

EMD SERONO RESEARCH CENTER – EXISTING

SHIYUN (SHARON) CHEN | MECHANICAL

Overview

Existing Mechanical Active Chilled Beam Heat Recovery Architectural

Conclusion

Building Overview

Existing Mechanical System

Dedicated Outdoor Air System/Active Chilled Beam

Heat Recovery Systems

Architectural Breadth

Conclusion

Overview **Existing Mechanical** Active Chilled Beam Heat Recovery Architectural

Conclusion

Building Overview

- **Building: EMD Serono Research Center existing**
- **Building Location: Billerica, MA**
- Building Size: 56,700 SF
- Number of Story: Basement + 2 Stories + Penthouse
- **Occupancy/ Function Type: Pharmaceutical Lab**
- Date of Construction: Nov,1999 Marc,2002
- **Project Delivery Method: Fast Track**

Design Team

Owner: EMD Serono, Inc. Architect: Ellenzweig Associate, Inc. **Structural Engineer:** LeMessurier Consulting Engineers Landscape Architect: John G. Crowe Associates, Inc. **Contractor:** Linbeck/Kennedy & Rossi

- **MEP Engineer:** Bar, Rao + Athanas Consulting Engineers, LLC

Overview Existing Mechanical Active Chilled Beam Heat Recovery Architectural

Conclusion

(2) 100% OA Air Handling Units (1) OA + RA Air Handling Unit (1) 350 Ton Centrifugal Chiller (1) 60 Ton Air Cooled Chiller (2) Low Pressure Steam Boilers (2) Heat Exchangers

Existing Mechanical System

Building Division

Overview **Existing Mechanical** Active Chilled Beam Heat Recovery Architectural

Conclusion

Redesign Goals

ENERGY CONSUMPTION

SYSTEM EFFICIENCY

INDOOR AIR QUALITY

THERMAL COMFORT

Dedicated Outdoor Air System

Active Chilled Beam System

Heat Recovery System

Solar Shading System

Solution

Overview Existing Mechanical Active Chilled Beam Heat Recovery Architectural

Conclusion

Active Chilled Beam Advantages

Minimize Outdoor Air Conditioning

Eliminate Reheat Energy

More Efficient Chilled Water System

Better Mixed Air Distribution

More Uniform Temperature Distribution

Improve Indoor Air Quality

Lower Maintenance

DOAS + Active Chilled Beam

(1) 350 Ton Screw Chiller - AHUs(1) 150 Ton Screw Chiller - ACBs

Chilled Beam Selection

17CFM/LF | 665 BTU/LF

TROX Technic 4 Pipe Chilled Beam, Mod NC25

4 Pipe Chilled Beam, Model DID602, type "C" nozzle

Overview Existing Mechanical Active Chilled Beam Heat Recovery Architectural

Conclusion

Room 210 Research and Development

CFD Simulation

Existing VAV Supply Air = Outside Air = 6000cfm SA Temperature: 13C = 55.4F

DOAS+ACB 20,092cfm = 3,324cfm + 16,769cfm**SA Temperature: 19.64C = 67.4F**

General Information										
	Grid Size	Turbulence	Numerical	Number of	Mass					
		Model	Scheme	Iterations	Residual					
Existing System	108x218x61	KE model	Upwind	7000	1.30%					
Active Chilled Beam System	52x459x35	KE model	Hybrid	5000	0.54%					

