

## STEPS BUILDING LEHIGH UNIVERSITY'S ASA PACKER CAMPUS BETHLEHEM, PA

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION

FACULTY ADVISER: DR. LINDA HANAGAN

DATE: 19 OCTOBER 2011

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

#### Table of Contents

| 1.          | Executive Summary                           | 3  |
|-------------|---------------------------------------------|----|
| 2.          | Building Introduction                       | 4  |
| 3.          | Description of Structural System Components | 6  |
| 3.1         | Floor System                                | 6  |
| 3.2         | Vertical Members                            | 6  |
| 3.3         | Foundation                                  | 6  |
| 3.4         | Roof System                                 | 7  |
| 3.5         | Lateral System                              | 7  |
| 4.          | Design Codes                                | 8  |
| 5.          | Materials                                   | 9  |
| 6.          | Design Gravity Loads                        | 10 |
| 6.1         | Floor Live Load                             | 10 |
| 6.2         | Floor Dead Load                             | 10 |
| 6.3         | Roof Live Load                              | 10 |
| 6.4         | Roof Dead Load                              | 11 |
| 6.5         | Roof Snow Load                              | 11 |
| 6.5.1       | Uniform Roof Snow Load                      | 11 |
| 6.5.2       | Snow Drift Surcharge                        | 12 |
| 6.6         | Penthouse Live Load                         | 12 |
| 6.7         | Penthouse Dead Load                         | 13 |
| 6.8         | Brick Veneer Façade Dead Load               | 13 |
| 6.9         | Glass Curtainwall Dead Load                 | 13 |
| 6.10        | Penthouse Wall Dead Load                    | 14 |
| 7.          | Wind Pressures                              | 15 |
| 8.          | Seismic Loads                               | 19 |
| 8.1         | Design Factors                              | 19 |
| 8.2         | Effective Seismic Weight                    | 20 |
| 8.3         | Design Seismic Loads                        | 22 |
| 9.          | Gravity Member Spot Checks                  | 23 |
| 9.1         | Composite Metal Deck and Slab               | 23 |
| 9.2         | Composite Beam                              | 24 |
| 9.3         | Column Gravity Check                        | 26 |
| 2.0         |                                             | 20 |
| A.1         | Design Snow Load Calculations               | 28 |
| <b>A</b> .2 | Design Wind Pressure Calculations           | 32 |
| A.3         | Design Seismic Load Calculations            | 38 |
| A.4         | Typical Beam Spot Check Calculations        | 44 |
| <b>A</b> .5 | Typical Column Spot Check Calculations      | 52 |

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

#### 1. Executive Summary

The purpose of this report is to develop and communicate an understanding the structural system of a building as part of the Penn State Architectural Engineering Department's Capstone Project, also known as Senior Thesis. The building used for this report was the STEPS Building, located on the Lehigh University Campus in Bethlehem, PA.

The report begins with a description of the building structural system. A concrete slab on composite metal deck transfers floor load to wide-flange steel beams. The beams take advantage of composite action with the concrete topping for added strength. Wide-flange steel columns transfer gravity loads to concrete foundation piers. The foundation piers are tied into shallow reinforced concrete footings that ultimately transfer building loads to the ground.

Information and details needed to compute the gravity load requirements of representative members were determined and tabulated. Seismic and wind load inputs were also determined for use in a future analysis of the lateral load resisting system.

Using this information the adequacy of the steel deck and slab was confirmed. A typical beam and column were then re-designed for gravity loading, and the resulting member was compared to the as-built design. In both cases, the existing member had greater capacity than the designed member, and possible reasons for the discrepancy were discussed.

Supporting calculations are also included in appendices to the report.

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

### 2. Building Introduction

The Science, Technology, Environment, Policy, Society (STEPS) Building was completed in 2010 as the primary home for the STEPS program at Lehigh University in Bethlehem, PA. The STEPS program aims to bring social sciences, engineering, and hard science activities into spatial proximity to encourage academic collaboration. As a result, the plan contains a mixture of classroom spaces, inter-disciplinary research and teaching laboratories, and faculty offices arranged to integrate the various functions and disciplines.

