Controlling Load Cases

Analysis of the redesigned system yielded the controlling loading cases as load combination 5 in the East-West direction and load combination 4 in the North-South direction. Load combination 5 means seismic controls in the x-direction and load combination 4 means that wind controls in the y-direction. As compared with Technical Report III, the redesign of the structure made no impact on the controlling load cases. This result was unfortunate since it negated one of the goals of the redesign, which was to eliminate the seismic control of the building in the East-West direction. The goal was technically met since the controlling base shear in the East-West direction was wind, but the design of the lateral system was still based upon the seismic forces.

Brace Connection Design

An investigation was performed to determine a potential connection method for the circular steel pipe braces to the wide flange beam column connection. The connection was designed to be as easily constructible as possible. Several types of steel connections were employed

between the many elements involved in the interface. The following connections were designed:

- 1) Slotted steel pipe welded to gusset plate;
- 2) Gusset plate welded to beam flange;
- 3) Gusset plate welded to double angle;
- 4) Double angle bolted to column flange;
- 5) End plate welded to beam flanges and web; and
- 6) End plate bolted to column flange.

Refer to Appendix C for calculations. The end result can be seen in Figure 17.

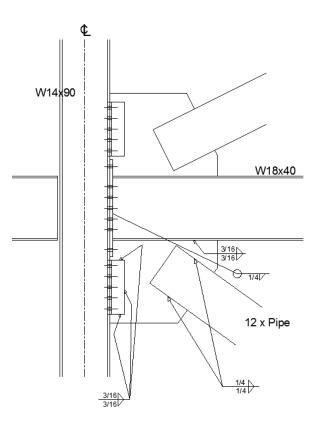


Figure 17: Steel Brace Connection

In designing the connection, several constructability issues became apparent. The low slope of the majority of the braces makes non-eccentric connections extremely unviable to erect. Calculations performed on the above connection showed that for the bottom brace to be non-eccentric by the uniform force method, the length of the weld for the beam to gusset plate connection needed to be 47.2". This long of a connection could lead to major interruption of other trades plenum spaces and for braces that frame into the base of columns, interruptions in the floor plan.

The configuration in Figure 17 resulted in the least impact on the other spaces of Helios Plaza, but the line of action of the braces does not pass through the centroid of the beam to column connection. For this to occur in the top braces, the length of gusset plate would appear as in Figure 18. The length of the gusset plate in this instance is just short of 3'-4".

The best way for the connection to reduce the gusset plate size would be to have a β value of 7.04" for the bottom connection; however, this is not possible. The length of the double angle connection needs to be 15" to avoid tensile rupture of the bolts connecting it to the column flanges. The prying action of the double angle severely limits the ability to shorten this connection length.

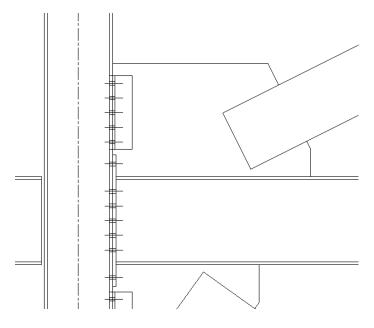


Figure 18: Upper Brace Configuration for Non-eccentric Connection

Based upon these findings, it would seem that switching the connections to welded moment connections could be more advantageous in both terms of constructability and cost. The connection that was designed has many components that have very specific tolerance that may be hard to meet in the field. While some parts can be attached in the shop for speed of erection, such as the double angles on the column and the gusset plates on the beams, this would seem to create a much more expensive connection due to components. One of the main reasons for avoiding moment connections is to limit the amount of welding that needs to be performed in the field, but this connection still requires field welding of the steel pipe to the gusset plate. This weld is much easier to complete due to the separation from nearby elements, but the time and labor involved is still substantial.

Architectural Breadth - Brace Selection and Layout

One of the main design decisions made in this thesis redesign was the bracing selection. To marry the architecture of the existing spaces, a circular section was chosen because one of the focal points of the building's design is the circular steel columns and beams located in the trading floors. Figure 19 is a picture of one of the trading floors. The large open spaces were a design goal of both the owner and the architect and the large columns that are sparingly used stand out as features in this space.

Figure 19: Helios Plaza Trading Floor

The visibility of the braces in these spaces warranted similar geometric properties, hence the design decision for steel pipe. Several configurations for the braces were explored for aesthetic purposes and a diamond pattern was chosen to create a simple repeating geometry in the space. Initial brace design can be seen in Figure 20.

To confirm the choice of the diamond pattern, a Revit model was created to explore the space. Once the existing conditions were created, the braces were added to the exterior wall line and a rendering was of the space was run. Figure 21 shows the outcome of the rendering. The connections in the rendering are clean moment connections, despite modeling them as pin connections and designing the connection as a pin connection as a structural depth.

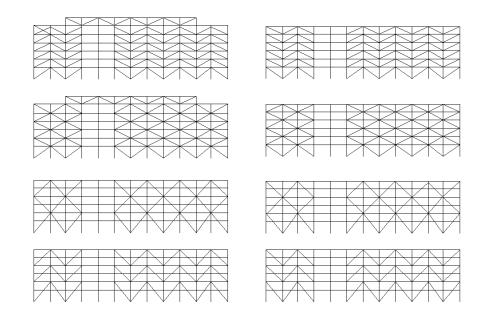


Figure 20: Initial Brace Configuration Considerations

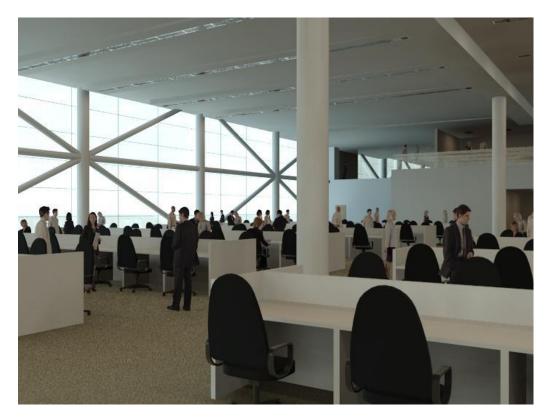


Figure 21: Interior Rendering of Trading Floor with Diagonal Braces

In an attempt to minimize the impact on the floor plan of the building, the locations of the braced frames were located originally on the exterior only. As discussed before, deflection criteria led placing braced frames on the interior of the building. To try and maintain the goal of minimizing floor plan impacts in this thesis, a location was picked that had limited traffic in the building. Due to the nature of x-braces, there would be no way for any people to pass through the chosen bays. The area least likely to be affected by the braces can be seen in Figure 22 called out in red.

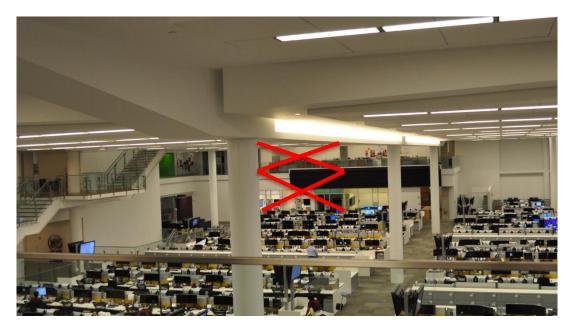


Figure 22: Area of Interest for Interior Braces

At the edge of the trading floor spaces, there is a perimeter walkway on the story above. Unfortunately, these braces will affect the floor plan of the trading floor spaces since they block the entrance into a conference room. There is potential for this room to have its entrance rerouted to the other side and to even keep the glass in place for a viewport into the trading floor. Because the trading floors only occur every other level, this limits the amount of floor plan that is hindered by the braces and could even be a feature of the space.

Construction Management Breadth – Cost and Schedule

A key component in verifying the redesign is whether or not it is an economically viable solution. Investigations in Technical Report II showed that there would be an increase in structure cost with the switch from one-way concrete pan joists to a composite steel deck system. These investigations were based off of RS Means assemblies costing information,

which are very generalized and not particularly accurate when the assembly does not match the bay dimensions very well. To determine a more accurate cost difference, a detailed estimate was performed using RS Means CostWorks.

Foundation Reduction

Before the detailed estimate was performed, an investigation was performed on whether significant cost savings could be had from reducing the size of the foundations based upon the lighter weight of the redesign. The switch to steel resulted in a 39.5% reduction in the building weight, amounting to 11,678 kips.

The redesign of the foundation proceeded with determining which footings were most likely to have significant reduction potential. The footings investigated can be seen in Figure 23. Output from ETABS was drawn upon to determine the controlling load case for axial force in the columns above the footing of interest and analysis was performed in by hand to see if reductions could be made.

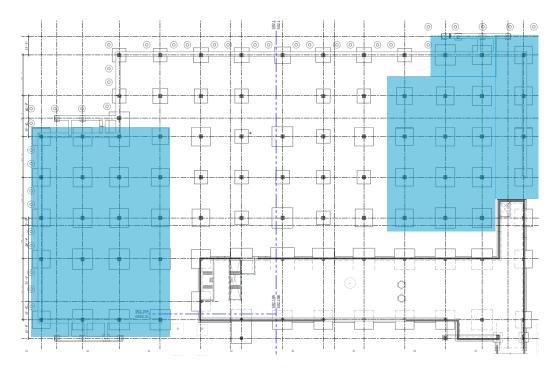


Figure 23: Foundations of Interest for Redesign

For design of the footings, an allowance of 500 psf was made for hydrostatic pressure, leaving the allowable bearing capacity of the soil at 6000 psf. Based upon the loads determined in ETABS, the require area of footing was calculated to keep the amount of force in the soil below 6000 psf. The area was then converted into square dimensions and rounded up to the nearest

foot. These dimensions were then used to find the corresponding footing already designed for this project in the technical documents. The results of the foundation reductions can be seen in Table 6.

Foundation Savings					
Concrete (CY) Formwork (SFCA) Cost					
Original Design	2012	16131	\$ 319,779.62		
Redesign	1756	14355	\$ 280,321.94		
Savings	256	1776	\$ 39,457.68		

Table 6: Foundation Redesign Savings

Superstructure Cost Comparison

The savings for the foundation reduction were not significant enough to offset the switch to a composite concrete system. After the foundations were investigated, detailed estimates of the entire superstructure of both designs were prepared and the results can be seen in Table 7. Cost information was retrieved from RS Means for the majority of materials and processes, but some material information was not directly available. In these instances, costs and daily outputs were interpolated or extrapolated from similar materials to arrive at a reasonable value. For full cost analysis, refer to Appendix D. The cost difference between the two superstructures can be explained almost entirely by the applications of fireproofing; it alone accounted for \$709,220 of the steel superstructure cost.

Superstructure Cost					
Cost Cost (O & P)			t (O & P)		
Original Design	\$ 5,887,030.09	\$	7,254,951.27		
Redesign	\$ 6,866,659.78	\$	8,002,677.32		
Savings	\$ (979,629.70)	\$	(747,726.05)		

Table 7: Overall Superstructure Cost

Schedule Comparison

With the costing completed, the schedules for the two superstructures were compiled and compared. Several assumptions were made when determining the construction durations of certain tasks. In regards to the steel superstructure, four crews were used standardly to get building output. This assumption was related to the assumption that two cranes would be used to construct the superstructure. Once the erection times were compiled, they were sequenced in Microsoft Project. The steel superstructure schedule can be found in Appendix E.

The construction process for the existing concrete structure was much more involved than the redesign since the formwork process needed to be staggered to achieve remotely comparable construction times. Eight crews were used standardly for the erection of the concrete

superstructure. Another assumption was that the building would be divided into three parts for the placing of formwork and concrete, with two of the sections being larger than the third. The proposed separations can be seen in Figure 24.

Figure 24: Proposed Concrete Pour Separations

A total superstructure build time of 143 days was achieved for the steel redesign as compared with the build time of 194 days for the concrete structure. This time saving is significant since the amount of labor used in the construction of the original concrete structure is double what is used in the steel construction.

MAE Considerations

Throughout the design process, specific tasks were completed with MAE coursework as the knowledge foundation. For accurate modeling of the structures in the various software programs, principles and guidelines from the Computer Modeling of Building Structures class were utilized. In regards to the design of the lateral bracing system, guidelines learned in the Earthquake Resistant Design of Buildings course were utilized for proper strength, local buckling, and slenderness requirements. Finally, the Design of Steel Connections course notes were crucial in the design of the brace to column to beam connection. All three of these courses were helpful aids in expanding practical Master's knowledge into this thesis report.

Conclusion

The redesign of Helios Plaza from a mainly concrete moment frame system to a concentrically braced steel frame system managed to achieve four of its initial six goals. The goals achieved were:

- 1) Reducing the overall building weight;
- 2) Minimizing floor plan impacts;
- 3) Creating aesthetically compatible braces; and
- 4) Reducing the construction schedule.

The two goals that were not met were eliminating the seismic control of forces in the East-West direction and offsetting the cost of the steel structure by reducing the amount of foundations needed. As part of the investigations, a typical steel connection involving all types of members in Helios Plaza was designed.

The design and analysis of the steel structure showed that despite large weight savings, the controlling load cases stayed the same in each direction. Deflection criteria were of particular importance in this design since the building had a relatively soft design.

Architectural concepts explore that had the connections been designated as moment connection and welded in place, the aesthetic of the trading floors would have been upheld. With the welded connections, the impact on the floor plan would have been minimal.

The benefits of switching to steel were decreased schedule time and a nearly comparable cost. If further analysis were to be carried out on labor costs as a function of building time, the gap between costs could potentially close substantially.

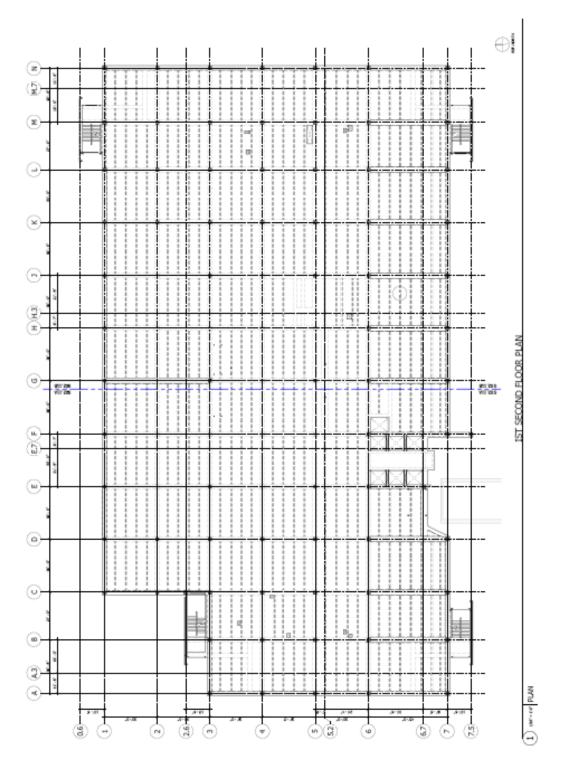
Issues with the design that became apparent during analysis were related to the brace orientations. The slope of the braces was shallow enough that the connections would be very large and would certainly affect the floor plan and construction process of the building. The apparent solution to this problem is to make all of the connections welded.

