Final Report

The Residences Anne Arundel County, Maryland

4/7/2011 Faculty Advisor – Dr. Richard A. Behr Ryan English-Structural Option

http://www.engr.psu.edu/ae/thesis/portfolios/2011/rje5020/index.html

The Residences at Arundel Preserve Anne Arundel County, Maryland

Structural

The main structural system utilizes the Hambro joist system. This is a form of steel joist with a concrete slab on top.

The joist system is support by 6" light gage steel studs bearing walls.

The lateral loads are resisted by a light gage steel x bracing system.

Building Statistics

Occupancy: Mix use, Residential /Retail

Size: 300,000 gross s.f. Height: 5 stories, 60 ft. Dates of construction:

September 2009- February 2011

Project Team

Owner: Sumerset Construction General Contractor/Developer:

Encore Developer

Architect: CE*X, Inc

Structural Engineer: Cates Engineering, Ltd. Civil Engineer: Morris Ritchie Associates, Inc.

MEP Engineer:

Siegel, Rutherford, Bradstock Ridgway Inc. Geotechnical: Geo-Technology Associates, Inc Landscape Architect: The Faux Group, Inc

Architecture

"The Residences" is a new construction apartment and retail building, part of the Arundel Preserve Town Center Phase I project.

Along with the residential units the building also includeds a terrace level that contains a clubhouse, health center, and an outside pool.

Lighting/Electrical System

Electricity to the building is provided by two 277/480v 3 phase transformers, one for residential power and one for commercial power.

Fluorescents, compact fluorescents, and LED are used throughout the building.

Mechanical system

The hot and cold water is supplied by three centrifugal chiller units and by three natural gas hot water boilers.

Each of the apartment houses its own concealed modular type dual-coil vertical fan coil.

Ryan English|Structural Option

http://www.engr.psu.edu/ae/thesis/portfolios/2011/rje5020/index.html

The Residences Anne Arundel County, Maryland

Final Report 4/7/2011

Table of Contents

Abstract	2
Executive Summary	5
Acknowledgements	6
Introduction	7
Structural System	8
Foundation System	8
Framing System	10
Lateral System	12
Roof System	13
Materials Used	14
Codes and References	15
Design Codes	15
Thesis Codes	15
Load Analysis	16
Gravity Load	16
Snow Load	16
Wind Load	17
Seismic Load	18
Load Combination	21
Proposal Thesis	22
Proposed Structural	22
Breadth Options	2 3
In-Depth Cost and Schedule Impacts of Investigation	2 3
Sustainability: Green Roof	2 3

Ryan English	The Residences	Final Report
	Anne Arundel County, Maryland	4/7/2011
Dr. Richard A. Behr Structural Design		24
_		
	ign	
-	ete Slab	
Two Way Concre	ete Slab	26
Shear Wall Design		28
Sustainability: Green	n Roof Design	
Design Goals		33
Green Roof Design	1	33
In-Depth Cost and So	chedule Impacts of Investigation	35
Design Goals		35
Cost Analysis		35
Schedule Analysis.		36
Conclusion		37
References		39
Appendix A: Existing	Building Plans	40
Appendix B: Snow Lo	oad	41
Appendix C: Wind Lo	oad	42
Appendix D: Seismic	Load	49
Appendix E: One Wa	y Concrete Floor Design	64
Appendix F: Two Wa	y Concrete Floor Design	72
Appendix G: Shear V	Vall Design	80
Appendix H: Green F	Roof Design	99
Appendix I: Cost Ana	alysis	100
Appendix J: Schedule	e Analysis	104

Final Report 4/7/2011

Executive Summary

The redesign of the Residences compared a Two Way Concrete Slab (TWCS) design to a One Way Concrete Slab (OWCS) design. The slab thickness for the OWCS was determined to be 5" and was 10" for The TWCS. The OWCS was able to be integrated with the existing architectural design with minor architectural impact. As for the TWCS, to try and keep a square and regular bay, the system had more problems integrating with the existing architectural design. With keeping the floor to ceiling height as 24" as originally designed, the beams' minimal depth for the OWCS design reduced the space that could be utilized by other disciplines. Concrete shear walls were designed using the provisions and requirements from AIC 318-08. For the current location, ordinary reinforced concrete shear walls were designed, and for the high seismic location, special reinforced concrete shear walls were designed.

The use of Autodesk Robot Structural Analysis program was used throughout this thesis to analyze the redesign. This program was compared to SAP and was found that ARSA was similar in their basic elements but lacked the more advance features that SAP had.

For the green roof design, it was determined that most green roofs are comprised of three major layers: Vegetation, Growing Media, and Drainage. It was determined that grass would be able to resist the temperatures and the impact from occupants walking on it. The growing media was comprised of 50% -70% lightweight aggregate, 10%-20% organic material, and 20%-30% sand. A 2" drainage layer was determined to take any water that was not absorbed by the soil. Once the excess water was drained away, it could be collected and used for alternative uses.

A cost and schedule comparison was conducted for the OWCS and TWCS designs. It was determined that the OWCS would cost about \$170.08 per s.f. and could be constructed in 375 days. The TWCS was found to be \$162.78 per s.f. and could be completed in 262 days. This was compared to the original design of \$182.96 per s.f. and 267 days, and found that the Two Way Concrete Slab was cheaper and could be constructed in the same time frame.

The Residences Anne Arundel County, Maryland

Final Report 4/7/2011

Acknowledgements

The author wishes to send thanks to the following professionals, architectural engineering faculty, and individuals for their assistance and generosity throughout the year with this thesis project.

Cates Engineering

Mike Stansbury Tim Kowalcyk

Architectural Engineering

Dr. Richard A. Behr

Professor M. Kevin Parfitt

A special thanks to family, friends, and classmates because the accomplishments over the past five years could not have been possible without their support and friendship.

Final Report 4/7/2011

Introduction

Located in Anne Arundel County, Maryland, the Residences is a new construction apartment and retail building which is part of the Arundel Preserve Town Center Phase I Project (Figure 1). The Residences is a five to six story, 300,000 s.f., residential apartment building with 6,000 s.f. retail space surrounding a 5 story precast parking garage. This apartment building houses 242 upscale residential units consisting of studio, one and two bedroom layouts, and two level units. Along with the residential units, the building also includes a terrace level that contains a clubhouse, health center, and an outside pool. Construction of The Residences began in the fall of 2009 and should be completed in the beginning of 2011. It is owned and managed by the Somerset Construction Company and was designed by KTGY, Vienna, VA.

The structure of The Residences is comprised of the Hambro floor system, which uses a steel bar joist that supports a concrete slab (Figure 2). The floor systems are supported by a 6" light gage metal studs bearing and shear walls located throughout the building. A more in-depth structural analysis and details will follow in this report.

Figure 1: Site plan: Light Brown area represents the building. Gray area represents the parking garage. (Construction documents by Cates Engineering).

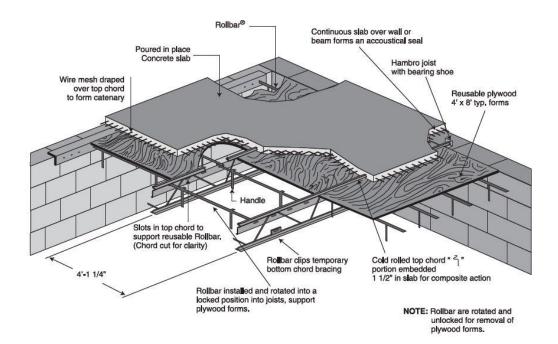


Figure 2: Hambro floor joist system. (Hambro Joist Company).

Structural System

Foundation System

According to the geotechnical report, the building rests on silt-clay facies¹ which is identified as clay, silt, and subordinate fine to medium grain muddy sand. The groundwater table is a minimum of 24 feet below existing grade, which is well below the foundation of the building. From the report, it is determined that the structures can be supported on shallow spread footings with an allowable bearing pressure of 5,000 pounds per square foot.

The building foundation system uses a 3'-0" wide strip footing with 3'-0"x3'-0" to 15'-0"x15'-0" column footing pads located mainly around the retail space and clubhouse area (Figure 3). The concrete slab on grade is 4" thick reinforced with 6 x 6 W1.4 xW1.4 welded wire fabric. All foundation concrete is to be 3,000 psi at 28 day strength.

¹ In geology, facies are bodies of rock with specified characteristics.

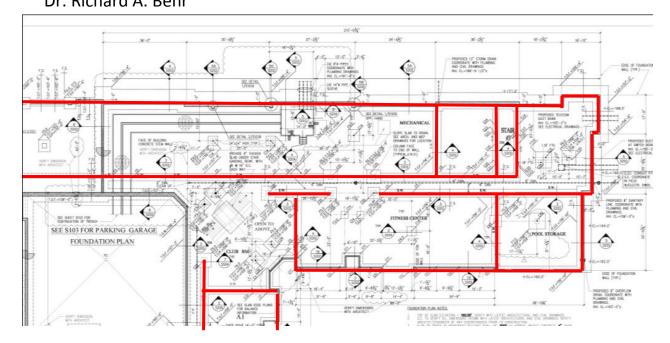


Figure 3: Foundation plan, part of the east wing. (Construction documents by Cates Engineering).

The floor system for the Residence is the Hambro floor joist system (Figure 2). The Hambro floor system uses a specially designed steel bar joist with a "S" shape top compression chord that serves three functions, a compression member in the non-composite joist during the construction stage, a chair for the welded wire fabric, and a continuous shear connection for the composite (cured concrete) stage. Detail information of the "S" shape top chord can be seen in Figure 4. The floor slab is a 3" thick 3,000 psi concrete with 6 x 6 W2.9 x W2.9 welded wire fabric. This particular floor thickness is chosen to give the system a 2 hour fire rated system. The slab is then supported by a 20" deep Hambro bar joist.

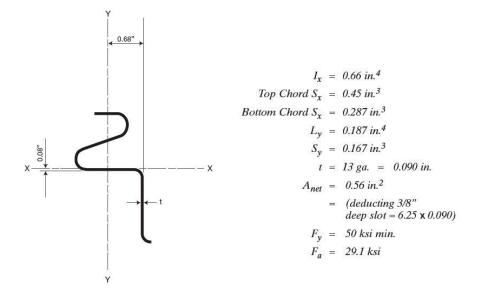


Figure 4: Top chord of the Hambro joist "S" chord with section properties.

Framing System

The design framing system in the Residences is light gage steel load bearing walls that are used to support the Hambro floor system and gravity loads in the building. The particular system uses the SigmaStud® load bearing light gage steel stud, a product of The Steel Network Company. The stud design is engineered to have a significant increase in load capacity when compared to the conventional "C" shaped studs. The Residences uses a 6" wide 18 gage stud with a flange length of 2.5", as detailed in Figure 5. The exterior wall and interior corridor walls of the Residences are the primary bearing walls in the building. Figure 6 shows the location of the bearing walls in the building. Floor plans can be found in Appendix A.

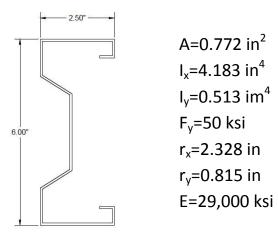


Figure 5: Section of light gage steel stud with section properties.

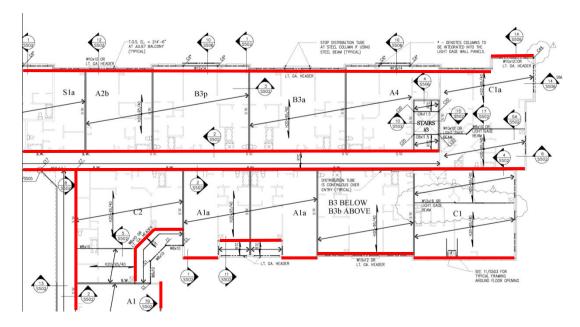


Figure 6: Location of bearing walls. (Construction documents by Cates Engineering).

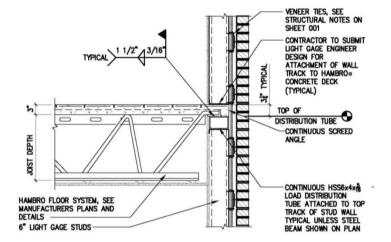


Figure 7: Exterior wall framing details. (Construction documents by Cates Engineering).

Lateral System

The lateral system in the Residences is a light gage shear wall system designed and engineered by The Steel Network Company. The system utilizes light gage 50 ksi steel hot dipped galvanized coated straps on both sides of the wall for shear resistance. A 6" wide flat strap is used in the lateral system of the Residences. (See Figure 8 for a typical framing detail). The shear walls are located all throughout the building (Figure 9), with most of the shear wall located in the corridor walls and the walls separating adjacent apartments.

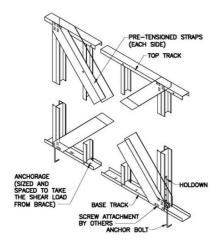


Figure 8: Lateral resistance system. (Construction documents by Cates Engineering).

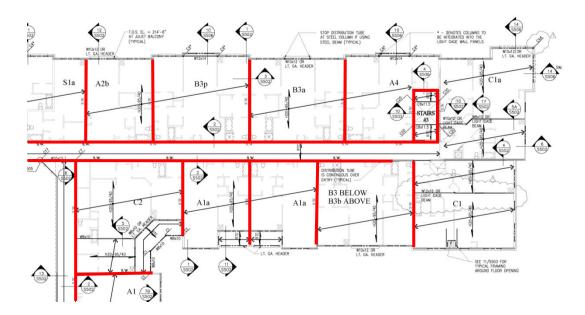


Figure 9: Location of the shear walls. (Construction documents by Cates Engineering).

Roof System

 Ryan English Structural Option Dr. Richard A. Behr

The Residences Anne Arundel County, Maryland

Final Report 4/7/2011

Materials Used

Table 1: Materials Used For Thesis Design

Concrete		
Floor Slab	Normal Weight	f'c=4,000 psi
Roof Slab	Normal Weight	f'c=4,000 psi
Columns	Normal Weight	f'c=4,000 psi
Shear Wall	Normal Weight	F'c=4,000 psi
Reinforcement		
Deformed Bars	ASTM A-615	Grade 60
Welded Wire Fabric	ASTM A-185	

The Residences Anne Arundel County, Maryland

Final Report 4/7/2011

Dr. Richard A. Behr

Codes and References

Design Codes

National Model Code:

2006 International Building Code

Design Codes:

Steel Construction Manual 13th Edition, AISC

American Iron and Steel Institute (AISI) 2008 Design of Cold Formed Steel Structural Members

American Concrete Institute (ACI) ACI 530-05, Building Code Requirements for Masonry Structures

American Concrete Institute (ACI) ACI 318-08, Building Code Requirements for Structural Concrete

Structural Standards:

American Society of Civil Engineers (ASCE), ASCE 7-05, Minimum Design Loads for Buildings and Other Structures

Thesis Codes

National Model Code:

2006 International Building Code

Design Codes:

American Concrete Institute (ACI) ACI 318-08, Building Code Requirements for Structural Concrete

Structural Standards:

American Society of Civil Engineers (ASCE), ASCE 7-05, Minimum Design Loads for Buildings and Other Structures

Load Analysis

Gravity Load

For this design, the use of the ASCE7-05 design live loads will be used. A roof live load of 100 psf was selected to allow the green roof to be accessible by the occupants. Design live load can be found in Table 2. Dead loads were found from a series of sources including, but not limited to, ASCE7-05 and manufacturer specifications. Design dead load can be found in Table 3.

Table 2: Design Live Loads

Location	Design (psf)	ASCE7-05 (psf)
Roof With Green Roof	100	20
Living	40	40
Corridors Exit stairs	100	100
Light Storage	125	125

Table 3: Design Dead Loads

Location	Design (psf)
Green Roof	72.5
Superimposed Dead Load	15
Self Wight (Concrete)	150 pcf

Snow Load

Due to the current location of this building being a snow region, snow loads are calculated in accordance to ASCE7-05 section 7. The high seismic region has no ground snow load. No snow load will be calculated for this region. The results of the load calculation can be seen in Table 4. Detail calculations and notes are included in Appendix B.

Table 4: Snow Loads

	Current Location
Ground Snow Load	Pg= 30 psf
Flat Roof Snow Load	Pf= 21 psf
Sloped Roof Snow	Ps= 21 psf
Load	

Wind Load

For this report, the wind load is analyzed for a smaller portion of the building to simplify the analysis of the lateral system. This can be done because of a building expansion joint that exist which can be seen in Figure 10. The calculation and values of the loads can be found is Table 5. The wind load was determined not to be the controlling lateral load. Detail calculations can be seen in Appendix C.

Table 5: Story Forces Due To Wind

	N-S Direction	E-W Direction	
Gourd	11.8 kip	11.6 Kip	
Second	13.4 Kip	13.2 kip	
Third	15.4 Kip	15.1 kip	
Fourth	15.0 Kip	14.7 kip	
Fifth	21.6 kip	21.2 kip	
Roof	8.1 kip	7.97 kip	444'-4"
Base Shear	123.6 kip	121.6 kip	
	expansio	: Building n joint. Gray what was	Building Expansion Joint N-S Direction

The Residences Anne Arundel County, Maryland

Final Report 4/7/2011

Seismic Load

For this report, the seismic load is analyzed for a smaller portion of the building to simplify the analysis of the lateral system. This can be done because of a building expansion joint that exists which can be seen in Figure 10. The current location of the building is located in Anne Arundel County, Maryland, and a high scenic region was selected to be in south central California. The equivalent lateral force analysis was performed for the current location and because of the seismic design class of D for the high seismic region a modal response spectrum analysis had to be performed. Also, a modal response spectrum analysis was performed for the current location to check the values from the equivalent lateral force analysis. The calculation and values of the loads can be found is Tables 6-10 with detail information in Appendix D. Table 11 shows the maxing story drifts and total drift allows by code.