Supply Air = Outside Air + Recirculate Air

Overview Existing Mechanical Active Chilled Beam Heat Recovery Architectural

Conclusion

Closer View

,	Velocity,	m/s
	2.292837	
	2.149535	
	2.006232	
H	1.862930	
Н	1.719628	
Н	1.576325	
	1.433023	
	1.289721	
	1.146418	
	1.003116	
	0.859814	
	0.573200	
	0.429907	
	0.286605	
	0.143302	
	0.000000	
		4
_		
	Velocity,	m/s
	Velocity, 2.292837	m/s
	Velocity, 2.292837 2.149587	m/s
	Velocity, 2.292837 2.149587 2.006337	m/s
	Velocity, 2.292837 2.149587 2.006337 1.863087	m/s
	Velocity, 2.292837 2.149587 2.006337 1.863087 1.719838	m/s
	Velocity, 2.292837 2.149587 2.006337 1.863087 1.719838 1.576588 1.433338	m/s
	Velocity, 2.292837 2.149587 2.006337 1.863087 1.719838 1.576588 1.433338 1.290088	m/s
	Velocity, 2.292837 2.149587 2.006337 1.863087 1.719838 1.576588 1.43338 1.290088 1.146838	m/s
	Velocity, 2.292837 2.149587 2.006337 1.863087 1.719838 1.576588 1.43338 1.290088 1.146838 1.003588	m/s
	Velocity, 2.292837 2.149587 2.006337 1.863087 1.719838 1.576588 1.43338 1.290088 1.146838 1.003588 0.860338	m/s
	Velocity, 2.222837 2.149587 2.006337 1.863087 1.719838 1.576588 1.433338 1.290088 1.146838 1.005588 0.860338 0.717089	m/s
	Velocity, 2.292837 2.149587 2.006337 1.863087 1.719838 1.576588 1.433338 1.290088 1.146838 1.003588 0.860338 0.860338 0.717089 0.573839	m/s
	Velocity, 2.292837 2.149587 2.006337 1.863087 1.719838 1.576588 1.433338 1.290088 1.46338 1.003588 0.860338 0.817089 0.573839 0.430589	m/s
	Velocity, 2.292837 2.149587 2.006337 1.863087 1.719838 1.576588 1.433338 1.290088 1.146838 1.003588 0.860338 0.717089 0.573839 0.430589 0.287339	m/s
	Velocity, 2.292837 2.149587 2.006337 1.863087 1.719838 1.576588 1.433338 1.290088 1.146838 1.003588 0.860338 0.573839 0.573839 0.430589 0.287339 0.144089	m/s
	Velocity, 2.292837 2.149587 2.006337 1.863087 1.719838 1.576588 1.433338 1.290088 1.146838 1.003588 0.860338 0.717089 0.573839 0.430589 0.287339 0.144089 8.393E-4	m/s

Air Flow Comparison

Probe value 0.000000 Average val 0.241440

ACB

Overview

The Active Chilled Beam System provides a better mix air distribution than VAV system

Side View

VAV : supply air is closely concentrated beneath the square diffuser

VAV

ACB : air flow along chilled beam to spread air around

Overview

Existing Mechanical

Active Chilled Beam

Heat Recovery

Architectural

Conclusion

The Active Chilled Beam System provides a more uniform temperature distribution than VAV system

ASHRAE

<5F (2C) difference from ankles to head To maintain thermal comfort and avoid draft

VAV 3F (2C) difference from ankles to head

ACB 0-2F (0-1C) difference from ankles to head

emperature, 37.58642

36.47807

26.50299 25.39465 24.2863 23.17796 22.0696

Temperature Distribution Comparison

Overview

The Active Chilled Beam System has a smaller temperature gradient than VAV system

Side View

Overview Existing Mechanical Active Chilled Beam

Heat Recovery

Architectural

Conclusion

The Active Chilled Beam System provides greater ability to remove airborne contaminant from the space than VAV system

Overview

Contaminant Concentration Comparison

VAV

ACB

The ACB System achieves 75% concentration reduction while VAV system has only 25% reduction

- Edge of Bench Walkway
 - 200 ppm **150 ppm**
 - 100-150 ppm **50** ppm

Overview

The DOAS + ACB system cost \$621,276 more in first cost than the CAV/VAV sys.

Existing Mechanical 1800000 Active Chilled Beam 1400000 Heat Recovery Architectural

Conclusion

The DOAS + Active Chilled Beam system Saves 12.5% (313,789Kwh) electricity consumption in the summer & (32.098Therm) gas consumption in the winter when 24.5% compared to the existing CAV/VAV system

Electricity Consumption (Kwh)

The DOAS + ACB system has a simple payback period of 9 years 5 months

Initial Cost Difference: \$621,276

Annual Energy Saving: \$66,078

Simple Payback: 9 years 5 months

Heat Recovery System Analyzed

Overview

Existing Mechanical

Active Chilled Beam

Heat Recovery

Architectural

Conclusion

Heat Pipe

Fixed Plate

Enthalpy Wheel

Runaround Coil Loop

Utility Cost Comparison

Annual Utility Cost (\$)

All heat recovery systems are very cost effective with payback period of 0 to 5 months

	Simple Payback Cal			
		DOAS +		
	Heat Pipe	Fixed Plat		
Simple Payback	5 months	0		

