

COLLEGE POINT, NEW YORK

PENN STATE AE SENIOR CAPSTONE PROJECT SHAWN SIDELINGER - CONSTRUCTION MANAGEMENT DR. ROBERT LEICHT - CM ADVISOR

PRESENTATION OUTLINE

- I. PROJECT BACKGROUND
- II. ANALYSIS 1: CELLULAR BEAM REDESIGN

-STRUCTURAL BREADTH

- III. ANALYSIS 2: FUEL ROOM RESEQUENCING
- IV. ANALYSIS 3: PHOTOVOLTAIC SYSTEM INTEGRATION

-ELECTRICAL BREADTH

- V. ANALYSIS 4: FAÇADE REDESIGN
- VI. SUMMARY OF CONCLUSIONS
- VIII. ACKNOWLEDGMENTS

- II. ANALYSIS 1: CELLULAR BEAM REDESIGN
 - I. DESIGN
 - II. STRUCTURAL IMPACT
 - III. SCHEDULE/COST IMPACT IV. ADDITIONAL DETAILS
- III. ANALYSIS 2: FUEL ROOM RESEQUENCING

 - II. PROPOSED SEQUENCING
 - III. SCHEDULE/COST IMPACT ANALYSIS 3: PHOTOVOLTAIC SYSTEM INTEGRATION
 - I. SYSTEM DESIGN
 - II. ENERGY PRODUCTION
 - III. SCHEDULE / COST IMPACT
 - ANALYSIS 4: FAÇADE REDESIGN I. DESIGN

 - II. STRUCTURAL IMPACTS III. SCHEDULE / COST IMPACTS
- SUMMARY OF CONCLUSIONS

- NYC DEPARTMENT OF DESIGN

AND CONSTRUCTION

- NYC POLICE DEPARTMENT

- TURNER CONSTUCTION CO.

CONSTRUCTION MANAGER

- PERKINS+WILL

- SVT CONSTRUCTION

PROJECT BACKGROUND

- TWO SEPARATE FACILITIES

 - ACADEMICS / ADMINISTRATIONS BUILDING
- MAIN CONCEPT: ONE CENTRALIZED FACILITY

- DELIVERY METHOD: MODIFIED FAST TRACK
- 720,000 SQUARE FEET OF NEW CONSTRUCTION

COLLEGE POINT, NEW YORK SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

NEW YORK POLICE ACADEMY

I. PROJECT BACKGROUND

ANALYSIS 1: CELLULAR BEAM REDESIG

I. DESIGN

TIT GOUDDING MARKET

17. NODITIONED DEINIED

T ODICINAL PROHENCING

ORIGINAL SEQUENCING

III. SCHEDULE/COST IMPACT

ANALYSIS 3. PHOTOVOLTAIC SYSTEM INTEGRATION

I. SYSTEM DESIGN

II. ENERGY PRODUCTION

III. SCHEDULE / COST IMPACT

ANALYSIS 4: FACADE REDESIG

I. DESIG

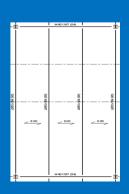
STRUCTURAL IMPACTS

III. SCHEDULE / COST IMPACTS

VIII. ACKNOWLEDGMENTS

ORIGINAL DESIGN

FLOOR SYSTEM


- SINGLE CELLULAR BEAM SPANNING 60' TO SUPPORT IN-DOOR TRACK SYSTEM

CELLULAR BEAM SYSTEM REDESIGN

- APPROXIMATELY 6' IN DEPTH

ROOF SYSTEM

- THREE CELLULAR BEAMS SPANNING 180' TO SUPPORT ROOF SYSTEM ABOVE IN-DOOR TRACK
- APPROXIMATELY 6' IN DEPTH
- 8" STEEL PIPE FILLED WITH CONCRETE ADDED TO HELP STIFFEN BEAMS

NEW YORK POLICE ACADEMY
COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

PROPOSED DESIGN
FLOOR SYSTEM
- SINGLE WIDE FLANGE BEAM TO SUPPORT THE 60' SPAN
FLOOR SYSTEM
- SINGLE WIDE FLANGE BEAM TO SUPPORT THE 60' SPAN
ROOF SYSTEM
- SINGLE WIDE FLANGE BEAM TO SUPPORT 180'
SPAN
FULL ALLOW FOR THE ELIMINATION OF 8" CONCRETE
FILLED STEEL FIFES
- TRADE COORDINATION GOVERNED ROOF SYSTEM DESIGN
- WILL CAUSE AN INCREASE IN CURTAIN WALL AREA

THE ROBBERT OF COMMENTS
THE ROBBERT OF COMME

EQUATIONS USED

CELLULAR BEAM SYSTEM REDESIGN

NEW YORK POLICE ACADEMY COLLEGE POINT, NEW YORK SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

III. SCHEDULE/COST IMPACT

II. PROPOSED SEQUENCING III. SCHEDULE/COST IMPACT

II. ENERGY PRODUCTION

 $w_u = 1.2D_L + 1.6L_L$

TOTAL DEAD LOAD: 62 PSF

SUPPORTING BEAMS CAN BE RESIZED DUE TO REDUCE WEIGHT

MOMENT ACTING ON W40x167: 1210 ft-kips REPLACEMENT BEAM: W24x117, 1230 ft-kips STRUCTURAL IMPACT ON ROOF SYSTEM

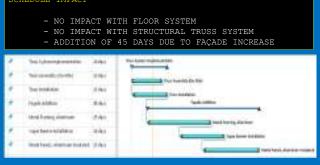
TOTAL LIVE LOAD: 40 PSF TOTAL DEAD LOAD: 82 PSF