Table 6: Story Weights

Story Level	High	One Way Slab	Two Way Slab
Ground	11'	2995 kip	4633 kip
Second	22'	2995 kip	4633 kip
Third	33'	2995 kip	4633 kip
Fourth	44'	2995 kip	4633 kip
Fifth	55'	2995 kip	4633 kip
Roof	67'	4997 kip	6541 kip

Table 7: Seismic Load Current Location One Way Concrete Slab

	Lateral Force	Story	Moments
Story Level	(kip)	Shear (kip)	(Kip-ft)
Ground	32.5	818.8	357.9
Second	65.1	786.3	1431.7
Third	97.6	721.2	3221.3
Fourth	130.2	623.6	5726.8
Fifth	162.7	493.4	8948.1
Roof	330.7	330.7	22158.2
	818.80		41,844.13

Table 8: Seismic Load High Seismic Location One Way Concrete Slab

Story Level	Lateral Force	Story Shear	Moments
Story Level	(kip)	(kip)	(kip-ft)
Ground	131.7	3315.2	1449.2
Second	263.5	3183.5	5796.8
Third	395.2	2920.0	13042.8
Fourth	527.0	2524.7	23187.1
Fifth	658.7	1997.8	36229.9
Roof	1339.0	1339.0	89715.9
	3,315.22		169,421.70

Table 9: Seismic Load Current Location Two Way Concrete Slab

Story Level	Lateral Force	Story Shear	Moments
Story Level	(kip)	(kip)	(kip-ft)
Ground	51.6	1218.0	567.7
Second	103.2	1166.4	2270.9
Third	154.8	1063.1	5109.4
Fourth	206.4	908.3	9083.4
Fifth	258.1	701.9	14192.9
Roof	443.8	443.8	29735.6
	1,217.97		60,959.84

Table 10: Seismic Load High Seismic Location Two Way Concrete Slab

Story Level	Lateral Force	Story Shear	Moments
Story Level	(kip)	(kip)	(kip-ft)
Ground	209.0	4931.3	2298.5
Second	417.9	4722.3	9194.2
Third	626.9	4304.4	20686.9
Fourth	835.8	3677.5	36776.8
Fifth	1044.8	2841.7	57463.7
Roof	1796.9	1796.9	120392.7
	4,931.29		246,812.84

Table 11: Allowable Deflections

		Wind H	/400	Seismic (0.02 H _{sx}
	Story Height	Story	Total	Story	Total
	(ft)	Drift	Drift	Drift	Drift
Ground (1)	11	0.33"	0.33"	2.64"	2.64"
Second (2)	11	0.33"	0.66"	2.64"	5.28"
Third (3)	11	0.33"	0.99"	2.64"	7.92"
Fourth (4)	11	0.33"	1.32"	2.64"	10.56"
Fifth (5)	11	0.33"	1.65"	2.64"	13.20"
Roof (6)	12.67	0.38"	2.03"	3.04"	16.24"

The Residences Anne Arundel County, Maryland

Final Report 4/7/2011

Load Combination

Lateral load analysis is performed for this report and the load combinations that are provided by ASCE7-05 section2 that did not include lateral load forces is disregarded. It is also noted that the load combinations that includes the factor of .9D are used to calculate uplift forces for the later loads.

- 1.2D+1.6W+L+.5(Lr or S or R)
- 1.2D+1.0E+L+.2S
- .9D+1.6W+1.6H
- .9D+1.0E+1.6H

To determine the governing load case, it can be simplified to whether 1.6W+L is greater than 1.0E for the general loading conditions and whether 1.6W is greater than 1.0E for uplift. Since the seismic loads are much greater than the wind loads, it is safe to assumed that the 1.2D+1.0E+L+.2S and .9D+1.0E+1.6H are the controlling strength design for general loading and uplift respectively.

The Residences Anne Arundel County, Maryland

Final Report 4/7/2011

Proposal Thesis

Proposed Structural

The Residences is designed as a light gage metal studs bearing and shear walls which supports the Hambro floor system. In the analysis of the existing conditions of The Residences, it is found that the building did meet all structural codes and requirements. For the purposes of this thesis, The Residences will be re-evaluated using a one way and two way concrete floor system and different lateral systems.

The concrete system will be designed to support the gravity loads determined in the early technical reports. The existing building layout is used as a template to start the design process. Some variations may need to be implemented upon further analysis of the redesign. After the initial design is accomplished, the lateral loads will be determined and the lateral resisting systems will be designed.

The lateral loads will be compared between two locations: the current location of the building and a location in a high seismic region. Once the loads are determined, the lateral resisting systems will be designed. It is planned to perform research and design of seismic resistive systems to resist the lateral loads. A 3D model will be used to model the gravity and lateral system to aid in the design of the members and verify the accuracy of the design.

Breadth Options

In-Depth Cost and Schedule Impacts of Investigation

The first breadth study was chosen with its connection to the structural depth. The proposed changes to the floor system, superstructure, and lateral system will have an impact on the scheduling and cost of the building such as the scheduling changes that would involve the additional forming, placing, and shoring of the concrete. Also, the higher earthquake loads will have an impact on the cost of the building. Once the scheduling impact and cost changes are considered, the feasibility of redesigning The Residences as a concrete system will be evaluated.

Sustainability: Green Roof

To achieve a sustainable building, a green roof is going to be considered in place of the current rooftop. The design of the green roof is to consist of a study of the layers that make up the system and the flashing and membrane involved. Also, the green roof is to be designed with the intention of retaining water that can be used throughout the building. The drainage and flow of water to a central gray water collection tank is to be considered and designed. In addition, the green roof will be made accessible to the building's occupants; thus, access to the green roof is to be designed. Finally, the loads from the green roof will be applied to the design of the gravity and lateral system.

Final Report 4/7/2011

Structural Design

Design Goals

The structural design goal of this project is to redesign The Residences to have a concrete super structure. The redesign will allow for a uniform structural system to be placed. Goals to be met throughout this project include:

- Compare the design of a One Way Concrete Slab and Two Way Concrete Slab
- Investigate the effects of having an increase of mass on the roof lever in high seismic region
- Not reduce the floor to ceiling height
- Minimizes architectural impact
- Use computer programs to aid in the design and analysis of the structural
- Evaluate the validity and ease of use of Autodesk Robot Structural Analysis program

Concrete Slab Design

One Way Concrete Slab

To minimize the architectural impact, the column layout for the One Way Concrete Slab was designed by overlaying the architectural floor plan and places the columns in a location that would not cause architectural changes. A column size of 14" x 14" was initially selected as a staring design and was later conformed to be able to support the loads; Figure 11 shows the location of the columns. To avoid changing the floor to ceiling height, the minimal beam thickness was selected in accordance to ACI 318-08 Table 9.5(a). The initial size of the beam was 20" and was later confirmed to be adequate to carry the loads. One design issue that was found was trying to keep enough space to allow for other disciplines to install equipment in the ceiling space. An initial slab thickness of 6" was calculated based on the span length and ACI 318-08 Table 9.5(a).

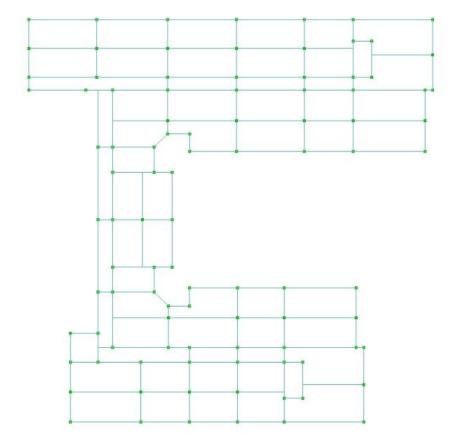


Figure 11: One Way Concrete Plan.

Once the initial design sizes of the member were selected, a 3D model was created using *Autodesk Robot Structural Analysis (ARSA)*. This program was chosen to compare its validity and ease of use to other structural analysis programs. The moment and shear values of key beam elements were determined from the 3D model and was used in hand calculations; example hand calculation can be seen in Appendix E. The hand calculations of the beam design were compared to ARSA and to *Structure Point Beam*. The values and design were found to be similar between the three. The column design was conducted in a similar fashion. The compress force and moment values were selected from a key column in the 3D model. The column was designed for three sections along its high. This was done to reduce the amount of rebar as the forces are reducing along the high. *Structure Point Column* was used to generate interaction diagrams for the column sections. This was compared to

the ARSA output for column design. Figure 12 shows an interaction diagram of one of the three column sections. The two programs produced similar results for column design. The slab was calculated in the same way as a beam. A 1 ft. slice of the slab was considered in the calculation process. Further figures, diagrams, and calculations can be found in Appendix E.

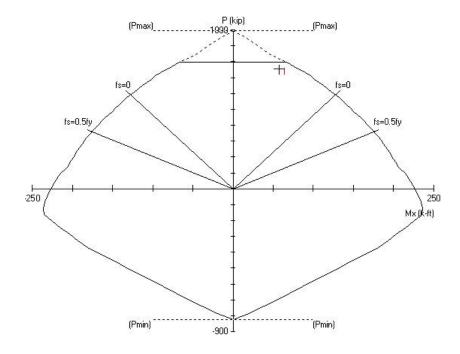


Figure 12: Column Interaction Diagram for the first two stories.

Two Way Concrete Slab

Column location was located by first selecting a square and regular bay size, and then it was compared to the architectural plans. The bay sizes were approximately 23' x 25'. It was noticed that to keep the square and regular bay size, minor architectural changes would need to be allowed. Figure 13 shows the location of the column. A column size of 18" x 18" was selected for the first two stories and 16" x 16" for all other stories and was later confirmed to be suitable to carry the load. The slab thickness was determined from ACI 318-08 Table 9.5(c), and the longest span length, the initial slab size, was found to be 10". Once the slab size and bay sizes were determined, the ACI 318-08 Direct Design method was used to determine the moments that the slab will support. The required reinforcement was determined by considering the slab as a beam

with a thickness of 10" and width equal to the column or middle strip width. Next, one way shear and punching shear were calculated, and it was found that drop panels were needed to resist punching shear. Drop panels were selected instead of shear capitals for the added slab thickness reduction.

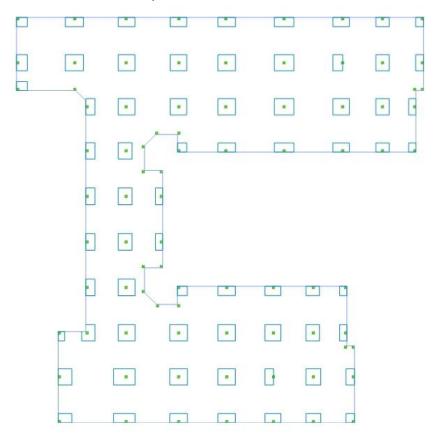


Figure 13: Two Way Concrete Plan.

Once again, when the initial design sizes of the member were selected, a 3D model was created using *Autodesk Robot Structural Analysis (ARSA)*. The column design was conducted in a similar fashion to the one way concrete slab design. A key column in the 3D model was selected and force was determined. The column was design for three sections along its high. This was done again to reduce the amount of rebar as the forces are reducing along the high. *Structure Point Column* was used again to generate interaction diagrams for the column sections. Figure 14 shows an interaction diagram. *Structure Point Slab* was used to compare the values from the hand calculations and ARSA.

The hand calculation values were slightly higher than those from Structure Point Slab but were within acceptable limits. Further figures, diagrams, and calculation can be found in Appendix F.

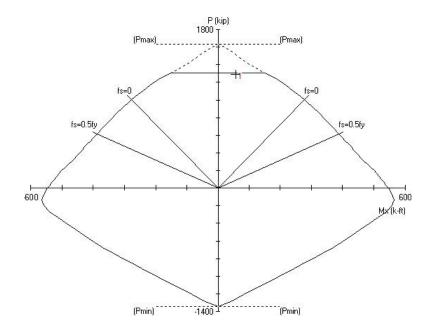


Figure 14: Column interaction diagram for the first two stories.

Shear Wall Design

Once the analysis of two seismic regions, the current building location seismic design category B, and a high seismic region seismic design category D were completed, the results were used to design a code lever ordinary reinforced concrete shear wall. Figures 15 and 16 show the location of the shear walls in the Two Way Concrete Slab design and the One Way Concrete Slab design. The ordinary reinforced concrete shear walls were not allowed to be designed for seismic design category D. Therefore, a special reinforced concrete shear wall was to be designed. ACI 318-08 has no requirements for shear walls in buildings assigned to SDC A, B, or C. For these buildings, ACI considers the requirements given in chapter 1 through 18 and chapter 22 to be adequate.

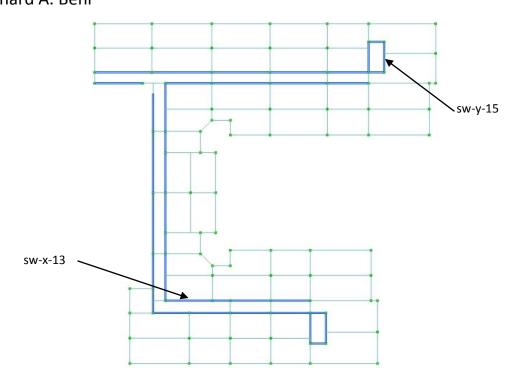


Figure 15: One way concrete shear wall location.

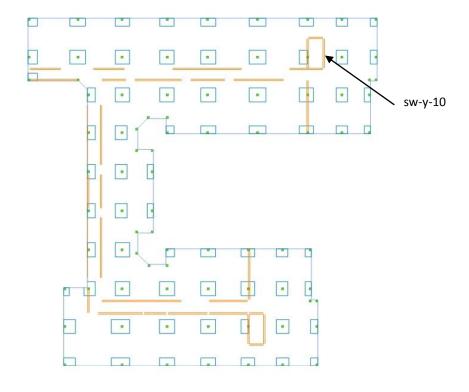


Figure 16: Two way concrete shear wall location.

The design procedure for these shear walls are a two part process. First, an axial load-moment interaction diagram was conducted on the given dimensions and concrete strength. Figure 17 shows an interaction diagram of a shear wall.

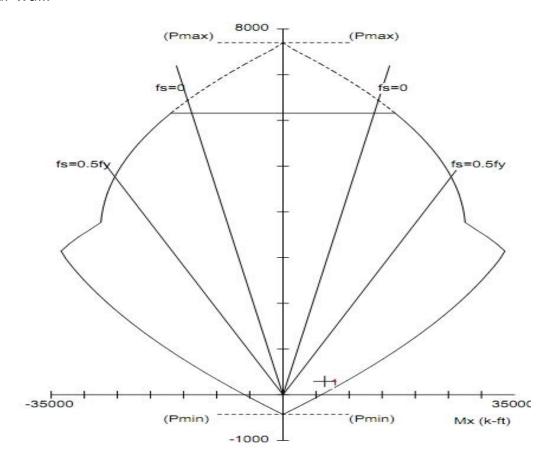


Figure 17: Interaction diagram of shear wall, one way x direction wall number 13.

The second part of the design was the selection of reinforcement that satisfies the design requirement under the loads and moments equal to or larger than the factored loads and moments. For shear walls in SDC other than A, B, or C, a more involved design procedure was required. Once the design loads and moments were calculated, the wall was designed for shear, combined axial load, and bending moment. An axial load-moment interaction diagram was also created for each shear wall. Next, the determination of boundary elements requirement using the displacement based methods was calculated for each shear wall. If it was found that boundary elements were required,

Final Report 4/7/2011

Dr. Richard A. Behr

then boundary elements were designed to the code. Computer models of each shear wall were created to determine the deflection and stress in the wall.

Figure 18 shows an example of the model. Table 12 shows the calculated story drifts ratios and total story drift. Further figures, diagrams, and calculation can be found in Appendix G

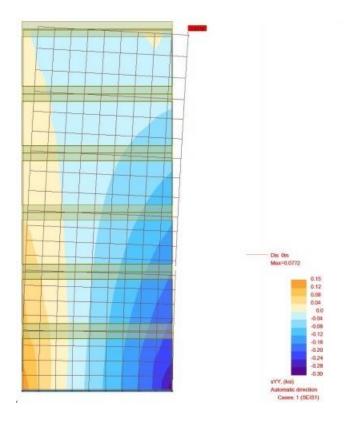


Figure 18: Maximum deflection and stress in one way x direction wall number 13

Table 12: Story Drifts.

One Way	Current location			
Story		Story Drift (in)	Drift Ratio	Total Drift (in)
1	0.033	0.150	0.11%	0.150
2	0.057	0.255	0.19%	0.405
3	0.076	0.340	0.26%	0.745
4	0.092	0.414	0.31%	1.160
5	0.105	0.471	0.36%	1.630
6	0.122	0.548	0.38%	2.178

One Way	High Seismic			_
Story		Story Drift (in)	Drift Ratio	Total Drift (in)
1	0.141	0.705	0.53%	0.705
2	0.239	1.195	0.90%	1.900
3	0.319	1.596	1.21%	3.496
4	0.389	1.945	1.47%	5.441
5	0.442	2.210	1.67%	7.650
6	0.514	2.571	1.79%	10.221

Two Way	Current location			
Story		Story Drift (in)	Drift Ratio	Total Drift (in)
1	0.135	0.607	0.46%	0.607
2	0.191	0.861	0.65%	1.468
3	0.233	1.048	0.79%	2.515
4	0.249	1.120	0.85%	3.635
5	0.271	1.219	0.92%	4.854
6	0.305	1.371	0.95%	6.224

Two Way	High Seismic			
Story		Story Drift (in)	Drift Ratio	Total Drift (in)
1	0.300	1.349	1.02%	1.349
2	0.425	1.913	1.45%	3.262
3	0.517	2.328	1.76%	5.590
4	0.553	2.489	1.89%	8.079
5	0.562	2.528	1.92%	10.607
6	0.635	2.856	1.98%	13.463

Final Report 4/7/2011

Sustainability: Green Roof Design

Design Goals

The main design goal for the green roof design was to understand the layers and properties of the layers that make up a green roof. Other goals for the green roof design included but not limited to:

- Retain and collect rain water runoff.
- Gray water collection system.
- Accessibility to building occupants.

Green Roof Design

The green roof design first started by understanding the layers than design the green roof layers apparently. The typical layers in a green roof are: Vegetation, Growing Media, Filter Fabric, Drainage, Insulation, and Water Proofing. Figure 19 shows a section of the green roof. Once all the layers were determined, it was decided that there were three important sections of the green roof: Vegetation, Growing Media, and Drainage. Climate data for the past five years was located for the current location. It was found that the vegetation would need to survive temperatures as high as 100 °F and as low as 8°F. Along with temperature, the green roof needed to absorb a maximum around 3.0 in. and minimum of 0.0 in. of rain per day. Appendix H has more climate data for the location. From this data, it was determined that a grass or ground cover vegetation should be able to resist the extreme temperature.

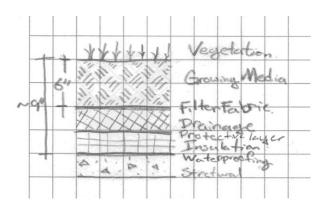


Figure 19: Layers of green roof.

An initial design of a 6 in. growing media was used. The larger than normal thickness was picked to encourage the roots to grow down away from the extremes of the surface environment. The growing media will contain 3 components: lightweight aggregate, organic material, and sand. With the building location in a humid region, the amount of organic material needs to be within 10% to 20% of the total weight. If too much organic matter is used, the volume of mix decreases due to decomposition and requires replacement due to the displacement of the media. Also, as the organic material breaks down, the fine filters out down to the filter fabric and decomposes further creating a slime which impedes the drainage causing the water to build up in the media. Table 13 shows the component content by volume.

Table 13: Components Content by Volume

Lightweight Aggregate	50%-70%
Organic Material	10%-20%
Sand	20%-30%

The drainage layer needs to be able to take all the water that is not absorbed by the vegetation and growing media. A 2" drainage layer will be adequate to take the rain water runoff. The water is to be collected in a collection take to be use for watering plants, cleaning lawn tools, and other uses. Figure 20 shows how the collection system would work.

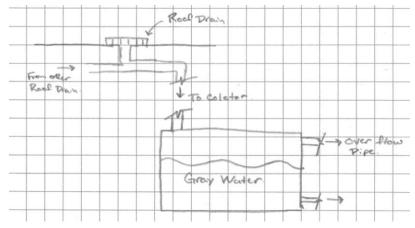


Figure 20: Gray water collection system.

In-Depth Cost and Schedule Impacts of Investigation

Design Goals

The main design goal for the cost and schedule is to compare the One Way Concrete Slab system to the Two Way Concrete Slab system. Other goals include:

- Compare the results to the original design
- Reduce the cost of the structure
- Reduce the schedule of the structure

Cost Analysis

A cost and schedule comparison of original structural load bearing walls to the two new designs, One Way Concrete Slab and Two Way Concrete Slab, was created using RS Means 2010 and retail values. The final contract cost for the project is \$39 million and the structural cost is \$10.5 million or \$183.96 per square foot. Takeoffs for both structural systems were performed to compare the change in cost and the change in schedule. Construction began in 2010, which is why RS Means 2010 was chosen to perform the base cost and schedule for this thesis.