Overall, the design was effective at resisting all loads placed upon it and would be a viable alternative to the existing structure.

References

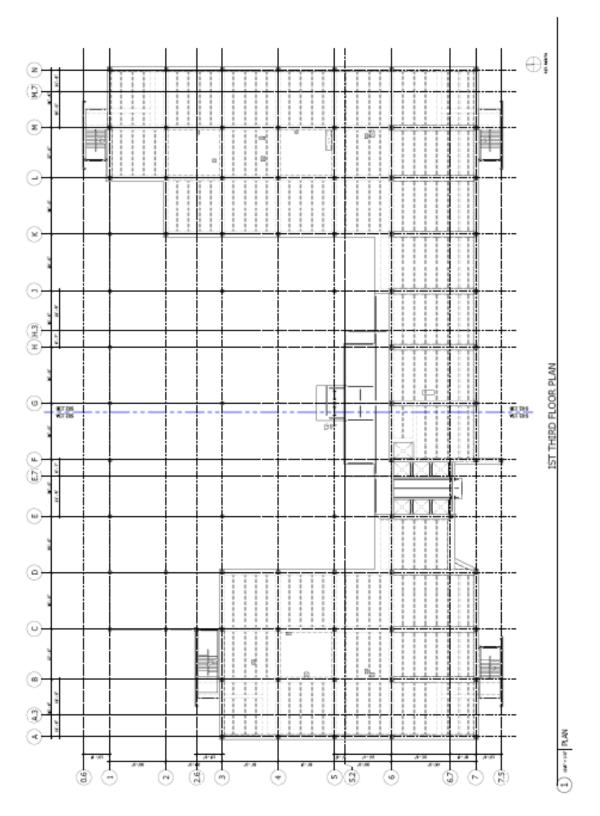
American Concrete Institute, 2008, Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary, Farmington Hills, MI.

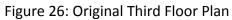
American Institute of Steel Construction, Inc., 2005, *Steel Construction Manual*, 13th Edition, Chicago, Illinois.


American Institute of Steel Construction, Inc., 2005, Seismic Provisions for Structural Steel Buildings, AISC 341-05, Chicago, IL.

American Society of Civil Engineers, 2010, *Minimum Design Loads for Building and Other Structures*, ASCE 7-10, Reston, VA

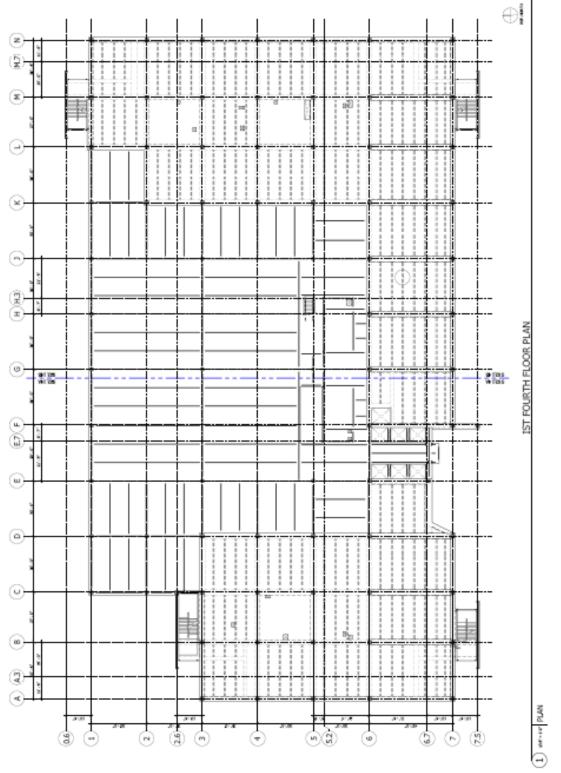
Geschwindner, Louis F., 2008, *Unified Design of Steel Structures,* John Wiley & Sons, Inc., Hoboken, NJ

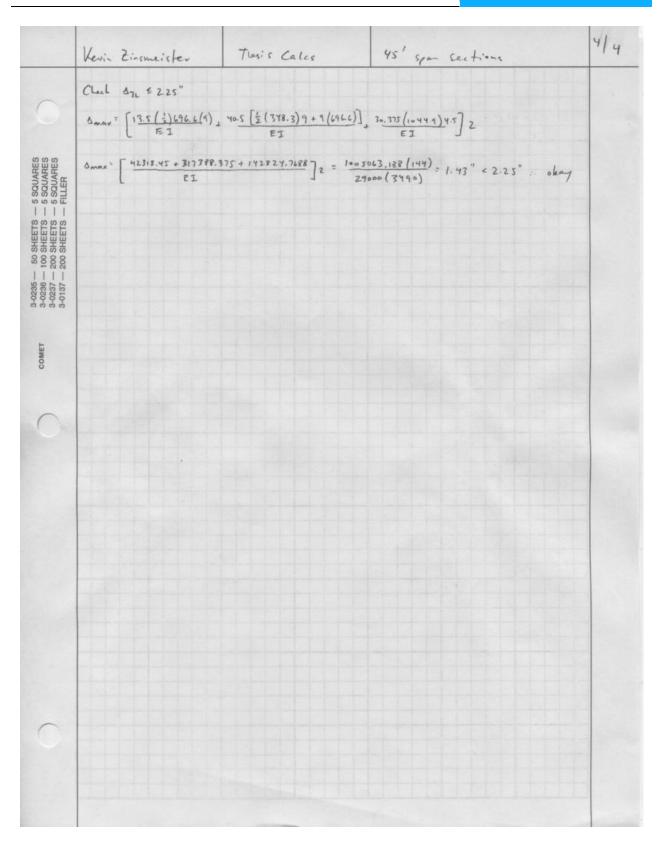

RS Means, 2010, Assemblies Cost Data, 34th Edition, Reed Construction Data, Kinston, Ma.


Appendix

Appendix A: Existing Structural Floor Plans

Figure 25: Original Second Floor Plan



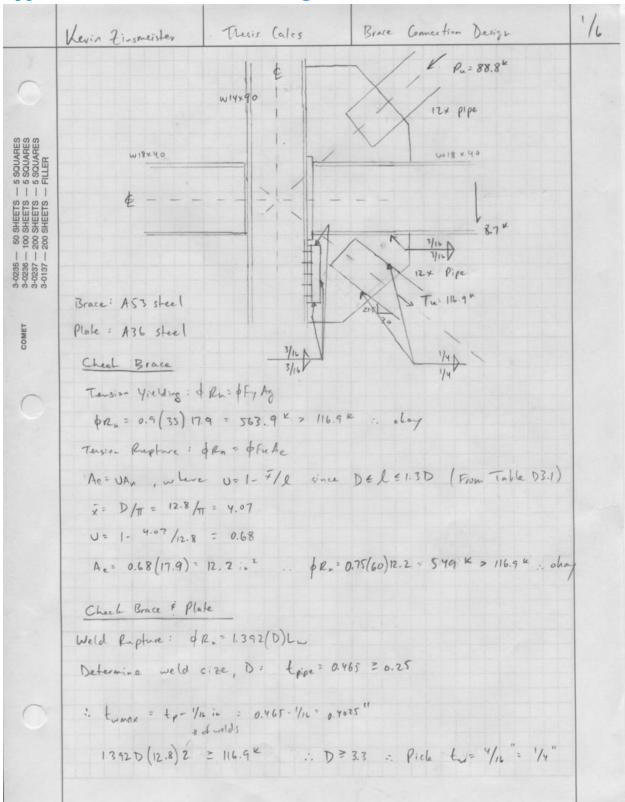

Figure 27: Original Fourth Floor Plan

Verin Zinsmeister	Thesis Cales	45° span section-s	
Deck Design: Assume			
		- 1- 1-	
		- Sto = ,	
		(2)	
	Beam	Cionado	
	- 11/1/1	- 10	
	30.5'	*.	
Kuc A1 = 1 (9) 30.5 = 2	745 ft2 < 400 ft2 : 1111	load reduction not allowed	
w = 15+80+37 = 132	- pst		
· Pich ISVL 17 w/	314" Luc topping (43)	"4" thickness total)	
Check Unshared Clear	Span (7 spans) : 10:6" = 9"	o" . okay	
Check load Capacity	: 184 psf > 132 psf : 0	ling	
Bean Design			
Ku AT = 2 (9)30.5 = 549	Fizz 400 fiz : lise los	I reduction allowed .	
LL= Bo (0.25 + 15)=			
	(71.2) = 182.3 psf =) w	6/102 2) = 114 111	
$M_{u}^{*} = \frac{w_{1}}{g}^{2} = \frac{1}{2} \left(\frac{y}{(75.5)}^{2} \right)^{2}$		9 (11C, 5) - 1.67 W.S.F	
		- 1:0 = 3.25 in it roud diese for :	3 :-
	W 12 x 30 w/ Mus 220	κ έ ξας = 110 κ	
$\frac{1}{2} eff = \frac{1}{2(1/2)} \frac{1}{2(1/2)} = \frac{1}{2}$	$(12)/4 = 91.5" \notin controls$ (12) = 108"		
a = <u>Ea</u> 0.85 l'c beff 0.85 (3.	5)915 = 0.40 " e 1.5 " assame	d'a" value okay	

Appendix B: Redesign Hand Calculations

2/4 Thesis Cales Kevin Zinsmeister 45' spa sections Check Bare Steel Strength: Use DL & construction live Load w=1.2(15+37+5)+1.6(20)=1004 psf => w== 100.4(9)= 0.90 Lef => M== 0.9(30.5)= 104.7 W12x 30 has pm = 162 1 > 104.71 .. ohay 0 SHEETS - 5 SQUARES 0 SHEETS - 5 SQUARES 0 SHEETS - 5 SQUARES 0 SHEETS - FILLER Check she = 1 = 30.5 (12) = 1.02" From Table 3-20, ILS = 386 1." ALL SULL STORE STORE STORE 1.23" +1.+2" .. not along 500 Trajla Sweld 5 (0.71) 33.5 4 (1728) 384 E Du 384 (2900) 1.02 467 1.4 Check Swa = 240 = 30.5(12) = 1.53" COMET Trajer = 5 (0,57) 30,54 (1728) 384 (2900) 1.53 = 250 in 4 . Pick W16+26 w/ ILB = 482 in 4 > 467 in 4 . okny for ALL ISB = 301 in 4 > 250 in 4 : okny for Auc \$Mn = 230 'x > 190.7 'x . okny for composite strength \$Mn = 166 'x > 104.7 'x ... okny for base beau strength Zan = 76.0 " " studs = 14 studs to, full beau span Girder Design KuAT = 80 (0.25 + 12/25.75)30) = 48.9 pst w= 1.2(57)+1.6(48.9)=146.6 psf, P= 146.6(9)28.75+26(28.75)=38.7× Part Part Part 9' 9' 9' 9' 77.4 38.7 " Vu(k) - 78.72 696.612 Mul(4+)

3/4 45' span Sections Thesis Cales Verin Zinsmeister From Table 3-19 pick W24×84 w/ \$ Mn=11101 ; 2 Ru 309 * 6'= 1 400/8 = 45(12)/8 = 67.5 " $\min_{x_{1}} \left| \begin{array}{c} \varrho_{x}/\iota &= 30.5 \left(l2 \right) /2 \\ \varrho_{x}/\iota &= 27 \left(l2 \right) /2 \\ &= 162^{\prime\prime} \end{array} \right|$: beff = 2 (67.5) = 135 " SQUARES SQUARES SQUARES a= 200 0.85f'c beff = 0.85(3.5) RS = 0.77" cl.5" : choice is conservative - 50 SHEETS - 5 - 100 SHEETS - 5 - 200 SHEETS - 5 - 200 SHEETS - 5 Check Bare Steel Strength: Use DL & Construction Line Lond win= 1.2 (57) + 1.6 /20) = 100.4 pst , Pa= 100.4 (9) 23.75 = 26.0* Mu= 52(4)+26(4) = 702 " U24 + 84 bos & Mn= 804" > 702" : ohay Check su = 2 - 45(12) = 1.5" Virtual work for smax: Wet 1.6(48.9)= 78.2 pst => Put = 78.2(9)28.75 = 20.2 " COMET Pu 1.0 5 Z 40.4" VIX) 7.0 10 -20.2* Yayl 545.4 IK 7.5 he 343.6 12 19=7.5 y=6 $= \left[\frac{1}{2} (3) 9 (363.6) 9 \frac{1}{2} \left[\frac{1}{2} (3) 9 + 3 (9) \right] \left[(575.4 - 363.6) \frac{1}{2} 9 + 363.6 (9) \right] + \left[\frac{1}{2} (1.5) 9 x^{4} 6 (x) \right] 5.42.4 (4.5) \right]$ $\Delta_{\max} : \left[\frac{22088.7}{E1} + \frac{165665.25}{E1} + \frac{74549.3625}{E1} \right] 2 = \frac{524606.625 \text{ ft}^2 L^2 (144)}{29000 (3490)} = 0.75'' < 1.5'' :. o hay$ From Table 3-20, ILA = 3490 in 4 Check and f 270 = 47(12) = 225", Pur = 57(9)2875 = 14.8 " Amox = 384365.25/144) = 0.81" = 2.25" .: along