The four-story "B" wing and five-story "C" wing are steel-frame structures running north-south along the west edge of the site. Flexible moment connections at all column-beam connections provide lateral stability, allowing for an open floor plan well-suited to laboratory, classroom, and graduate office use. A normal weight concrete slab on 3" composite steel deck transfers floor loads to composite beams and girders.

The longitudinal facades are primarily a highly-insulated brick assembly with punchout style ribbon windows. The transverse facades are almost entirely high-efficiency glazing with rectangular HSS framing, housing student study areas and stairwells.

An atrium with student lounge areas and stairs connects the "B" and "C" wings. For analysis purposes, both wings act together as one structure because the load resisting system continues uninterrupted through the atrium area, and the size of the atrium opening relative to the full diaphragm does not constitute a significant horizontal irregularity that would compromise diaphragm rigidity.

The low-rise "A" wing, which is not investigated in this report, is a one-story steelframe structure running east to west along the south edge of the site. Its primary features are a 70-seat lecture hall, 12"-deep green roof, extensive glazing, and laminated wood finishing.

The STEPS Building has received LEED Gold certification from the US Green Building Council (USGBC). Sustainable features (including a partial green roof; sunshading and high-efficiency glazing; and custom-sized mechanical systems) were incorporated from the onset of the project to physically embody the STEPS program's forward-looking mission of "collaboration, innovation and scholarship in the areas of science, technology, environment, policy and society."

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN





### STEPS BUILDING | LEHIGH UNIVERSITY'S ASA PACKER CAMPUS | BETHLEHEM, PA

5

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

### 3. Description of Structural System Components

#### 3.1 Floor System

A composite floor system comprised of a concrete slab with composite steel deck resting on steel framing supports design loads on all above-grade floors in the "B" and "C" wings. Basement floor loads are transferred directly to the soil by a slab-on-grade. In the longitudinal direction, typical girders span 21'-4" and support one transverse beam at mid-span. Transverse beams span from 36'-11" to 42'-8".

3" 18-gauge composite deck is oriented longitudinally for a clear span of 10'-8", with the exception of the two bays at the south end of the "B" wing where the deck is oriented transversely. The composite deck is topped with a 4-1/2" normal weight concrete topping, for a total thickness of 7-1/2", and reinforced with 6"x6" W2.9 X W2.9 welded wire fabric situated 0-3/4" from the top of the slab.

Wide-flange members support the slab-deck floor system and are designed as simply-supported members due to the properties of the flexible moment connections at the columns (see "Lateral System"). Typical sizes for transverse beams are W24x55 and W24x76, with some local variations. Typical longitudinal girders are W21x44. Studs are employed to transfer flexure-induced shear from the slab to the beams and girders, with most beams having between 28 and 36 studs depending on span.

### 3.2 Vertical Members

Gravity and lateral loads are carried to the foundation by wide-flange columns oriented for strong-axis bending in the transverse direction due to larger surface area and resulting wind loads. Typical bays arranged with three longitudinal column lines, with one at each edge and one near mid-span.

Typical sizes for the main bearing columns in the lateral support system range from W14x90 to W14x132 on levels 3 to 5, and range from W14x109 to W14x192 on the lower floors. Sizes of other columns vary widely by location and purpose. Column lifts are typically three levels – top of pier to level 3, and level 3 to roof level – except on the upper levels of the shorter "B" wing, where lifts are two levels.

### 3.3 Foundation

Load transfer to bearing soil is provided by shallow reinforced concrete footings. A 2007 geotechnical analysis performed by Schnabel Engineering's West Chester, PA office determined that the existing subgrade material on site had sufficient bearing capacity to support building loads.

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

Column loads are transferred via base plates to reinforced concrete piers tied into the footings. Exterior columns bear on square footings, with most ranging from 11'-0" to 16'-0" square and 1'-6" to 2'-0" in depth. The interior column line is supported by a mat foundation 18'-0" wide and 3'-0" deep extending the length of the building in the longitudinal direction.