The Runaround Coil is chosen to be the best suited heat recovery system

Overview

Existing Mechanical Active Chilled Beam Heat Recovery

Architectural

Conclusion

Systems Decision Matrix								
	Heat Pipe	Fixed Plate	Enthalpy Wheel	Runaround Coil				
Efficiency	48-53	64-67	71-79	50				
nergy Recovered	Sensible	Sensible	S+L	Sensible				
ss Contamination	No	No	Yes	No				
ouct Adjacencies	Needed	Needed	Needed	Not Needeo				
Maintenance lowest – 4:highest)	1	3	4	2				

Runaround Loop Schematic

Runaround Coil system are chosen to implement on all air handling units

Run Around Coil Loop System Simply Payback Calculation Comparison

	AHU1	AHU2	AHU3	AHU1,3	AHU1,2,3
Additional Cost(\$)	3,287	2,056	4,211	-48,702	-46,646
Operating Saving(\$)	3,743	9,320	4,143	6,188	12,524
Simply Payback	11 months	3 months	1 year	0	0

Overview

Existing Mechanical

Active Chilled Beam

Heat Recovery

Architectural

Conclusion

Architectural Breadth

Latitude: 42° 33' 29" N

Longitude:71° 16' 9" W

Solar Shading Systems

Overview

Existing Mechanical Active Chilled Beam Heat Recovery

Architectural

Conclusion

35,000 (**hy** 30,000 25,000 **20,000 1**5,000 **Electrici** 10,000 5,000

Solar shading system reduces solar load in the summer **saves electricity consumption**

Solar shading system reduces solar parameter heating in the winter **—** penalty in gas consumption

First costs of solar shading system range from \$17,066 to \$165,568

Overview Existing Mechanical Active Chilled Beam Heat Recovery

Architectural

Conclusion

19 years to 43 years

First Cost

Payback Periods of solar shading system range from

Solar Shade System Simply Payback Period

ar Shade on South & West Walls			Solar Shade on All Walls				
ft	3ft	4ft	5ft	2ft	3ft	4ft	5ft
32	19	19	20	36	28	28	22
8	23	23	24	43	33	34	26
10	24	24	25	45	35	35	27

it overhang is selected as the optimal system

4ft Overhang

Overview **Existing Mechanical** Active Chilled Beam Heat Recovery Architectural

Conclusion

North West Views

Solar Shade

Architectural Breadth

Solar Shade

West Views

South Views

Existing

Solar Shade

Overview Existing Mechanical Active Chilled Beam Heat Recovery Architectural

Conclusion

Overall Simply Payback Calculation										
	Existing	DOAS/AG	СВ	DC	DAS/ACB +		DOAS/ACB			
	System			Run	around Coil	-	+ Runaround Coil			
							+ Solar Shade			
Total	1,135,702	1,756,97	'8	1	,710,333		1,768,132			
Cost Difference		621,276	5		574,631		632,430			
Operating Saving		66,078			78,602		81,023			
Simple Payback		9 years 5mc	onths	7 yea	ars 4 months	7	years 10 months			
DOAS/ACB + RUNAROUND LOOP + Solar Shade 30-Year Life Cycle Cost Analysis Existing System DOAS/ACB DOAS/ACB										
							+ Solar Shade			
First cost (\$)		1,135,702	1,75	6,978	1,710,333		1,768,132			
Maintenance Co	st(\$)	4,044,980	56,	235	57,935		57,935			
Annual Natural Gas Cost(\$)		6,905,005	5 5,887,		5,878,692		5,837,532			
Annual Electricity Cost(\$)		2,449,416 2,09		8,641	1,932,969		1,919,440			
Total		14,535,103	9,79	8,965	9,579,929	Ð	9,583,039			

Conclusion

DOAS + Active Chilled Beam

Minimize Outdoor Air Conditioning **Downsize Ducting and AHUs** More Efficient Chilled Water System Better Air Mixing and Temperature Distribution Greater Ability to Remove Airborne Contaminant Better Indoor Air Quality

Runaround Loop Heat Recovery System

No Cross-Contaminant Issue 3.5% Reduction in Energy Usage Low Maintenance

Solar Shading System

Energy and Cost Saving **Consistent and sustainable appearance to the Building**

Overview Existing Mechanical Active Chilled Beam Heat Recovery Architectural

Conclusion

Acknowledgements

Special Thanks To:

AE Faculty

EMD Serono **BR+A** Consulting Engineers Ellenzweig Associate

Family & Friends

Overview Existing Mechanical Active Chilled Beam Heat Recovery Architectural

Conclusion

Overview **Existing Mechanical** Active Chilled Beam Heat Recovery

Architectural

Conclusion

Top View

VAV Diffuser

Cross Section

Existing System Active Chilled Beam System

Active Chilled Beam

General Information							
Grid Size	Turbulence	Numerical	Number of	Mass			
	Model	Scheme	Iterations	Residual			
108x218x61	KE model	Upwind	7000	1.30%			
52x459x35	KE model	Hybrid	5000	0.54%			

30ft W x 98ft L x 10ft H

Active Chilled Beam Selection Calculation							
Primary Airflow (cfm)	Secondary Cooling (Btuh)	Available Length (ft)	CFM/LF	BTUH/LF			
3,324	133,000	200	17	665			

Overview Existing Mechanical

Active Chilled Beam

Heat Recovery

Architectural

Conclusion

_		0	0	0	-		0			-	14	
	COP vs Tcł	nw and Tco	nd-e	Qr- 100 kV	100	COPr-2.75	0.363636					
		F1	F2	F3								
	а	0.507883	1.03076	0.088065								
	b	0.145228	-0.10354	1.137742								
	с	-0.00626	0.007102	-0.22581								
	d	-0.00112	0.009319									
	e	-0.00013	0.000318									
	f	-0.00028	-0.00104									
	Tchw	Tcond-e	Ql	Twb	Func 1	Func 2	Func 3	Qa	PLR	EIRa	COPa	Pchill
D	6.67	18	33.33	15	1.102258	0.801494	0.411448	110.2258	0.302379	0.119918	2.521562	13.218
1	5	18	33.33	15	0.990132	0.867348	0.445467	99.0132	0.336622	0.1405	2.395889	13.91133
2	6	18	33.33	15	1.061465	0.823156	0.423052	106.1465	0.314	0.126632	2.479628	13.44153
В	7	18	33.33	15	1.120286	0.793168	0.406571	112.0286	0.297513	0.117265	2.5371	13.13704
4	8	18	33.33	15	1.166593	0.777384	0.39469	116.6593	0.285704	0.111573	2.560689	13.01603
5	9	18	33.33	15	1.200388	0.775804	0.386562	120.0388	0.27766	0.109053	2.546099	13.09062
6	10	18	33.33	15	1.22167	0.788429	0.38166	122.167	0.272823	0.109423	2.493304	13.36781
7	11	18	33.33	15	1.230439	0.815258	0.379687	123.0439	0.270879	0.112561	2.406513	13.84992
В	12	18	33.33	15	1.226695	0.85629	0.380526	122.6695	0.271706	0.118488	2.293118	14.53479
Э	13	18	33.33	15	1.210438	0.911527	0.384227	121.0438	0.275355	0.127358	2.162062	15.41584
D	14	18	33.33	15	1.181668	0.980968	0.391011	118.1668	0.282059	0.13948	2.022224	16.48186

DOE2 polynomial n	node
-------------------	------

System Decision Matrix								
Item	Existing VAV/CAV	DOAS/ACB	Net for DOAS/ACB					
	System	System	System					
AHU	Large	Small	+					
Ductwork	Large	Small	+					
Riser	Large	Small	+					
Ceiling Space	Large	Small	+					
Pipework	Small	Large	-					
Fan Energy	High	Low	+					
Pump Energy	Low	High	-					
Occupant Satisfaction	Low	High	+					
Air Side System Cost	Low	High	+					
Water Side System Cost	Low	High	-					
Individual Control	Low	High	+					
Thermal Comfort	Low	High	+					
Noise Level	High	Low	+					
Maintenance	High	Low	+					
Risk of Condensation	Low	High	-					
System Complexity	Low	High	+					
Control System Complexity	High	Low	+					
Overall			+					

Overview Existing Mechanical Active Chilled Beam Heat Recovery Architectural

Conclusion

The DOAS + Active Chilled Beam system Saves 12.5% (313,789Kwh) electricity consumption in the summer

24.5% (32.098Therm) gas consumption in the winter when compared to the existing CAV/VAV system