Table 12: Cost Summary

	One Way Slab	Two Way Slab	Original Design
Cost	\$4.6 million	\$4.4 million	\$10.5 million**
Cost per SF	\$170.08	\$162.78	\$183.96

^{**} Cost is of total building.

Detailed structural takeoffs were performed for the design portion of the building for both designs. Concrete takeoffs and steel takeoffs were taken from the 3D model. More detail takeoffs of the structures can be found in Appendix I. A summary of the cost analysis is provided in Table 12. It was observed that the One Way Concrete Slab was more expensive than the Two Way Concrete Slab. Both systems were cheaper than the original system. For the One Way Concrete Slab design, it was determined that the structural

Final Report 4/7/2011

system would cost approximately \$170.08 per square foot, and the Two Way Concrete Slab would cost approximately \$162.78 per square foot.

Schedule Analysis

From the takeoff performed for the cost study, the schedule of task was created. Using the recommended crew and the crew output data from RS Means, a detailed schedule breakdown was created using Microsoft Office Project. Microsoft Office Project was used to create a more accurate schedule to show how tasks can over lap during the construction process. A summary of the schedule comparison can be seen in Table 14.

Table 14: Schedule Summary

Schedule Summary		
# Days		
One Way Concrete Slab	375	
Two Way Concrete Slab	262	
Original Design 267		

It was observed that the new concrete design could be constructed in a longer duration than the original design. Also, the Two Way Concrete Slab could be constructed in a longer duration than the One Way Concrete Slab. The One Way Concrete Slab design could be complete in 375 day, and the Two Way Concrete Slab would take 262 days. The original design was completed in 267 days. The difference in schedule days is approximately 5.4 months (108 days) compared to the One Way Concrete Slab, and 0.25 months (5 days) compared to the Two Way Concrete Slab. Detail schedule data can be found in Appendix J.

Final Report 4/7/2011

Conclusion

The structural redesign of The Residences showed that a Two Way Concrete Slab design was comparable to that of a One Way Concrete Slab design. The design process for both systems was straight forward. The slab thickness for the One Way Concrete Slab was determined to be 5" and was 10" for the Two Way Concrete Slab. The One Way Concrete Slab was able to be integrated with the existing architectural design with minor architectural impact. As for the Two Way Concrete Slab, to try and keep a square and regular bay, the system had more problems integrating with the existing architectural design. With keeping the floor to ceiling height as 24", as originally designed, the minimal depth of the beams that needed to be in the One Way Concrete Slab design reduced the space that could be utilized by other disciplines. Concrete shear walls were designed using the provisions and requirements from AIC 318-08. It was found that for the current location, ordinary reinforced concrete shear walls could be used. However, for the high seismic location, ordinary reinforced concrete shear walls could not be used. Therefore, special reinforced concrete shear wall were designed.

The use of Autodesk Robot Structural Analysis program was used throughout this thesis to analyze the redesign. When the program was compared to SAP, it was found that ARSA was similar in their basic elements but lacked the more advanced features that SAP had.

From the investigation of green roof designs, it was determined that most green roofs are comprised of three major layers: Vegetation, Growing Media, and Drainage. For the vegetation layer, it was determined that grass would be able to resist the temperatures and the impact from occupants walking on it. The growing media needed to be comprised of about 50% -70% lightweight aggregate, 10%-20% organic material, and 20%-30% sand. A 2" drainage layer was determined to take any water that was not absorbed by the soil. Once the excess water was drained away, it could be collected to be used for alternative uses.

Final Report 4/7/2011

A cost and schedule comparison was conducted for the One Way Concrete Slab and Two Way Concrete Slab designs. It was determined that the One Way

Concrete Slab would cost about \$170.08 per s.f. and could be constructed in 375 days. The Two Way Concrete Slab was found to be \$162.78 per s.f. and could be completed in 262 days. This was compared to the original design, \$182.96 per s.f. and 267 days, and found that the Two Way Concrete Slab was cheaper and could be constructed in the same time frame.

Ryan English
Structural Option
Dr. Richard A. Behr

The Residences Anne Arundel County, Maryland

Final Report 4/7/2011

References

American Concrete Institute (2008) Building Code Requirements for Structural Concrete (ACI 318-08), ACI, Farmington Hills, MI.

American Society of Civil Engineers (2005) ASCE 7-05: Minimum Design Loads for Buildings and Other Structures, ASCE, Reston, VA.

Naeim, F. (2001) The Seismic Design Handbook, Kluwer Academic Publishers, Norwell, MA.

Taranath, B. S. (2010) Reinforced Concrete Design Of Tall Buildings, CRC Press, Boca Raton, FL.

Wight, J. and J. MacGregor (2009) Reinforced Concrete Mechanics and Design, Pearson Education, Inc., Upper Saddle River, NJ.

Final Report 4/7/2011

Appendix A: Existing Building Plans

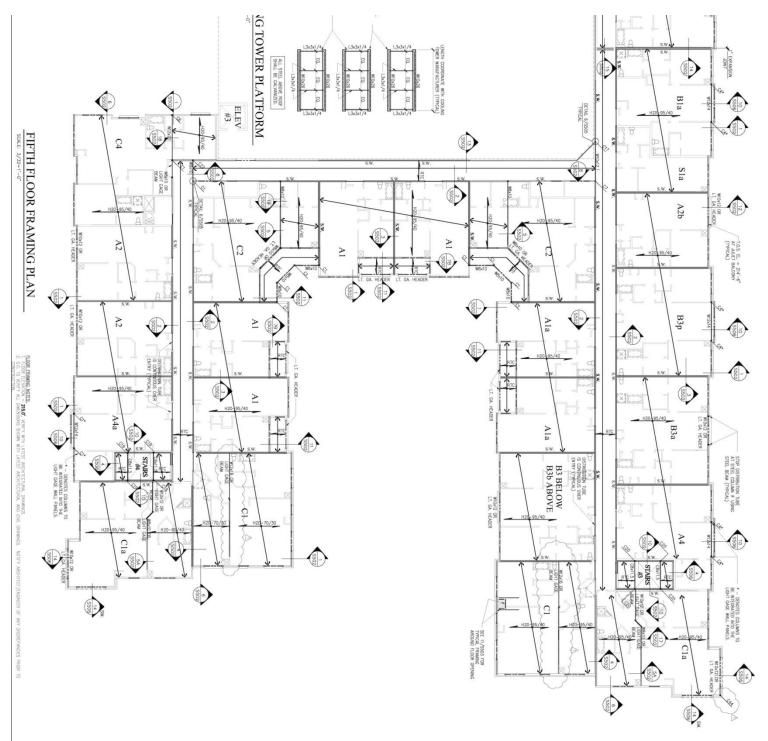


Figure 21.1:Fifth floor plan. (Construction documents by Cates Engineering)

Dr. Richard A. Behr

Appendix B: Snow Load

ASCE7-05 Section 7

(7.2) Ground Snow Load

(7.3) Flat Roof

(7.3.1) Exposure Factor

Table 7-2

$$Ce = 0.9$$

(7.3.2) Thermal Factor

$$Ct = 1.1$$

(7.3.3) Importance Factor

$$I = 1.0$$

(7.4) Slop Roof

$$Cs = 1.0$$

$$Ps = 21 psf$$

Snow Drifting

$$L_n = 11'-6''$$

$$h_d = 0.34 \sqrt[3]{l_n} \sqrt[4]{P_g + 10} - 1.5 = 2.64'$$

$$w = 4 h_d = 10.58'$$

$$\gamma = 0.13 \text{ Pg} + 14 = 17.9$$

$$Pd = h_d \gamma = 47.25 psf$$

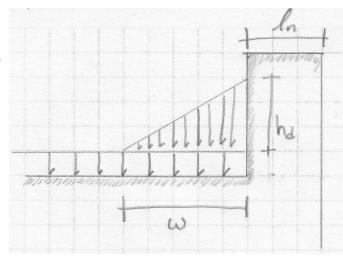


Figure B.1: Snow Drifting.

Dr. Richard A. Behr

Appendix C: Wind Load

ASCE7-05 Section 6: Method 2

(6.5.4) Basic Wind Speed Fig 6-1, V=90 mph

(6.5.5) Importance Factor
Occupancy Category: II
I=1.00

(6.5.6) Exposure Category
Exposure Category: B
(Table 6-3) Kz (B case 2)

K _z
0.57
0.57
0.62
0.67
0.70
0.73
0.76
0.79
0.81
0.83
0.85
0.86

(6.5.7) Top Factor

$$Kzt = 1.0$$

(6.5.8) Gust Effect

• Structure is ridge.

G=0.925
$$\left(\frac{(1+1.7 g_Q I_z Q)}{1+1.7 g_v I_z}\right)$$

 $I_z = c \left(\frac{33}{z}\right)^{1/6}$

 $Q = \sqrt{\frac{1}{1 + 0.63 \left(\frac{B+h}{L_Z}\right)^{0.63}}}$ $L_Z = l \left(\frac{Z}{33}\right)^{\epsilon}$

$$L_z = l \left(\frac{z}{33}\right)^{\epsilon}$$

	z (₃₃)	
Z	37.32	
Z	30	
min		
С	0.3	
3	0.333333	
	320	
gq	3.4	
gv	3.4	
lz	0.293912	
Lz	333.3951	
	E-W	N-S
Q	0.727009	0.741373
G	0.77	0.77

(6.5.9) Enclosure Classification **Enclosed Building**

(6.5.11.1) internal Pressure Coefficient $GC_{pi} = \pm 0.18$

(6.5.11.2) External Pressure coefficients Cp

	E-W	N-S
L/B	0.8586	1.1647
H/L	0.135	0.1159

See table for values.

$$q_z$$
=0.00256 $K_z K_{zt} K_d V^2 I$

$$K_d = 0.85$$

$$P=qGC-q_i(GC_{pi})$$

Ryan English Structural Option Dr. Richard A. Behr

The Residences Anne Arundel County, Maryland

Final Report 4/7/2011

(6.5.12.2.4) Parapets

 $Pp = q_p GC_{pn}$ h=69 ft

 GC_{pn} = +1.5 Windward

-1.0 Leeward

Dr. Richard A. Behr

EW

EVV						
\mathbf{k}_{zt}	1.00					
K _d	0.85					
V	90					
I	1.00					
GCpi	0.18					
G	0.77					
	Z	Kz	qz	Ср	Р	Р
		-	12	'	w/+GC _{pi}	w/-
					, pi	GC_{pi}
Windward	0.00	0.57	10.05	0.80	3.46	8.91
	15.00	0.57	10.05	0.80	3.46	8.91
	20.00	0.62	10.93	0.80	4.01	9.46
	25.00	0.67	11.81	0.80	4.55	10.00
	30.00	0.70	12.34	0.80	4.88	10.32
	35.00	0.73	12.87	0.80	5.20	10.65
	40.00	0.76	13.40	0.80	5.53	10.98
	45.00	0.79	13.92	0.80	5.85	11.30
	50.00	0.81	14.28	0.80	6.07	11.52
	55.00	0.83	14.63	0.80	6.29	11.74
	60.00	0.85	14.98	0.80	6.50	11.95
	62.17	0.86	15.14	0.8	6.60	12.05
Leeward	-	-	15.14	-	-8.52	-3.13
				0.50		
Side	-	_	15.14	-	-10.85	-5.46
				0.70		
Roof						
Zone 1	-	-	15.14	-	-13.19	-7.79
				0.90		
	-	-	15.14	-	-4.79	0.60
				0.18		
Zone 2	-	-	15.14	-	-13.19	-7.79
				0.90		
	-	-	15.14	-	-4.79	0.60
				0.18		

Ryan English
Structural Option

Final Report 4/7/2011

Dr.	Ric	ha	rd A	R	aŀ	١r
υ Ι.	ΝIC	.Hd	ru <i>F</i>	۱. D	e.	П

Dir inchare	, , Dein					
Zone 3	-	_	15.14	-	-8.52	-3.13
				0.50		
	-	-	15.14	-	-4.79	0.60
				0.18		
Zone 4	-	-	15.14	-	-6.19	-0.80
				0.30		
	-	-	15.14	-	-4.79	0.60
				0.18		
Parapets						
Kz	0.886					
q	15.62					
GCpn	1.50					
	-1.00					
P Wind	23.42	(psf				
)				
P Lee	-	(psf				

Final Report 4/7/2011

Dr. Richard A. Behr

NS

143						
\mathbf{k}_{zt}	1.00					
K _d	0.85					
V	90					
1	1.00					
GCpi	0.18					
G	0.77					
	Z	Kz	qz	Ср	Р	Р
					$w/+GC_{pi}$	w/-
					•	GC_{pi}
Windward	0.00	0.57	10.05	0.80	3.46	8.91
	15.00	0.57	10.05	0.80	3.46	8.91
	20.00	0.62	10.93	0.80	4.01	9.46
	25.00	0.67	11.81	0.80	4.55	10.00
	30.00	0.70	12.34	0.80	4.88	10.32
	35.00	0.73	12.87	0.80	5.20	10.65
	40.00	0.76	13.40	0.80	5.53	10.98
	45.00	0.79	13.92	0.80	5.85	11.30
	50.00	0.81	14.28	0.80	6.07	11.52
	55.00	0.83	14.63	0.80	6.29	11.74
	60.00	0.85	14.98	0.80	6.50	11.95
	62.17	0.86	15.14	0.80	6.60	12.05
Leeward	-	-	15.14	-	-8.17	-2.78
				0.47		
Side	-	-	15.14	-	-10.85	-5.46
				0.70		
Roof						
Zone 1	-	-	15.14	-	-13.19	-7.79
				0.90		
	-	-	15.14	-	-4.79	0.60
				0.18		
Zone 2	-	-	15.14	-	-13.19	-7.79
				0.90		
	-	-	15.14	-	-4.79	0.60
				0.18		

Ryan English
Structural Option
Dr. Richard A. Behr

Final	Report
4/	7/2011

-	-	15.14	-	-8.52	-3.13
			0.50		
-	-	15.14	-	-4.79	0.60
			0.18		
-	-	15.14	-	-6.19	-0.80
			0.30		
-	-	15.14	-	-4.79	0.60
			0.18		
			15.14 15.14	15.14 - 0.30 15.14 - 0.18 15.14 - 0.30 15.14 -	15.144.79 - 15.146.19 - 15.144.79 - 15.144.79

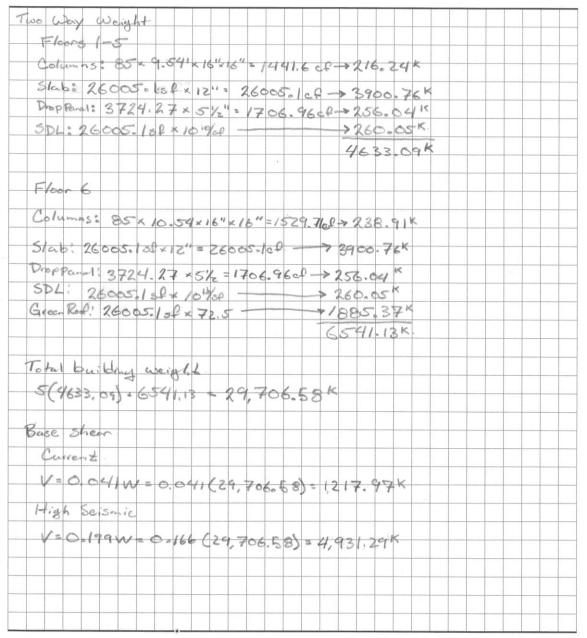
Parapets		
Kz	0.886	
q	15.62	
GCpn	1.50	
	-1.00	
P Wind	23.42	(psf
)
P Lee	-	(psf
	15.62)

Final Report 4/7/2011

Dr. Richard A. Behr

Appendix D: Seismic Load

Final Report 4/7/2011


Dr. Richard A. Behr

				-5		84	t		10	50	16/	cf													
	12					- 1	0.5	PI		114.		4	1	10.						1	2 %	any I	4.		
1	Be	aras	5 5	33	00	-9	21	* K	14	/ *×	13	40 m	4	7	1.9	7	t	-maril	9 6	52	5.	79	K		
-	5/	ab	12	53	48	38	SP P×	×	6"	NO.	12	67	4.	9	C.P	week		1	90	121	3	K			
	272		2	339	48	.58	100	, /C	17	SA-								-Voluments	The same of the same of	-	PRODUCTION OF THE PERSON OF TH	7	< .		
F	500	- 6	5																						
Ce	tu	ar ho, 法传统	:	10	0	11	. 5	Ç+	K I	4"	£14	***	7:	56	5.	2	8 .	e -	-29	2	34	.7	9 K		
B	ec		*	33	00	9	2+	×	16	"×	14	11 -	5	13	4.	7	30	6 -	->	7	20	2	IK		
							s of					26	8.	40	P	-		- Company							
							PX					10			The second second	and the same	PERSONAL AND						8		
9	gre	en K	eof-	. 2	\$55	18.3	8	54*	≫ 7	120	9/	254						-	No.	and the same of	-	Total State	61		-
7.	5 to		bu	di	00	w	eig	ht											4	99	7.	37	2 K		
							19			2 =	10	a	71	25	2 %										
							1 1	7	1 60	, -	19	, 7	71.	4											1
Be				ar		4	-																		
				4									terist												
		+	-		-	-	/=	Ο,	0	11	CI	7,7	+1	5,	٤):	8	18	9.	K						
	-	0		eis																					
		/=	0	. 19	94	V =	0	. 16	6	(1	99	71	5.	(3		33	15	2	ZK	K.					
	-		-		-																			-	
-		-	-		_																				

The Residences Structural Option Anne Arundel County, Maryland

Final Report 4/7/2011

Dr. Richard A. Behr

One Way Current Location
Base Shear 818.8 Kip

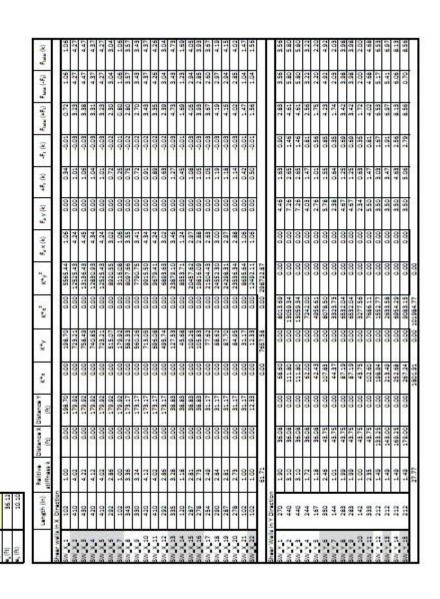
המאב אובמו	dia o.oto				The second second second second			
	Story Hight (ft) h _x		w×	w _x h _x	Cvx	Lateral Force F _x	Lateral Force F _x Story Shear Vx Moments Mx	Moments Mx
Ground	11	11	2994.77	32942.47	0.0397	32.5	818.8	
Second	11	22	2994.77	65884.94	0.0795	65.1	786.3	1431.7
Third	11	33	2994.77	2994.77 98827.41	0.1192	9.76	721.2	
Fourth	11	44	2994.77	2994.77 131769.9	0.1590	130.2	623.6	
Fifth	11	55		2994.77 164712.4	0.1987	162.7	493.4	8948.1
Roof	12	29	4997.37	334823.8	0.4039	330.7	330.7	22158.2
			19971.22	19971.22 828960.8		818.80		41,844.13