SINGLE COMPOSOITE CELLULAR BEAM WEIGHT: 351 lbs/ft SINGLE STRUCTURAL TRUSS WEIGHT: 216 lbs/ft

SUPPORTING BEAMS CAN BE RESIZED DUE TO REDUCE WEIGHT

MOMENT ACTING ON W40x167: 1480 ft-kips REPLACEMENT BEAM: W18x175, 1490 ft-kips COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

CELLULAR BEAM SYSTEM REDESIGN
SHAWN SIDELI


COST INFACT

FLOOR SYSTEM

ORIGINAL CELLULAR BEAM SYSTEM COST: \$3 MILLION

III. SHIROLIFONAL REALISING
III. SHIROLIFONAL SIGNAL INVERNATION
III. SHIROLIFONAL SIGNAL INVERNATION
III. SHIROLIFONAL SIGNAL INVERNATION
III. SHIROLIFONAL SIGNAL INVERNATION
III. SHIROLIFONAL SHIROLIFON
III. SHIROLIFONAL SHIROLIFON

NEW YORK POLICE ACADEMY

COLLEGE POINT, NEW YORK SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT RESENTATION OUTLINE 1. FRONTET BACKGROUND 11. STRUCTURAL IMPACT 11. SCHEDULE/COST IMPACT 17. ANALYSIS 2: FUEL ROOM RESEQUENCING 1. ORIGINAL SEQUENCING 11. SCHEDULE/COST IMPACT 17. ANALYSIS 2: FUEL ROOM RESEQUENCING 11. SCHEDULE/COST IMPACT 17. ANALYSIS 3: PHOTOVOLIAIC SYSTEM INTEGRATION 1. SCHEDULE / COST IMPACT 7. ANALYSIS 4: FACAGE RESESION 1. DESIGN 1. DESIGN 1. STRUCTURAL IMPACTS 111. SCHEDULE / COST IMPACT 1. STRUCTURAL IMPACTS

NEW YORK POLICE ACADEMY

CELLULAR BEAM SYSTEM REDESIGN

CAN IT MAKE IT TO THE JOB SITE?

TRUSS SYSYEMS WILL ARRIVE ON-SITE SEMI-PREFABRICATED TO ALLOW FOR STRUCTURAL STEEL SCHEDULE TO REMAIN ON TIME

ASSUME PREFABRICATION SHOP IN PITTSBURGH, PA EACH TRUSS WILL BE CONSTRUCTED IN FOUR PIECES APPROXIMATELY 45' IN LENGTH AND PLACED ON FLATBED TRAILERS

LOCATION OF JOB SITE NEXT TO OFF-RAMP OF FREEWAY ALLOWS

FOR EASY TRANSPORTATION

NEW YORK POLICE ACADEMY
COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

***CELLULAR BEAM SYSTEM REDESIGN**

CELLULAR BEAM SYSTEM REDESIGN**

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

***COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

***COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

***COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

***COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

***COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

***COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

***COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

***COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

***COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

***COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

***COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

***COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

***COMMUNICATION OF THE SECON SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

***COMMUNICATION OF THE SOURCE SHAWN WILL RESULT IN SAVINGS OF APPROXIMATELY SAWILL RESULT IN

PATION OUTLINE

I. PROJECT BACKGROUND

I. ANALYSIS 1: CELLULAR BEAM REDESIGN

II. STRUCTURAL IMPACT

analysis 2. FIFT DOOM PESECUENCIN

T OBTOTAL CEOUENCING

II DRODOERD SEQUENCING

III. SCHEDULE/COST IMPACT

I. SYSTEM DESIGN

II. ENERGY PRODUCTION

ANALYSIS 4: FACADE BEDESIGN

ANALYSIS 4: FAÇADE REDESIG

I. DESIG

II. STRUCTURAL IMPACTS

III. SCHEDULE / COST IMPACTS
VI. SUMMARY OF CONCLUSIONS

VIII. ACKNOWLEDGMENTS

FUEL ROOM RESEQUENCING

OPTOTNAT SECTENOTIC

- CONCRETE SUBCONTRACTOR WILL PLACE 2ND STRUCTURAL MATT SLAB TO SUPPORT ADDITIONAL WEIGHT FROM FULI FUEL OIL TANKS WHILE STEEL SYSTEM IS ERECTED OVERHEAD
- ALLOWS FOR CONCRETE, A MAJOR ACTIVITY, TO REMAIN ON CRITICAL PATH WITHOUT DELAYING OVERALL PROJECT

OSHA REQUIREMENTS

- ONLY ALLOWED UNDER CERTAIN CRITERIA
- MUST ENSURE RIGGING EQUIPMENT IS CHECK PRIOR TO AND AFTER EACH LIFT
- PERSON OF COMPETENCE MUST BE PRESENT AT ALL TIMES