Exterior reinforced concrete foundation walls are supported by strip footings ranging from 2'-0" to 6'-0" in width and 1'-0" to 2'-0" in depth. Foundation walls and piers supporting exterior columns are integrated and cast as one piece. Likewise, the strip footings supporting the foundation walls are integrated with the square footings supporting the exterior columns.

### 3.4 Roof System

Roof loads are supported by 3" 16-gauge roof deck with a normal weight concrete topping. The topping thickness ranges from 0-1/4" to 4-1/2" to accommodate a 1/4": 1' slope for drainage, for a total slab thickness of 3-1/4" to 7-1/2". The roof levels are framed very similarly to the floors described above, with typical members in snow-load governed roof areas sized from W24x55 to W24x68.

The roof framing system also supports mechanical equipment in rooftop penthouses, as well as the weight of penthouse square HSS framing and gravity loads transferred from the penthouse roof. The floor system in the mechanical areas matches that of lower floors, with heavier W27x84 shapes.

### 3.5 Lateral System

Lateral load resistance in both the longitudinal and transverse directions is provided by flexible moment connections at all beam to column connections. The moment frames are continuous to grade, transferring resulting shear and moment to the foundation. Flexible moment connections are sized to resist lateral forces only, and beams are designed as simply-supported members because the moment connections do not have excess capacity to transfer gravity moments to the columns under design lateral loads. Beam webs are connected with angles on each side sized to resist full shear resulting from gravity load. Beam top and bottom flanges are connected with angles to resist moment generated by the lateral load.

Penthouse lateral loads are supported by flexible moment connections at the high roof level in the transverse direction, and by single-angle braced frames designed for tension only in the longitudinal direction. Lateral loads are then transmitted through rigid connections to horizontal roof framing members connected to their supporting columns with flexible moment connections. These beams (typically W27x102) are larger than adjacent members (typically W24x68 or W27x84) to accommodate the additional moment generated by the lateral load.

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

#### 4. Design Codes

Lehigh University is located within the jurisdiction the City of Bethlehem, which enforces standards as laid out in <u>Pennsylvania Uniform Construction Code</u> (PUCC). The PUCC is modeled on the work of the International Code Council (ICC) and is reviewed and updated triennially. As of the completion of design in 2008, the PUCC 2006 revision was in effect, with key model code components including:

2006 International Building Code,

2006 International Fire Code (only as referenced in IBC 2006),

2006 International Electrical Code,

2006 International Mechanical Code,

2006 International Fuel Gas Code,

and local amendments and requirements as provided for by ordinance.

By reference, the PUCC 2006 also incorporates:

Minimum Design Loads for Buildings and Other Structures (ASCE 7-05),

Building Code Requirements for Structural Concrete (ACI 318-05),

Building Code Requirements for Masonry Structures (ACI 530-05),

AISC Manual of Steel Construction (13th Edition),

and various other requirements specific to individual trades.

The primary codes employed in this report are ASCE 7-05 and the AISC Manual of Steel Construction.

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

#### 5. Materials

This section provides a list of the major construction materials typically used throughout the existing design for the structural system.

| Material                                               | Standard, Strength, and/or Grade         |  |  |  |
|--------------------------------------------------------|------------------------------------------|--|--|--|
| Structural Steel                                       |                                          |  |  |  |
| W & WT Shapes                                          | ASTM A992 Grade 50                       |  |  |  |
| Channels, Angles, & Plates                             | ASTM A-36                                |  |  |  |
| Steel Tubing (Round, Square, & Rectangular)            | ASTM                                     |  |  |  |
| Steel Pipe                                             | ASTM A-53, Grade B                       |  |  |  |
| Stainless Steel                                        | ASTM A240 Type 304                       |  |  |  |
| Connection Bolts (0-3/4" minimum diameter)             | ASTM A325/A490                           |  |  |  |
| Shear Studs (0-3/4" round)                             | ASTM A496                                |  |  |  |
| Reinforce                                              | d Concrete                               |  |  |  |
| Structural Concrete (Footings, Piers, Walls,<br>Slabs) | f'c = 4000 PSI, Normal Weight            |  |  |  |
| Deformed Bars                                          | ASTM A-615 Grade 60                      |  |  |  |
| Welded Reinforcing Steel                               | ASTM A-706 Grade 60                      |  |  |  |
| Welded Wire Fabric                                     | ASTM A-185                               |  |  |  |
| Metal                                                  | Deck                                     |  |  |  |
| Floors 3" 18 Ga. Galvanized Composite De               |                                          |  |  |  |
| Roof                                                   | 3" 16 Ga. Type "NS" Galvanized Roof Deck |  |  |  |
| Mas                                                    | onry                                     |  |  |  |
| CMUs                                                   | f'm = 1500 psi                           |  |  |  |
| Grout                                                  | f'c = 2000 psi                           |  |  |  |