	Kevin Zinsmeister Thesis Calce Column Gravity Design
	DL Roof: 30 psf LL: office: 80 psf wall: 2
	Floors: 57 psf: 8pf Medanical: 100 psf (meduceable)
	Column AT @ 5
FILLER	$A_{7} = \begin{pmatrix} 45\\ 2 \end{pmatrix} \begin{pmatrix} 7 & 5 \\ 1 \end{pmatrix} = 345 (11) (1$
0	$P_{1} = 52.4 (343) + 100 (343) = 52.3 \times P_{0} = 65 (343) 2 + 388 (\frac{45}{2} + \frac{30.5}{2}) + 100 (\frac{45}{2} + \frac{30.5}{2}) = 74.3 \times P_{0} = 65 (343) 2 + 388 (\frac{45}{2} + \frac{30.5}{2}) + 100 (\frac{45}{2} + \frac{30.5}{2}) = 74.3 \times P_{0} = 65 (343) + 100 (\frac{45}{2} + \frac{30.5}{2}) = 74.3 \times P_{0} = 65 (343) + 100 (\frac{45}{2} + \frac{30.5}{2}) = 74.3 \times P_{0} = 65 (\frac{343}{2}) + 100 (\frac{45}{2} + \frac{30.5}{2}) = 74.3 \times P_{0} = 65 (\frac{343}{2}) + 100 (\frac{343}{2}) = 74.3 \times P_{0} = 74.3 \times$
200 SHEET	Pu= 1.20+1.6L = 1.2 (74.3) + 1.6 (52.3) = 173 K . [WIOx3] From Table 4-1
τI	Column BbB 5
- 131-	Ay = (45+30)(20.3+27) = 1078 \$ Ured = 80 (0.25 + 15) = 80 (0.478) = 38.3 psf
	PL= 32.3 (1078) + 100 (1078) = 149 × PD= 65 (1078) 2 = 140 K
	Pu: 120+1.6L = 12(140)+1.6(144): 406 WIXYA Tran Table 4-1
	Column AS @ 5
	AT 30 (505) = 158 \$ Ured = 30 (0.25 + 15 - (4(418))) = 30 (0.601) = 48.1 psf
	$P_{L} = 48.1(458) + 100(458) = 46.3^{k}$ $P_{0} = 65(458)2 + 388(30) + 400(30) = 53.4^{k}$
	Pu= 120+162 = 12(53.4)+16(463)= 138 * [WIOX 33] From Table 4-1
	Column ATE 3
-	LL red = 80 (0.25 + 15 - (4/343)3) = 80 (0.484) = 38.7 psf
	PL= 38.7 (343) 3 + 100 (343) = 74.1 K Po= 65 (343) 4 + (388 + 400 + 2 (375)) (37.75)= 147 K
	Pu= 1.20+16L = 1.2(147)+1.6(74.1)= 295 × [W10×45] From Table 4-1
	Column B6@3
	Llred = 30 (0.25 + 15 (14(343)3) = 80(0.382) < 0.4 = 00(0.4) = 32 psf
	PL= 32 (1078) 3+100 (1078) = ZH K Po= 65 (1078) 4 = 280 K
	PL-1.2(280)+1.6(211) = 674 K [w 12×72] From Table 4-1

2/2 Kevi- Einsmeister Thesis Calis Column Gravity Design Column AS@3 Ured = 80 (0.25 + 15 (4/458)3) = 80 (0.452) = 36.2 psF PL = 36.2 (458) 3+ 10= (458) = 95.5 " PD = 65 (458) 4 = 119 " S SQUARES SQUARES SQUARES Pu= 1.2(119)+1.c (95.5)= 296 K [W10×45] From Table 4-1 - 50 SHEETS - 5 S - 100 SHEETS - 5 S - 200 SHEETS - 5 S - 200 SHEETS - 5 HL Column AT@ Grand Llved = 80 (0.25 + 15 (4(343)5) = 80 (0431) = 34.5 psf PL= 34.5 (343)5+100 (343)= 93.5 K P0=65 (343)6=134 K Pu= 1.2(134) +16(13.5) = 310" [WIOX54] From Table 4-1 COMET Column B6@ Ground PL: 32(1073)5+100(1078)=280 " P0=65(1078)6 = 420 " Pu= 1.2(420)+16(220)=952 W [W14×109] From Table 4-1 Column AS @ Grand LLred = 80 (0.25 + 15) = 80 (0.407) = 32.5 psf PL= 32.5 (458) 5+ 100 (458) = 120 " Pp = 65 (458) 6 = 179 " P== 1.2(179) +1.6(120) = 407 K [w12×65] From Table 4-1

	Kevin Zingmeister Thesis Cales Brace Design	1/3
-	EW South Facade	
0	$\frac{162}{2} \int_{\mathbb{R}^{2}} \frac{1}{2} \frac{1}{2} D + 1.0 \text{ m} + 0 \text{ m} + 0 \text{ m} = 1 \cdot 2 \left(\frac{30.5 \times 27}{2} \right) \frac{45}{2} (0.057) 2 + \frac{773.9 + 638.5 + 0.5}{2(5)} + \frac{6.46.875}{0.08} \right) = 0.08 (2)$	
ARES	Pu = 1.2 (36.9) 2 + 77.4 + 63.1 + 0.5 (51.75) 2 = 282.8 "	
5 SQUARES FILLER	Tu= 0.7 D+ 1.0 w = 0.7 (36.9)2 - (77.4+65.1) = -90.9 K	
ETS -	Lunbraced = 28.02.44 - 28.44	
200 SHE 200 SHE	Try Pipe 8 x - Strong w/ Ag = 11.9 in 2 tom = 0.5 toles = 0.465	
3-0237	D= 8.63 in , 1= 2.89 in	
000	Check local Buckling	
	1= 2ps => 1=18.6 < 36.5= 2ps 1. ohay	
	$\lambda = \frac{1}{2} = \frac{8.63}{0.465} = 18.6 , \lambda p_{5} = 0.044 \frac{E}{F_{7}} = \frac{0.044(24000)}{35} = 36.5$	
1	Clech Stendemess	
	KL = 4.0 - Fy => KL = 116.3 \$ 115 = 4.0 JE : try Pipe lox-story	
	$\frac{K_{L}}{Y} = \frac{1.0(28)12}{2.89} = 116.3 4.0 - \sqrt{\frac{E}{F_{Y}}} = 4.0 - \sqrt{\frac{27000}{35}} = 115$	
	Ag = 15.0 in them = 0.5 in, thesign = 0.46T in, D= 10.8 in, I= 3.64 in	
	Check Local Buckling	
	l= 0/t = 10.8/0.465 = 23.2 e 36.5 = 1 ps : okay	
	Check Stedemass	
	KL = 1-(28)12 = 92.3 × 115 = 4.0 TE : ohay	
	Compressive Strength	
)	Check KL & 471 - Fry , 4.71 - 4.0 okay	
	$F_{e} = \frac{\pi^{2} E}{(K_{L})^{2}} = \frac{\pi^{2} (2900)}{92.3^{2}} = 33.6 \text{ les:}$	

	Kevin Einsmeister Thesir Cales Brace Design	2/3
	Fer = (0.658 Fy/Fe) Fy = (0.658 35/33.6) 35 = 22.6 ksi	
3	dPn= 0.9 For Ag = 0.9 (22.6) 15.0 = 305.1 × 282.8 × = Pn ohny	
	Torsile Strength	
SQUARES	dPn= 0.9 Fy Ag= 0.9 (35) 15= 472.5 " > 90.9 " okay	
- 5 SC	314 Pu= 1.2 (646.875) 0.057(2) + 54.0 + 42.4 + 0.5 (646.875) + 08/2) = 236.6 K	
SHEETS	Tu= 0.7 (646.875) 0.057 (2) - (54.0+42.4) = -44.8 4	
- 200 S	Lumbraced = 21.4 Ft	
3-0237	Try Pipe 8 x-strong w/ Az= 11.9 in2, thom= 0.5 in, todesign = 0.465 in	
	D= 8.63 in , 1= 2.89 in	
	Check Local Buckling	
	2= D/t = 8.63/2.465=18.6 = 36.5 = 2ps : okay	
-	Check Sterderness	
	KL 1.0 (21.4)12 = 88.9 = 115 = 4.0 - F ohay	
	Compressive Strength	
	KL = 4.71 - FEy :. Fer = (0.658 F1/Fe) Fy = (0.658 35/36.2) 35 = 23.35	-
	, 동일에 이 것 같은 것 것 같은 것 것 것 것 것 것 가 봐 봐 봐 봐 있는 것 한 것 같이 ?	
	$Fe = \frac{\pi^2 E}{(K^2/r)^2} = \frac{\pi^2 / 29000}{88.9^2} = 36.2 \text{ ksi}$	
	\$Pn= 0.9 For Ag= 0.9 (23.35) 11.9 = 250.0 K >236.6 K ohey	
	Tersile Strengt	
	\$Pn= 0.9 Fy Ag = 0.9 (35) 11.9 = 374.9 * > 44.8 * ohay	-
-	$\underbrace{Se}_{k} = \left[1.2 \left(\frac{146.875}{0.057} \right) 0.057 \left(2 \right) + \left(\frac{16.8}{0.8} + \frac{30.2}{0.2} + 0.5 \left[\frac{646.875}{0.08} \right] \left(\frac{0.08}{0.01} + 0.1 \right) \right] = 1.43.7 \text{ K}$	
	Tu= 0.7 (646.875) 0.057(2) - (16.8 + 30.2) = 4.6 K	
	Lubracel = 21.8 A	
	Try Pipe 6 x-strong w/ Ag = 7.88 in2, them = 0.432 in, Edusign = 0.403 in D = 6.63 in, r= 2.20 in	-

	Kevin Zinsmuister Thesis Cales Brace Design	3/3
	Check Local Buckling	
0	l= D1t= 663/0.403 = 16.5 = 36.5 = 1ps :. ohay	
00 00 00	Clerk Sterdemest	
5 SQUARES 5 SQUARES 5 SQUARES FILLER	KL = 1.0 (21.8)12 = 118.9 \$ 115 = 4.0 TE not hay	
EETS	:. Pich Pipe 8 std.	
200 SHEE	Ag = 7.85 in ", then " 0.322 in , thes = 0.300 ;- , D = 8.63 is r= 2.95 in	
	Arch Local Buckling	
3-0236 3-0236 3-0137	l= D/t= 8.63/0.3 - 28.8 = 36.5 - 2ps = olicy	
t	<u>Cheel Studierness</u>	
COMET	KL 1: 1:0(21.8)12 2.95 - 88.7 = 115 = 4.0 fr = 0 luny	
0	Compressive Strength	
	VL < 4.71 { E, = (0.658 F7/Re) Fy = (0.658 35/36.4) 35 = 23.4 ks;	
	$F_{e} = \frac{\pi^{2} C}{(\kappa^{2}/r)^{2}} = \frac{\pi^{2} (29000)}{88.7^{2}} = 36.4$	
	\$P.= 0.9 Fer Ag = 0.9 (23.4) 7.85 = 165.3 × < 193.7 × . Try Pipe 10 std.	
	Ag-11.1in2, thomas 0.365 in, tous 0.340 in, D=10.8, 1=3.68 in	
	Check Local Buckling	-
	l= D/t= 10.8/0.34 = 318 = 36.5 = Lps : oleny	
	Check Standerness	
	Kul1 = 1.0(21.8)12 / 3.68 = 71.1 × 115 = 4.0 - Fry ohery	
	Compressive Strength	
\bigcirc	Ku/1= \$71 (Ex : Fer = 0.658 Fy/Fe Fy = (0.658 25/52.6) 35 = 27.0	
	$F_{e} = \frac{\pi^{2} E}{(\kappa c/r)^{4}} = \frac{\pi^{2} (25000)}{\pi_{1/2}^{2}} = 56.6$	
	\$Pn= 0.9 Fz, Ay = 0.9 (27.0) 11.1 = 269.7 K > 193.	

Appendix C: Brace Connection Design

	Kevin Zusneister Thesis Cales Brace Connection Design	2/6
	Since tw = 1/1", tgusset = tp + 1/16" = 5/16"	
\odot	Base Metal Strength: \$K. = 0.75 (0.6 Fu Anw)	
0.00.00	Plate: \$	
5 SQUARES 5 SQUARES FILLER	Brace: \$ Rh= 0.75(0.6)60(0.465)12.8(4) = 642.8 > 116.9 " okay	
5 S S	Plate Yielding : dRn = dFy Ag	
SHEETS SHEETS SHEETS	Ag = 5/16 (12.8) = 4 in 2	
- 200 5	\$x= 0.9 (36) 4 = 129.6 × > 116.9 × okay	
3-0236	Plate Rupture: dru: dru Ae	
	Ac = Az	
COMET	\$Rn= 0.75 (58) 4 = 174 " > 116.9 " oleany	
	Plate Buckling:	
\frown	1 = 0.5 (12) = 19.2 <25 From Section JY.Y Por= Fy Ag	
~	\$P_n=\$F7A3= 0.9(36)5/16(12.2)= 129.6 >116.9 K ohay	
	Gusset to Been Connection	
	weld Rupture: \$R_= 1.392(D) Lw (1+0.5 sin " D)	
	\$Rn=1.342 (3) 24 (1+0.5 5in" 35.6)	
	= 1.392(3) 24 (1.22) = 122.5 × >116.9 × o kay	
	Base Instal Strength: \$R_ = 0.75 (0.6 FulAme)	
	Plate: dR. = 0.75 (0.6) 58 (3/16) 24 = 117. 6 4 > 116.9 4 olay	
	Beam: dk= 0.75 (0.6) 65 (0.525) 24 = 368.6 K > 116.9 K .: oliay	
	Beam web Yielding: Pr= (5k+N) Fyw tw	
	\$ K. 1.0 (50) [5 (0.927) + (5/16)] 0.315 = 77.9 \$ 68.1 K : Okany	
-	68.1" = brace vertical ca-pressive force	

	Kevin Zinsmeisfer Thesis Cales Brace Connection Des	igu 3/6
0	Beam Web Crippling: $R_n = 0.8 t_w^2 \left(1 + 3 \left(\frac{N}{4}\right) \left(\frac{t_{hw}}{t_f}\right)^{1/5}\right) \int \frac{EF_{Tw} t_f}{t_w} \psi R_n = 0.75 \left(0.8\right) 0.715^2 \left[1 + 3 \left(\frac{5/1/w}{71.9}\right) \left(\frac{0.715}{0.525}\right)^{1/5}\right] \int \frac{290 w \omega (50) 0.525}{0.315}$	
6 SQUARES 6 SQUARES 5 SQUARES FILLER	\$ R = 94.8 + > 68.1 + okay .	
- 5 SQI	Gusset to Column Connection	
HEETS	Tu = 95 K , Vu = 68.1 + 8.7 = 76.8 K	
- 200	Pich 3/5" & A-325N bolts w/ dra= 15.9 ", dra= 29.8"	
3-0236 3-0237 3-0137	76.8 . 4.8 . 95 . 3.2 . Try 2 rows of 4 bolh	
TE1	Check Prying: F'+ = 1.3F4t - Fint fr	
COMET	$F'_{L} = 1.3(f_0) - \frac{90}{0.71(48)} \left[\frac{76.8}{2(4)0.442} \right] = 62.7^{451} < 90^{451}$	
0	: \$12 = 0.75 (52.7) 0.442 = 20.79 K, 14 = 95 = 11.88 K	
	Try 2 - L424 × 1/2	
	P= Jage = 2.5(2)+0.5 = 5.5 \$\overline{M_{10}(0.4)}58(0.5)^2 3.75 +	= 12.2
	min $ 3(4) + 3 4 = 3.75 \notin controls$	
	$a = U S^{W}$	
	U U Li	
	· b = 2.5 - 0.25= 2.25 , b' = 2.25 - 3/8 = 1.88	
	1. L'= 11.9(1.88) = 22.4 - \$ Ma, = 122 prying will occur	
	$ \phi_{M_{n_2}} = 12.2^{\circ} \left(1 - \frac{7/8}{2}\right) = 6.9 $	
0	$\frac{\oint M_{n_1}}{b'} = \frac{12.2}{1.88} = 6.5 + c I_{n_1} = 10.9 \Rightarrow \frac{\oint M_{n_1} + \oint M_{n_2}}{b'} = 10.2 \therefore bolls \text{will } i$	ruphie
	Add more bilts , Try 2 rows of 5. bolts	