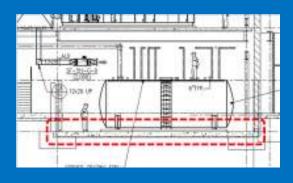
CURRENT SEQUENCING CAN BECOME COSTLY AND DELAY SCHEDULE

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

NEW YORK POLICE ACADEMY

ESENTATION OUTLINE I. PROJECT BACKGROUND II. ANALYSIS 1: CELLULAR BEAM REDESIGN I. DESIGN II. STRUCTURAL IMPACT

- III. SCHEDULE/COST IMPACT
 IV. ADDITIONAL DETAILS
- I. ORIGINAL SEQUENCING
- II DRODOCED CEOUENCING
- III. SCHEDULE/COST IMPACT
- ANALYSIS 3: PHOTOVOLTAIC SYSTEM INTEGRATION
- II. ENERGY PRODUCTION
- III. SCHEDULE / COST IMPAC
- I. DESIGN
- II. STRUCTURAL IMPACTS
- III. SCHEDULE / COST IMPACT.
 VI. SUMMARY OF CONCLUSIONS
- VIII. ACKNOWLEDGMENTS


- HAVE CONCRETE SUBCONTRACTOR BE CONTRACTED TO PERFORM WORK DURING SECOND SHIFT OR AT A LATER TIME WHEN STRUCTURAL STEEL SYSTEM IS NOT BEING ERECTED

FUEL ROOM RESEQUENCING

OSHA REQUIREMENTS

- SIMILAR TO PREVIOUS SEQUENCING BUT NOT AS STRICT
- WILL ALLOW "CHRISTMAS TREE" RIGGING TO BE PERFORMED, ALLOWING FOR AN INCREASED PRODUCTIVITY OF STRUCTURAL STEEL ERECTION

WILL REMOVE THE UNKNOWN COSTS ASSOCIATED WITH ORIGINAL SEQEUNCING

NEW YORK POLICE ACADEMY COLLEGE POINT, NEW YORK SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

ESENTATION OUTLINE 1. PROJECT BACKGROUND 11. ANALYSIS 1: CELLULAR BEAM RECESION 1. DESIGN 11. STRUCTURAL IMPACT 111. SCHEDULE/COST IMPACT

III. SCHEDULE/COST IMPACT
IV. ADDITIONAL DETAILS

I. ORIGINAL SEQUENCING

III. SCHEDULE/COST IMPACT

ANALYSIS 3: PHOTOVOLTAIC SYSTEM INTEGRATION

II. ENERGY PRODUCTION

III. SCHEDULE / COST IMPACT

NALYSIS 4: FAÇADE

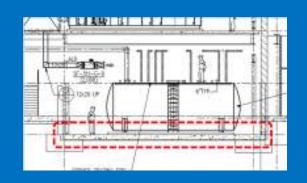
II. STRUCTURAL IMPACTS

III CCHEDNIE / COCE IMPACES

VI. SUMMARY OF CONCLUSIONS

Designation of the second of t

CONTRACTING WORK TO HAPPEN AT LATER DATE \$38,357.87


FUEL ROOM RESEQUENCING

CONTRACTING WORK TO HAPPEN ON SECOND SHIFT: \$46,578.05

COST DIFFERENCE OF APPROXIMATELY \$8,00

SCHEDULE IMPACT

NO IMPACT DUE TO CONCRETE WORK FOR FUEL ROOMS NOT BEING ALONG CRITICAL PATH OF PROJECT SCHEDULE

NEW YORK POLICE ACADEMY COLLEGE POINT, NEW YORK SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT	FUEL ROOM RESEQUENCING	NEW YORK POLICE ACADEMY COLLEGE POINT, NEW YORK SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT
PRESENTATION OUTLINE I. PROJECT BACKGROUND II. RANALYSIS 1: CELLULAR BEAM REDESION II. STRUCTURAL IMPACT III. SCHEDULE/COST IMPACT IV. ADDITIONAL DETAILS III. RANALYSIS 2: PROPER SOM RESPONSIVEN II. GRINAL SEQUENCING III. SCHEDULE/COST IMPACT IV. ANALYSIS 3: PROPOVOLTATIC SYSTEM INTEGRATION II. SYSTEM BESION II. SYSTEM DESION II. SCHEDULE/ COST IMPACT V. ANALYSIS 4: FADEAR REDESION II. SCHEDULE/ COST IMPACT V. ANALYSIS 4: FADEAR REDESION II. SCHEDULE/ COST IMPACT V. SUMMARY OF CONCLUSIONS VII. SCHEDULE/ OST IMPACTS VI. SUMMARY OF CONCLUSIONS VIII. ACKNOWLEDGMENTS	CONCLUSIONS CONTRACTING THE CONCRETE SUBCONTRACTOR TO PERFORM DURING THE SECOND SHIFT WILL INCREASE THE COST BY \$8,000 BUT IMPROVE THE OVERALL SAFETY OF THE ACTIVITY RECOMMENDATIONS TO CONTRACT THE CONCRETE SUBCONTRACTOR TO COME BACK AT A LATER TIME TO FINSIH THE PLACEMENT OF THE SECOND MATT SLAB; THIS WILL ALLOW THE PROJECT'S SAFETY TO INCREASE AND PRODUCE NO INCREASE TO OVERALL PROJECT COST	