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

### 6. Design Gravity Loads

#### 6.1 Floor Live Load

#### Table 6.1.1 | Code, Existing, and Design Floor Live Load Values

| Occupancy                    | ASCE 7-05 Load<br>(Tables 4-1/C4-1) | Existing Design<br>As Noted on<br>Drawings | Design Load Used<br>for Typical Floors |
|------------------------------|-------------------------------------|--------------------------------------------|----------------------------------------|
| Offices                      | 50 PSF + 15 PSF<br>(PTN)            | 50 PSF                                     |                                        |
| Classrooms                   | 40 PSF                              | 40 PSF                                     |                                        |
| Laboratories                 | 100 PSF                             | 100 PSF                                    |                                        |
| Laboratory Storage           | 125 PSF                             | 125 PSF                                    | 125 PSF                                |
| Corridors at Ground Level    | 100 PSF                             | 100 PSF                                    |                                        |
| Corridors Above Ground Level | 80 PSF                              | 80 PSF                                     |                                        |
| Lobbies                      | 100 PSF                             | 100 PSF                                    |                                        |

### 6.2 Floor Dead Load

#### Table 6.2.1 | Calculation of Design Floor Dead Load

| Item                          | Dimension   | Unit Weight | Load     |
|-------------------------------|-------------|-------------|----------|
| 3" 18 Ga. Composite Deck      |             |             | 2.84 PSF |
| 4-1/2" NW Concrete Topping    | 0.485 CF/SF | 145 PCF     | 70.3 PSF |
| Framing Self-Weight Allowance |             |             | 5 PSF    |
| MEP Allowance                 |             |             | 10 PSF   |
| Ceiling Allowance             |             |             | 5 PSF    |
| Misc Finishes Allowance       |             |             | 2.5 PSF  |
|                               |             | Total:      | 96 PSF   |

### 6.3 Roof Live Load

### Table 6.3.1 | Code, Existing, and Design Roof Live Load Value

| Occupancy | ASCE 7-05 Load<br>(Tables 4-1/C4-1) | Existing Design<br>As Noted on<br>Drawings | Design Load Used<br>for Typical Floors |
|-----------|-------------------------------------|--------------------------------------------|----------------------------------------|
| Roof      | 20 PSF                              | N/A                                        | 20 PSF                                 |
|           |                                     | Total:                                     | 20 PSF                                 |

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

#### 6.4 Roof Dead Load

#### Table 6.4.1 | Calculation of Design Roof Dead Load

| Item                          | Dimension   | Unit Weight | Load     |
|-------------------------------|-------------|-------------|----------|
| 3" 16 Ga. Type NS Roof Deck   |             |             | 2.46 PSF |
| 3" NW Concrete Topping (Avg)  | 0.290 CF/SF | 145 PCF     | 42 PSF   |
| Framing Self-Weight Allowance |             |             | 4 PSF    |
| Roofing Material              |             |             | 12 PSF   |
|                               |             | Total:      | 62.5 PSF |

#### 6.5 Roof Snow Load

The uniform roof snow load and snow drift surcharge were determined using the procedure provided in Chapter 7 of ASCE 7-05.

Intermediate hand calculations showing the determination of all factors and loads are included in Appendix A.1.

#### 6.5.1 Uniform Roof Snow Load

Note: A discrepancy exists between the design roof snow load of 21 PSF and the calculated value of 22 PSF that can be attributed to Building Type II and a resulting importance factor of I=1.0 being used for the existing design.