	Kevin Einsmeister Mesis Cales Brace Connection Design	4/6
0	$F_{L}^{i} = 1.3(9\circ) - \frac{9\circ}{0.75(48)} \left[\frac{768}{2(5) \circ .442} \right] = 73.6^{44i} \times 90^{45i}$ $\phi_{1*L} = 0.75(73.6) a_{442} = 24.4^{42}, r_{4L} = \frac{95}{10} = 9.5^{42}$	
Heets - 5 Souares Heets - 5 Souares Heets - 5 Souares Heets - Filler	$p = \frac{3(5)+3}{5} = 3.6 , bM_{m.} = \frac{0.9(58)0.5^{2}(3.6)}{4} = 11.7$ $l_{utb}' = 9.5(1.88) = 17.7 = dM_{m.} = 11.7 : prying will occur dM_{m_{2}} = 11.7(1 - \frac{7/8}{2}) = 6.6$	
3-0235 50 SH 3-0236 100 SH 3-0237 200 SH 3-0137 200 SH	$ \phi_{M_{m,1}}^{M_{m,1}} = \frac{11.7}{1.88} = 6.2 c r_{n,t} = 9.5^{n} c \phi_{M,t} + \phi_{M,2}^{M_{n,t}} = \frac{18.3}{1.88} = 9.7 $	
a comet	: flange yields at first hinge, but has sufficient strength to carry rule Determine bolt strength: a= a=1.5 & controls	
0	$a' = 1.5 + \frac{3}{8} = 1.875 + \frac{9}{1.25} = \frac{9.5(1.88) - 11.7}{1.88} = 3.7$	
	Pub= 9.5+ 3.3 = 12.8 = drut = 24.4 " okay Check Angle	
	Shew yielding: $\phi V_{h} = \phi(0.6) F_{y} L_{p} L_{p}$ $\phi V_{h} = 1 \circ (0.6) 36 (18) 0.5 (2) = 388.8^{\mu} > 68.1+7.6=75.7^{\mu} \cdots \circ hav$	
	Shear Replace: $\phi V_n = \dot{q}(0.6) F_n A_n$. $A_n = 18(0.5) - 5(\frac{3}{4} + \frac{1}{8}) 0.5 = 6.8 in^2$	
0	(c = 250) $\therefore \psi_{L} = 2(46.2 + 219) 0.5 = 265.2^{2} > 75.7 K \therefore okay$	

	Kevin Zinsmeister Mesis Cales Brace Connection Design	5/6
	Checke Bolts:	
\odot	Benning & Terront :	
0.00	Angle: \$1=0.75(7.4) dy F. E = 0.75(2.4) 1/4(58) 0.5 = 39.2" (B)	
5 SQUARES FILLER	\$1 = 0.75 (1.2) Le Fut = 0.75 (1.2) [15 - 0.875] 58 (0.5) = 27.7 " (To)	
	Column: drn : 0.75 (2.4) 3/4 (65) 0.710 = 62.3 × (B)	
SHEETS SHEETS SHEETS SHEETS	\$1, = 0.75(1-2) [1.5 - 0.875] 65 (0.710) = 44.1 * (T0)	
- 200 5	Other: \$1,=0.75(1.2)[3-0.75+1/16] 58(0.5)=57.2* (T-)	
3-0236 3-0237 3-0137	- drn = 4(39.2) + ZI.7 = 184.5 K > 75.7 K : olay	
	Check Plate to Angle	
COMET	Weld Ruphure: dRn= 1.392(D)Lw	
0	\$12n= 1.392 (3) 18 (2) = 150.3 * = 116.9 * . ohay	
\cap	Base metal Strength: \$ \$ 2 = \$ (0.6) Fu Ann	
-	Angle: 0.75(0.6) 58/18)(0.5)Z = 469.3 K > 116.9 K .: hay	
	Plate: 0.73 (0.6) 58 (18) 5/16 = 146.8 4 > 116.9 4 olean	
	Plake Yielding: & Rus & Fy Ag	
	\$K_ = 0,9(36) \$/16(18) = 182.3 K > 116.9 K Lay	
	Plate Ruptue : \$ \$ 4 5 4 Fe Ac	
	\$12 = 0.75 (58) \$/16 (18) = 146.84 > 116.94 .: okay	
	Beam to Column Connection	
	twmin = 1/4 "	
	Weld Rupture: \$Rr = 1.392(0) Lu (1.5)	
	\$Kn = 1.392 (4) [2(6.02) + 15.5] 1.5 = 230 K > 95 K ohny	
0	Base metal Stragte of R. = \$ (0.6) F. Anw	
	Beam: 0, 75 (0.6) b5 [(12.04) 0.525 + 15.5 (0.715)] = 327.7 K >95K : oheny	
	plate: 0.75 (0.6) 58 (27.5) (1/4 + 1/16) = 224.3 K - 95 K : ohay	

	Kervin Zinsmeister Thesis Cales Brace Connection Design	6/
	Beam Tension Yielding: fRu= \$FyAg	
	\$R_== 0.9 (50) 11.8 = 531 K > 95 K : okay	
	Beau Tersin Ruphue : d Ku = \$ Fu te	
5 SQUARES 5 SQUARES FILLER	Ac: UAg = 1.0 Ag : \$\$\$\$ 0.75 (65) 11.8 = 575 * 75 * olegy	
5 S(5 S(Check End Plale	
SHEETS SHEETS SHEETS SHEETS	Tu= 95 K, Vu= 76.8 K	
- 2005	Pick 3/4" & ARZSN 5-15 w/ pr. = 15.9 k, \$46 = 24.8 k, 2 rows of 5 60/17	
3-0235 - 3-0237 - 3-0137 -	$\begin{bmatrix} 1 & -13(90) - \frac{90}{360} \left(\frac{76.8}{10(0.442)} \right) = 73.6^{462} = 90^{462}.$	
5	: brat= 0.75 (73.6) 0.442 = 24.4 ", rat = 10 = 9.5 "	
	$\rho = (3(5)+3)/5 = 3.6$, $d M_{m_1} = 0.9(58) 0.3125^2(3.6) = 4.6$	
	By inspection, increase plate thickness	
0	Try 3/4 thick . phan - 0.4(58) 3.6 (m)2 = 26.4 He	
	5 2.5 - 0.715/2 = 2.34 5'= 2.34 - 3/8 = 1.97	
	Public 1.97 (9.5) = 18.7 " = \$ \$ \$ \$ \$ 26.9 " = prying does not occur	
	Shear Yielding: QV= Q(0.6) Fylpte	
	ØV= 1.0 (0.6) 36 (18) 0.75 (2) = 533.2 × > 76.8 ℃	
	Ster Kuphe = dr. = d 10.6) Fu Ar	
	An= 18(0.75) - 5(1/4+1/3) 0.75 = 10.2 1.4	
	bV_= 0.75/0.6) 10.2 (58) = 266.2 × 776.8 ×	
	Block. Show: Not possible with this arrangement	
	Bolt strength.	
0	From Table 7-5, Column Boaring = 0.710 (87.8) = 62.3 th Plale Bearing = 0.75 (78.3) = 58.7 E controls From Table 7-6 Plale Terror = 0.75 (44) = 73 th	
	bk= 33+ 4 (58.7) = 267.8 k > 76.8 m okey	

	Zinsmeigher	(asr)	carry	Louism 1	orce Method	TO DO TRAT
3= 12	2 + 1 = 13"					
eg=	17.9 = 8.95 "					
er:	14 . 7 "					
tan A	= 30 = 1.395					
	$n \theta = e_{i} f n \theta - e_{i}$					
d = ls	ta O - ec + Bta	0 = 8.95	(1.395)+13(1	.395)-7 =	Z 3.6 "	
Reult	5 1- 45.7" weld	d : May	re bolted	commection o	dow n	
2:1	0.75 + 29.125 =	15.3125				
Bta	0 = ec-estano	t oc				
rs =	ectx-egtal tand	9 7+15.3	125- 7.95 (1.30	(5) = 7.04 "		
	tano		1.395			
	,t possible			have all		