PHOTOVOLTAIC SYSTEM INTEGRATION

NEW YORK POLICE ACADEMY COLLEGE POINT, NEW YORK SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

I. PROJECT BACKGROUND II. ANALYSIS 1: CELLULAR BEAM REDES:

I. DESIGN

III. SCHEDULE/COST IMPACT

III. ANALYSIS 2: FUEL ROOM RESEQUENCING

I. ORIGINAL SEQUENCING

II. PROPOSED SEQUENCING

ANALYSIS 3: PHOTOVOLTAIC SYSTEM INTEGRATION

I. SYSTEM DESIGN

II. ENERGY PRODUCTION

ANALYSIS 4: FACADE BEDESIGN

NALYSIS 4: FAÇADE REDESIG

I. DESIG

II. STRUCTURAL IMPACTS

III. SCHEDULE / COST IMPACTS

VI. SUMMARY OF CONCLUSION

DESIGN COMPONENTS

ATTACHED TO ANGULAR PANELS OF SOUTHERN FAÇADE 33° NATURAL SLOPE USE UNI-SOLAR PVL-144 PANELS RATED AT 144W

USE UNI-SOLAR PVL-144 PANELS RATED AT 144W
EASY TO INSTALL, NO BRACKETS NEEDED
USE SATCON POWERGATE PLUS INVERTER RATED AT 75kW
ALLOWS FOR FUTURE EXPANSION

PANELS ATTACHED IN STRINGS OF EIGHT PANELS 162 PANELS TOTAL 1 INVERTER

NEW YORK POLICE ACADEMY
COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

***SENSITION OUTLINE**

1. MANAGE ACADEMAN
21. MANAGE ACADEMAN
22. MANAGE ACADEMAN
23. MANAGE ACADEMAN
24. MANAGE ACADEMAN
25. MANAGE ACADEMAN
26. MANAGE

NEW YORK POLICE ACADEMY COLLEGE POINT, NEW YORK SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

APPROXIMATELY 30,000 kWh COLLECTED EACH YEAR

PHOTOVOLTAIC SYSTEM INTEGRATION

PRODUCES APPROXIMATELY \$4,300 IN ENERGY SAVINGS EACH YEAR

SIZE OF #1 AWG DUE TO NEC FACTORS

POWER DROP OF FARTHEST STRING 2.72 W

EQUATIONS USED

 $A = I_S n * 1.25 * 1.25$

$$P_D = C_R \frac{L}{1000} I_{OP}$$

NEC FACTORS

CONDUIT W/ 10-20 CURRENT CARRYING WIRES = 0.50

RESISTANCE OF #1 AWG WIRE = 0.160

SHORT CIRCUIT CURRENT = 5.3 A OPERATING CURRENT = 4.36 A

NEW YORK POLICE ACADEMY NEW YORK POLICE ACADEMY COLLEGE POINT, NEW YORK COLLEGE POINT, NEW YORK PHOTOVOLTAIC SYSTEM INTEGRATION SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT SCHEDULE IMPACT TWO POSSIBLE SCENARIOS NO INCREASE IN PROJECT SCHEDULE DUE TO THE EASY TOTAL SYSETM APPROXIMATELY \$700,000 INSTALLATION OF THE PANELS ONTO THE INSULATED METAL PANELS VIA HIGH STRENGTH ADHESIVE 30% OF INSTALLATION COST FOR SYSTEMS UNDER 30kW SLIGHT SCHEDULE DELAY, APROXIMATELY 1-2 WEEKS IN CURTAIN WALL ACTIVITY OF THE PROJECT DUE TO INSTALLATION OF CONDUIT AND WIRE DURING II. ENERGY PRODUCTION

III. SCHEDULE / COST IMPACT VI. SUMMARY OF CONCLUSIONS

NEW YORK POLICE ACADEMY
COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

PHOTOVOLTAIC SYSTEM INTEGRATION

SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER

REDUCTION OF 30,000 kWh FROM THE CITY'S POKER GRID
REDUCTION OF 30,000 kWh FROM THE CITY'S POKER GRID
REDUCTION OF 30,000 kWh FROM THE CITY'S POKER GRID
REDUCTION OF 30,000 kWh FROM THE CITY'S POKER GRID
REDUCTION OF 30,000 kWh FROM THE CITY'S POKER GRID
REDUCTION OF 30,000 kWh FROM THE CITY'S POKER GRID
REDUCTION OF 30,000 kWh FROM THE CITY'S POKER GRID
REDUCTION OF 30,000 kWh FROM THE CITY'S POKER GRID
REDUCTION OF 30,000 kWh FROM THE CITY'S POKER GRID
REDUCTION OF 30,000 kWh FROM THE CITY'S POKER GRID
REDUCTION OF 30,000 kWh FROM THE CITY'S POKER GRID
REDUCTION OF 30,000 kWh FROM THE CITY'S POKER GRID