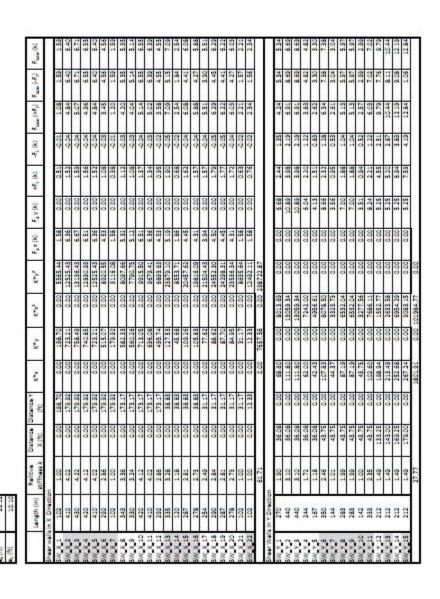
	$\overline{\mathbf{z}}$
rigii Jeisiiile	3.315.22
vay	Base Shear

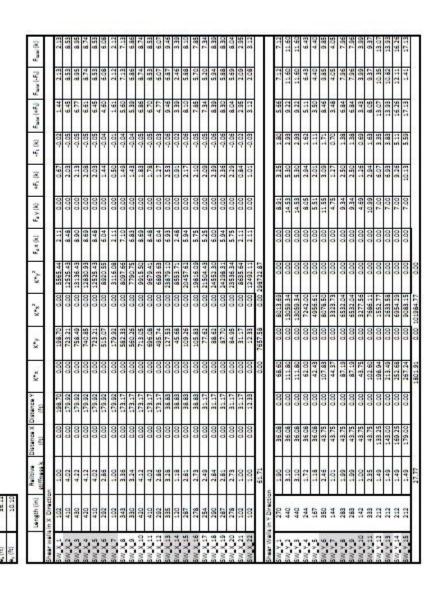
	Story Hight (ft) h _x		W×	wxhx	Š	Lateral Force F _x	Lateral Force F _x Story Shear Vx Moments Mx	Moments Mix
Ground	11	11	2994.77	2994.77 32942.47	0.0397	131.7	3315.2	
Second	11	22	2994.77	65884.94	0.0795	263.5	3183.5	
Third	11	33	2994.77	98827.41	0.1192	395.2	2920.0	13042.8
Fourth	11	44	2994.77	2994.77 131769.9	0.1590	527.0		
Fifth	11	55	2994.77	2994.77 164712.4	0.1987	658.7	1997.8	
Roof	12	29	4997.37	4997.37 334823.8	0.4039	1339.0	1339.0	89715.9
			19971.22	828960.8		3,315,22		169 421 70

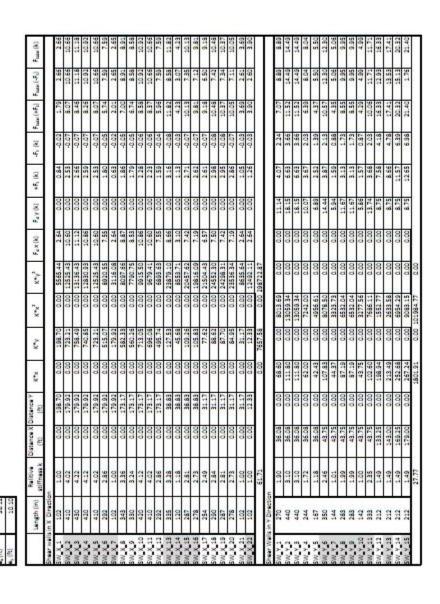
Two Way Current Location
Base Shear 1217.9

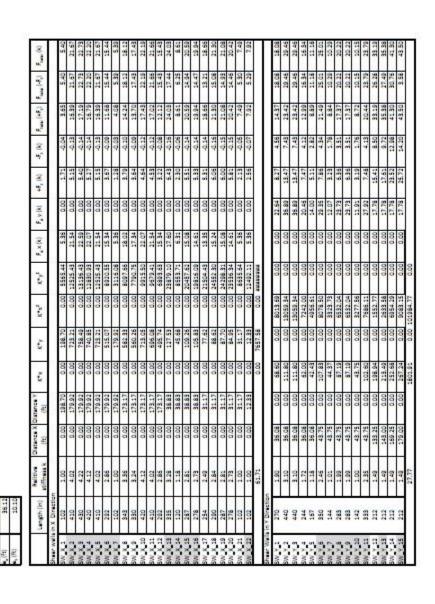
Kip	
1217.97	
Shear	
ase	


Dase Siledi	JA 16:1121	di	CONTRACTOR CONTRACTOR CONTRACTOR					
	Story Hight (ft) h	h _x	Wx	w _x h _x	Çx	Lateral Force F _x	Lateral Force F _x Story Shear Vx Moments Mx	Moments Mx
Ground	11	11	4633.09	50964	0.0424	51.6	1218.0	567.7
puope	11	22	4633.09	7		103.2	1166.4	
rhird	11	33	4633.09		0.1271	154.8	1063.1	5109.4
-ourth	11	44	4633.09	203856	0.1695	206.4	908.3	
ifth	11	55	4633.09	254820		258.1	701.9	
Roof	12	29	6541.13	438256	0.3644	443.8	443.8	29735.6
			29706.58	1202716		1,217.97		60,959.84


Two Way High Seismic Base Shear 4,931.29 Kip


המזב הובמו	divi C2.1CC,+	divi o							
	Story Hight (ft)	٦×		Wx	w _x h _x	ػٚ	Lateral Force F _x	Lateral Force F _x Story Shear Vx Moments Mx	Moments Mx
Ground	1	1	11	4633.09	50964	0.0424	209.0	4931.3	2298.5
second	1	.1	22	4633.09	101928	0.0847	417.9	4722.3	9194.2
Third	1	1	33	4633.09	152892	0.1271	676.9	4304.4	
ourth	1	1	44	4633.09	203856	0.1695	835.8	3677.5	36776.8
ifth	1	1	55	4633.09	254820	0.2119	1044.8	2841.7	57463.7
Roof	1	2	19	6541.13	438256	0.3644	1796.9	1796.9	120392.7
				29706.58	1202716		4,931.29		246,812.84


One Way Concrete Slab Shear Wall Forces per Diaphragm


100	000														
150.0															
Œ.	10.10														
	Length (in)	Reitive stiffness k	Distance	Distance	č	N.	č	, ta	Fax (k)	$F_{d,\gamma}(x)$	£. E.	A. (k)	Face (45)	F _{ters} (-5 ₁)	3
Spar wall	ar walls in X. Direction														
W X 1	101	1.00	000	198.70	000	198.70	000	5565.44		00'0	0.37	0.00			0.56
W X 2	410	4.02	0.00	179.92	0.00	723.21	000	12525.43			0.51	-0.01		2.13	2.1
W X 3	430	422	0000	179.92	00.00	758.49	000	13136.43			0.53	-0.01	1.69		2.15
NX A	420	4.12	0.00	179.92	00.0	740.85	000	12830.93	2.17	00.00	0.52	-0.01			2.16
NXS	410	4.02	000	179.92	0.00	723.21		12525.43			0.51	-0.01	1.61	2.13	2.13
NX.6	292	2.86	0.00	179.92	0.00	515.07	0.00	8920.55	1.51	00.00	0.36	VIII		1.52	1.5
NX7	101	1.00	0.00	179.92	00.00	179.92		3116.08			0.13				0.5
N X B	343	3.36	0.00	173.17	000	583.33		8097.66			0.37		1.40		1.7
6 X N	330	3.24	00.0	173.17	00.00	560.26	000	7790.75	1.70	00:00	0.36	-0.01			1.7
N X 10	420	4.12	000	173.17	00:0	713.05		9915.50			0.46				2.3
N.X.11	410	4.02	000	179.17	00:00	60.608		9679.41			0.44				2.1
N X 12	292	2.86	00.0	178.17	0.00	495.74		6893.63			0.32			1.52	5
N X 13	335	3.28	0.00	38.83	00.0	127.53		13679.10			0.63		150		2.3
N X 14	120	118	00.0	38.83	00.00	45.68		8553.71	0.62		0.23			0.61	0.8
V.X.15	287	2.81	0.00	38.83	00.0	109.26	0.00	10457.61	2.48		0.54		2.02		2.0
V X 15	278	2.73	00.0	38.83	0.00	105.83		19815.09		j	0.52	Ũ		120	1.9
V X 17	254	2.49	000	31.17	00.0	77.62		11504.43		00.0	0.52				1.8
V X 18	290	284	000	31.17	00.0	88.52		14552.30	1.50		0.60		2.09		2.0
01 X V	287	2.81	000	31.17	0.00	87.70		14198 31	1.48		0.59		7.00		2.0
V X 20	278	2.73	0000	31.17	0.00	84,95	000	13536.34	777	00.00	0.57	.001	2.01	1.42	2.0
V X 21	101	1.00	000	31.17	000	31.17	000	8635.64			0.21				0.3
V X 21	101	1.00	00:0	12.33	00.0	11.33	0.00	12492.11	0.53	00.00	0.25	:001	0.78	0.52	0.3
	1	61.71		1	0.00	7657.58	000	298722.87	200	60			100	10	
ear Wells in	a in Y Direction	95	33	200	18000	80000	Seegas	Same of the	200	280	250	20	20	33 2	32
1 4 1	270	1.90	36.08	0.00	68.60	0.00	8013.69	0000			0.81	50	223 201	40	1.7
11 7 2	440	3.10	36.08	0.00	111.80	0.00	13059.34	0.00	121	3.63	1.32	0.73	2.30	2.90	2.9
8 4 4	440	3.10	36.08	0.00	111.80	0.00	13059.34	8			132		200	000	2.9
N 7.4	244	1.72	36.08	0.00	62.00	0.00	7242.00	223			0.73				1.6
NYS	167	1.18	36.08	0.00	42.43	0.00	4956.61				0.50		26	,000 ,000	1.1
N. Y. S.	350	2.46	43.75	0.00	107.83	0.00	8078.50	0.00			0.77	0.43	01	2.45	2.4
11.47	244	1.01	43.75	0.00	44.37	0000	3323.73	0.00		1.19	0.32	0.18	0.87	1.01	1.0
N Y B	283	1.99	48.75	0.00	87.19	0.00	6532.04	0.00		110	0.62	0.34	1.71	1.99	1.9
0 V W	283	1.99	43.75	0.00	87.19	0.00	6532.04	0.00	151		0.62		8	997	1.9
W V 10	141	00'0	43.75	0.00	43.75	00.0	3277.56	000		1.17	0.31		6	8	1.0
N V 11	333	2.35	43.75	0.00	102.60	00.00	7686.11	000			0.73	0.41	2.01	2.34	2.9
N Y 12	212	1.49	138,25	0.00	198.94	00.00	1552.77	0.00	00.00		151				3.16
N.Y. 33	212	1.49	148.00	0.00	213.49		2633.58	0.00			1.73	0.96		2,70	3.48
N V 14	212	1.49	169.25		152.68		6954.29	0.00		1.75	2.31	193 200	4.06		4.0
V V 15	211	1.49	179.00		267.24		9088 18	000			2 50	1.40			4.7
				ı											

Summary of shear wall forces for the One Way Concrete Slab current location.

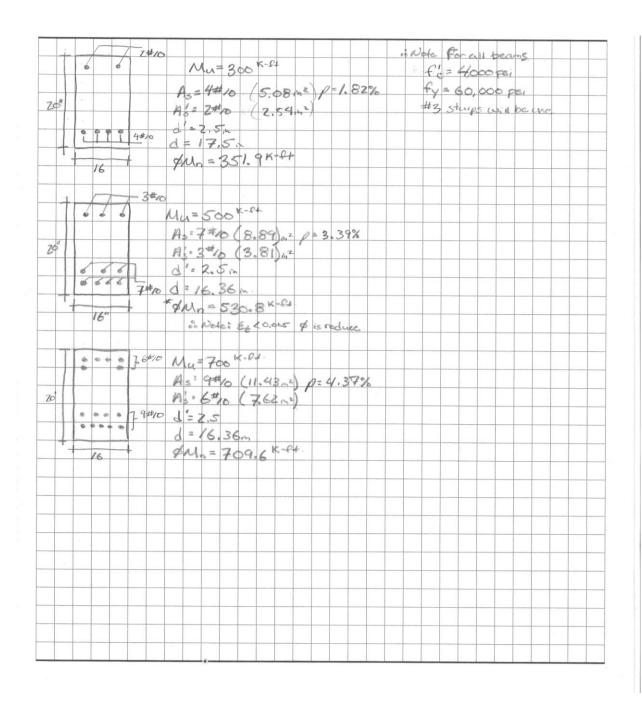
Story Force	e per frame per)	W 7		
	Diaphragm 1	Diaphragm 2	Diaphragm 3	Diaphragm 4	Diaphragm 5	Diaphragm 6
			ar walls in X Di	rection		
SW_X_1	0.53	1.06	1.59	2.13	2.66	5.40
SW_X_2	2.13	4.27	6.40	8.53	10.66	21.67
SW_X_3	2.23	4.47	6.71	8.95	11.18	22.73
SW_X_4	2.18	4.37	6.55	8.74	10.92	22.20
SW_X_5	2.13	4.27	6.40	8.53	10.66	21.67
SW_X_6	1.52	3.04	4.56	6.08	7.59	15.44
SW_X_7	0.53	1.06	1.59	2.12	2.65	5.39
SW_X_8	1.78	3.57	5.35	7.13	8.91	18.12
SW_X_9	1.71	3.43	5.14	6.86	8.58	17.43
SW_X_10	2.18	4.37	6.55	8.74	10.92	22.19
SW_X_11	2.13	4.26	6.39	8.53	10.66	21.66
SW_X_12	1.52	3.04	4.55	6.07	7.59	15.43
SW_X_13	2.36	4.73	7.09	9.46	11.82	24.03
SW_X_14	0.85	1.69	2.54	3.39	4.23	8.61
SW_X_15	2.02	4.05	6.08	8.10	10.13	20.59
SW_X_16	1.96	3.93	5.88	7.85	9.81	19.94
SW_X_17	1.83	3.67	5.51	7.34	9.18	18.66
SW_X_18	2.09	4.19	6.29	8.39	10.48	21.30
SW_X_19	2.07	4.15	6.22	8.30	10.37	21.08
SW_X_20	2.01	4.02	6.03	8.04	10.05	20.42
SW_X_21	0.74	1.47	2.21	2.95	3.69	7.49
SW_X_22	0.78	1.56	2.34	3.12	3.90	7.92
		- Fl	- W. H. S. W. B.			
51M W 4	1.78		ar Walls in Y Di		8.89	10.00
SW_Y_1		3.56	5.34	7,12		18.08
SW_Y_2	2.90	5.80	8.69	11.60	14.49	29.46
SW_Y_3	2.90	5.80	8.69	11.60	14.49	29.46
SW_Y_4	1.61	3.22 2.20	4.82 3.30	6.43 4.40	8.04 5.50	16.34 11.18
SW_Y_5						
SW_Y_6	2.46 1.01	4.92 2.03	7.38 3.04	9.85	12.30 5.06	25.01 10.29
SW_Y_7	247.400		10000000	-		M 100 100 100 100 100 100 100 100 100 10
SW_Y_8	1.99	3.98 3.98	5.97 5.97	7.96 7.96	9.95 9.95	20.22
SW_Y_9	-	2.00	2.99	N. 100 P.	-	10.15
SW_Y_10	2.34	4.68	7.02	3.99 9.37	4.99	23.79
SW_Y_11			100	1100000	16.33	
SW_Y_12	3.26 3.48	6.53 6.97	9.79	13.07 13.93	17.41	33.19 35.38
SW_Y_13	10000000	7,000,000	100000000000000000000000000000000000000	22.00000		100000000
SW_Y_14	4.06	8.13 8.56	12.19 12.84	16.26	20.32	41.30 43.50
SW_Y_15	4.27	8.56	12.84	17.13	21.40	43.50

Summary of shear wall forces for the One Way Concrete Slab high seismic.

July 1 of C	e per frame per Diaphragm 1	Diaphragm 2	Diaphragm 3	Diaphragm 4	Diaphragm 5	Diaphragm 6
	Diaphiragini 1		ear walls in X Di		Diabiliagili 2	Diaphragino
SW_X_1	2.15	4.31	5.46	8.61	10.76	21.88
SW X 2	8.63	17.27	25.90	34.54	43.17	87.76
SW_X_3	9.05	18.11	27.17	36.22	45.28	92.04
SW X 4	8.84	17.69	26.53	35.38	44.22	89.90
SW X 5	8.63	17.27	25.90	34.54	43.17	87.76
SW X 6	6.15	12.30	18.45	24.60	30.75	62.50
SW X 7	2.15	4.30	6.44	8.59	10.74	21.83
SW_X_8	7.22	14.44	21.65	28.87	36.09	73.36
SW X 9	6.94	13.89	20.83	27.78	34.72	70.58
SW_X_10	8.84	17.68	26.51	35.36	44.19	89.83
SW_X_11	8.63	17.26	25.88	34.51	43.14	87.69
SW_X_12	6.14	12.29	18.43	24.58	30.72	62.46
SW_X_13	9.57	19.15	28.71	38.29	47.86	97.29
SW_X_14	3.43	6.86	10.29	13.72	17.14	34.85
SW_X_15	8.20	16.40	24.60	32.80	41.00	83.35
SW_X_16	7.94	15.89	23.83	31.78	39.72	80.73
SW_X_17	7.43	14.86	22.29	29.73	37.16	75.54
SW_X_18	8.48	16.97	25.45	33.94	42.43	86.24
SW_X_19	8.39	16.80	25.19	33.59	41.99	85.35
SW_X_20	8.13	16.27	24.40	32.54	40.67	82.67
SW_X_21	2.98	5.97	8.95	11.94	14.92	30.33
SW_X_22	3.16	6.31	9.47	12.63	15.78	32.08
	-		-			
	-		ar Walls in Y Di			
SW_Y_1	7.20	14.40	21.60	28.81	36.01	73.20
SW_Y_2	11.73	23.47	35.21	46.95	58.68	119.28
SW_Y_3	11.73	23.47	35.21	46.95	58.68	119.28
SW_Y_4	6.51	13.02	19.52	26.03	32.54	66.15
SW_Y_5	4.45	8.91	13.36	17.82	22.27	45.27
SW_Y_6	9.96	19.93	29.89	39.85	49.81	101.26
SW_Y_7	4.10	8.20	12.30	16.40	20.49	41.66
SW_Y_8	8.05	16.11	24.17	32.22	40.28	81.88
SW_Y_9	8.05	16.11	24.17	32.22	40.28	81.88
SW_Y_10	4.04	8.08	12.13	16.17	20.21	41.08
SW_Y_11	9.48	18.96	28.43	37.92	47.39	96.34
SW_Y_12	13.22	26.44	39.66	52.88	66.10	134.37
SW_Y_13	14.09	28.19	42.28	56.39	70.48	143.27
SW_Y_14	16.45	32.91	49.35	65.81	82.26	167.22
SW_Y_15	17.32	34.66	51.98	69.32	86.64	176.12

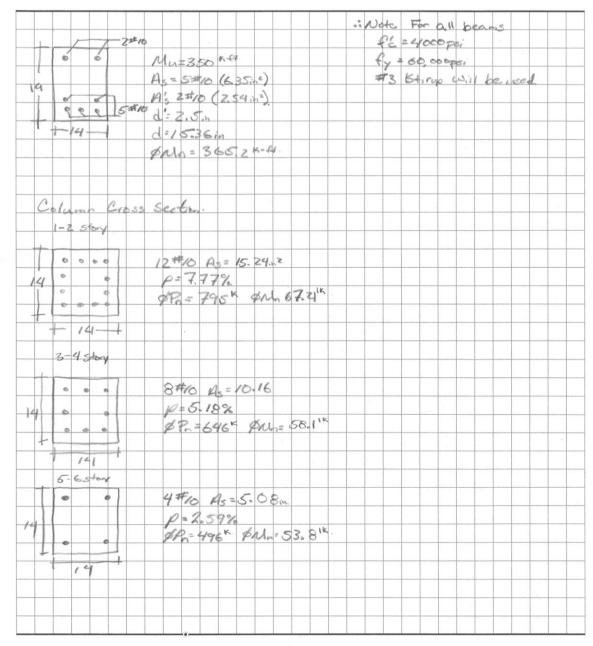
Summary of shear wall forces for the Two Way Concrete Slab current location.