Ouantity	LineNumber	Description	Orew	Daily Output	Labor Hours Unit		Material	Labor	Eq	Equipment	Total	2	Total O&P	Cast	Cost O&P	
231120	231120 031113353600	C.L.P. concrete forms, elevated s	C	475	0.101 S.F.		\$ 2.95	\$ 2	2.68 \$		ŝ	5.63 \$	7.36	\$ 1,301,205.60	\$ 1,701,043.20	43.20
26850.8125	26850.8125 031113201600	C.L.P. concrete for ms, beams an	C	315			\$ 0.74	\$ P	4.05 \$		ş	4.79 \$	7.01	\$ 128,615.39	\$ 188,224.20	24.20
93365	93365 031113202600	C.L.P. concrete for ms, beams an	C	385			\$ 0.75	ŝ	3.32 \$,	ş	4.07 \$	\$ 5.88		\$ 548,986.20	86.20
59144	59144 031113256650	CLP. concrete forms, column, s	C1	238	0.134 SFCA		\$ 0.73	\$	3.48 \$	1	ş	4.21 \$	\$ 6.15	\$ 248,996.24	\$ 363,735,60	35.60
5500	5500 031113500050	C.L.P. concrete for ms, grade bea	5	580	0.083 SFCA		\$ 1.20	\$ 2	2.20 \$		ş	3.40 \$	\$ 4.68	\$ 18,700.00	\$ 25,74	25,740.00
16131	16131 031113455050	C.L.P. concrete forms, footing, sl	CI	371	0.086 SFCA		\$ 0.93	ŝ	2.23 \$		ŝ	3.16 \$	\$ 4.44	\$ 50,973.96	\$ 71,621.64	21.64
3774,333333	3774.333333 033105350300	Structural concrete, ready mix, i			C.Y.		\$ 98.67	Ş	ŝ		\$ 8	98.67	\$ 108.25	\$ 372,413.47	\$ 408,571.58	71.58
233.5135135	233.5135135 033105350400	Structural concrete, ready mix, I			C.Y.		\$ 106.34	ş	۰۰	•	\$ 106	-	\$ 116.88	\$ 24,831,83	\$ 27,293.06	93.06
199.8918919	199.8918919 033105350411	Structural concrete, ready mix, i			C.Y.	-	\$ 121.67	ş	ŝ	1	\$ 121	121.67	\$ 133.16	\$ 24,320.85	\$ 26,61	26,617.60
838.2202202	838.2202202 033105700800	Structural concrete, placing, col	C20	92	0.696 C.Y.		\$	\$ 17	17.42 \$	8.43	s S	25.85	\$ 35.91	\$ 21,667.99	\$ 30,10	30,100.49
2011861111	2011861111 033105702600	Structural concrete, placing, spr	66	120	0.4 C.Y.	-2	\$.	\$ S	9.77 \$	0.38	\$ IK	10.15	\$ 15.09	\$ 20,420.39	\$ 30,358.98	58.98
3926.290574	3926.290574 033105700050	Structural concrete, placing, bea	C20	60	1.067 C.Y.	- 2	\$ -	\$ 26	26.64 \$	12.92	\$ 8	39.56	\$ 54.89	\$ 155,324.06	\$ 215,514.09	14.09
3033.3333333	3033.33333 033105701400	Structural concrete, placing, ele	C20	140	0.457 C.Y.		s .	\$ 11	1147 \$	5.52	\$ 16	16.99	\$ 23.53	\$ 51,536.33	\$ 71,374.33	74.33
7768.923907	7768.923907 033116100820	Structural concrete, ready mix, I			C.Y.		\$ 135.08	ş	- S		\$ 135	135.08	\$ 148.49	\$ 1,0	\$ 1,153,607.5	07.51
1001.157407	1001.157407 033105704300	Structural concrete, placing, slat	C6	110	0.436 C.Y.	~~	\$ -	\$ 10	10.65 \$	0.41	\$ II	11.06	\$ 16.50	\$ 11,072.80	\$ 16,51	16,519.10
356.481.4815	356.4814815 033105703200	Structural concrete, placing, gra	C6	150	0.32 C.Y.	~~	\$ -	\$	7.82 \$	0.31	ş	8.13	\$ 12.22	\$ 2,898.19	\$ 4,35	4,356.20
06	90 05 12 23 75 06 00	Structural steel member, 100-to	E2	009	0.093 L.F.		\$ 15.59	\$ 3	3.95 \$	2.66	\$ z	22.20	\$ 26.80	\$ 1,998.00	\$ 2,41	2,412.00
235.6666667	2 35.6666667 05 12 23 75 13 00	Structural steel member, 100-to	E3	880	0.064 L.F.		\$ 28.35	s S	2.69 \$	1.81	\$ 33	32.85	\$ 38.05	\$ 7,741.65	\$ 8,96	8,967.12
195,666667	195.666667 051223751900	Structural steel member, 100-to	E2	990	0.057 L.F.		\$ 33.60	\$ 2	2.39 \$	1.62	\$ 37	37.61	\$ 43.10	\$ 7,359.02	\$ 8,45	8,433.23
75.16666667	75.16666667 05 12 23 75 2700	Structural steel member, 100-to	E	1000	0.056 L.F.		\$ 33.60	\$	2.37 \$	1.60	\$ 33	37.57	\$ 43.06	\$ 2,824.01	\$ 3,25	3,236.68
60	60 05 12 23 75 29 00	Structural steel member, 100-to	E2	900	0.062 L.F.		\$ 40.43	\$ 2	2.63 \$	1.77	\$ 4	44.83	\$ 50.51	\$ 2,689.80	\$ 3,05	3,030.60
1440	1440 by extrapolation		53	096	0.083 L.F.		\$ 26.80	\$	3.56 \$	1.77	\$ 33	32.13 \$	\$ 35.67	\$ 46,270.08	\$ 51,359.79	59.79
2412	2412 by extrapolation		B	960	0.083 L.F.		\$ 45.42	\$ 3	3.56 \$	1.77	\$ SK	50.75 \$	56.33	\$ 122,409.00	\$ 135,873.99	73.99
480	480 05 12 23 75 35 00	Structural steel member, 100-to	BS	960	0.083 L.F.		\$ 51.98	\$ 3	3.56 \$	1.77	\$ 51	57.31	\$ 65.30	\$ 27,508.80	\$ 31,34	31,344.00
60	60 05 12 23 75 37 00	Structural steel member, 100-to	BS	912	0.088 L.F.		\$ 65.10	\$ S	3.75 \$	1.87	ŝχ	70.72	\$ 79.89	\$ 4,243.20	\$ 4,75	4,793.40
120	120 05 12 23 75 39 00	Structural steel member, 100-to	BS	912	0.088 L.F.		\$ 71.40	\$ 3	3.75 \$	1.87	\$ 77	77.02	\$ 87.24	\$ 9,242.40	\$ 10,46	10,468.80
680	680 05 12 23 75 41 00	Structural steel member, 100-to	ES	1064	0.075 L.F.		\$ 57.23	\$ 3	3.21 \$	1.61	\$ 62	62.05	\$ 70.30	\$ 42,194.00	\$ 47,80	47,804.00
120	120 05 12 23 75 43 00	Structural steel member, 100-to	8	1064	0.075 L.F.		\$ 65.10	ŝ	3.21 \$		\$ 8	69.92	\$ 78.70	\$ 8,390.40	\$ 9,44	9,444.00
436	436 051223754900	Structural steel member, 100-to	8	1110	0.072 L.F.		\$ 71.40	ŝ	3.08 \$	1.54	\$ X	-	\$ 85.76	\$ 33,144.72	\$ 37,35	37,391.36
360	360 051223755300	Structural steel member, 100-to	8	1110	0.072 L.F.		\$ 88.20	\$	3.08 \$	1.54	\$ 9	92.82	\$ 104.14	\$ 33,415.20	\$ 37,490.40	90.40
555,8333333	555,8333333 05 12 23 75 5700	Structural steel member, 100-to	ES	1080	0.074 L.F.		\$ 109.20	\$ 3	3.17 \$	1.58	\$ 113	113.95	\$ 126.89	\$ 63,337.21	\$ 70,529.69	29.69
1392.333333	1392.33333 051223755740	Structural steel member, 100-to	ES	1050	0.076 L.F.		\$ 135.45	\$ 3	3.26 \$	1.63	\$ 140	140.34	\$ 156.46	\$ 195,400.06	\$ 217,844.47	44.47
174,83333333	174.833333 05 12 23 75 57 80	Structural steel member, 100-to	8	1050	0.076 L.F.		\$ 190.05	ŝ	3.26 \$	1.63	\$ 194	194.94	\$ 216.31	\$ 34,082.01	\$ 37,81	37,818.20
240	240 by extrapolation		B	1190			\$ 71.19	\$ 2	2.88 \$		\$ 7	-	\$ 126.00	\$ 18,120.00	\$ 30,23	30,239.06
510	5 10 05 12 23 75 58 00	Structural steel member, 100-to	8	1190		-	_ I	ş	2.88 \$		\$ 11 ²	-+	\$ 126.24	\$ 57,890.10	\$ 64,382.40	82.40
360	360 05 12 23 75 59 00	Structural steel member, 100-to	8	1190	0.067 L.F.	-	\$ 121.80	ş	2.88 \$	1.43	\$ 12K	126.11	\$ 140.94	\$ 45,399,60	\$ 50,73	50,738.40
600	600 by extrapolation		ES	12 00	0.067 L.F.		\$ 89.78	\$ 2	2.88 \$	1.42	\$ 9	94.08 \$	104.42	\$ 56,445.00	\$ 62,653.95	53.95
212	2.12 by extrapolation		8	1200	0.067 L.F.		\$ 117.81	ş	2.85 \$	1.42	\$ 1Z	122.08 \$	135.51	\$ 25,880.96	\$ 28,727.8	27.87
2.40	240 05 12 23 75 61 00	Structural steel member, 100-to	ES	12 00	0.067 L.F.	-	\$ 129.15	\$ 2	2.85 \$	1.42	\$ 133	133.42	\$ 148.23	\$ 32,020.80	\$ 35,57	35,575.20
120	120 05 12 23 75 65 40	Structural steel member, 100-to	ES	1160	0.069 L.F.		\$ 192.15	\$ 2	2.96 \$	1.47	\$ 19£	196.58	\$ 217.72	\$ 23,589.60	\$ 26,12	26,126.40
160.5	160.5 051223756560	Structural steel member, 100-to	ES	11.20	0.071 L.F.		\$ 224.70	\$ 3	3.05 \$	1.53	\$ 22	229.28	\$ 254.75	\$ 36,799.44	\$ 40,887.38	87.38
360	360 05 12 23 75 76 00	Structural steel member, 100-to	ES	1150	0.07 L.F.		\$ 220.50	\$ 3	2.97 \$	1.49	\$ 22	224.96	\$ 249.28	\$ 80,985.60	\$ 89,740.80	40.80
2.40	240 by extrapolation		BS	1050	0.077 L.F.		\$ 292.95	s S	3.30 \$	1.65	\$ 29	297.90 \$	330.67	\$ 71,496.00	\$ 79,36	79,360.56
240	240 by extrapolation		ES	1050	0.077 L.F.		\$ 341.25	\$ 3	3.30 \$	1.65	\$ 34	346.20 \$	384.28	\$ 83,088.00	\$ 92,227.68	27.68
	051223600600	Pipe support framing, structural	E4	5400	0.006 Lb.		\$ 1.51	\$ 6	0.26 \$	0.02	s	1.79 \$	2.14	\$ 171,323.67	\$ 204,822.73	22.72
36000	53 12 35 02 700	0 Metal roof decking, steel, open 8	E4	4300	0.007 S.F.		\$1.22	\$C	\$0.33	\$0.03	ŝ	\$1.58	\$1.95	\$56,880.00	\$70,200.00	00.00
58272	58272 053113505300	Metal floor decking, steel, non-e	E4	3600	0.009 S.F.		\$ 1.50	\$ C	0.40 \$	0.03	ŝ	1.93 \$	2.38	\$ 112,464.96	\$ 138,687.36	87.36
253.0461201	253.0461201 032110600150	Reinforcing Steel, in place, bean	4 Rodm	2.7	11.852 Ton		\$ 891.90	\$ 376	376.63 \$		\$ 1,268.53	-	\$1,580.42	\$ 320,996.59	\$ 399,919.15	19.15
141.67695	141.67695 032110600250	Reinforcing Steel, in place, colur	4 Rodm	2.3	13.913 Ton		\$ 891.90	ŝ	442.13 \$		\$ 1,334.08		\$1,685.22	\$ 189,001.30	\$ 238,756.83	56.83
														\$ 5,887,030.09	\$ 7,254,951.2	51.27

Appendix D: Cost Analysis

Figure 28: Existing Concrete Cost Analysis

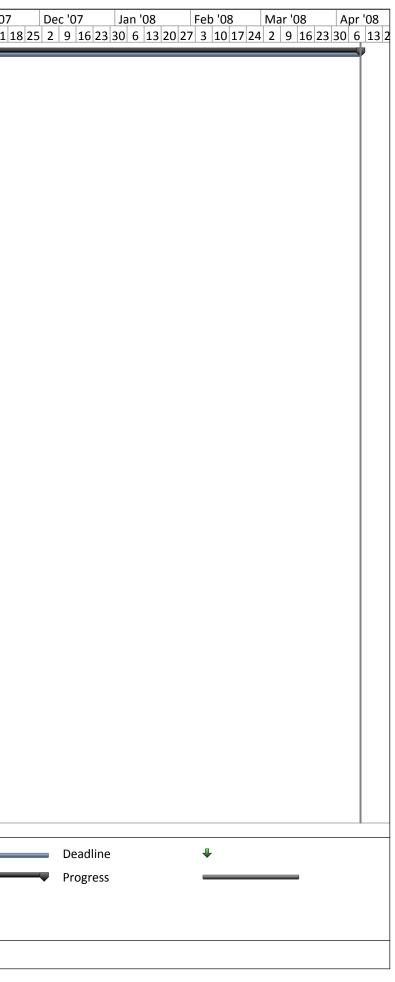
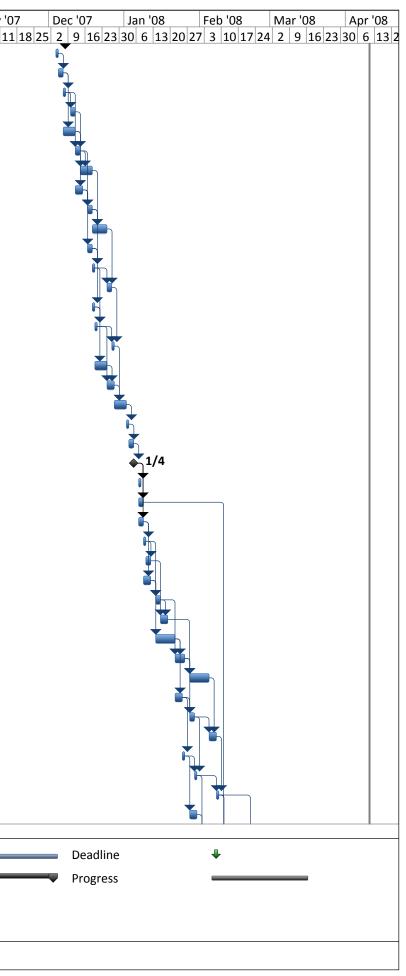