EQUATIONS USED

 $L = L_0 \left(.25 + \frac{15}{\sqrt{A_T K_{TT}}} \right)$

 $w_u = 1.2D_L + 1.6L_L$

TOTAL LIVE LOAD = 100 PSF TOTAL DEAD LOAD = 57 PSF

ANALYSIS 4: FACADE BEDESIGN

I. DESIGN

III SCHEDULE / COCK IMPACE

T SUMMARY OF CONCLUSIONS

VIII. ACKNOWLEDGMENTS

FAÇADE REDESIGN

STRUCTURAL TMPACT USING INSULATED METAL PANELS

WEIGHT ACTING ON BEAM
FLOOR: 2184.5 PLF
SELF WEIGHT: 90 PL
TOTAL: 2274.5 PLF

MOMENT ACTING ON BEAM: 177 ft-kips BEAM SIZE: W16x31; 203 ft-kips NEW YORK POLICE ACADEMY
COLLEGE POINT, NEW YORK
SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

STRUCTURAL IMPACT USING PRECAST CONCRETE PANELS

WEIGHT ACTING ON BEAM FLOOR: 2184.5 PLF SELF WEIGHT: 1836 PLF TOTAL: 4020.5 PLF

> MOMENT ACTING ON BEAM: 314 ft-kips BEAM SIZE: W21x44; 358 ft-kips

ORIGINAL COST CALCULATIONS WERE
CALCULATED WITH USE OF
R.S. MEANS, BUT PROVED TO BE
INACCURATE AFTER INTERVIEWS
WITH DESIGN TEAM

FAÇADE REDESIGN

T IMPACTS

PRECAST CONCRETE PANEL: \$85.00 / SF
BRICK ON CMU: \$110.00 / SF
INSULATED METAL PANEL: \$150.00 / SF

ltem	Unit	Quantity	Cost / SF	Total
Metal Panel (Traditional Curtain Wall System)	SF	31000	\$150.00	\$4,650,000.00
Precast Concrete Panel (Current Curtain Wall System)	SF	31000	\$85.00	\$2,635,000.00
Brick on CMU	SF	31000	\$110.00	\$3,410,000.00
Most Ideal System for Installation	Pre	cast Concrete Pa	anel System	

NEW YORK POLICE ACADEMY

COLLEGE POINT, NEW YORK

SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

CHEDULE IMPACT
INSULATED METAL PANELS: 136 DAYS
PRECAST CONCRETE PANELS: 77 DAYS

COLLEGE POINT, NEW YORK SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT	FAÇADE REDESIGN	COLLEGE POINT, NEW YORK SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT
PRESENTATION OUTLINE		
I. PROJECT BACKGROUND II. ANALYSIS 1: CELLULAR BEAM REDESIGN	CONCLUSIONS	
I. DESIGN II. STRUCTURAL IMPACT III. SCHEDULE/COST IMPACT IV. ADDITIONAL DETAILS	INSULATED METAL PANELS PROVED TO COUNTERACT ORGINIAL IDEALS BY INCREASING LABOR COSTS FOR THE ACTIVITY.	
III. AMALYSIS 2: FUEL ROOM RESEQUENCING 1. ORIGINAL SEQUENCING 11. PROPOSED REQUENCING	INCREASED IN \$2 MILLION AND 59 DAYS FOR THE PROJECT	
III. SCHEDULE/COST IMPACT IV. ANALYSIS 3: PHOTOVOLTAIC SYSTEM INTEGRATION	RECOMMENDATIONS	
I. SYSTEM DESIGN II. ENERGY PRODUCTION III. SCHEDULE / COST IMPACT	IT IS IDEAL TO KEEP THE EXISTING PRECAST CONCRETE PANEL DESIGN DUE TO LOWER COST, FASTER INSTALLATION RATES, AND	
V. AMAINSIS 4: FAÇADE REGESIGN 1. DESIGN 11. STRUCTURAL IMPACTS	IMPROVED PROTECTION FOR THE OCCUPANTS OF THE FACILITY	
III. SCHEDULE / COST IMPACTS VI. SUMMARY OF CONCLUSIONS		
VIII. ACRNOWLEDGMENTS		

NEW YORK POLICE ACADEMY

NEW YORK POLICE ACADEMY

NEW YORK POLICE ACADEMY COLLEGE POINT, NEW YORK SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT	CONCLUSIONS	NEW YORK POLICE ACADEMY COLLEGE POINT, NEW YORK SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT
PRESENTATION OUTLINE 1. PROJECT BACKGROUND 11. ANALYSIS 1: CELLULAR BEAM REBESION	ANALYSIS 1: REDESIGN OF CELLULAR BEAMS	ANALYSIS 2: FUEL ROOM RE-SEQUENCING
I. DESIGN II. STRUCTURAL IMPACT III. SCHEDULE/COST IMPACT IV. ADDITIONAL BETAILS	COST SAVINGS OF \$4 MILLION SCHEDULE INCREASE OF 45 DAYS WILL ALLOW FOR EASY TRADE COORDINATION VIA ROOF	\$8,000 COST DIFFERENCE BETWEEN CONTRACTING CONCRETE SUB-CONTRACTOR AT A LATER TIME AND DURING THE SECOND SHIFT
III. ANALYSIS 2: FUEL ROOM RESEQUENCING 1. CRIGINAL SEQUENCING 1I. PROPOSED SEQUENCING 1II. SCHEDULE/COST IMPACT	WILL ALLOW FOR EAST TRADE COORDINATION VIA ROOF SYSTEM	NO IMPACTS TO OVERALL SCHEDULE
IV. ANALYSIS 3: PHOTOVOLTAIC SYSTEM INTEGRATION I. SYSTEM DESIGN II. ENERGY PRODUCTION III. SCHEDULE / COST IMPACT		IMPROVED JOB SITE SAFETY
V. ANALYSIS 4: FAÇADE REDESIGN I. DESIGN II. STRUCTURAL IMPACTS III. SCHEDULE / COST IMPACTS		
VI. SUMMARY OF CONCLUSIONS VIII. ACKNOWLE DEMENTS		