	Electricity Consumption (Kwh)									
Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
158,711	186,758	194,884	226,213	240,369	262,077	252,345	225,269	224,214	196,728	175,716
157,128	175,255	173,894	191,078	195,936	208,366	204,297	187,296	190,313	174,322	174,035

Gas Consumption (Therm)

Air	E	ſ

	Existing System	g System Active Chilled Beam System					
	Primary Airflow (cfm)	Primary Airflow (cfm)	Secondary Airflow (cfm)				
AHU1	29,760	24,136	121,975				
AHU2	34,876	12,679	70,411				
AHU3	7,374	7,312	36,869				
Total	72,010	44,127	229,255				

Comparison

38% (27883cfm) Outside Air Conditioning Reduction

Overview Existing Mechanical Active Chilled Beam Heat Recovery Architectural

Conclusion

2,210,000 **(** 2,200,000 <u>ک</u> 2,190,000 2,170,000 2,160,000 Series1 DOAS/AC AHU1+ACB AHU2+ACB AHU3+ACB Total Difference Difference %

Annual Electricity Consumption (Kwh)

ACB	Heat Pipe	Fixed Plate	Enthalpy Wheel	Runaround Coil
2,205,940	2,199,486	2,202,439	2,177,021	2198514.75

B + Heat Recovery Systems Cooling Load Comparison	
DOAG + ACD Total Cooling Load (Ton)	

DOAS + ACB TOTAL COOLING LOAD (TON)								
No Heat	Heat Pipe	Fixed Plate	Enthalpy Wheel	Runaround Coil				
Recovery								
300	272	269	176	271				
87	87	87	87	87				
87	68	68	44	67				
474	427	424	308	426				
-	47	50	166	48				
_	9.9%	10.5%	35.0%	10.1%				

DOAS/ACB + Heat Recovery Systems Heating Load Comparison									
		DOAS	+ ACB Total Heat	ing Load (Mbh)					
	No Heat	Heat Pipe	Fixed Plate	Enthalpy Wheel	Runaround Coil				
	Recovery								
AHU1+ACB	2221	1575	1425	1186	1603				
AHU2+ACB	715	715	714	714	714				
AHU3+ACB	640	349	316	258	353				
Total	3576	2639	2454	2157	2669				
Difference	-	937	1,122	1,419	907				
Difference %	-	26.2%	31.4%	39.7%	25.4%				

Annual Gas Consumption (Therm)

Overview **Existing Mechanical** Active Chilled Beam Heat Recovery Architectural

Conclusion

2,220,000 (y) 2,200,000 2,180,000 Å 2,160,000
2,220,000 c 2.200.000

DOAS/A	CB + Runarour
	No Heat Recove
AHU1+ACBs	300
AHU2+ACBs	87
AHU3+ACBs	87
Total	474

Annual Electricity Consumption (Kwh)

	100,000			,					
ʻm)	95,000								_
(Thei	90,000								
Gas	85,000								
	80,000								
		DC	DAS/A	ΛCВ	RC	CAH	J1	RC	CA
	Series1	ç	98,70	5	8	89,41	1	9	5,5

DOAS	nd Coil System Cooling Load Comparison (Ton)							
		oil Loop	Run Around C	With F		ery		
	AHU1,2,3	AHU1,2	AHU3	AHU2	AHU1			
AHU1+ACE	271	271	300	300	271			
AHU2+ACE	84	87	87	84	87			
AHU3+ACE	67	67	67	87	87			
Total	423	426	455	471	446			

DOAS /ACB + Runaround Coil System Heating Load Comparison (Mbh)									
	No Heat Recovery		With Run Around Coil Loop						
		AHU1	AHU2	AHU3	AHU1,2	AHU1,2,3			
AHU1+ACBs	2,221	1,603	2,221	2,221	1,603	1,603			
AHU2+ACBs	715	714	641	714	714	641			
AHU3+ACBs	640	640	640	353	353	353			
Total	3,576	2,957	3,502	3,288	2,669	2,597			

Annual Gas Consumption (Therm)