	Diaphragm 1	Diaphragm 2	Diaphragm 3	Diaphragm 4	Diaphragm 5	Diaphragm 6
			ar walls in X D	irection		
SW_X_1	1.29	2.58	3.87	5.15	6.45	11.08
SW_X_2	2.74	5.47	8.21	10.95	13.69	23.54
SW_X_3	2.76	5.52	8.28	11.05	13.81	23.75
SW_X_4	2.75	5.50	8.25	11.00	13.75	23.69
SW_X_5	2.75	5.50	8.25	11.00	13.75	23.69
SW_X_6	2.74	5.47	8.21	10.95	13.69	23.54
SW_X_7	4.14	8.28	12.42	16.56	20.71	35.61
SW_X_8	2.08	4.15	6.23	8.30	10.38	17.85
SW_X_9	4.10	8.21	12.31	16.41	20.53	35.29
SW_X_10	2.99	5.99	8.98	11.97	14.97	25.74
SW_X_11	4.36	8.71	13.07	17.43	21.79	37.47
SW_X_12	3.60	7.20	10.80	14.40	18.00	30.95
SW_X_13	3.60	7.20	10.80	14.40	18.00	30.99
SW_X_14	3.46	6.92	10.39	13.85	17.32	29.78
SW_X_15	4.08	8.16	12.24	16.31	20.40	35.08
SW_X_16	2.02	4.04	6.06	8.08	10.11	17.38
SW_X_17	3.61	7.22	10.83	14.44	18.06	31.06
SW_X_18	3.51	7.02	10.53	14.04	17.56	30.19
SW_X_19	1.29	2.58	3.86	5.15	5.44	11.08
SW_X_20	1.33	2.66	3.99	5.33	6.66	11,45
	8	-60	- W-II- 1- W B	12.24.2		
	5.50		ear Walls in Y Di		20.02	40.40
SW_Y_1	5.60		16.81	22.41	28.02	48.18
SW_Y_2	3.14	6.29	9.43	12.58	15.73	27.04
SW_Y_3	5.60	11.20	16.81	22.41	28.02	48.18
SW_Y_4	5.64	11.29	16.93	22.57	28.23	48.54
SW_Y_5	3.17	6.33	9.50	12.67	15.84	27.24
SW_Y_6	5.64 6.56	11.29 13.12	16.93 19.68	22.57 26.24	28.23 32.81	48.54 56.42
SW_Y_7						
SW_Y_8	3.79	7.58 7.97	11.37	15.16	18.96	32.59 34.26
SW_Y_9	3.98	10000	11.95	15.93	19.92	
SW_Y_10	7.80	15.59	23.39	31.19	39.00	67,06
SW_Y_11	4.50	9.01	13.51	18.02	22.53	38.74
SW_Y_12	4.70	9.39	14.09	18.79	23.50	40.40

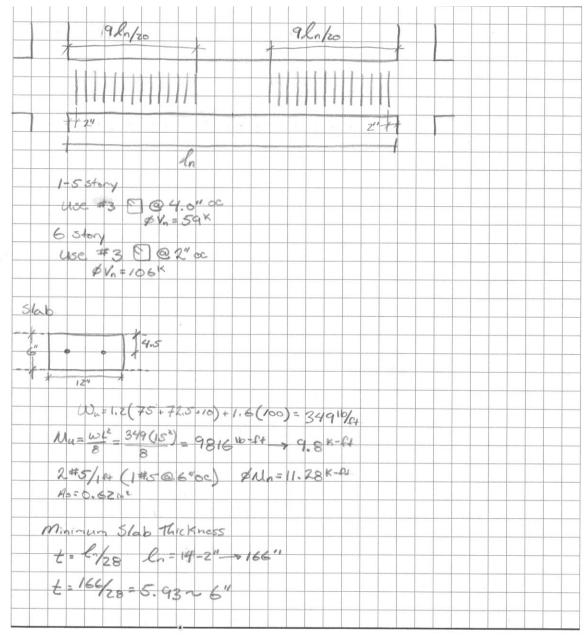

Summary of shear wall forces for the Two Way Concrete Slab high seismic.

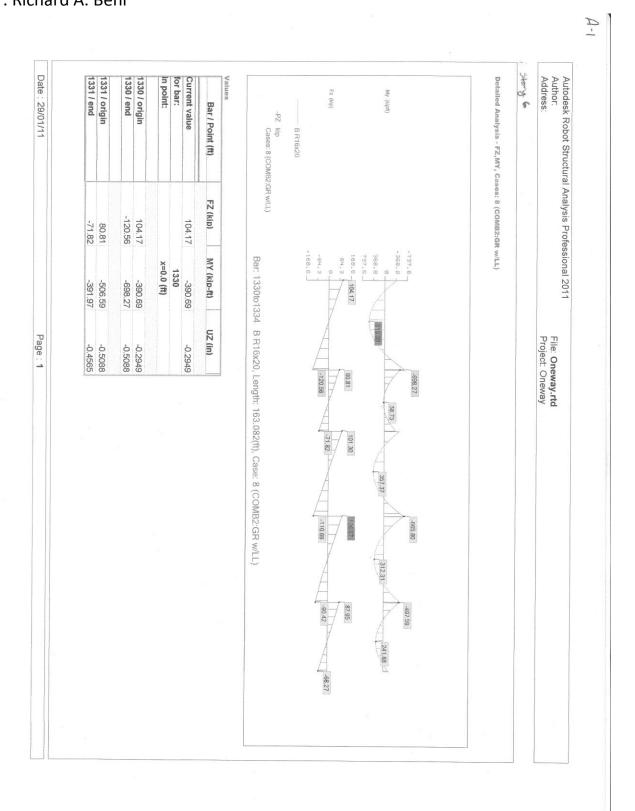
Story Forc	e per frame per			01 1	50 1	n: 1
	Diaphragm 1			Diaphragm 4	Diaphragm 5	Diaphragm 6
	2.45		ar walls in X Di		40.70	74.00
SW_X_1	2.15	4.31	5.46	8.61	10.76	21.88
SW_X_2	8.63	17.27	25.90	34.54	43.17	87.76
SW_X_3	9.05	18.11	27.17	36.22	45.28	92.04
SW_X_4	8.84	17.69	26.53	35.38	44.22	89.90
SW_X_5	8.63	17.27	25.90	34.54	43.17	87.76
SW_X_6	6.15	12.30	18.45	24.60	30.75	62.50
SW_X_7	2.15	4.30	6.44	8.59	10.74	21.83
SW_X_8	7.22	14.44	21.65	28.87	36.09	73.36
SW_X_9	6.94	13.89	20.83	27.78	34.72	70.58
SW_X_10	8.84	17.68	26.51	35.36	44.19	89.83
SW_X_11	8.63	17.26	25.88	34.51	43.14	87.69
SW_X_12	6.14	12.29	18.43	24.58	30.72	62.46
SW_X_13	9.57	19.15	28.71	38.29	47.86	97.29
SW_X_14	3.43	6.86	10.29	13.72	17.14	34.85
SW_X_15	8.20	16.40	24.60	32.80	41.00	83.35
SW_X_16	7.94	15.89	23.83	31.78	39.72	80.73
SW_X_17	7.43	14.86	22.29	29.73	37.16	75.54
SW_X_18	8.48	16.97	25.45	33.94	42.43	86.24
SW_X_19	8.39	16.80	25.19	33.59	41.99	85.35
SW_X_20	8.13	16.27	24.40	32.54	40.67	82.67
SW_X_21	2.98	5.97	8.95	11.94	14.92	30.33
SW_X_22	3.16	6.31	9.47	12.63	15.78	32.08
	-					
		She	ar Walls in Y Di	rection		
SW_Y_1	7.20	14.40	21.60	28.81	36.01	73.20
SW_Y_2	11.73	23.47	35.21	46.95	58.68	119.28
SW_Y_3	11.73	23.47	35.21	46.95	58.68	119.28
SW_Y_4	6.51	13.02	19.52	26.03	32.54	66.15
SW_Y_5	4.45	8.91	13.36	17.82	22.27	45.27
SW_Y_6	9.96	19.93	29.89	39.85	49.81	101.26
SW_Y_7	4.10	8.20	12.30	16.40	20.49	41.66
SW_Y_8	8.05	16.11	24.17	32.22	40.28	81.88
SW_Y_9	8.05	16.11	24.17	32.22	40.28	81.88
SW_Y_10	4.04	8.08	12.13	16.17	20.21	41.08
SW_Y_11	9.48	18.96	28.43	37.92	47.39	96.34
SW Y 12	13.22	26.44	39.66	52.88	66.10	134.37
SW_Y_13	14.09	28.19	42.28	56.39	70.48	143.27
SW_Y_14	16.45	32.91	49.35	65.81	82.26	167.22
SW_Y_15	17.32	34.66	51.98	69.32	86.64	176.12

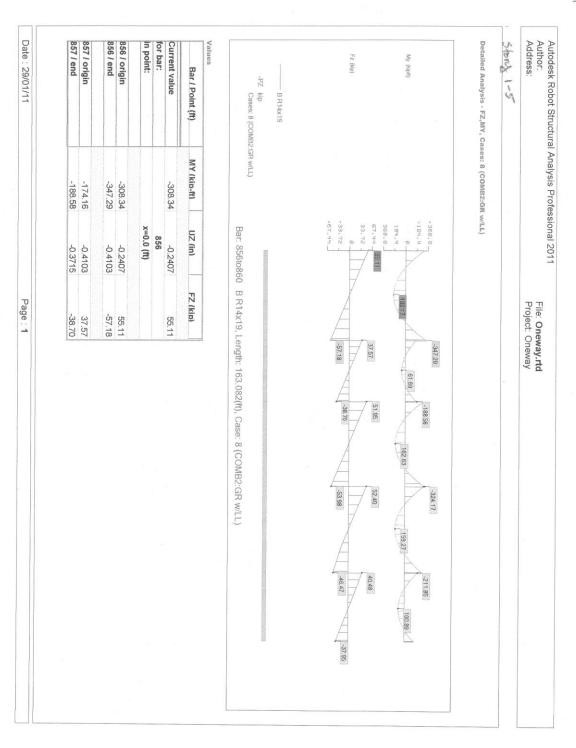
Final Report 4/7/2011

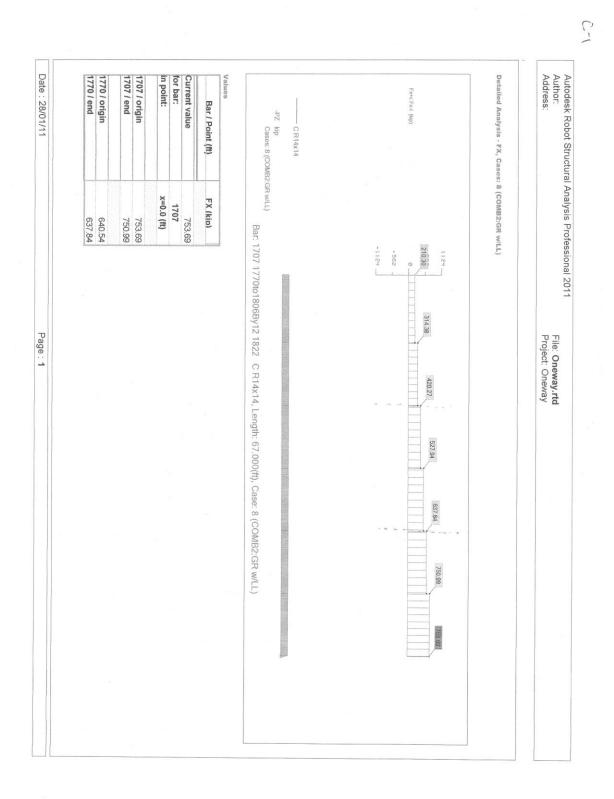

Dr. Richard A. Behr

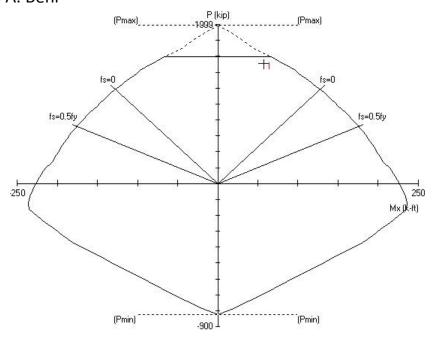
Appendix E: One Way Concrete Floor Design

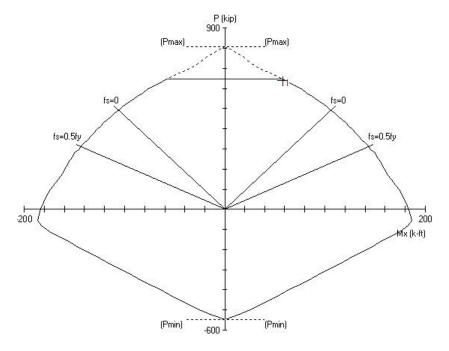

Final Report 4/7/2011

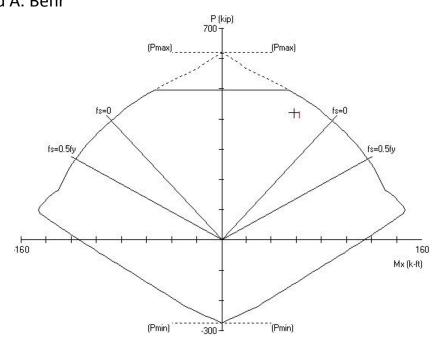

Dr. Richard A. Behr


Final Report 4/7/2011


Dr. Richard A. Behr

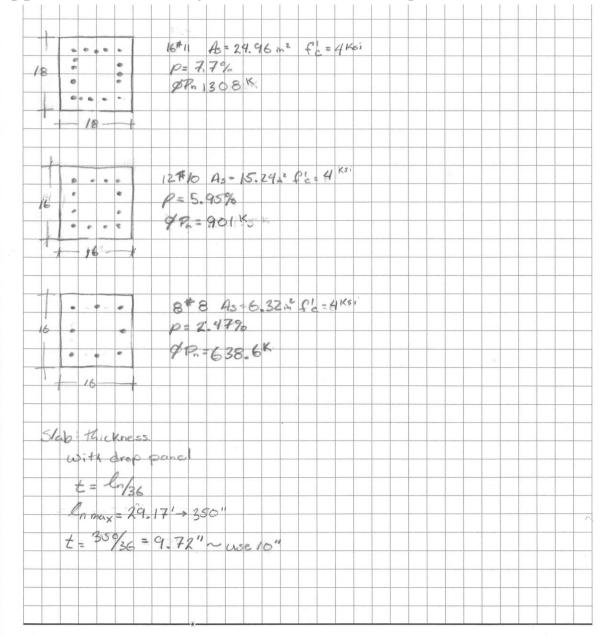




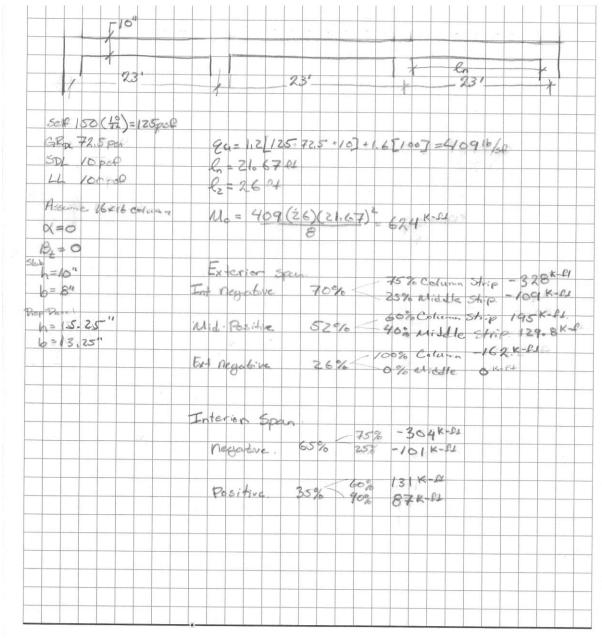


First and second story column interaction diagram.

Thread and fourth story column interaction diagram.

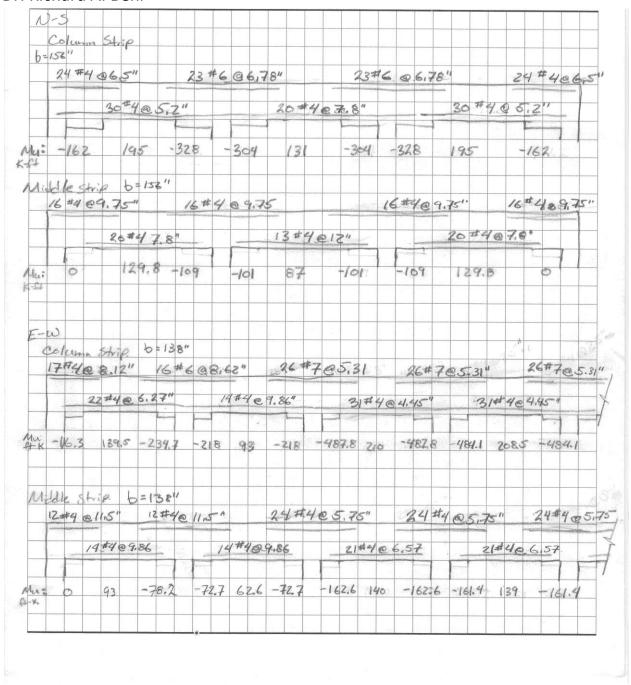


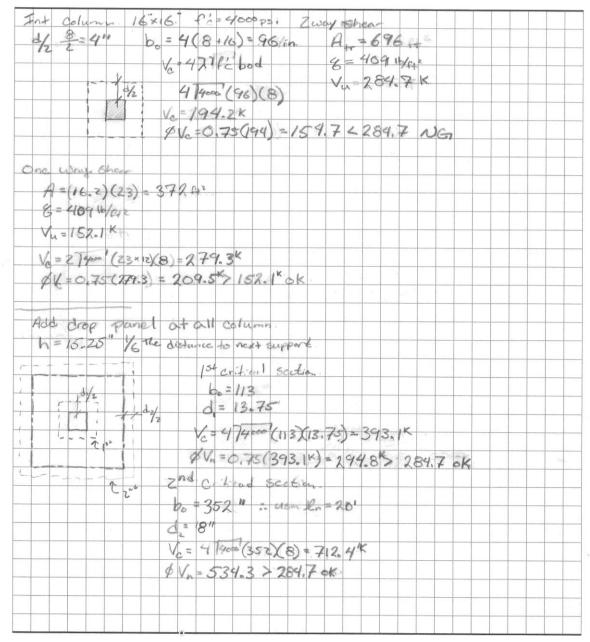
Fifth and sixth story column interaction diagram.