#### Table 6.5.1.1 | Uniform Roof Snow Design Factors and Load

| Design Factor                             | ASCE 7-05<br>Reference | Design Value  |
|-------------------------------------------|------------------------|---------------|
| Ground Snow Load (pg)                     | Figure 7-1             | 30 PSF        |
| Roof Exposure                             | Table 7-2              | Fully Exposed |
| Exposure Type                             | Section 6.5.6.2        | В             |
| Exposure Factor (Ce)                      | Table 7-2              | 0.9           |
| Thermal Factor (Ct)                       | Table 7-3              | 1.0           |
| Building Type                             | Table 1-1              | 111           |
| Importance Factor (I)                     | Table 7-4              | 1.1           |
| Calculated Flat Roof Snow Load (pf)       | Equation 7-1           | 21 PSF        |
| Alternative Minimum Snow Load<br>(pf,min) | Section 7.2            | 22 PSF        |
| Design Flat Roof Snow Load (pf)           | Section 7.2            | 22 PSF        |

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

#### 6.5.2 Snow Drift Surcharge

As a representative case, the East side of the "C" wing penthouse was selected for a sample calculation. This location was selected because it provided the greatest distance from the obstruction (penthouse) to the edge of the roof for a substantial drift to develop, and because it is within the tributary area of the column selected for a spot check.

It is important to note that there are several other locations where a drift calculation would be required. All sides of the penthouses on both the "C" and "B" wings (especially the East side of the "B" wing); the cooling towers on the "C" wing roof; and, significantly, the area between the "B" wing penthouse and the change in elevation to the "C" wing roof where the two resulting drifts could overlap and lead to significant accumulations.

| Design Factor                                 | ASCE 7-05<br>Reference | Design Value |
|-----------------------------------------------|------------------------|--------------|
| Ground Snow Load (pg)                         | Figure 7-1             | 30 PSF       |
| Snow Density (γ)                              | Equation 7-3           | 17.9 PCF     |
| Design Flat Roof Snow Load (pf)               | Section 7.2            | 22 PSF       |
| Height of Balanced Snow Load (hb)             | Section 7.7.1          | 1.28'        |
| Clear Height Above Balanced Snow<br>Load (hc) | Section 7.7.1          | 15.0'        |
| Roof Length Upwind (lu)                       | Figure 7-8             | 45.5'        |
| Snow Drift Height (hd)                        | Figure 7-9             | 2.36'        |
| Snow Drift Width (w)                          | Section 7.7.1          | 9.44'        |

 Table 6.5.2.1 | Snow Drift Surcharge Design Factors and Load

#### 6.6 Penthouse Live Load

Table 6.6.1 | Calculation of Design Penthouse Live Load

| Occupancy                  | ASCE 7-05 Load<br>(Tables 4-1/C4-1) | Existing Design<br>As Noted on<br>Drawings | Design Load Used<br>for Typical Floors |
|----------------------------|-------------------------------------|--------------------------------------------|----------------------------------------|
| Mechanical Equipment Rooms | 200 PSF                             | N/A                                        | 200 PSF                                |
|                            |                                     | Total:                                     | 200 PSF                                |

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

#### 6.7 Penthouse Dead Load

#### Table 6.7.1 | Calculation of Design Penthouse Dead Load

| Item                          | Dimension   | Unit Weight | Load     |
|-------------------------------|-------------|-------------|----------|
| 3" 18 Ga. Composite Deck      |             |             | 2.84 PSF |
| 4-1/2" NW Concrete Topping    | 0.485 CF/SF | 145 PCF     | 70.3 PSF |
| Framing Self-Weight Allowance |             |             | 5 PSF    |
| MEP Allowance                 |             |             | 10 PSF   |
| Ceiling Allowance             |             |             | 5 PSF    |
| Misc Finishes Allowance       |             |             | 2.5 PSF  |
|                               |             | Total:      | 96 PSF   |