621 Mbh of energy can be recovered by the runaround loop system

Overview

Existing Mechanical

Active Chilled Beam

Heat Recovery

Architectural

Conclusion

Recoverable Energy (Mbh)							
AHU1	AHU2	AHU3	Total	Π			
347	38	235	621				

Overall Simply Payback Calculation							
	Existing Active Chilled ACB with Run ACB + Run Arou System Beem System Around Cail In State State						
	System	Beam System	Around Coll	+ Solar Shade			
Chiller	238,100	292,000	239,000	239,000			
Cooling Tower	53,750	57,650	57,650	57,650			
Chilled Water Pump	987	1,139	1,139	1,139			
Ductwork	225,368	156,745	156,745	156,745			
4\$/sf for VAV, 2.5\$/sf for ACB)							
Active Chilled Beams	-						
(260 beams for ACB system,		260,000	260,000	260,000			
\$1000 each)							
Runaround Loop Equipment	-	-	11,196	11,196			
Solar Shading System	-	-	-	F7 700			
(35\$/sf + 15% labor cost)				57,799			
AHU	143,450	93,650	91,650	91,650			
Pipe Cost (49.5\$/lf)	425,948	851,895	856,053	856,053			
Boiler	48,100	43,900	36,900	36,900			
Total	1,135,702	1,756,978	1,710,333	1,768,132			
Cost Difference		621,276	574,631	632,430			
Operating Saving		66,078	78,602	81,023			
Simple Payback		9 years 5 months	7years 4 months	7 years 10 months			

Annual System Cost Analysis								
	Existing System	DOAS/ACB	DOAS/ACB + Runaround Coil	DOAS/ACB + Runaround Coil + Solar Shade				
First cost (\$)	1,135,702	1,756,978	1,710,333	1,768,132				
Maintenance Cost (\$/yr. for existing system; \$/5years for redesign systems)	198,450	14,560	15,000	15,000				
Annual Natural Gas Cost(\$)	296,098	252,449	252,088	250,323				
Annual Electricity Cost(\$)	119,135	102,074	94,016	93,358				
Annual Electricity Cost(\$)	119,155	102,074	94,010	33,338				

30-Year Life Cycle Cost Analysis									
	Existing DOAS/ACB DOAS/ACB + DOAS/ACB +								
	System		Runaround Coil	Runaround Coil +					
				Solar Shade					
First cost (\$)	1,135,702	1,756,978	1,710,333	1,768,132					
Maintenance Cost(\$)	4,044,980	56,235	57,935	57,935					
Annual Natural Gas Cost(\$)	6,905,005	5,887,111	5,878,692	5,837,532					
Annual Electricity Cost(\$)	2,449,416	2,098,641	1,932,969	1,919,440					
Total	14,535,103	9,798,965	9,579,929	9,583,039					

Uniform Present Value(UPV) discount factors adjusted for fuel price escalation for Massachusetts State OMB discount rate 1.9% from year 1 to 10, 2.7% discount rate from year 11 to 30.

Overview **Existing Mechanical** Active Chilled Beam Heat Recovery Architectural

Conclusion

Sun Path in Summer

Sun Path in Winter

Existing Mechanical

Overview

Active Chilled Beam

Heat Recovery

Architectural

Conclusion

Solar Shade Electricity Saving

Solar Shade Utility Cost Saving

Solar Shade System Cost Analysis									
	South & West Solar Shade				All Sides Solar Shade				
	2ft	2ft 3ft 4ft 5ft 2ft 3ft 4ft							
Total Length (ft)	1,012	1,518	2,024	2,530	1,973	2,960	3,946	4,933	
Solar Shade Cost	14,840	32,550	50,260	67,970	40,390	74,918	109,445	143,973	
Installation Cost	2,226	4,883	7,539	10,196	6,059	11,238	16,417	21,596	
Total Cost (\$)	17,066	37,433	57,799	78,166	46,449	86,155	125,862	165,568	

3ft Overhang SW	4ft Overhang SW	5ft Overhang SW	2ft Overhang ALL	3ft Overhang ALL	4ft Overhang ALL	5ft Overhang ALL
-1,545	-1,122	-615	-2,105	-1,461	-947	2,117
-1,166	-847	-464	-1,588	-1,103	-714	1,598
-1,026	-745	-408	-1,397	-970	-628	1,406

Overview Existing Mechanical Active Chilled Beam Heat Recovery Architectural

Conclusion

LEED Credits Optimize Energy Performance Controllability of Systems – Thermal Comfort

Possible Credits Enhanced Commissioning Measurement and Verification Outdoor Air Delivery Monitoring Thermal Comfort - Verification