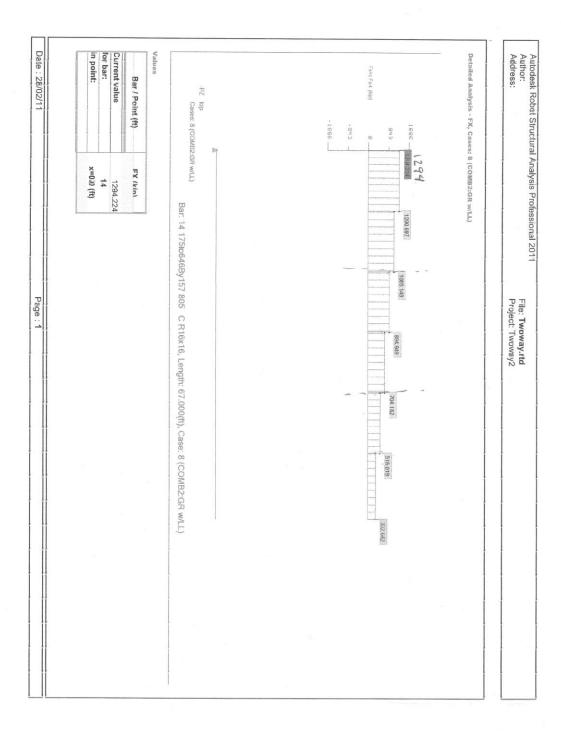

Final Report 4/7/2011

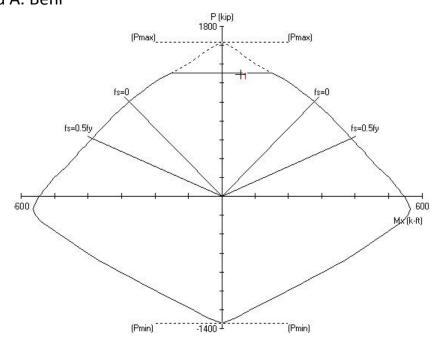
Dr. Richard A. Behr

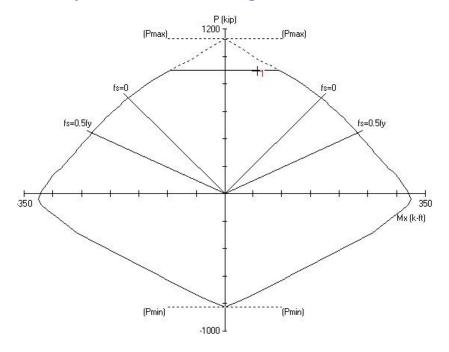
Appendix F: Two Way Concrete Floor Design

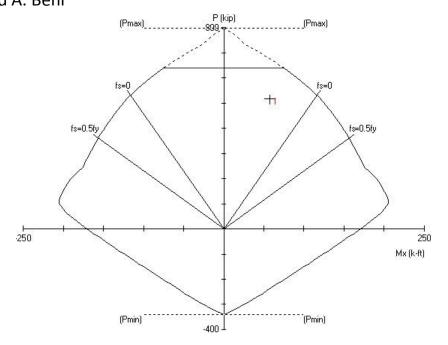

Final Report 4/7/2011


Final Report 4/7/2011

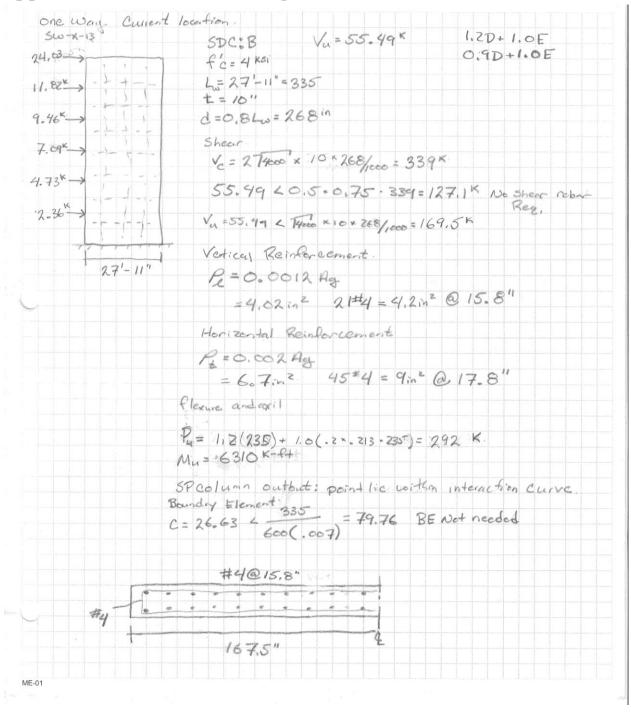

Spec 1				1	-	-	***************************************					1	Pa-	8
19.5' 19.	5 2	9.21	29-11	4	23.1	5	24.	21	-	27.	41	12	8.	41
				10/	1. L	be a								
2=2304 Qu=409K-6	4		158(1(5) =	-125	154				-		-	-	
X=0		GRO		75G	,				-	-			-	
B1=0		CARDI	1001	660		+			+			-	-	
16 × 16 Column		Ch	1001	754								-	-	
16 × 16 Column						-								
Span 1				500	12				<					
M= 447	C-CI			A	10=44	17K-	Q1		4	han	5	000	K-5	24.
Int Neg		-234.7												
0	Md	-78.2		re	8 C	lid "	72.7		re	9	Mil	-41	2.	0
Rs.		139.5												
	1	93		Po:	s Co	1	93.9		P	<	201	198	1	
Ent Neg	Col -	-116.3					J G		1 "	^	1id	190	3-1	
0	MZ	0										1		
Span H														
No = 993K	ei		Spa. Mo Neg	25					Spa					
			Mo	= 62	6.4			- 1	No	= 6	86	9		
Ney Mid -1	41.41		Deg	Col	-30	5.4			veg.	C	01	- 339 -111	1.9	
			0	Mid	-/0	1.8			9					3
Pos Col 2			Pos	- Seathern	-	**************************************	_	4	85	Ce	1	144	, 3	
ros Md. 1	59.0		100	Mid	87.	1				M	d	196	. 2	
Span 7			-5								-			
M. = 884.			100	= 9	190	+		-	-		-			-
	431.0		140	= 70	110		100	,			-			
NOS MZ -	143.7		Tot	Neg-	Mid.	- in	198.6 166. Z	2						
Col	1057				301		96.3				-	-		
Pos Md 1	230		Pos		1:1		7.5	-	-					
Jour I	700		w .				46.9		-					
			Lxt	Neg	rid	0	1600 1							
					AUTIG.	0	-		-					

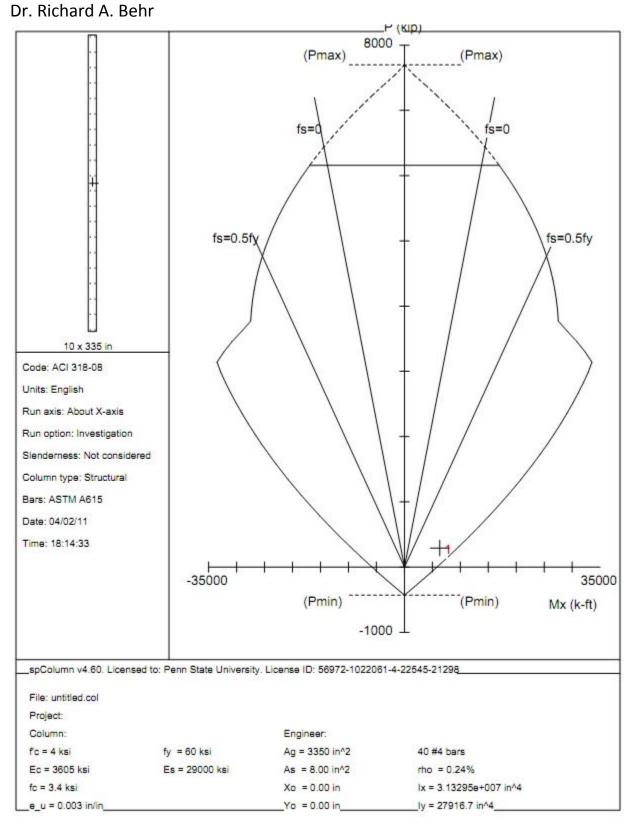

Final Report 4/7/2011


Final Report 4/7/2011

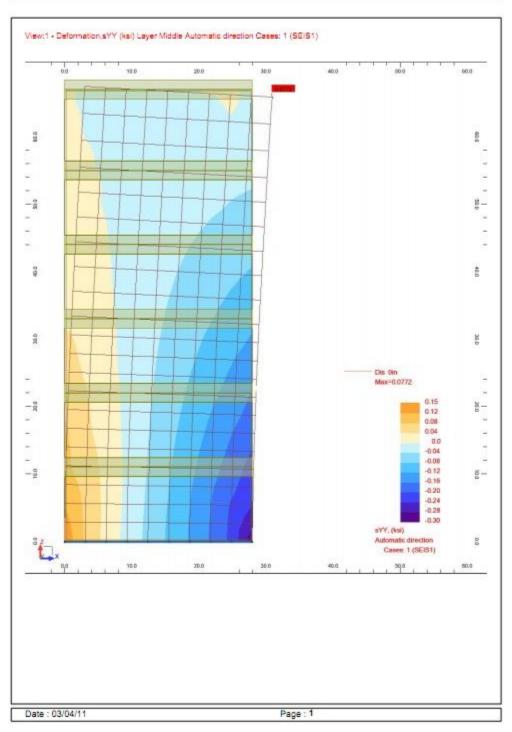


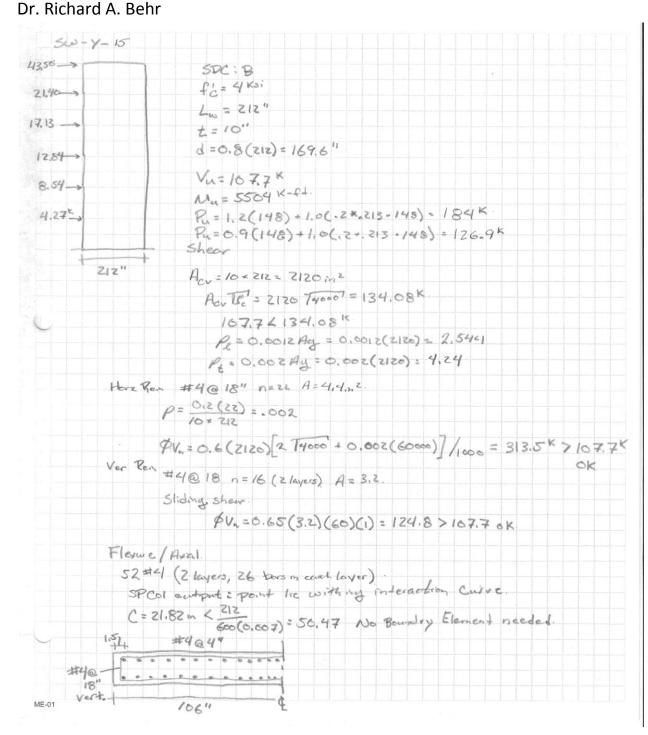
First and second story column interaction diagram


Thread and fourth story column interaction diagram

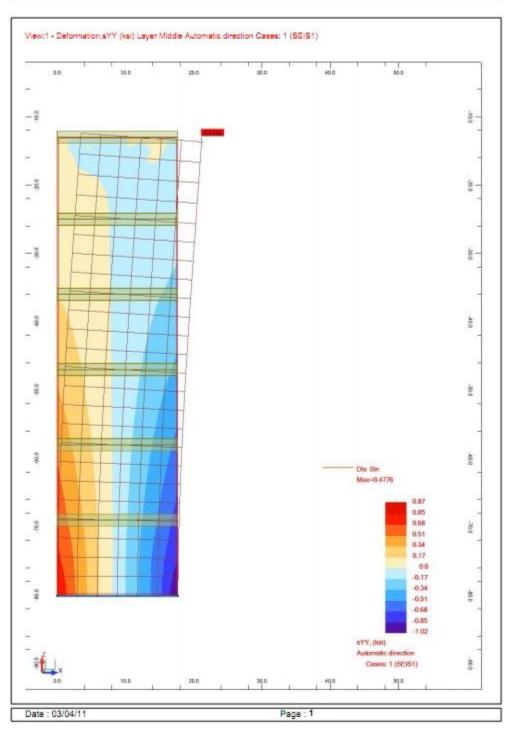


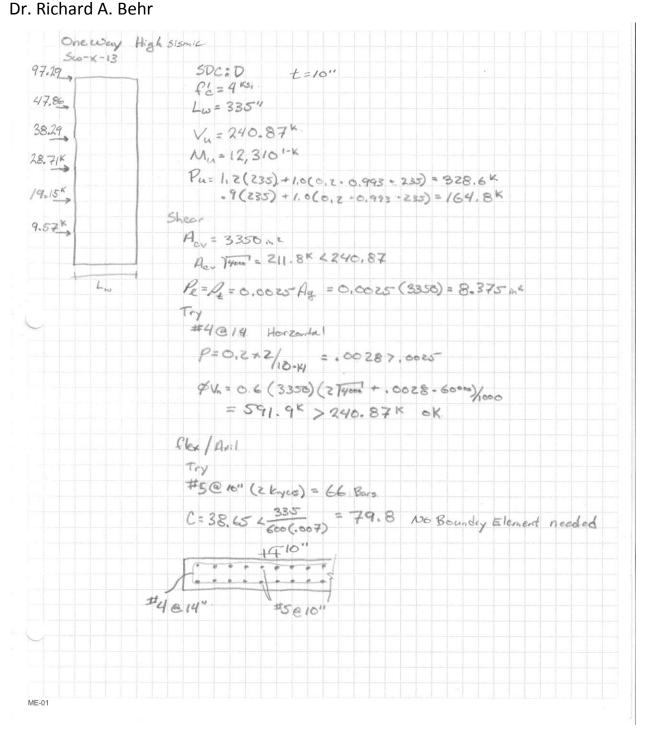
Fifth and sixth story column interaction diagram