Quantity	Line Number	Description	Crew	Deily Output	Labor Hours	Unit	Material	L	abor		Equipment	Total	Total O&P	Cost	Cor	t O&P
13.5	051223750600	Structural steel m	E2	600	0.093	LJI.	\$ 15	_	_	3.95	\$ 2.66	\$ 22.20	\$ 26.80			361.80
34.66667	051223750700	Structural steel m	E2	600	0.093	LJ.	\$ 28			3.95	\$ 2.66	\$ 34.96	\$ 41.13			1,425.84
16.5		Structural steel m	E2	880	0.054	UI.	\$ 20	_	_	2.69	\$ 1.81	\$ 25.29	\$ 29.65		_	489.23
3753.333									_	_				\$ 141,162.87		161,768.67
94.5	051223751900	Structural steel m	E2	990	0.057	LJ.	\$ 33	60 :	s :	2.39	\$ 1.62	\$ 37.61	\$ 43.10		1	
21550	051223752700	Structural steel m	E2	1000	0.056	LJI.	\$ 33	60 5	\$ 3	2.37	\$ 1.60	\$ 37.57	\$ 43.06	\$ 809,633.50	5	927,943.00
608	051223752900	Structural steel m	E2	900	0.062	LJI.	\$ 40	43 5	\$ 3	2.63	\$ 1.77	\$ 44.83	\$ 50.51			30,710.08
1440	051223753300	Structural steel m	E5		0.000	UL.	\$ 45				\$ 1.77	0 51.00	4 57.44	\$ 73,454.40	\$	83,448.00
2884.167			65	960	0.083		\$ 45	50 ;	\$ 3	3.56	\$ 1.77	\$ 51.01	\$ 57.95			
2227.5	051223753500	Structural steel m	E5	960	0.083	LJI.	\$ 51	98 5	\$ 3	3.56	\$ 1.77	\$ 57.31	\$ 65.30	\$ 127,658.03	\$	145,455.75
120	051223753700	Structural steel m	E5	912	0.088	LJI.	\$ 65	10 5	\$ 3	3.75	\$ 1.87	\$ 70.72	\$ 79.89			9,586.80
4073.667	051223754100	Structural steel m	E5	1064	0.075	LJI.	\$ 57	23 5	\$ 3	3.21	\$ 1.61	\$ 62.05	\$ 70.30	\$ 252,771.02	\$	286,378.77
1080	051223754300	Structural steel m	E5	1064	0.075	LJI.	\$ 65	10 5	\$ 3	3.21	\$ 1.61	\$ 69.92	\$ 78.70	\$ 75,513.60	\$	84,996.00
1796.667	051223754900	Structural steel m	E5	1110	0.072	LJI.	\$ 71	40 5	5 3	3.08	\$ 1.54	\$ 76.02	\$ 85.76	\$ 136,582.60	\$	154,082.13
225	051223755100	Structural steel m	E5	1110	0.072	LJI.	\$ 80	33 5	\$ 3	3.08	\$ 1.54	\$ 84.95	\$ 95.74	\$ 19,113.75	\$	21,541.50
1290	051223755300	Structural steel m	E5	1110	0.072	LJI.	\$ 88	20 5	\$ 3	3.08	\$ 1.54	\$ 92.82	\$ 104.14	\$ 119,737.80	\$	134,340.60
1125	051223755500	Structural steel m	E5	1110	0.072	ul.	\$ 98	70 5	\$ 3	3.08	\$ 1.54	\$ 103.32	\$ 115.16	\$ 116,235.00	\$	129,555.00
1320	051223755740	Structural steel m	E5	1050	0.076	ul.	\$ 135	45 5	\$ 3	3.26	\$ 1.63	\$ 140.34	\$ 156.46	\$ 185,248.80	\$	206,527.20
2340	051223755800	Structural steel m		4400	0.057		4 400					A 440.54	4 400 D	\$ 333,719.40	\$	371,145.60
510			85	1190	0.067	LJ.	\$ 109	20 ;	5 3	2.88	S 1.43	\$ 113.51	\$ 126.24			
420	051223755900	Structural steel m	E5	1190	0.067	u.	\$ 121	80 5	s :	2.88	\$ 1.43	\$ 126.11	\$ 140.94	\$ 52,966.20	\$	59,194.80
555.6667	051223756100	Structural steel m	E5	1200	0.067		4 4 30			2.65		\$ 133,42	\$ 148.23	\$ 74,137.05	\$	82,366.47
240			65	1200	0.067	LJI.	\$ 129			2.85	\$ 1.42	\$ 133.42	\$ 148.23			
221.6667	051223756560	Structural steel m	E5	1120	0.071	UI.	\$ 224	70 5	\$ 3	3.05	\$ 1.53	\$ 229.28	\$ 254.75	\$ 50,823.73	\$	56,469.58
	by extrapolation		E5	1000	0.071	ul.	\$ 226	20 \$	\$ 3	3.04	\$ 1.63	\$ 230.87	\$ 256.27	\$ 55,408.80	\$	61,503.77
120	by extrapolation		E5	1000	0.071	LJI.	\$ 245	00 \$	\$ 3	3.10	\$ 1.63	\$ 249.73	\$ 277.20	\$ 29,967.60	\$	33,254.04
240	by extrapolation		E5	1000	0.071	u.	\$ 256	30 \$	\$ 3	3.10	\$ 1.59	\$ 260.99	\$ 289.70	\$ 62,637.60	\$	69,527.74
240	by extrapolation		E5	1000	0.073	u.	\$ 278	50 \$	\$ 3	3.16	\$ 1.59	\$ 283.25	\$ 314.41	\$ 67,980.00	\$	75,457.80
419589.2	051223600600	Pipe support fram	E4	5400	0.005	Lb.	\$ 1	51 5	\$ 0	0.26	\$ 0.02	\$ 1.79	\$ 2.14	\$ 751,084.67	\$	897,920.89
158	051223750740	Structural steel m	E2	550	0.102	ul.	\$ 43	05 5	ş 4	4.30	\$ 2.91	\$ 50.26	\$ 57.72	\$ 7,941.08	\$	9,119.76
62	051223750900	Structural steel m	E2	550	0.102	u.	\$ 63	53 5	ş 4	4.30	\$ 2.91	\$ 70.74	\$ 80.30	\$ 4,385.88	s	4,978.60
493.5	by extrapolation		E2	450	0.075	u.	\$ 52	01 \$	\$ 3	3.16	\$ 2.91	\$ 58.08	\$ 65.63	\$ 28,662.48	\$	32,388.60
258	by extrapolation		E2	750	0.075	u.	\$ 58	41 \$	\$ 3	3.16	\$ 2.91	\$ 64.48	\$ 72.86	\$ 16,635.84	\$	18,798.50
380	051223751560	Structural steel m	E2	750	0.075	u.	\$ 65	10 5	5 3	3.16	\$ 2.91	\$ 70.39	\$ 79.11	\$ 26,748.20	\$	30,051.80
949	by interpolation		E2	750	0.075	u.	\$ 69	04 5	\$ 3	3.16	\$ 2.91	\$ 75.11	\$ 84.12	\$ 71,277.02	\$	79,830.26
300	051223751580	Structural steel m	E2	750	0.075	u.	\$ 75	60 5	5 3	3.16	\$ 2.91	\$ 80.89	\$ 90.66	\$ 24,267.00	\$	27,198.00
300	by interpolation		E2	720	0.072	u.	5 84	53 5	\$ 3	3.43	\$ 2.70	\$ 90.66	\$ 101.53	\$ 27,196.50	\$	30,460.08
120	051223751700	Structural steel m	E2	640	0.088	u.	\$ 93	45 5	5 3	3.70	\$ 2.49	\$ \$9.64	\$ 111.90	\$ 11,956.80	\$	13,428.00
180	by interpolation		E2	640	0.088	ul.	\$ 102	76 5	\$ 3	3.70	\$ 2.49	\$ 108.95	\$ 122.02	\$ 19,611.00	\$	21,954.32
180	051223751740	Structural steel m	E2	640	0.088	UI.	\$ 113	40 5	\$ 3	3.70	\$ 2.49	\$ 119.59	\$ 132.90	\$ 21,526.20	\$	23,922.00
209	by extrapolation		E2	760	0.084	u.	\$ 78	82 5	\$ 3	3.12	\$ 2.10	\$ 84.04	\$ 94.12	\$ 17,564.36	\$	19,672.08
1045.5	051223752380	Structural steel m	E2	740	0.076	u.	\$ 116	55 3	\$ 3	3.20	\$ 2.16	\$ 121.91	\$ 136.93	\$ 127,456.91	\$	143,160.32
285.5	by interpolation		E2	720	0.076	u.	\$ 128	52 \$		3.23	\$ 2.18	\$ 133.93	\$ 148.66		\$	42,441.50
	by interpolation		E2	720	0.078	ul.	S 141			3.26	\$ 2.20	\$ 147.28	\$ 163.69	4 0.00000000000000000000000000000000000	· · ·	37,239.10
	051223752500	Structural steel m	E2	720	0.078	ul.	\$ 156	_		3.29	\$ 2.22	\$ 161.96	\$ 179.18		_	6,540.07
	by extrapolation		E2	720	0.078	LJI.	\$ 172			3.29	\$ 2.22	\$ 177.92	\$ 197.49		<u> </u>	10,170.80
	by extrapolation		E2	720	0.078	UI.	\$ 189			3.29	\$ 2.22	\$ 195.21	\$ 216.68		<u> </u>	31,635.73
	by extrapolation		E2	720	0.078	LJI.	\$ 208			3.29	\$ 2.22	\$ 213.83	\$ 237.35		<u> </u>	24,447.18
	by extrapolation		E2	720	0.078	LJI.	\$ 234			3.29	\$ 2.22	\$ 240.43	\$ 266.88			9,741.02
	by extrapolation		E2	720	0.078	UI.	\$ 253		_	3.29	\$ 2.22	\$ 259.05	\$ 287.55		_	6,182.23
	by extrapolation		E2	720	0.078	ul.	\$ 306			3.29	\$ 2.22	\$ 312.25	\$ 346.60			25,301.62
1528.5	051223600600	Pipe support fram	E4	5400	0.006	Lb.		51 5		0.26	\$ 0.02	\$ 1.79	\$ 2.14			204,822.72
49379.83	078116100400	Sprayed cementit	62	1500	0.016	SJF.		58 5		0.38	\$ 0.08	\$ 0.99	\$ 1.24		_	244,923.97
7587	078116100700	Sprayed cementit	62	1100	0.022	s.I.		59 5	_	0.52	\$ 0.11	\$ 1.22	\$ 1.56		_	568,114.56
	078116100900	Sprayed cementit		5000	0.005	SJF.		07 5		0.11	\$ 0.03	\$ 0.21	\$ 0.28			92,509.20
		Weld stud, 3/4° d	E10	1000	16			83 \$		0.72	\$ 0.35	\$ 1.90	\$ 2.66			71,197.56
286894.5	by interpolation	Metal floor deck	E4	3575	0.009	S.F.	-	18 5	5 (0.40	\$ 0.03	\$ 2.61	\$ 3.10			889,372.95
3541.907	033116100820	Structural concre				C.Y.	\$ 135					\$ 135.08	\$ 148.49			525,937.83
36000		Metai roof deckin		4300	0.007	SJF.	\$1.	_	-	0.33	\$0.08	\$1.58	\$1.95	\$56,880.00	_	\$70,200.00
5500	031113500050	C.I.P. concrete fo	C2	580	0.083	SFCA		20 1	-	2.20	ş .	\$ 3.40	\$ 4.68		<u> </u>	25,740.00
	033105350500	Structural concret				C.Y.	\$ 98	67 1	-	•	\$.	\$ 98.67	\$ 108.25			347,883.71
		Structural concre	C6	110	0.436	C.Y.	\$.	\$		0.65	\$ 0.41	\$ 11.05	\$ 16.50		_	18,169.14
1756.046	033105702600	Structural concret	08	120	0.4	C.Y.	\$	_		9.77	\$ 0.38	\$ 10.15	\$ 15.09		\$	28,498.74
14355	031113455050	C.I.P. concrete fo	C1	371	0.086	SFCA				2.23	ş.	\$ 3.16	\$ 4.44			63,738.20
3238.29	032205500100	Welded wire fabri	2 Rodm	35	0.457	C.S.F.	\$ 12	30 1	\$ 14	4.41	ş.	\$ 28.80	\$ 38.88		_	119,428.14
														\$ 6,856,659.78	\$	8,002,677.32

Figure 29: Redesign Cost Analysis

Appendix E: Superstructure Schedules

Original Schedule and Tasks Follow

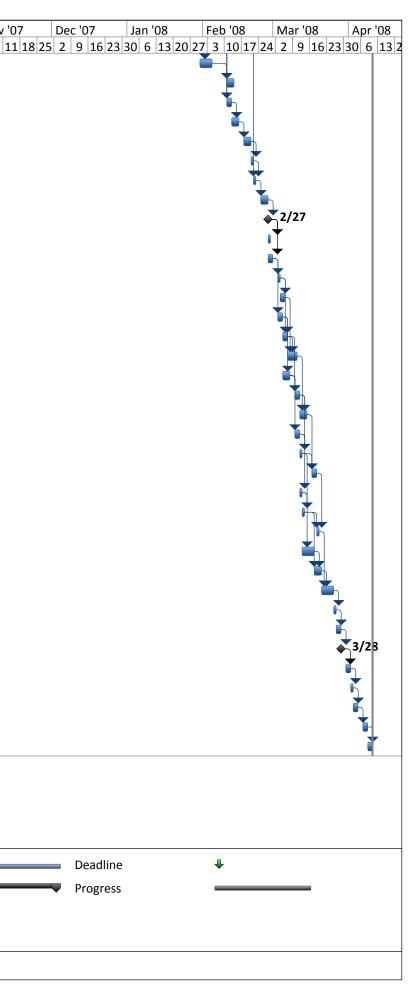
1 3 2 3 3 4 5 6 7 8 9 10 11 12 13 14	Mode	Superstructure Slab On Grade Formwork Place Rebar Place Concrete Finish 2nd Floor Shakeout Place Baseplates and Grout Frame Concrete Columns A (Ground Frame Concrete Columns B (Ground Frame Concrete Columns C (Ground	-	194 days 0 days 3 days 3 days 3 days 3 days 0 days 1 day 1 day	Tue 7/24/07 Fri 7/27/07 Tue 7/31/07	Mon 7/16/07 Wed 7/18/07 Mon 7/23/07 Thu 7/26/07 Tue 7/31/07 Tue 7/31/07	4 5	1 8 15 22 29 5 12 19 26 2 9 16 23 30 7 14 21 28 4 11 7/16
2 3 4 5 6 7 8 9 10 11 12 13 14	ն որ	Formwork Place Rebar Place Concrete Finish 2nd Floor Shakeout Place Baseplates and Grout Frame Concrete Columns A (Ground Frame Concrete Columns B (Ground	-	3 days 3 days 3 days 3 days 0 days 1 day	Mon 7/16/07 Thu 7/19/07 Tue 7/24/07 Fri 7/27/07 Tue 7/31/07	Wed 7/18/07 Mon 7/23/07 Thu 7/26/07 Tue 7/31/07 Tue 7/31/07	4 5	
4 5 6 7 8 9 10 11 12 13 14	ան որի որի որի որի որի որի որի որի	 Place Rebar Place Concrete Finish 2nd Floor Shakeout Place Baseplates and Grout Frame Concrete Columns A (Ground) Frame Concrete Columns B (Ground) 	-	3 days 3 days 3 days 0 days 1 day	Thu 7/19/07 Tue 7/24/07 Fri 7/27/07 Tue 7/31/07	Mon 7/23/07 Thu 7/26/07 Tue 7/31/07 Tue 7/31/07	4 5	
5 6 7 8 9 10 11 12 13 14	նի ն	 Place Concrete Finish 2nd Floor Shakeout Place Baseplates and Grout Frame Concrete Columns A (Ground Frame Concrete Columns B (Ground) 	-	3 days 3 days 0 days 1 day	Tue 7/24/07 Fri 7/27/07 Tue 7/31/07	Thu 7/26/07 Tue 7/31/07 Tue 7/31/07	4 5	
6 7 8 9 10 11 12 13 14	լի լ	Finish 2nd Floor Shakeout Place Baseplates and Grout Frame Concrete Columns A (Ground Frame Concrete Columns B (Ground	-	3 days 0 days 1 day	Fri 7/27/07 Tue 7/31/07	Tue 7/31/07 Tue 7/31/07	5	
7 8 9 10 11 12 13 14	ան որի որի որի որի որի Աների որի որի որի որի	2nd Floor Shakeout Place Baseplates and Grout Frame Concrete Columns A (Ground Frame Concrete Columns B (Ground	-	0 days 1 day	Tue 7/31/07	Tue 7/31/07		
8 9 10 11 12 13 14	ան ա	Shakeout Place Baseplates and Grout Frame Concrete Columns A (Ground Frame Concrete Columns B (Ground	-	1 day			6	
9 10 11 12 13 14		Place Baseplates and Grout Frame Concrete Columns A (Ground Frame Concrete Columns B (Ground	-		Wed 8/1/07	Wod 0/1/07	-	▶ 7/31
10 11 12 13 14		Frame Concrete Columns A (Ground Frame Concrete Columns B (Ground	-	1 day		Wed 8/1/07	6	
11 12 13 14		Frame Concrete Columns B (Ground	-		Wed 8/1/07	Wed 8/1/07	6	
12 13 14	₽ ₽		1. a	2 days	Thu 8/2/07	Fri 8/3/07	9	
13 14	₽,	Frame Concrete Columns C (Ground	d to 2nd)	2 days	Mon 8/6/07	Tue 8/7/07	10	
14	-		d to 2nd)	2 days	Wed 8/8/07	Thu 8/9/07	11	
14		Erect Steel Columns (Ground to 3rd	1)	2 days	Thu 8/2/07	Fri 8/3/07	8	
	3	Frame Concrete Beams A		4 days	Mon 8/6/07	Thu 8/9/07	10	
15	3	Frame Concrete Beams B		3 days	Fri 8/10/07	Tue 8/14/07	14,11	
16	3	Frame Concrete Beams C		4 days	Wed 8/15/07	Mon 8/20/07	15,12	
17	3	Frame Slab A		6 days	Fri 8/10/07	Fri 8/17/07	14	
18	3	Frame Slab B		5 days	Mon 8/20/07	Fri 8/24/07	17,15	
19	3	Frame Slab C		6 days	Mon 8/27/07	Mon 9/3/07	18,16	
20	3	Set Reinforcement A		3 days	Mon 8/20/07	Wed 8/22/07	17	
21	3	Set Reinforcement B		2 days	Mon 8/27/07	Tue 8/28/07	18	
22	3	Set Reinforcement C		3 days	Tue 9/4/07	Thu 9/6/07	19	
23	3	Place Concrete A		1 day	Thu 8/23/07	Thu 8/23/07	20	$ $ $ $
24	3	Place Concrete B		1 day	Wed 8/29/07	Wed 8/29/07	21	
25	3	Place Concrete C		1 day	Fri 9/7/07	Fri 9/7/07	22	
26	3	Finish Floor A		3 days	Fri 8/24/07	Tue 8/28/07	23	
27	3	Finish Floor B		3 days	Thu 8/30/07	Mon 9/3/07	24	
28	3	Finish Floor C		3 days	Mon 9/10/07	Wed 9/12/07	25	
29	3	Erect Steel Beams (2nd)		1 day	Thu 9/13/07	Thu 9/13/07	28	j j
30	3	Bolts/Welds		2 days	Fri 9/14/07	Mon 9/17/07	29	
31	-	3rd Floor		0 days	Mon 9/17/07	Mon 9/17/07	30	9/17
32	3	Shakeout		1 day	Tue 9/18/07	Tue 9/18/07	31	I I I I I I I I I I I I I I I I I I I
33	-	Frame Concrete Columns A (2nd to	3rd)	2 days	Tue 9/18/07	Wed 9/19/07	31	
34	₽	Frame Concrete Columns B (2nd to	3rd)	1 day	Thu 9/20/07	Thu 9/20/07	33	i i i i i i i i i i i i i i i i i i i
35	-	Frame Concrete Columns C (2nd to	3rd)	2 days	Fri 9/21/07	Mon 9/24/07	34	1 X
36	3	Frame Concrete Beams A		3 days	Thu 9/20/07	Mon 9/24/07	33	
37	3	Frame Concrete Beams B		2 days		Mon 9/24/07		
38	3	Frame Concrete Beams C		3 days		Thu 9/27/07		👗
39	3	Frame Slab A		3 days		Thu 9/27/07		
40	3	Frame Slab B		2 days		Mon 10/1/07		
		Task		Project Sumn	nary 🖵		nactive Milestone	♦ Manual Summary Rollup
roject: origina	l schodul			External Task			nactive Summary	Manual Summary
Project: original Date: Thu 4/28/		e.mpp Milestone \blacklozenge		External Mile			Manual Task	Start-only
	,	Summary		Inactive Task			Duration-only	Finish-only
			•				Page 1	