#### 6.8 Brick Veneer Façade Dead Load

#### Table 6.8.1 Calculation of Design Brick Veneer Façade Dead Load

| Item                                                        | Dimension        | Unit Weight | Load      |
|-------------------------------------------------------------|------------------|-------------|-----------|
| Brick Veneer                                                | 10'-3" per level | 35 PSF      | 357.8 PLF |
| 2" Rigid Insulation                                         | 10'-3" per level | 3 PSF       | 30.7 PLF  |
| Cold-form Steel Framing & Ins.                              | 10'-3" per level | 6 PSF       | 61.3 PLF  |
| Gypsum Board                                                | 10'-3" per level | 2 PSF       | 20.5 PLF  |
| Window glass, frame, and sash<br>(per ASCE 7-05 Table C3-1) | 5'-1" per level  | 8 PSF       | 40.8 PLF  |
|                                                             |                  | Total:      | 510.6 PLF |

#### 6.9 Glass Curtainwall Dead Load

#### Table 6.9.1 Calculation of Design Glass Curtainwall Dead Load

| Item                                                        | Dimension        | Unit Weight | Load      |  |
|-------------------------------------------------------------|------------------|-------------|-----------|--|
| Window glass, frame, and sash<br>(per ASCE 7-05 Table C3-1) | 15'-4" per level | 8 PSF       | 122.4 PLF |  |
|                                                             |                  | Total:      | 122.4 PLF |  |

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

### 6.10 Penthouse Wall Dead Load

#### Table 6.10.1 | Calculation of Design Penthouse Wall Dead Load

| Item                    | Dimension        | Unit Weight | Load      |  |
|-------------------------|------------------|-------------|-----------|--|
| Metal Wall Panel System | 16'-4" per level | 5 PSF       | 81.7 PLF  |  |
| Cold-form Steel Framing | 16'-4" per level | 7 PSF       | 114.3 PLF |  |
| Bracing Allowance       | 16'-4" per level | 3 PSF       | 49 PLF    |  |
|                         |                  | Total:      | 246 PLF   |  |

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

### 7. Wind Pressures

Design wind pressures were determined using the Analytical Procedure provided in Chapter 6 of ASCE 7-05. The Fundamental Natural Frequency (n1) of the building was determined to be 0.68 Hz in the transverse (E/W) direction and 0.56 Hz in the longitudinal (N/S) direction by Eq. C6-19 (ASCE 7-05). Since both values are less than 1 Hz, the building is considered flexible, and provisions related to flexible buildings apply.

Intermediate hand calculations showing the determination of all factors and pressures are included in Appendix A.2.

| Design Factor                               | ASCE 7-05 Reference | E/W Value   | N/S Value   |  |
|---------------------------------------------|---------------------|-------------|-------------|--|
| Design Wind Speed (V)                       | Figure 6-1C         | 90 mph      |             |  |
| Building Type                               | Table 1-1           | I           | I           |  |
| Importance Factor (I)                       | Table 6-1           | 1.          | 15          |  |
| Exposure Type                               | Section 6.5.6.2     | E           | 3           |  |
| Fundamental Natural<br>Frequency (n1)       | Equation C6-19      | 0.68 Hz     | 0.56 Hz     |  |
| Equivalent Height (z)                       | Section 6.5.8       | 46.8'       | 60'         |  |
| Integral Length Scale<br>of Turbulence (Lz) | Equation 6-7        | 360'        | 390'        |  |
| Intensity of Turbulence<br>(Iz)             | Equation 6-4        | 0.23        | 0.22        |  |
| Mean Hourly Wind<br>Speed (Vz)              | Equation 6-14       | 64.7 ft/sec | 69.0 ft/sec |  |
| Reduced Frequency<br>(N1)                   | Equation 6-12       | 3.78 Hz     | 3.16 Hz     |  |
| Damping Ratio ( <b>Beta</b> )               | Commentary p. 294   | 0.01        |             |  |
| Background Response<br>(Q)                  | Equation 6-6        | 0.79        | 0.85        |  |
| Resonant Response<br>Factor (R)             | Equation 6-10       | 0.0238      | 0.0506      |  |
| Gust Effect Factor (Gf)                     | Equation 6-8        | 0.877       | 0.914       |  |