VODE BOLLCE YCYDEWA

COLLEGE POINT, NEW YORK SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT	CONCLUSIONS	NEW TORK FORTER ACADEMY COLLEGE POINT, NEW YORK SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT
PRESENTATION OUTLINE 1. PROJECT BACKGROUND 11. ANALYSIS 1: CELULLAR SEAM REDESION 11. STRUCTURAL IMPACT 111. SCHEDULE/COST IMPACT 117. ANALYSIS 2: FULL ROOM RESEQUENCING 11. ROPOGED SEQUENCING 11. ROPOGED SEQUENCING 111. SCHEDULE/COST IMPACT 112. ANALYSIS 3: PHOTOVOLITAIS SYSTEM INTEGRATION 1. SYSTEM DESIGN 11. SCHEDULE / COST IMPACT 12. ANALYSIS 3: FACADE RECESION 13. CERION 14. CERION 15. CERION 16. STRUCTURAL IMPACTS 17. STRUCTURAL IMPACTS 17. STRUCTURAL IMPACTS 17. STRUCTURAL IMPACTS 17. SCHEDULE / COST IMPACTS	ANALYSIS 3: SUSTAINABLE DESIGN OF PHOTOVOLATIC SYSTEM COST SAVINGS: \$4,500 PER YEAR COST IMPACT: \$470,000 INSTALLATION COST PAYBACK PERIOD: 108 YEARS	ANALYSIS 4: FAÇADE REDESIGN COST / SCHEDULE IMPACE: INSULATED METAL PANELS: \$4,650,000, 136 DAYS PRECAST CONCRETE PANELS: \$2,635,000, 77 DAYS DIFFERENCE OF \$2 MILLION AND 59 DAYS

NEW YORK POLICE ACADEMY

NEW YORK POLICE ACADEMY

ACKNOWLEDGMENTS

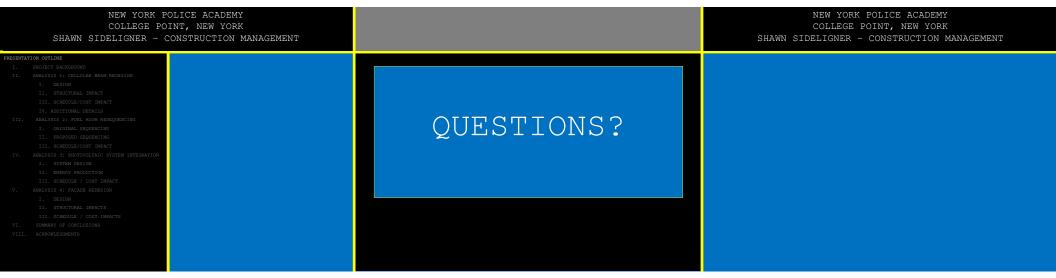
NEW YORK POLICE ACADEMY COLLEGE POINT, NEW YORK SHAWN SIDELIGNER - CONSTRUCTION MANAGEMENT

DR. ROBERT LEICHT DENSON GROENENDAAL AE FACULTY

TURNER CONSTRUCTION COMPANY: JOSE CLASS

YEGAL SHAMASH

SVT PROJECT TEAM


NEW YORK CITY DEPARTMENT OF DESIGN AND CONSTRUCTION

NEW YORK POLICE DEPARTMENT

MY FAMILY AND FRIENDS

MY FIANCÉE CRYSTAL DAVIES

MY AE COMRADES

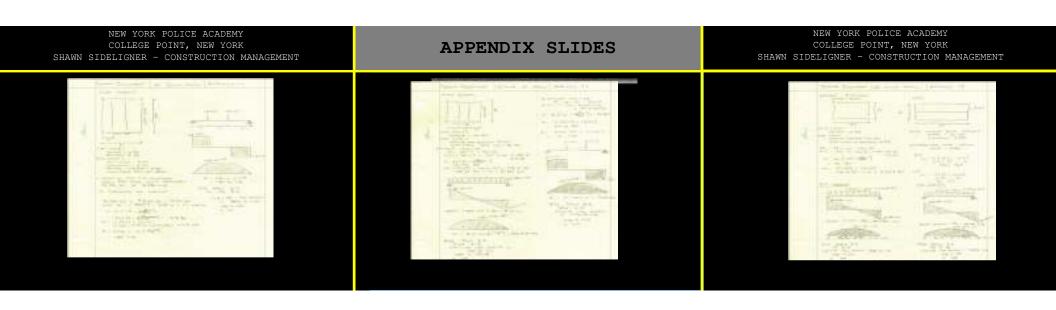
Replacement Cellular Beam Design (Truss Implementation) Daily Output Total Material Amount Truss Assembly (On-Site) EA 13.00 10 10 EA SF 340 Metal Framing, Aluminum SF Vapor Barrier 500 375 Metal Panels, Aluminum Insulated 8640 23.04