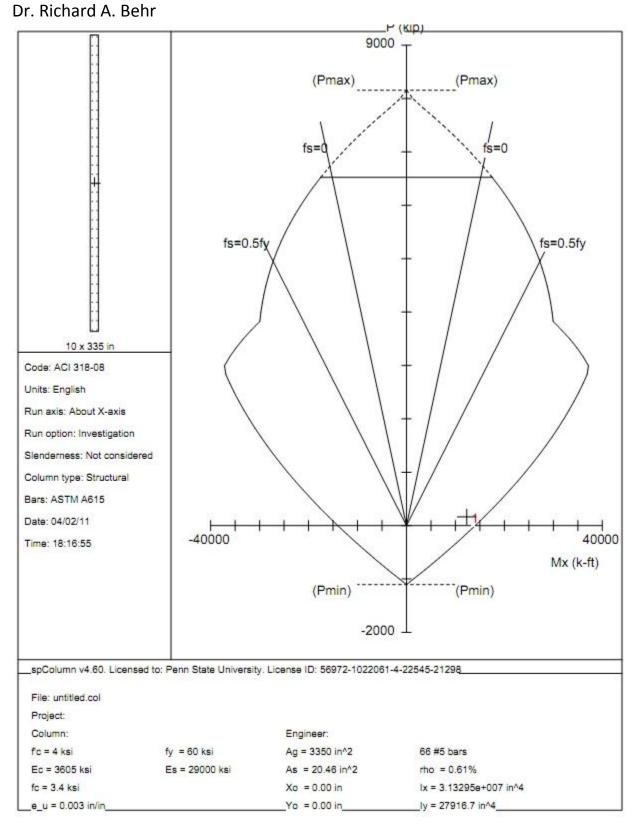

Dr. Richard A. Behr

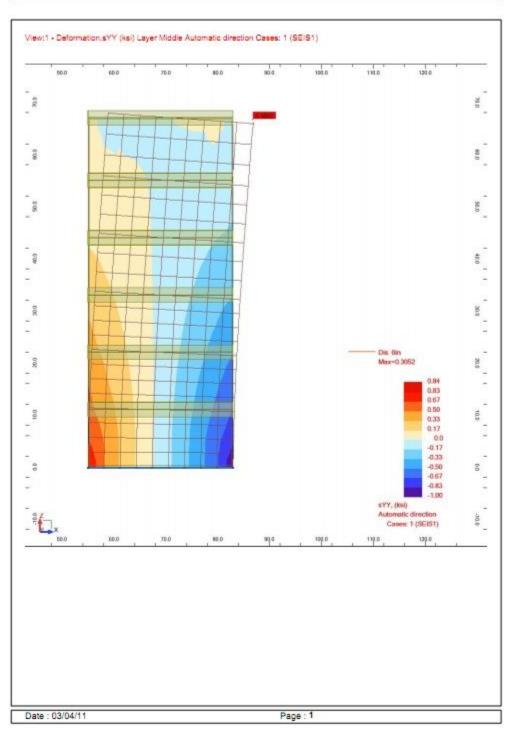

Appendix G: Shear Wall Design



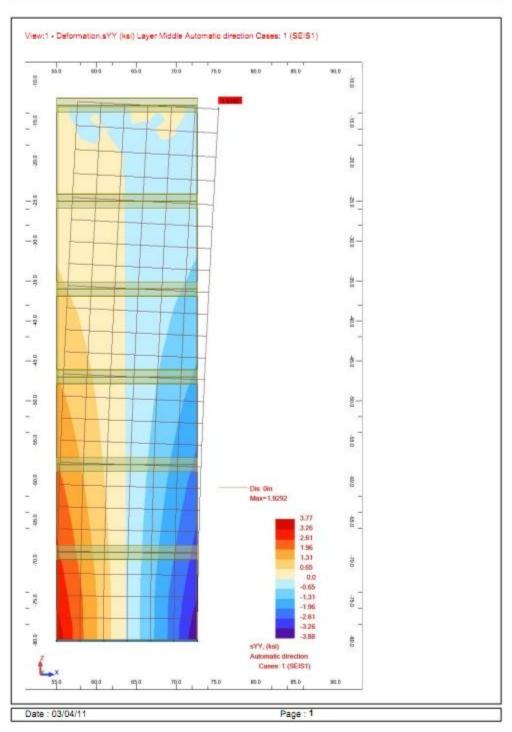


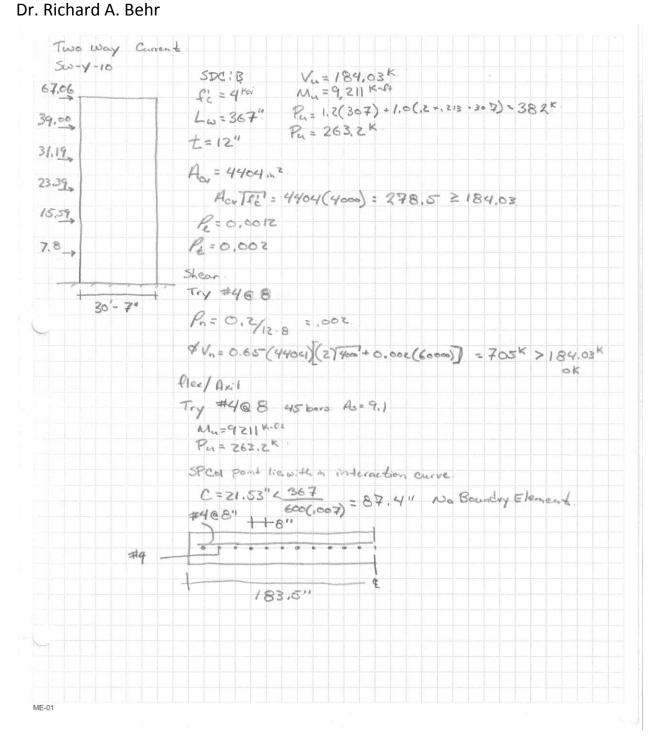


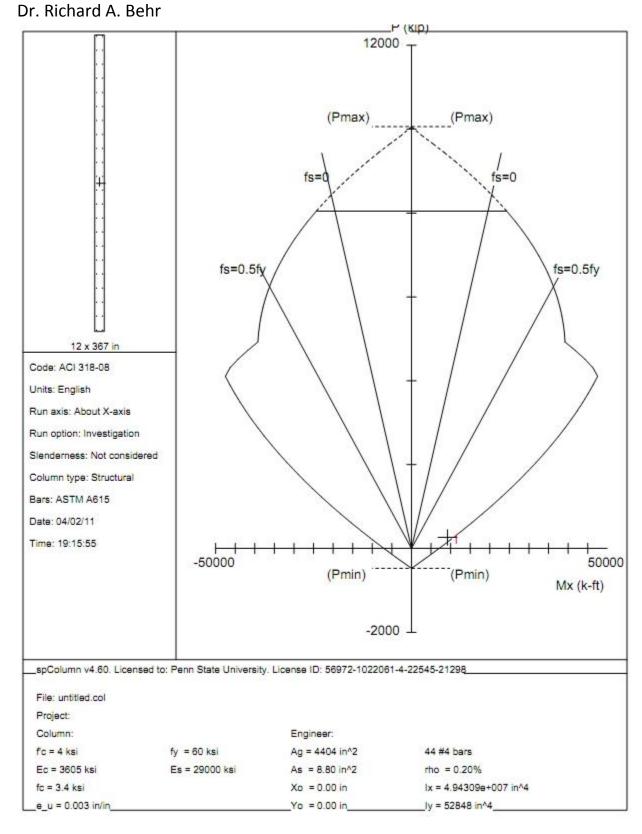




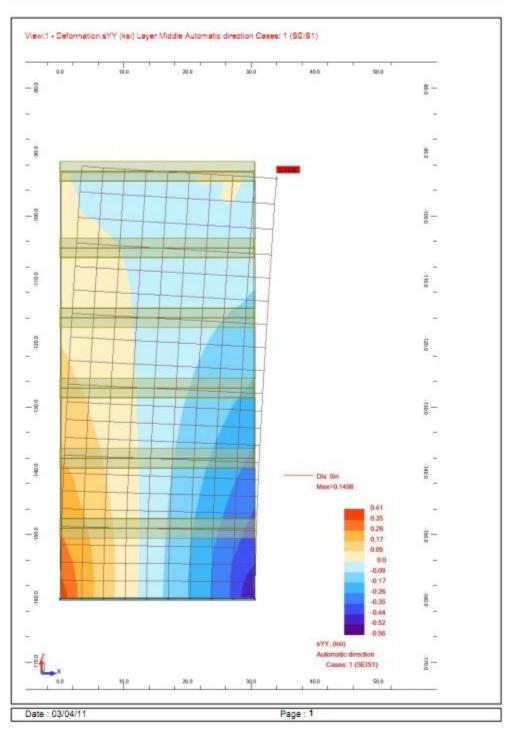
5w-Y-15		
17/10	SDC! D	Vu= 436.03K
176.12	f'= 4 Ksi	Mu= 22, 283 KI
86.64	Lw= ZIZ	Pu=1,2(148)+1.0(2x =993-148)=207K
	t=10"	Pn= .9(148)-(.Zx.993x148)=104K
69.32		
51.98	Shear.	
	Acr = 2120) ph ²
34.66	Ac, Tyeos	= 134 < 436.63.
	24.TE	1= Z68 K < 436.03 K Z layer horizontal required
17.32	P2 = P2 = 0	
CONTRACTOR OF THE PARTY OF THE	- Try #5@	14" Horizontal
	P= .31	x2/10x14 = .0044 7.0025
	/ Vn = 0.6	(2120)[274000 + 0.00014x60000]/1000 = 497 × >436
	Sliding shear	-
	Ave = 436.	03 = 11.Zinz.
		60
	Clex/Axil	
	Pu= 104	C=35. 23 > 212 = 32.12
	Mn = 22,	7.03
	#5 @ 8"	
		Ance ends.
	Boundry Element	
	WEC-011/1:	35,23-0,1(212)=14,03
	C/2 = 17.6K	54
	Vertical extension	
	h= Sew = 212m.	5.
	(4V) =153 m	
\forall		
ME-01		

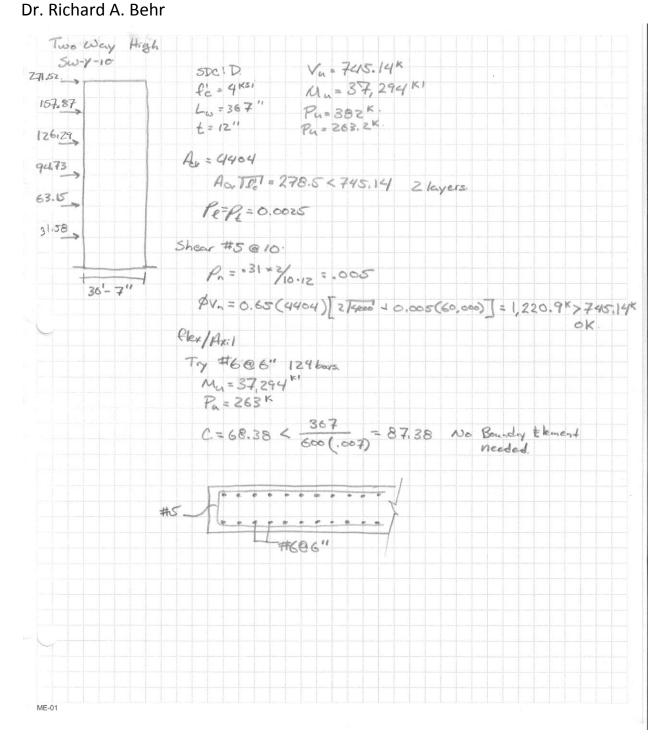

10 x 18 Boundry Element. Smax = (0,25(10) = 2,5 4 Hoops 26 < 1.45= 8.5.4 4+(14-10/3)=5.33. Confinación perpendicular. Ash= 0.09 she l'a/py he = 7.625 Ash=0.09(2.5)(7.625)(460)=0611 Z#4 legs = .4 >0.11 Confirment parallel hc=18-(3)+0.625=15.625 Ash =0.09(2,5) (15,625) (%.) = . 234 Z#4 leys = . 4> . 234 . K #4 #10@6.25

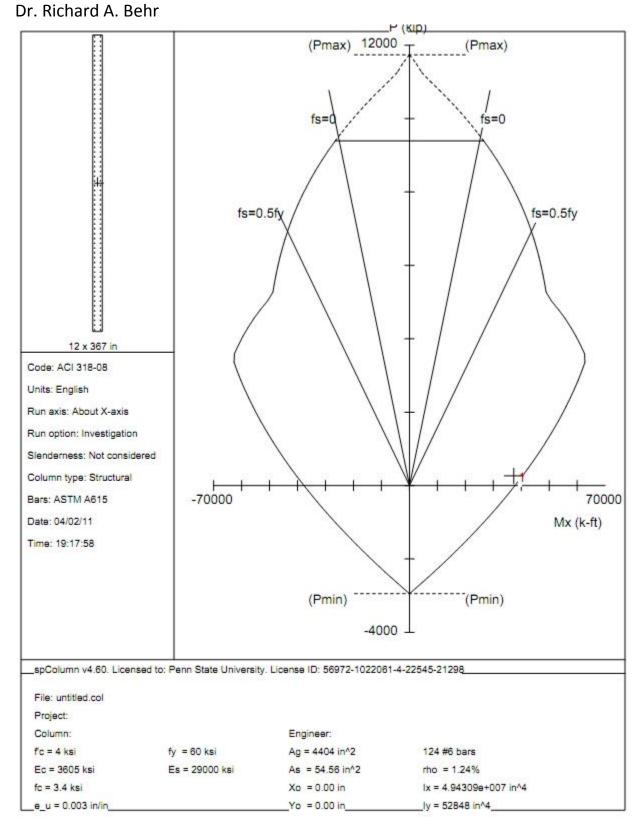

e_u = 0.003 in/in__

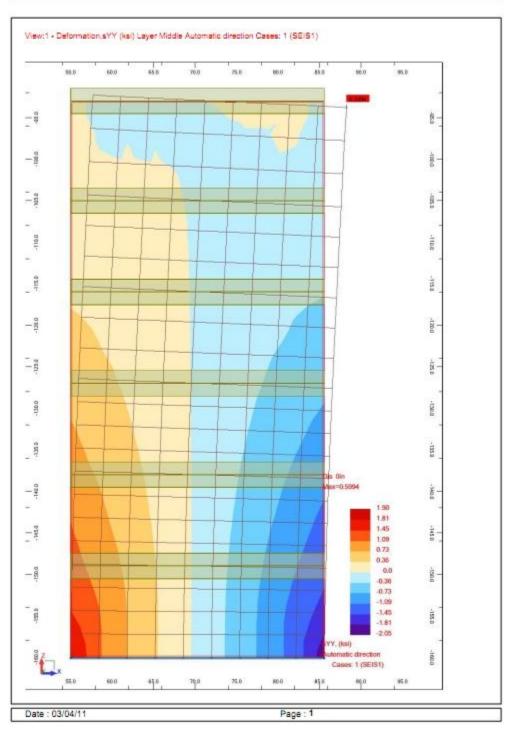

Dr. Richard A. Behr 7000 (Pmax) (Pmax) fs=0.5fy fs=0.5fy 10 x 212 in Code: ACI 318-08 Units: English Run axis: About X-axis -30000 30000 Run option: Investigation Slenderness: Not considered Mx (k-ft) Column type: Structural Bars: ASTM A615 Date: 04/02/11 Time: 18:51:24 (Pmin) (Pmin) -4000 J spColumn v4.60. Licensed to: Penn State University. License ID: 56972-1022061-4-22545-21298 File: untitled.col Project: Column: Engineer: fc = 4 ksi fy = 60 ksi Ag = 2120 in^2 68 bars Ec = 3605 ksi Es = 29000 ksi As = 55.64 in^2 rho = 2.62% fc = 3.4 ksi Xo = 0.00 inIx = 7.94011e+006 in^4

_Yo = 0.00 in _____ly = 17666.7 in^4_









Final Report 4/7/2011

Appendix H: Green Roof Design

Dr. Richard A. Behr

Appendix I: Cost Analysis

One Way Concrete Slab

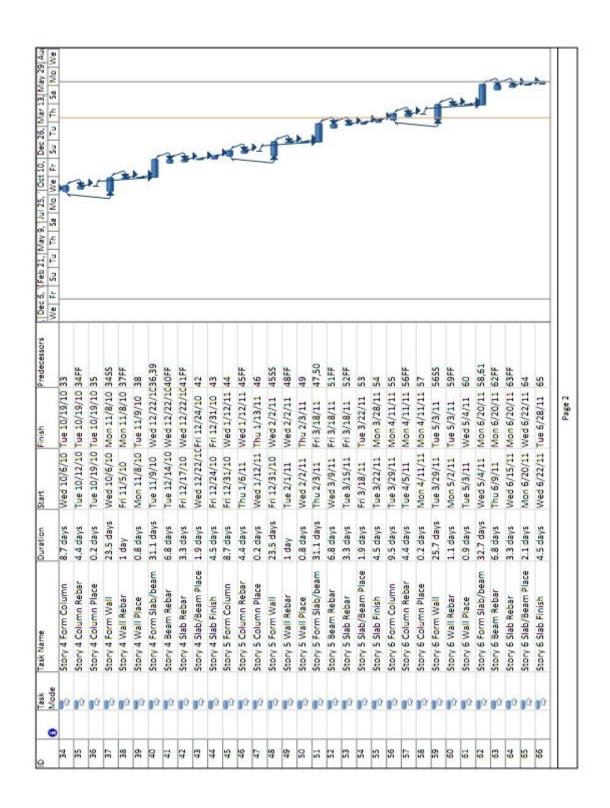
	. 102 . 3		1 1772-01	Colum				Beams		1 1 2 2 4	Shear \		
_	rete (c.y.			_	ete (c.y.)		Reinforcing (Ton)	Concrete (c.y		inforcing (Ton)			. Reinforcing (To
	502.10 502.10	27689 27689	28.28		51.89 51.89	4802	27.83 27.83	158.40 158.40	10997	49.76 49.76		76.50 1970 76.50 1970	
	502.10	27689	28.28		51.89	4802	27.83	158.40	10997	49.76		76.50 1970 76.50 1970	
	502.10	27689	28.28		51.89	4802	27.83	158.40	10997	49.76	1000	76.50 1970	
	502.10	27689	28.28		51.89	4802	27.83	158.40	10997	49.76	100	76.50 1970	
	502.10	27689	28.28		56.83	5259	30.36	206.89	12568	54.74	7.00	2.83 2158	
200	NOTES OF		10.10	9			20.20	100.00	11200	24.74	-		2.27
St	ory 1	Item#	Description		Unit	Quantiv	Total Cost/unit	Cost		# of Crews	Crew	Dally Output	# of Days
		31113351000	Slab Formw		SFCA	27689	\$7.12	\$197,145.68		3	CZ	470	19.6
		31113256000	Column Form		SFCA	4802	\$7.18	\$34,478.36		3	CI	185	B.7
		31113235000	Beam Formy		SPCA	10997	57.12	\$78,298.64		3	CZ	320	11.5
						19708	1000			2.1503		280	
		31113852400	Wall Formw		SFCA		\$7.75	\$152,737.00		3	C2		23.5
		32110600400	Slab Reini		Ton	28.28	\$1,370.87	\$38,768.20		3	4 Rodm	2.9	3.3
		32110600250	Column Rei		Ton	30.61	\$1,430.40	\$43,788.84		3	4 Rodm	2.3	4.4
		32110600150	Beam Rein		Ton	54.74	\$1,349.84	573,884.84		3	4 Rodm	2.7	6.B
		32110600700	Wall Rein		Ton	8.77	\$1,259.24	\$11,043.53		3	4 Rodm	3	1.0
		33105350300	4000psi Co		CX	988.89	\$107.02	\$105,831.01				77.24	
		33105701500	Placing Sia		CA	502.10	\$16.34	\$8,204.31		3	C20	160	1.0
		33105700500	Placing Colu		CY	51.89	\$28.94	\$1,501.70		3	C20	90	0.2
		33106700050	Placing Bea		C.	158.40	\$43.75	\$6,930.00		3	C20	60	0.9
	0	33105705100	Placing Wa		CK	276.50	\$23.68	\$6,547.52		3	C20	110	0.8
	0	33529300125	Slab Finishi	ng	5F	27115	\$0.36	\$9,761.40	200800000	3	C10	2000	4.5
									\$768,921.03				86.1
St	ory 2												
		Item #	Description	n	Unit	Quantity	Total Cost/unit	Cost		# of Crews	Crew	Daily Output	# of Days
	0	31113351000	Slab Formw	ork	SPCA	27689	\$7.12	\$197,145.68		3	CZ	470	19.6
	0	31113256000	Column Form	work	SECA	4802	\$7.18	\$34,478.36		3	CI	185	B.7
	0	31113202500	Beam Formy	vork	SECA	10997	\$7.12	\$78,298.64		3	C2	320	11.5
	0	31113852400	Wall Formw	ark	SPCA	19708	\$7.75	\$152,737.00		3	C2	280	23.5
	0	32110600400	Slab Reini	f.	Ton	28.28	\$1,370.87	\$38,768.20		3	4 Rodm	2.9	3.3
	0	32110600250	Calumn Rei	inf	Ton	27.83	\$1,430.40	\$39,808.03		3	4 Rodm	2.3	4.0
	0	32110600150	Beam Rein	nf	Ton	49.76	\$1,349.84	\$67,168.04		3	4 Rodm	2.7	6.1
	0	32110600700	Wall Rein	f.	Ton	8.77	\$1,259.24	\$11,043.53		3	4 Radm	3	1.0
	0	33106350300	4000psi Co	nc.	CY	988.89	\$107.02	\$105,831.01				•	
	0	33106701500	Placing Sia	de	CY.	502.10	\$16.34	\$8,204.31		3	C20	160	1.0
	0	33105700600	Placing Colu	mn	CY	51.89	\$28.94	\$1,501.70		3	C20	90	0.2
	0	33106700050	Placing Bea	m	CY	158.40	\$43.75	\$6,930.00		3	C20	60	0.9
	0	33105705100	Placing Wa	all I	CK	276,50	\$23.68	\$6,547.52		3	C20	110	D.B
	0	33529300125	Slab Finishi	ng	5.7	27115	\$0.36	\$9,761.40		3	C10	2000	4.5
									5758,223.43				85.1
St	ory 3												
		Item #	Description	n	Unit	Quantity	Total Cost/unit	Cost		# of Crews	Crew	Daily Output	# of Days
	0	31113351000	Slab Formw	ork	SFCA	27689	\$7.12	\$197,145.68		3	CZ	470	19.6
	0	31113256000	Column Form	work	SFCA	4802	\$7.18	\$34,478.36		3	C1	185	8.7
	.0	31113202500	Beam Formy	vork	SFCA	10997	\$7.12	\$78,298.64		3	CZ	320	11.5
		31113852400	Wall Formw		SFCA	19708	\$7.75	\$152,737.00		3	CZ	280	23.5
		32110600400	Slab Reini		Ton	28.28	\$1,370.87	538.768.20		3	4 Rodm	2.9	3.3
		32110600250	Column Rei		Ton	27.83	\$1,430.40	\$39.808.03		3	4 Rodm	2.3	4.0
		32110600150	Beam Rein		Ton	49.76	\$1,349.84	\$67,168.04		3	4 Rodm	2.7	6.1
		32110600700	Wall Rein		Ton	8.77	\$1,259.24	\$11,043,53		3	4 Rodm	3	1.0
		33106350300	4000psi Co		CY	988.89	\$107.02	\$105.831.01					
		33105701500	Placing Sia		CY	502.10	\$16.34	\$8.204.31		3	C20	160	1.0
		33105700500	Placing Colu		CY	51.89	\$28.94	\$1,501.70		3	C20	90	0.2
		33105700050	Placing Bea		CY	158.40	\$43.75	\$6,930.00		3	C20	60	0.9
	- 5	33105705100	Placing Wa					\$6,547.52		3	C20	110	0.8
		33529300125					\$0.36	\$9,761.40		3	C10	2000	4.5
					-		30.30	22,102.40	\$758,223.43				B5.1
322	85.55												
	ory 4	Item #	Description		Half	Quantili	Total Cost/unit	Cost		t of Crown	Conw	Daily Output	# of Dave
30	-		Slab Formw			110	The same of the same of the same of	\$197,145.68		3	CZ	470	19.6
30			Column Form					534,478.36		3	CI	185	8.7
30		2-113E3EUUU						578.298.64		3	CZ	320	11.5
30	0		Bases Server	CALLS.				\$152,737.00		3	CZ	280	23.5
30	0	31113202500		mel	COMA			3434,/57,00		- 4	6.4		
30	0	31113202500 31113852400	Wall Formw					\$20 750 70		3			
30	0	31113202500 31113852400 32110600400	Wall Formw Slab Rein	f.	Ton	28.28	\$1,370.87				4 Rodm	2.9	3.3
30	0 0 0	31113202500 31113852400 32110600400 32110600250	Wall Formw Slab Rein Column Re	f Inf	Ton Ton	28.28 27.83	\$1,370.87 \$1,430.40	\$39,808.03		3	4 Rodm 4 Rodm	2.9 2.3	3.3 4.0
30	0	31113202500 31113852400 32110600400 32110600250 32110600150	Wall Formw Slab Rein Column Rei Beam Rein	f Inf nf	Ton Ton	28.28 27.83 49.76	\$1,370.87 \$1,430.40 \$1,349.84	\$39,808.03 \$67,168.04		3	4 Rodm 4 Rodm 4 Rodm	2.9 2.3 2.7	3.3 4.0 6.1
30	0 0	31113202500 31113852400 32110600400 32110600250 32110600700	Wall Formw Slab Reini Column Rei Beam Rein Wall Rein	f Inf nf	Ton Ton Ton Ton	28.28 27.83 49.76 8.77	\$1,370.87 \$1,430.40 \$1,349.84 \$1,259.24	\$39,808.03 \$67,168.04 \$11,043.53		3 3 3	4 Rodm 4 Rodm 4 Rodm 4 Rodm	2.9 2.3 2.7 3	3.3 4.0 6.1 1.0
30	000000000000000000000000000000000000000	31113202500 31113852400 32110600400 32110600250 32110600150 32110600700 33105350300	Wall Formw Slab Rein Column Rei Beam Rein	f inf nf if	Ton Ton Ton Ton CY	28.28 27.83 49.76 8.77	\$1,370.87 \$1,430.40 \$1,349.84 \$1,259.24	\$39,808.03 \$67,168.04		3	4 Rodm 4 Rodm 4 Rodm	2.9 2.3 2.7	3.3 4.0 6.1