ID	0	Task Mode	Task Name		Duration	Start	Finish	Predecessors	Jul '07 Aug '07 1 8 15 22 29 5 12	Sep '07 Oct '07 19 26 2 9 16 23 30 7 14	Nov '07 21 28 4 11
41		3	Frame Slab C		4 days	Tue 10/2/07	Fri 10/5/07	38,40			
42		₽	Set Reinforcement A		2 days	Fri 9/28/07	Mon 10/1/07	39			
43		₽	Set Reinforcement B		1 day	Tue 10/2/07	Tue 10/2/07	40,42		₩	
44		3	Set Reinforcement C		2 days	Mon 10/8/07	Tue 10/9/07	41,43			
45		նի ների երի երի երի Դերի հերի հերի հերի	Place Concrete A		1 day	Tue 10/2/07	Tue 10/2/07	42		F	
46		₽	Place Concrete B		1 day	Wed 10/3/07	Wed 10/3/07	43,45		F	
47		₽	Place Concrete C		1 day	Wed 10/10/0	7 Wed 10/10/0	7 44,46			
48		₽	Finish Floor A		3 days	Wed 10/3/07	Fri 10/5/07	45			
49		₽	Finish Floor B		3 days	Mon 10/8/07	Wed 10/10/0	7 46,48			
50		₽	Finish Floor C		3 days	Thu 10/11/07	Mon 10/15/0	7 47,49			
51		3	Erect Steel Beams (3rd)		1 day	Tue 10/16/07	Tue 10/16/07	7 50		к Т	
52		3	Bolts/Welds		2 days	Wed 10/17/0	7 Thu 10/18/07	7 51		- T	
53		լի լ	4th Floor		0 days	Thu 10/18/07	Thu 10/18/07	7 52		*	10/18
54		3	Shakeout		1 day	Fri 10/19/07	Fri 10/19/07	53		•	•
55		3	Erect Steel Columns (3rd to	o 5th)	2 days	Fri 10/19/07	Mon 10/22/0	7 53			ĥ
56		3	Frame Concrete Columns A	A (3rd to 4th)	2 days	Fri 10/19/07	Mon 10/22/0	7 53			K
57		-	Frame Concrete Columns E	3 (3rd to 4th)	1 day	Tue 10/23/07	Tue 10/23/07	7 56			м,
58		-	Frame Concrete Columns (C (3rd to 4th)	2 days	Wed 10/24/0	7 Thu 10/25/07	7 57			K
59			Frame Concrete Beams A		3 days	Tue 10/23/07	Thu 10/25/07	7 56			Т.
60		3	Frame Concrete Beams B		2 days	Fri 10/26/07	Mon 10/29/0	7 59,57			
61		-	Frame Concrete Beams C		3 days	Tue 10/30/07	Thu 11/1/07	60,58			
62		-	Frame Slab A		6 days	Fri 10/26/07	Fri 11/2/07	59			
63		-	Frame Slab B		4 days	Mon 11/5/07	Thu 11/8/07	62,60			
64			Frame Slab C		6 days	Fri 11/9/07	Fri 11/16/07				
65		3	Set Reinforcement A		3 days	Mon 11/5/07					
66		3	Set Reinforcement B		2 days	Fri 11/9/07	Mon 11/12/0				
67		3	Set Reinforcement C		3 days	Mon 11/19/0					
68		-	Place Concrete A		ı 1 day	Thu 11/8/07	Thu 11/8/07	65			
69		3	Place Concrete B		1 day	Tue 11/13/07	Tue 11/13/07	7 68,66			
70		3	Place Concrete C		1 day	Thu 11/22/07	Thu 11/22/07	7 69,67			
71		-	Finish Floor A		3 days	Fri 11/9/07	Tue 11/13/07	7 68			
72		-	Finish Floor B		3 days	Wed 11/14/0	7 Fri 11/16/07	71,69			1
73		-	Finish Floor C		3 days	Fri 11/23/07					
74		-	Erect Steel Beams (4th)		2 days	Tue 10/23/07					5
75		-	Bolts/Welds		, 3 days	Thu 10/25/07					
76		-	Place Metal Deck		, 3 days	Tue 10/30/07					
77		-	Deck Edge Forms		1 day	Fri 11/2/07					· ·
78		ին են	Place Deck Concrete		1 day	Wed 11/28/0					
79		Ę.	Finish Deck Concrete		3 days	Thu 11/29/07					
80		Ę	5th Floor		0 days	Mon 12/3/07					
			Task		Project Sum	mary 🖵		Inactive Mileston	e 🗇	Manual Summary Rollup	0 0
	: origin	nal schedul			External Tas	-		Inactive Summary		Manual Summary	
Project	-		Milestone	•	External Mil	estone 🔶		Manual Task		Start-only	C
Project Date: T				•		·····			-		-
-	110 172		Summary	— ———————————————————————————————————	Inactive Tas	k 🗆		Duration-only		Finish-only	

7 De	ec '07 9 16 23 3	Jan '08 30 6 13 20 2	Feb '08	Mar '08 2 9 16 23	Apr '08
10 20 2	0 10 20 2		, 3 10 1, 2		50 0 15 2
1					
\mathbf{H}					
-					
`	12/3				
	Deadline		÷		
	Progress				

ID	0	Task Mode	Task Name	2		Duration	Start	Finish	Predecessors	Jul '07	Sep '07 Oct '07 26 2 9 16 23 30 7 14 2	Nov '07
81		₽	Shakeo	ut		1 day	Tue 12/4/07	Tue 12/4/07	80			
82		₽	Frame (Concrete Columns A (4th	n to 5th)	2 days	Wed 12/5/07	Thu 12/6/07	81			
83		3	Frame (Concrete Columns B (4th	n to 5th)	1 day	Fri 12/7/07	Fri 12/7/07	82			
84		-	Frame (Concrete Columns C (4th	n to 5th)	2 days	Mon 12/10/0	7 Tue 12/11/0	7 83			
85		3	Frame (Concrete Beams A		3 days	Fri 12/7/07	Tue 12/11/0	7 82			
86		-	Frame (Concrete Beams B		2 days	Wed 12/12/0	7 Thu 12/13/0	7 85,83			
87		-	Frame (Concrete Beams C		3 days	Fri 12/14/07	Tue 12/18/0	7 86,84			
88		-	Frame S	Slab A		3 days	Wed 12/12/0	7 Fri 12/14/07	85			
89		սի սի Ա	Frame S	Slab B		2 days	Mon 12/17/0	7 Tue 12/18/0	7 88,86			
90		-	Frame	Slab C		4 days	Wed 12/19/0	7 Mon 12/24/0	07 89,87			
91		-	Set Reir	nforcement A		2 days	Mon 12/17/0	7 Tue 12/18/0	7 88			
92		-	Set Reir	nforcement B		1 day	Wed 12/19/0	7 Wed 12/19/0	07 91,89			
93		-	Set Reir	nforcement C		2 days	Tue 12/25/07	Wed 12/26/0	07 92,90			
94		-	Place C	oncrete A		1 day	Wed 12/19/0	7 Wed 12/19/0	07 91			
95		-	Place C	oncrete B		1 day	Thu 12/20/07	' Thu 12/20/0	7 94,92			
96		-	Place C	oncrete C		1 day	Thu 12/27/07	' Thu 12/27/0	7 95,93			
97		3	Finish F	loor A		3 days	Thu 12/20/07	' Mon 12/24/0	07 94			
98		-	Finish F	loor B		3 days	Tue 12/25/07	7 Thu 12/27/0	7 97,95			
99		-	Finish F	loor C		3 days	Fri 12/28/07	Tue 1/1/08	98,96			
100		-	Erect St	teel Beams (5th)		1 day	Wed 1/2/08	Wed 1/2/08	99			
101		-	Bolts/W	Velds		2 days	Thu 1/3/08	Fri 1/4/08	100			
102		-	6th Flo	or		0 days	Fri 1/4/08	Fri 1/4/08	101			
103		-	Shakeo	ut		1 day	Mon 1/7/08	Mon 1/7/08	102			
104			Erect St	teel Columns (5th to Low	ver Roof)	2 days	Mon 1/7/08	Tue 1/8/08	102			
105		-	Frame (Concrete Columns A (5th	n to 6th)	2 days	Mon 1/7/08	Tue 1/8/08	102			
106		3	Frame (Concrete Columns B (5th	n to 6th)	1 day	Wed 1/9/08	Wed 1/9/08	105			
107		-	Frame (Concrete Columns C (5th	n to 6th)	2 days	Thu 1/10/08	Fri 1/11/08	106			
108		3	Frame (Concrete Beams A		3 days	Wed 1/9/08	Fri 1/11/08	105			
109		3	Frame (Concrete Beams B		2 days	Mon 1/14/08	Tue 1/15/08	108,106			
110		-	Frame (Concrete Beams C		3 days	Wed 1/16/08	Fri 1/18/08	109,107			
111		-	Frame S	Slab A		6 days	Mon 1/14/08	Mon 1/21/08	3 108			
112	1	-	Frame S	Slab B		4 days	Tue 1/22/08		111,109			
113	1	-	Frame S	Slab C		6 days	Mon 1/28/08	Mon 2/4/08	112,110			
114	1	-	Set Reir	nforcement A		3 days		Thu 1/24/08				
115	1	սի սի սի սի սի սի սի սի սի	Set Reir	nforcement B		2 days		Tue 1/29/08				
116		3	Set Reir	nforcement C		3 days	Tue 2/5/08	Thu 2/7/08	115,113			
117		3	Place C	oncrete A		1 day	Fri 1/25/08	Fri 1/25/08	114			
118		3	Place C	oncrete B		1 day		Wed 1/30/08	8 117,115			
119	1	-	Place C	oncrete C		1 day	Fri 2/8/08	Fri 2/8/08	118,116			
120		3	Finish F	loor A		3 days		Wed 1/30/08				
				Task		Project Sumr	marv 🖵		Inactive Milestone		\$ Manual Summary Rollup	
						-		•		1		
Projec Date:	-	nal schedu 28/11	le.mpp	•	^	External Task			Inactive Summary		Manual Summary	
Date.				Milestone	▼	External Mile			Manual Task		Start-only	L
				Summary		Inactive Task			Duration-only		Finish-only	


Page 3

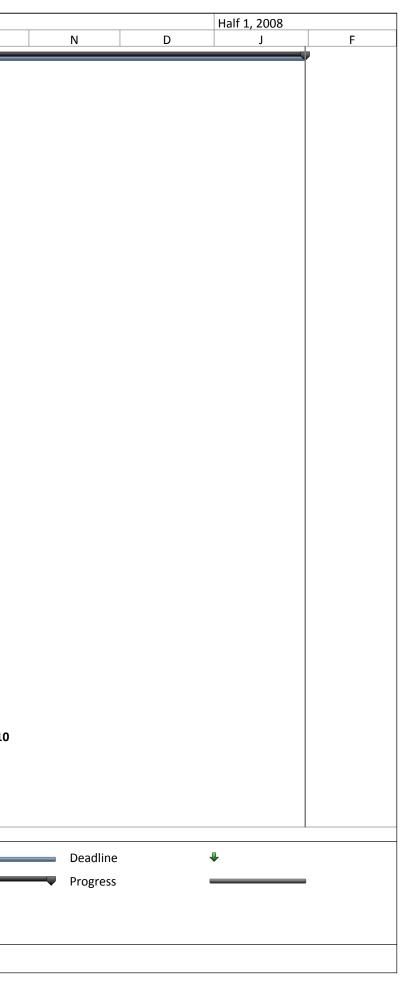
1	0	Task Mode	Task Name	Duration	Start	Finish	Predecessors	Jul '07	Aug '07 / 15 22 29 5 12 19	Sep '07	Oct '07	Nov '0
121	-		Finish Floor B	3 days	Thu 1/31/08	Mon 2/4/08	120,118	Δ	12 22 29 2 12 19	20 2 9 10 2	.5 30 / 14 2]	. 28 4 11
122		ŧ,	Finish Floor C	3 days		Wed 2/13/08						
123		Ē.	Erect Steel Beams (6th)	2 days	Mon 2/11/08		104,119					
124		-	Bolts/Welds	3 days	Wed 2/13/08		123	_				
125		e.	Place Metal Deck	3 days		Wed 2/20/08						
126		-	Deck Edge Forms	1 day	Thu 2/21/08		125					
127		-	Place Deck Concrete	1 day	Fri 2/22/08	Fri 2/22/08	126,119					
128		ej.	Finish Deck Concrete	, 3 days		Wed 2/27/08		_				
129		-	Lower Roof	, 0 days		Wed 2/27/08						
130		ԱՄՆԱՆԱՆԱՆԱՆԱՆԱՆԱՆԱՆԱՆԱՆ Ա	Shakeout	, 1 day	Thu 2/28/08	Thu 2/28/08	129					
131		-	Frame Concrete Columns A (6th to Lower Roof)	2 days	Thu 2/28/08	Fri 2/29/08	129					
132		-	Frame Concrete Columns B (6th to Lower Roof)	ı 1 day	Mon 3/3/08	Mon 3/3/08	131					
133		-	Frame Concrete Columns C (6th to Lower Roof)	2 days	Tue 3/4/08	Wed 3/5/08	132					
134		-	Frame Concrete Beams A	2 days	Mon 3/3/08	Tue 3/4/08	131					
135		-	Frame Concrete Beams B	2 days	Wed 3/5/08	Thu 3/6/08	134,132					
136		-	Frame Concrete Beams C	2 days	Fri 3/7/08	Mon 3/10/08						
137		-	Frame Slab A	3 days	Wed 3/5/08	Fri 3/7/08	134					
138		-	Frame Slab B	2 days	Mon 3/10/08		137,135					
139		-	Frame Slab C	3 days	Wed 3/12/08	Fri 3/14/08	138,136					
140		-	Set Reinforcement A	2 days	Mon 3/10/08	Tue 3/11/08	137					
141		-	Set Reinforcement B	1 day	Wed 3/12/08	Wed 3/12/08	140,138					
142		-	Set Reinforcement C	2 days	Mon 3/17/08	Tue 3/18/08	141,139					
143			Place Concrete A	1 day	Wed 3/12/08	Wed 3/12/08	140					
144		3	Place Concrete B	1 day	Thu 3/13/08	Thu 3/13/08	143,141					
145		-	Place Concrete C	1 day	Wed 3/19/08	Wed 3/19/08	144,142					
146		-	Finish Floor A	3 days	Thu 3/13/08	Mon 3/17/08	143					
147		-	Finish Floor B	3 days	Tue 3/18/08	Thu 3/20/08	146,144					
148			Finish Floor C	3 days	Fri 3/21/08	Tue 3/25/08	147,145					
149		₽	Erect Steel Beams (Lower Roof)	1 day	Wed 3/26/08	Wed 3/26/08	148					
150		-	Bolts/Welds	2 days	Thu 3/27/08	Fri 3/28/08	149					
151			Roof	0 days	Fri 3/28/08	Fri 3/28/08	150					
152			Erect Steel Columns (Lower Roof to Roof)	2 days	Mon 3/31/08	Tue 4/1/08	151					
153		-	Erect Steel Beams	1 day	Wed 4/2/08	Wed 4/2/08	152					
154		-	Place Metal Decking	2 days	Thu 4/3/08	Fri 4/4/08	153					
155		3	Bolts/Welds	2 days	Mon 4/7/08	Tue 4/8/08	154					
		-	Place Shear Studs	2 days	Wed 4/9/08	Thu 4/10/08	155					