APPENDIX SLIDES

Insulated Metal Panel Façade Schedule Durations								
Item	Crew Size	Unit	Daily Output	Total Material Amount	Days Required			
Metal Framing, Aluminum	4	SF	340	31000	91.18			
Vapor Barrier	2	SF	500	31000	62.00			
Metal Panels, Aluminum Insulated	2	SF	375	31000	82.67			
Actual Duratio	136	Days						

Precast Concrete Panel Façade Durations									
Item	Crew Size	Unit	Daily Output	Total Material Amount	Days Required				
Precast Concrete Panel	8	SF	1400	31000	22.14				
Vapor Barrier	3	SF	750	31000	41.33				
Insulation, Rigid 2"	1	SF	890	31000	34.83				
А	etual Duration	77	Days						

APPENDIX SLIDES


Item		Quantity	Material / Labor Cost per Unit	Total Cost
Uni-Solar 144w PV Module	EA	162.00	\$1,000.00	\$162,000.00
Satcon PowerGate Plus 75 kW Solar PV Inverter	EA	1.00	\$31,000.00	\$31,000.00
Conductor, #1 AWG	CLF	510.00	\$961.00	\$490,110.00
4" Diameter EMT	CLF	65.00	\$410.00	\$26,650.00
Total Cost of Photovoltaic	Panel System	\$709,760.00		

Energy Output and Energy Cost Savings for Photovoltaic System Integration										
Month	Days in Month	Insolation Value	Energy Rates	Panel Output (kW)	Adj. for Inverter Efficiency	Number of Panels	Energy Output (kWh)	Energy Cost Savings		
January	31	1.79	\$0.15	0.14	0.96	162	1242.69	\$180.19		
February	28	2.66	\$0.15	0.14	0.96	162	1667.97	\$241.86		
March	31	3.66	\$0.15	0.14	0.96	162	2540.92	\$368.43		
April	30	4.44	\$0.15	0.14	0.96	162	2983.00	\$432.53		
May	31	5.21	\$0.15	0.14	0.96	162	3617.00	\$524.46		
June	30	5.70	\$0.15	0.14	0.96	162	3829.52	\$555.28		
July	31	5.65	\$0.15	0.14	0.96	162	3922.46	\$568.76		
August	31	5.00	\$0.15	0.14	0.96	162	3471.21	\$503.32		
September	30	3.98	\$0.15	0.14	0.96	162	2673.95	\$387.72		
October	31	2.89	\$0.15	0.14	0.96	162	2006.36	\$290.92		
November	30	1.89	\$0.15	0.14	0.96	162	1269.79	\$184.12		
December	31	1.57	\$0.15	0.14	0.96	162	1089.96	\$158.04		
		30314.83	\$4,395.65							

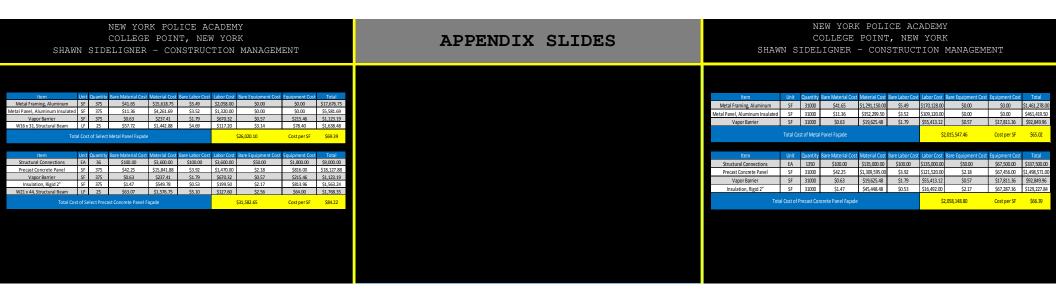
Solar Radiation Received for College Point, New York												
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Insolation, kWh/m2/day	1.7	2.6	3.6	4.4	5.2	5.7	5.6	5.0	3.9	2.8	1.8	1.5

Station Identification							
City	College Point, New York City						
State	New York						
Latitude	40.78° N						
Longitude	73.97° W						
Elevation	57 M						
PV System Specifications							
DC Rating	23.3						
DC to AC Derate Factor	0.85						
AC Rating	19.8						
Array Type	Fixed Tilt						
Array Tilt	33.2°						
Array Azimuth	180.0°						

	Solar Radiation (kWh/m²/day)	AC Energy (Wh)	Energy Value (\$)
1	3.00	1807645.00	\$276.66
2	4.03	2169404.00	\$332.78
3	4.55	2609996.00	\$401.94
4	5.35	2881435.00	\$445.15
5	5.51	2990295.00	\$463.56
6	6.05	3091197.00	\$479.66
7	5.88	3051956.00	\$473.57
8	5.66	2964426.00	\$458.78
9	5.08	2627448.00	\$405.13
10	4.37	2426461.00	\$372.80
11	2.79	1539283.00	\$236.21
12	2.70	1584089.00	\$242.44
Year	4.58	29743636.00	\$4,588.68