	033105700050	Placing Beam	OY.	158.40	\$43.75	\$6,930.00		3	C20	60	0.9
	033105705100	Placing Wall	CY	276.50	523.68	56.547.52		3	C20	110	0.8
	033529300125	Slab Finishing	SF	27115	\$0.36	\$9.761.40		3	CID	2000	4.5
	033629300128	and emissing			30.30	33,751.40	\$758,223.43			1000	85.1
							-5070				5000000
Story 5											
	Item #	Description	Unit	Quantity	Total Cost/unit	Cost		# of Crews	Crew	Dally Output	# of Days
	031113351000	Slab Formwork	SPEA	27689	\$7.12	\$197,145.68		3	C2	470	19.6
	031113256000	Column Formwork	SECA	4802	\$7.18	\$34,478.36		3	C1	185	B.7
	031113202500	Beam Formwork	SECA	10997	\$7.12	578,298.64		3	C2	320	11.5
	031113852400	Wall Formwork	SPCA	19708	\$7.75	\$152,737.00		3	C2	280	23.5
	032110600400	Slab Reinf	Ton	28.28	\$1,370.87	\$38,768.20		3	4 Radm	2.9	3.3
	032110600250	Column Reinf	Ton	27.83	\$1,430.40	\$39,808.03		3	4 Rodm	2.3	4.0
	032110600150	Beam Reinf	Ton	49.76	\$1,349.84	\$67,168.04		3	4 Rodm	2.7	6.1
	032110600700	Wall Reinf	Ton	8.77	\$1,259.24	\$11,043.53		3	4 Radm	3	1.0
	033105350300	4000psi Conc	CY	988.89	\$107.02	\$105,831.01					
	033105701500	Placing Slab	CY.	502.10	\$16.34	\$8,204.31		3	C20	160	1.0
	033106700600	Placing Column	CY	51.89	\$28.94	\$1,501.70		3	C20	90	0.2
	033105700050	Placing Beam	CY	158.40	\$43.75	\$6,930.00		3	C20	60	0.9
	033105705100	Placing Wall	CK	276.50	\$23.68	\$6,547.52		3	C20	110	0.8
	033529300125	Slab Finishing	SF.	27115	\$0.36	\$9,761.40		3	C10	2000	4.5
					100	97/98	\$758,223.43				85.1
Story 6											
	Item #	Descrption		Quantity	Total Cost/unit	Cost		# of Crews	Crew	Daily Output	
	031113351000	Slab Formwork	SFCA	27689	\$7.12	\$197,145.68		3	C2	470	19.6
	031113256000	Column Formwork	SFCA	5259	\$7.18	\$37,759.62		3	C1	185	9.5
	031113202500	Beam Formwork	SFCA	12568	\$7.12	\$89,484.16		3	C2	320	13.1
	031113852400	Wall Formwork	SFCA	21584	\$7.75	\$167,276.00		3	CZ	280	25.7
	032110600400	Slab Reinf	Ton	28.28	\$1,370.87	\$38,768.20		3	4 Rodm	2.9	3.3
	032110600250	Column Reinf	Ton	30.36	\$1,430.40	543,426.94		3	4 Radm	2.3	4.4
	032110600150	Beam Reinf	Ton	54.74	\$1,349.84	\$73,890.24		3	4 Rodm	2.7	6.8
	032110600700	Wall Reinf	Ton	9.57	\$1,259.24	\$12,050.93		3	4 Rodm	3	1.1
	033105350300	4000psi Conc	CY	1068.65	\$107.02	\$114,366.92					
	033105701500	Placing Slab	CY	502.10	\$16.34	\$8,204.31		3	C20	160	1.0
	033105700500	Placing Column	CY.	56.83	\$28.94	\$1,644.66		3	C20	90	0.2
	033105700050	Placing Beam	CK	206.89	\$43.75	\$9,051.44		3	C20	60	1.1
	033105705100	Placing Wall	CX	302.83	\$23.68	\$7,171.01		3	C20	110	0.9
	033529300125	Slab Finishing	SF	27115	\$0,36	\$9,761.40		3	C10	2000	4.5
							\$810,001.53				91.2
						Total Sum	\$4,611,816.27				517.7
						S/sf	\$170.08				

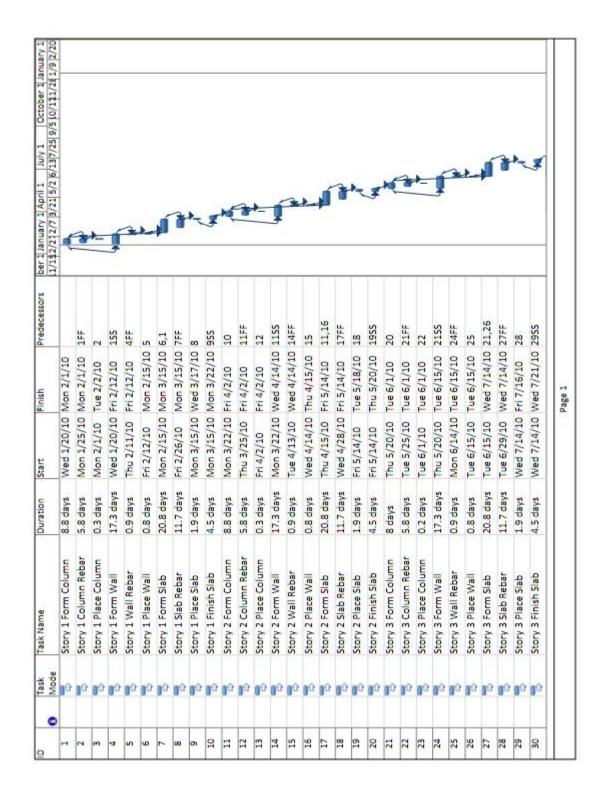
Final Report 4/7/2011

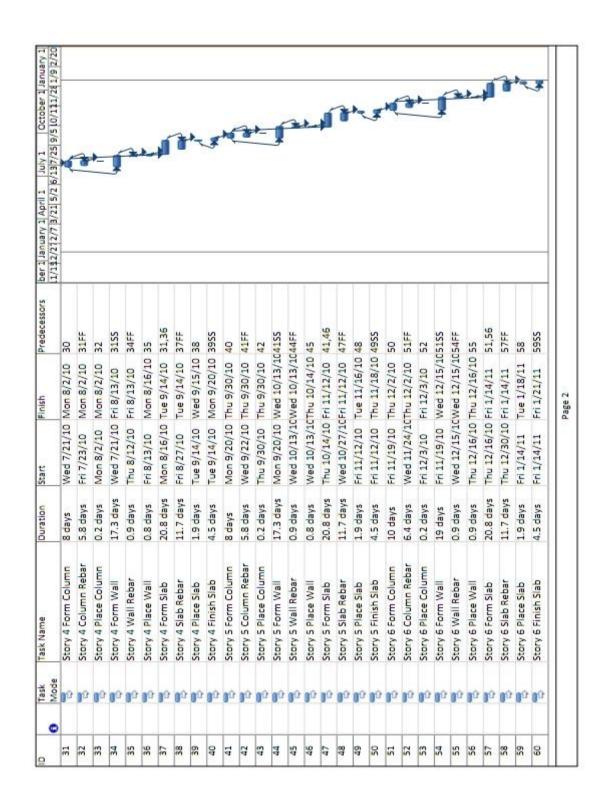
Two Way Concrete Slab


Story	Slab					Colu				Shear W	/all		
500	Conc	rete (c.y.)	.f.c.a. Reinfo	rcing (1	Ton)	Cond	crete (c.y.) s	.f.c.a. Reinf	orcing (Ton)	Concret	e (c.y.)	s.f.c.a. F	Reinforcing (Ton
Story 1	-8	889.46	28073	101.84		- 1	69.73	5021	40.21	26	9.76	14567	7.80
Story 2		889.46	28073	101.84			69.73	5021	40.21	26	9.76	14567	7.80
Story 3		889.46	28073	101.84			55.09	4463	40.21	26	9.76	14567	7.80
Story 4		889.46	28073	101.84			55.09	4463	40.21	26	9.76	14567	7.80
Story 5				101.84			55.09	4463	40.21	572.50	9.76	14567	7.80
Story 6				101.84			60.76	5537	43.86	100	6.29	16000	8.51
Story 6	8	003.40	20073	101.04		100	00.70	3337	43.00	23	0.23	10000	6.31
	Story 1												
	34633655	Item#	Description	(1	Jnit .	Quantity	Total Cost/unit	Cost		# of Crews	Crew	Dally Outpu	it # of Days
		031113352000	Slab Formwo	ork S	FCA	28073	\$7.64	\$214,477.72		3	CZ	449	20.B
		031113256500	T-20-700-00-00-00-00-00-00-00-00-00-00-00-0		FCA	5021	\$7.29	\$36,603.09		3	CI	190	B.B
		031113852400		1370	FCA	14567	\$7.75	\$112,894.25		3	C2	280	17.3
		032110600400	0.7327.0007		Ton Ton	101.84	\$1,370.87	\$139,609.40 \$57.516.38		3	4 Rodm 4 Rodm	2.9	11.7 5.8
		032110600290			Ton	7.80	\$1,259.24	\$9,822.07		3	4 Rodm	3	0.9
		033106350300			CY	1228.95	\$107.02	\$131,522.23			-		
		033106701500			CK.	889.46	\$16.34	\$14,533.78		3	C20	160	1.9
		033106700600			CY.	69.73	\$28.94	\$2,017.99		3	C20	90	0.3
		033105705100	1007770		CY.	269.76	\$23.68	\$6,387.92		3	C20	110	0.8
		033529300129	Slab Finishi	ng .	SF	27115	\$0.36	\$9,761.40		3	C10	2000	4.5
									\$735,146.23				72.8
	Story 2												
		Item#	Description	0.1	Jnit	Quantity	Total Cost/unit	Cost		# of Crews	Crew	Daily Outpu	it # of Days
		031113352000	Slab Formwe	ork S	FCA	28073	\$7.64	\$214,477.72		3	CZ	449	20.B
		031113256500			FCA	5021	\$7.29	\$36,603.09		3	CI	190	B.B
		031113852400			FCA.	14567	\$7.75	\$112,894.25		3	CZ	280	17.3
		032110600400			Ton Ton	101.84 40.21	\$1,370.87 \$1,430.40	\$139,609.40		3	4 Rodm 4 Rodm	2.9	11.7 5.8
		03211060020			Ton	7.80	\$1,259.24	\$9.822.07		3	4 Rodm	3	0.9
		033106350300			CY	1228.95	\$107.02	\$131,522.23					
		033105701500	Placing Sia	ь	CY	889.46	\$16.34	\$14,533.78		3	C20	160	1.9
		033106700600	Placing Colu	mn	CY.	69.73	\$28.94	\$2,017.99		3	C20	90	0.3
		033105705100	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1		CX	269.76	\$23.68	\$6,387.92		3	C20	110	O.B
		033529300129	Slab Finishi	18	SF	27115	\$0.36	\$9,761.40		3	C10	2000	4.5
									\$735,145.23				72.8
	Story 3												
		Item #	Description	1	Jnit	Quantity	Total Cost/unit			# of Crews	Crew	Dally Outpu	it # of Days
		031113352000			FCA.	28073	\$7.64	\$214,477.72		3	CZ	449	20.B
		031113255000			FCA	4463	\$7.18	\$32,044.34		3	C1	185	B.C
		031113852400			FCA Ton	14567	\$7.75 \$1,370.87	\$112,894,25 \$139,609.40		3	4 Rodm	280	17.3
		032110600250			Ton	40.21	\$1,430.40	\$57,516.38		3	4 Rodm	2.3	5.8
		032110600700			Ton	7.80	\$1,259.24	59,822.07		3	4 Rodm	3	0.9
		033106350300	4000psi Cor	nc	CY	1214.31	\$107.02	\$129,955.46					
		033105701500	60.000000000000000000000000000000000000		CY	889.46	\$16.34	\$14,533.78		3	C20	160	1.9
		033106700600			CK.	55.09	\$28.94	\$1,594.30		3	C20	90	0.2
		033105705100	100000000000000000000000000000000000000		CX.	269.76	\$23.68	\$6,387.92		3	C20	110	0.8
		033529300129	Slab Finishi	16	SF	27115	\$0.36	\$9,761.40	\$728,597.02	3	CID	2000	4.5 72.0
									3/20,33/.02				
	Story 4												
		Item #	Description				Total Cost/unit			# of Crews			st # of Days
		031113352000	1.77777.71				\$7.64	\$214,477.72		3	C2	449	20.8
			Column Forms Wall Forms				\$7.18 \$7.75	\$32,044.34 \$112.894.25		3	C1 C2	185 280	8.0 17.3
		032110600400		37/3		101.84		\$139,609.40				2.9	11.7
		7777	Column Rei				\$1,430.40					2.3	
			Wall Rein			7.80		\$9,822.07		3	4 Rodm	3	0.9
					CY	1214.31	\$107.02	\$129,955.46					
			Placing Sla				\$16.34			3	C20	160	1.9
			Placing Colu				\$28.94	\$1,594.30		3	C20		0.2
			Placing Wa			269.76		\$6,387.92		3	C20	110	0.8
		033629300128	Slab Finishi	16	37	27115	\$0.36	\$9,761.40	\$728,597.02	3	C10	2000	4.5 72.0
									3/40,39/32				
	Story 5												
		Item #	Description			7	Total Cost/unit						it # of Days
			Slab Formwo							3	C2	449	20.8
			Column Forms					\$32,044.34		3	Cl	185	B.0
			Wall Formwi			14567		\$112,894.25 \$139,609.40		3	4 Rodm	280	
		032110600400	Column Rei				\$1,370.87			3	4 Rodm		
		Jaz 1 10000250	Column Rel	III.	001	40.21	\$1,430.40	357,516.58		3	4 soom	2.5	9.6


Final Report 4/7/2011

	032110600700	Wall Reinf	Ton	7.80	\$1,259.24	\$9,822.07		3	4 Rodm	3	0.9
	033106350300	4000psi Conc	CK	1214.31	\$107.02	\$129,955.46					
	033106701500	Placing Slab	CY	889.46	\$16.34	\$14,533.78		3	C20	160	1.9
	033105700500	Placing Column	CY	55.09	\$28.94	\$1,594.30		3	C20	90	0.2
	033105705100	Placing Wall	CY.	269.76	\$23.68	\$6,387.92		3	C20	110	0.8
	033529300125	Slab Finishing	SF	27115	\$0.36	\$9,761.40		3	C10	2000	4.5
		MARIA CONTROL TOR					\$728,597.02				72.0
Story 6											
	Item #	Description	Unit	Quantity	Total Cost/unit	Cost		# of Crews	Crew	Dally Output	# of Days
	031113352000	Slab Formwork	SPCA		\$7.64	\$214,477.72		3	CZ	449	20.8
	031113256000	Column Formwork	SFCA	5537	\$7.18	\$39,755.66		3	CI	185	10.0
	031113852400	Wall Formwork	SFCA	16000	\$7.75	\$124,000.00		3	CZ	280	19.0
	032110600400	Slab Reinf	Ton	101.84	\$1,370.87	\$139,609.40		3	4 Rodm	2.9	11.7
	032110600250	Column Reinf	Ton	43.86	\$1,430.40	\$62,737.34		3	4 Rodm	2.3	6.4
	032110600700	Wall Reinf	Ton	8.51	\$1,259.24	\$10,716.13		3	4 Radm	3	0.9
	033105350300	4000psi Conc	CY	1246.51	\$107.02	\$133,401.50					
	033105701500	Flacing Slab	CY	889.46	\$16.34	\$14,533.78		3	C20	160	1.9
	033105700500	Placing Column	CY	60.76	\$28.94	\$1,758.39		3	C20	90	0.2
	033105705100	Placing Wall	CK	296.29	\$23.68	\$7,016.15		3	C20	110	0.9
	033529300125	Slab Finishing	SF	27115	\$0.36	\$9,761.40		3	C10	2000	4.5
							\$757,767.48				76.4
						Total Sum	\$4,413,850.99				438.1
						S/sf	\$162.78				


Appendix J: Schedule Analysis


One Way Concrete Slab

Two Way Concrete Slab

