

Faculty Advisor: Dr. Richard A. Behr April 9, 2012

Dormitory Northeast USA

Cadell G. Calkins

Structural Option

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

- New Dormitory Building A Located in Northeast USA
- 92,389 SF
- Height: 57.75'
- Construction Cost: \$26 Million
 - Buildings A & B and sitework
- October 2010 to January 2012
- Delivery: Public/private partnership using a development team to deliver the project by guaranteed maximum price

Building Introduction

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

- **Owner: Nonprofit Corporation**
- Architect: WTW Architects
- **Construction Manager: Massaro Corporation** MEP, Telecom, and Security Engineer: H. F. Lenz Company
- Structural Engineer: Taylor Structural Engineers, Inc.
- Landscape Architect: LaQuatra Bonci Associates Developer: Allen & O'Hara Development Co. LLC

Project Team

South Wing

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

- Wings
- Core

 - Flat Roof
 - Sun Shades

Architecture

• Suite Style Rooms Brick and Ground Face CMU Hip Roof with Asphalt Shingles Sweeping Dormer Accents

 Student Gathering Spaces Large, Storefront Windows

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

Existing Structural System

- Foundation
 - Rammed Aggregate Piers
 - 2 foot hole
 - 30 feet deep
 - 2 foot lifts of well graded crushed rock
 - Strengthened soil around hole for slab on grade
 - Strip and Spread Footings
 - Concrete Masonry Units (CMU)
- Floor
 - 1st Floor
 - 8 inch concrete planks resting on CMUs
 - 2nd-4th Floors
 - 18 inch deep wood floor trusses on load bearing walls
 - 9.25 inch deep laminated veneer lumber wood joists on wide flange beams and girders

Rammond Abore gates Pier

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

Existing Structural System

- Lateral System
 - Wings North-South Direction
 - Shear walls located in corridor and exterior walls
 - ¹/₂ inch oriented strand board for exterior walls • ³/₄ inch oriented strand board for corridor walls Wings East-West Direction

 - - Shear walls located between each suite and exterior walls
 - ¹/₂ inch oriented strand board for exterior walls • 2 layers of 5/8 inch gypsum wall board (GWB) for suite walls
 - Core
 - Shear walls around the stairs, elevator, and where the core meets the wings. 8 inch reinforced CMU

Corridor Shear Wall

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

- Global Warming might soon be a design consideration for a structural engineer.
- According to the National Wildlife Federation, the maximum hurricane wind speeds are expected to increase 2 to 13 percent within this century.
- In regards to the Dormitory,
 - Original Design 90 mph (ASCE 7-05) or 115 mph (ASCE 7-10)
 - Increase to 102 mph or 130 mph, respectively

Problem Statement

- To understand this new loading, the following situation has been created.
 - State College of Florida, Manatee-Sarasota area, the design wind speed is 150 mph.
 - of withstanding:
 - wind pressures due to hurricanes and tornadoes
 - debris impacts on the façade
 - foundation for the sandy soil

(SCF) would like to build the Dormitory. In this • SCF has required that the Dormitory be capable

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

- Lateral System in Wings:
 - Steel braced frame shear walls
- Lateral System in Core
 - Steel braced frame shear walls
- Gravity System
 - Steel deck and joist floors
- Steel wide flange beams and columns Foundation
 - Strip and spread footings

Proposed Solution

Oriented strand board (OSB) shear walls

Problem Statement

- To understand this new loading, the following situation has been created.
 - State College of Florida, Manatee-Sarasota area, the design wind speed is 150 mph.
 - of withstanding:
 - wind pressures due to hurricanes and tornadoes
 - debris impacts on the façade
 - foundation for the sandy soil

(SCF) would like to build the Dormitory. In this • SCF has required that the Dormitory be capable

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

- 1st Floor Shear Wall Design
- North South Winds
 - Original Design Satisfactory

 - ¹/₂ inch OSB exterior walls
 - Maximum Deflection = 0.17 in < L/360 = 0.3 in
- East West Winds
 - GWB Insufficient
 - Use 5/16 in OSB with 3 in edge fastener spacing
 - Maximum Deflection = 0.26 in < L/360 = 0.3 in

Shear Wall Design

• ³/₄ inch OSB corridor walls

Oriented Strand Board

- North South Winds
- Columns W8x31
- Braces L2x2x1/8 L2x2x5/16

Shear Wall Design

- Maximum Deflection
 - 0.19 in < L/360 = 0.30 in

• Beams – W12x35

Steel Braced Frames

- East West Winds
 - - 0.08 in < L/360 = 0.30 in
- Columns W8x31
- Braces L2x2x1/8 L2x2x1/4
- Beams W12x30 W12x35

Shear Wall Design

Maximum Deflection

Steel Braced Frames

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

- ETABS Model
 AE 597A Computer Modeling
 - Deflections

Shear Wall Design

MAE Requirement

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

- **Braced Frame Connection** • AE 534 – Steel Connections • 4 inch wide, ¼ inch A36 plate
- - (2) 1/8 inch welds, 5 inches long • (2) 1/16 inch welds, 9 inches long

Shear Wall Design

MAE Requirement

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

Lateral System Comparison

Syste
OSB
Steel
OSB

Steel Braced Frames

System	Drift at Roof (inches)	h/400 (inches)
OSB Shear Wall E-W	1.30	1.47
Steel Braced Frame E-W	0.32	1.47
OSB Shear Wall N-S	0.86	1.47
Steel Braced Frame N-S	0.75	1.47

System	Gravity	Walls	Total
OSB Shear Wall	\$1,228,000	\$288,000	\$1.516 million
Steel Braced Frame	\$1,072,000	\$261,000	\$1.333 million

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

- Results:
 - DOW POWERHOUSE Solar Shingle
 - Payback Period of 10 Years
 - Install like Asphalt Shingles
 - Battery Backup

Electrical Breadth

Photovoltaic System

http://www.dowsolar.com/about/business.htm

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

- Rain Screen Wall Cladding System
- American Fiber Cement Corporation's Textura
- R-value and condensation analysis using H.A.M.
- Impact Resistant
 - "This product has been designed and tested to comply with the Requirements of the Florida Building Code 2010 edition including High Velocity Hurricane Zone (HVHZ), TAS 202 and TAS 203"

Façade Breadth

http://www.americanfibercement.com/textura

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

- Lateral System Comparison
 - Oriented strand board
 - Steel braced frame
- Solar Shingles
- Rain Screen Cladding

Conclusion

Recommendation

Steel braced frame system

• Steel floor and gravity system

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

- Penn State Architectural Engineering Faculty • Dr. Behr
- Massaro Corporation David Sciullo
- WTW Architects
 - Harold Colker
 - Brian DiPietro
- Dormitory Owner
- Family and Friends

Acknowledgements

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Oriented Strand Board Shear Walls
- Steel Braced Frame Shear Walls
- Comparison of Lateral Systems
- Electrical Breadth
- Façade Breadth
- Conclusion

Questions and Comments