Member Area (SF) Length (ft) Volume (CF) Weight (lb) Cost per Pound Total Cost 21.8 x 6 x 7/8 0.16042 448 71.86816 35215.3984 \$3.10 \$109,167.74 21.5 x 3 1/2 x 3/8 0.04236 217.8314 9.227338104 4521.39567 \$3.10 \$14,016.33 Individual Truss Cost \$123,184.06 Total Truss System Cost \$3.202,785.60

Item	Unit	Quantity	Bare Material Cost	Material Cost	Bare Labor Cost	Labor Cost	Bare Equipment Cost	Equipment Cost	Total
Framework, Aluminum	SF	8640	\$41.65	\$359,856.00	\$5.49	\$47,416.32	\$0.00	\$0.00	\$407,272.32
Metal Panels, Aluminum Insulated	SF	8640	\$11.36	\$98,189.28	\$3.52	\$30,412.80	\$0.00	\$0.00	\$128,602.08
Vapor Barrier	SF	8640	\$0.63	\$5,469.81	\$1.79	\$15,444.17	\$0.57	\$4,964.20	\$25,878.18
W18 x 175, Structural Beam	LF	540	\$79.14	\$42,732.90	\$4.90	\$2,643.84	\$4.85	\$2,617.92	\$47,994.66
Total Increase in Façade Cost							\$609,74	17.24	


APPENDIX SLIDES

Item	Unit	Quantity	Bare Material Cost	Material Cost	Bare Labor Cost	Labor Cost	Bare Equipment Cost	Equipment Cost	Total
LB66 x 290, Cellular Beam	LF	4160	\$715.00	\$2,974,400.00	\$14.56	\$60,569.60	\$8.45	\$35,143.68	\$3,070,113.28
Steel Pipe, 8" Diameter Hollow	EA	338	\$751.78	\$254,102.49	\$73.42	\$24,814.61	\$43.62	\$14,744.91	\$293,662.01
Concrete, 4000 psi	CY	8712.68	\$209.44	\$1,824,783.70	\$87.20	\$759,745.70	\$0.53	\$4,600.30	\$2,589,129.69
W14 x 30, Structural Beam	LF	690	\$43.44	\$29,970.15	\$4.16	\$2,870.40	\$2.78	\$1,920.96	\$34,761.51
W40 x 167, Structural Beam	LF	540	\$245.14	\$132,375.60	\$4.72	\$2,548.80	\$2.37	\$1,278.72	\$136,203.12
Original Cost of Cellular Beam System							\$6,123,8	69.61	

Item	Unit	Quantity	Material / Labor Cost per Unit	Total Cost
Uni-Solar 144w PV Module	EA	162.00	\$1,000.00	\$162,000.00
Satcon PowerGate Plus 75 kW Solar PV Inverter	EA	1.00	\$31,000.00	\$31,000.00
Conductor, #1 AWG	CLF	510.00	\$961.00	\$490,110.00
4" Diameter EMT	CLF	510.00	\$410.00	\$209,100.00
Total Cost of Photovoltaic Panel	\$892,210.00			

Cost of Concrete Work Performed in Fuel Tank Rooms (Normal Wages)										
Item	Item Unit Quantity Bare Material Cost Total Material Cost Bare Labor Cost Total Labor Cost Bare Equipment Cost Total Equipment Cost									
Forms in Place, Mat Foundation	SFCA	226.67	\$2.14	\$484.58	\$9.46	\$2,145.17	\$0.00	\$0.00	\$2,629.75	
#6 Reinforcing Steel	TON	9.01	\$670.45	\$6,042.10	\$915.20	\$8,247.78	\$0.00	\$0.00	\$14,289.88	
Concrete, 4000 psi	CY	148.15	\$81.59	\$12,087.78	\$0.00	\$0.00	\$0.00	\$0.00	\$12,087.78	
Concrete Pump Truck	CY	148.15	\$0.00	\$0.00	\$7.97	\$1,180.21	\$2.31	\$342.96	\$1,523.16	
Machine Trowel	SF	6000.00	\$0.00	\$0.00	\$0.81	\$4,867.20	\$0.49	\$2,960.10	\$7,827.30	
Total Cost of Concrete Work							\$38,357.8	7		

Cost of Concrete Work Performed in Fuel Tank Rooms (Overtime Wages)										
Item	Unit	Quantity	Bare Material Cost	Total Material Cost	Bare Labor Cost	Total Labor Cost	Bare Equipment Cost	Total Equipment Cost	Total	
Forms in Place, Mat Foundation	SFCA	226.67	\$2.14	\$484.58	\$14.20	\$3,217.76	\$0.00	\$0.00	\$3,702.3	
#6 Reinforcing Steel	TON	9.01	\$670.45	\$6,042.10	\$1,372.80	\$12,371.67	\$0.00	\$0.00	\$18,413.7	
Concrete, 4000 psi	CY	148.15	\$81.59	\$12,087.78	\$0.00	\$0.00	\$0.00	\$0.00	\$12,087.7	
Concrete Pump Truck	Y	148.15	\$0.00	\$0.00	\$11.95	\$1,770.31	\$2.31	\$342.96	\$2,113.2	
Machine Trowel	SF	6000.00	\$0.00	\$0.00	\$1.22	\$7,300.80	\$0.49	\$2,960.10	\$10,260.9	
Total Cost of Concrete Work							\$46,578.05			