Inactive Task

Summary

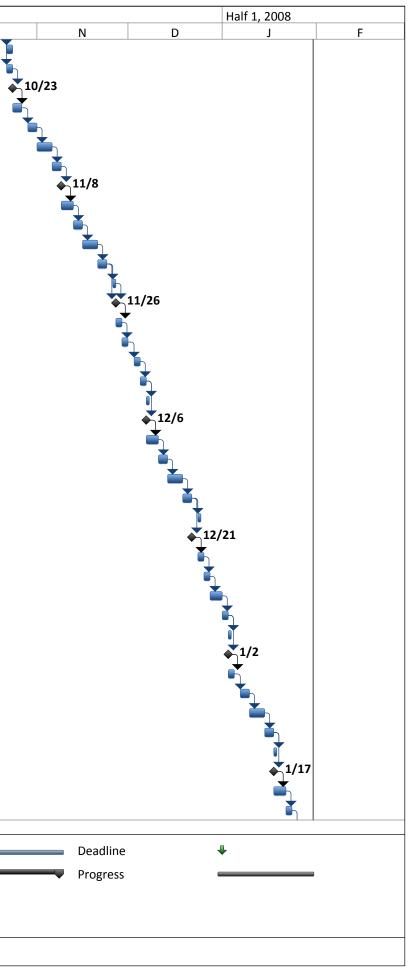
٦

Finish-only

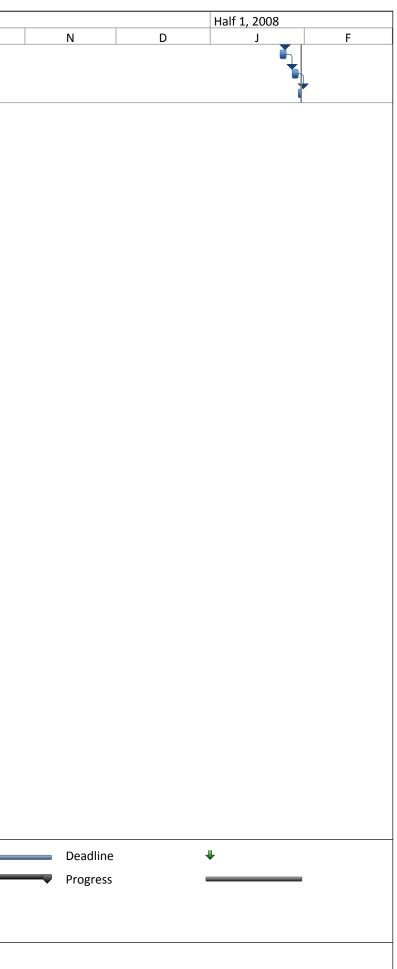

Duration-only

Page 4

Redesign Schedule and Tasks Follow


ID	0	Task Mode	Task Nan	ne		Duration	Start	Finish		Half 2, 20	007	A	S	0
1	-	*	Superst	ructure		143 days	Mon 7/16/07	' Wed 1/30/08		•		~		
2		3	Steel	Structure (Ground Floor t	o 3rd Floor)	0 days	Mon 7/16/07	Mon 7/16/07	-	•	7/16			
3		3	Place	Baseplates and Grout		1 day	Mon 7/16/07	Mon 7/16/07	-					
4		3	Shake	eout		1 day	Mon 7/16/07	Mon 7/16/07	-	ŀ)			
5		3	Erect	Columns (Ground Floor to	3rd Floor	2 days	Tue 7/17/07	Wed 7/18/07			5			
6		3	Erect	Beams (2nd Floor)		3 days	Thu 7/19/07	Mon 7/23/07	-		Δ,			
7		3	Erect	Braces (2nd Floor)		2 days	Tue 7/24/07	Wed 7/25/07	-		Ť,			
8		3	Erect	Beams (3rd Floor)		2 days	Thu 7/26/07	Fri 7/27/07	-		Ľ,			
9		3	Erect	Braces (3rd Floor)		2 days	Mon 7/30/07	Tue 7/31/07	-		1			
10		3	Place	Metal Decking (2nd Floor))	5 days	Wed 8/1/07	Tue 8/7/07	-)		
11		3	Place	Metal Decking (3rd Floor)		2 days	Wed 8/8/07	Thu 8/9/07	-			5		
12		-	Place	Shear Studs		3 days	Fri 8/10/07	Tue 8/14/07				μ.		
13		3	Bolts	/Welds		3 days	Fri 8/10/07	Tue 8/14/07	-			1		
14		3	Steel	Structure (3rd Floor to 5t	h Floor)	0 days	Tue 8/14/07	Tue 8/14/07	-			8/14		
15		3	Shake	eout		1 day	Wed 8/15/07	Wed 8/15/07	-					
16		3	Erect	Columns (3rd Floor to 5th	Floor)	2 days	Wed 8/15/07	Thu 8/16/07				T		
17		3	Erect	Beams (4th Floor)		3 days	Fri 8/17/07	Tue 8/21/07				1		
18		3	Erect	Braces (4th Floor)		2 days	Wed 8/22/07	Thu 8/23/07				t i i i i i i i i i i i i i i i i i i i		
19		3	Erect	Beams (5th Floor)		2 days	Fri 8/24/07	Mon 8/27/07				1		
20		3	Erect	Braces (5th Floor)		2 days	Tue 8/28/07	Wed 8/29/07						
21		3	Place	Metal Decking (4th Floor)		5 days	Thu 8/30/07	Wed 9/5/07	-			i		
22		3	Place	Metal Decking (5th Floor)		2 days	Thu 9/6/07	Fri 9/7/07	-				T S	
23		3	Place	Shear Studs		2 days	Mon 9/10/07	Tue 9/11/07	-				1	
24		3	Bolts	/Welds		2 days	Mon 9/10/07	Tue 9/11/07	-				1	
25		3	Steel	Structure (5th Floor to Lo	wer Roof)	0 days	Tue 9/11/07	Tue 9/11/07					9/11	
26		3	Shake	eout		1 day	Wed 9/12/07	Wed 9/12/07	-				∎ †	
27		3	Erect	Columns (5th Floor to Low	ver Roof)	4 days	Wed 9/12/07	Mon 9/17/07	-				—	
28		3	Erect	Beams (6th Floor)		3 days	Tue 9/18/07	Thu 9/20/07	-				<u>ن</u>	
29		3	Erect	Braces (6th Floor)		2 days	Fri 9/21/07	Mon 9/24/07	-					
30		3	Erect	Beams (Lower Roof)		1 day	Tue 9/25/07	Tue 9/25/07	-				K	
31		-		Braces (Lower Roof)		2 days		Thu 9/27/07	-				*	
32		-		Metal Decking (6th Floor)		5 days	Fri 9/28/07	Thu 10/4/07	-					h
33		3	Place	Metal Decking (Lower Roo	of)	2 days	Fri 10/5/07	Mon 10/8/07	-					Δ.
34		3	Place	Shear Studs		2 days	Tue 10/9/07	Wed 10/10/07	-					
35		-	Bolts	/Welds		2 days		Wed 10/10/07	-					Т,
36		3	Steel	Structure (Lower Roof to		0 days		7 Wed 10/10/07	-					10/10
37		3	Erect	Columns (Lower Roof to R	-	2 days		′ Fri 10/12/07	-					K
38		-		Beams (Roof)	-	1 day	Mon 10/15/0	7 Mon 10/15/07	-					*
39		-		Braces (Roof)		2 days		Wed 10/17/07	-					t i
40		Ę.		Metal Decking (Roof)		2 days		' Fri 10/19/07						5
				Task		Project Su	mmary		Inactive Milesto	one	\$	Ma	nual Summary Rollu	
						-	-	·					-	
-	t: redes Thu 4/2	sign sched 28/11	ule.mpp	Split	······	External T			Inactive Summa	ary			nual Summary	
suc.				Milestone	•	External N		P	Manual Task				rt-only	L
				Summary		Inactive Ta	ask 🗌		Duration-only			Fini	sh-only	3

Page 1


ID	_	Task	Task Name		Duration	Start	Finish		Half 2, 2007			
<u></u>	0	Mode	Diago Chaor Churde) dava	Mar 10/22/		J	J	A	S	0
41		r R	Place Shear Studs		2 days		07 Tue 10/23/07	-				-
42	_	- R	Bolts/Welds		2 days		07 Tue 10/23/07					*
43	_	- R	Slab On Grade		0 days		7 Tue 10/23/07	_				•
44			Formwork		3 days		07 Fri 10/26/07	-				
45			Place Rebar		3 days		07 Wed 10/31/07					
46	_	2	Place Concrete		3 days		Mon 11/5/07	_				
47	_		Finish		3 days		Thu 11/8/07	_				
48	_		2nd Floor		0 days		Thu 11/8/07	-				
49			Formwork		2 days	Fri 11/9/07	Mon 11/12/07	-				
50	_		Place WWF		3 days		7 Thu 11/15/07	_				
51			Place Concrete		3 days		Tue 11/20/07	_				
52		-	Finish		3 days		07 Fri 11/23/07	_				
53		B	Spray Fireproofing		1 day?		07 Mon 11/26/07	_				
54		3	3rd Floor		0 days		07 Mon 11/26/07	_				
55		2	Formwork		2 days		7 Wed 11/28/07	7				
56		3	Place WWF		2 days		7 Fri 11/30/07					
57		2	Place Concrete		2 days		7 Tue 12/4/07	_				
58		3	Finish		2 days		7 Thu 12/6/07	_				
59			Spray Fireproofing		1 day	Fri 12/7/07	Fri 12/7/07	_				
60		-	4th Floor		0 days		Thu 12/6/07					
61		3	Formwork		2 days	Fri 12/7/07	Mon 12/10/07	7				
62		3	Place WWF		3 days	Tue 12/11/0	7 Thu 12/13/07					
63		3	Place Concrete		3 days	Fri 12/14/07	Tue 12/18/07					
64		3	Finish		3 days	Wed 12/19/	07 Fri 12/21/07					
65		3	Spray Fireproofing		1 day	Mon 12/24/	07 Mon 12/24/07	7				
66		3	5th Floor		0 days	Fri 12/21/07	Fri 12/21/07					
67		3	Formwork		2 days	Mon 12/24/	07 Tue 12/25/07					
68		₽	Place WWF		2 days	Wed 12/26/	07 Thu 12/27/07					
69		₽	Place Concrete		2 days	Fri 12/28/07	Mon 12/31/07	7				
70		₽	Finish		2 days	Tue 1/1/08	Wed 1/2/08					
71		-	Spray Fireproofing		1 day	Thu 1/3/08	Thu 1/3/08					
72		3	6th Floor		0 days	Wed 1/2/08	Wed 1/2/08					
73		3	Formwork		2 days	Thu 1/3/08	Fri 1/4/08					
74		-	Place WWF		3 days	Mon 1/7/08	Wed 1/9/08					
75			Place Concrete		3 days	Thu 1/10/08	Mon 1/14/08					
76		-	Finish		3 days	Tue 1/15/08	Thu 1/17/08					
77		-	Spray Fireproofing		1 day	Fri 1/18/08	Fri 1/18/08					
78		-	Lower Roof		0 days	Thu 1/17/08	Thu 1/17/08					
79		3	Formwork		2 days	Fri 1/18/08	Mon 1/21/08					
80		3	Place WWF		2 days	Tue 1/22/08	Wed 1/23/08					
					D i i c				^			
			Task		Project Su	•		Inactive Milesto			Manual Summary Rollup	
		sign sched			External T			Inactive Summa	diy 🤍		Manual Summary	
Date:	Thu 4/2	28/11	Milestone	♦	External N	Vilestone	•	Manual Task			Start-only	C
			Summary	~	Inactive T	ask		Duration-only			Finish-only	C

Page 2

ID		Task	Task Name	Duration	Start	Finish		Half 2, 2007			
	0	Mode					J	J	Α	S	0
81		₽,	Place Concrete	2 days	Thu 1/24/08	Fri 1/25/08					
82		₽	Finish	2 days	Mon 1/28/08	Tue 1/29/08					
83		₽	Spray Fireproofing	1 day	Wed 1/30/08	Wed 1/30/08					

	Task		Project Summary	~	Inactive Milestone	\diamond	Manual Summary Rollup	
Project: redesign schedule.mpp	Split		External Tasks		Inactive Summary	$\bigtriangledown - \bigtriangledown$	Manual Summary	-
Date: Thu 4/28/11	Milestone	♦	External Milestone		Manual Task	C]	Start-only	C
	Summary		Inactive Task		Duration-only		Finish-only	3
					Page 3			