#### Table 7.1 | Wind Pressure Design Factors

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

In the transverse direction, the building is roughly symmetrical, but the site slopes from north to south, creating variation in roof height above grade. The Mean Roof Height (h) of 86'-2" was established using level 1 as the average ground level. Because there is no significant difference between the East and West facades, one set of calculations was completed to determine Velocity Pressures (qz) and Wind Pressures (p).

| Level | Height            | kz   | qz   | Pz<br>(windward) | Ph<br>(leeward) | Ptot |
|-------|-------------------|------|------|------------------|-----------------|------|
| G     | (below<br>ground) |      |      |                  |                 |      |
| 1     | 0'-0″             | 0.57 | 11.5 | 11.8             | -11.5           | 23.3 |
| 2     | 15'-4″            | 0.58 | 11.7 | 11.9             | -11.5           | 23.5 |
| 3     | 30'-8″            | 0.71 | 14.4 | 13.8             | -11.5           | 25.9 |
| 4     | 46'-0″            | 0.79 | 16   | 15               | -11.5           | 27.5 |
| RF/5  | 60'-8″            | 0.85 | 17.2 | 15.9             | -11.5           | 28.7 |
| RF/PH | 77'-0″            | 0.92 | 18.6 | 16.9             | -11.5           | 30.1 |

| Table 7.2 | Design Wind | Pressure by Leve                      | I (Transverse | Direction) |
|-----------|-------------|---------------------------------------|---------------|------------|
|           |             | · · · · · · · · · · · · · · · · · · · | <b>\</b>      |            |

Figure 7.1 | Design Wind Pressure by Level (Transverse Direction)



In the longitudinal direction, there is a significant difference in height between the north and south facades, with the south facade being 32' taller. Wind pressure STEPS BUILDING | LEHIGH UNIVERSITY'S ASA PACKER CAMPUS | BETHLEHEM, PA

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

factors were calculated using the south facade Mean Roof Height (h) of 100' to generate conservative results. Velocity Pressures (qz) and Wind Pressures (p) were then calculated once assuming wind from the north and once assuming wind from the south to determine the worst-case loading scenario for each story. From level G (below grade) to level 2 (9'-4") measured from the base of the north facade, wind from the north created larger pressures, primarily resulting from leeward pressure on exposed south facade from level G to level 2. From level 3 (46'-8") to the "C" wing Penthouse Roof (108'-4") measured from the base of the south facade, wind from the south created larger pressures, resulting from the greater height of the south facade. The greatest absolute total pressure combinations from each analysis were then combined to generate the wost-case values for story shear.

| Level<br>("C"/ "B"<br>wings) | Height           | kz   | qz   | Pz<br>(windward) | Ph<br>(leeward) | Ptot |
|------------------------------|------------------|------|------|------------------|-----------------|------|
| G*                           | (below<br>grade) |      |      |                  | -18.1           | 18.1 |
| 1*                           | (below<br>grade) |      |      |                  | -18.1           | 18.1 |
| 2*                           | 9'-4″            | 0.57 | 11.5 | 11.6             | -18.1           | 29.7 |
| 3                            | 46'-8'           | 0.79 | 16.0 | 15.3             | -15.9           | 31.2 |
| 4                            | 62'-0″           | 0.86 | 17.5 | 16.4             | -15.9           | 32.3 |
| RF/5                         | 77'-4″           | 0.92 | 18.6 | 17.2             | -15.9           | 33.1 |
| PH/RF                        | 92'-0″           | 0.96 | 19.5 | 17.8             | -15.9           | 33.7 |
| /PH                          | 108'-4″          | 1.01 | 20.5 | 18.6             | -15.9           | 34.5 |

**Table 7.3** | Design Wind Pressure by Level (Longitudinal Direction)

\* Dimensions and values for these levels are based on the north facade. All other dimensions and values are based on south facade. See Appendix [X] for complete values for each facade.

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN



Figure 7.2 | Design Wind Pressure by Level (Longitudinal Direction)

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

### 8. Seismic Loads

Design seismic loads were determined using the Equivalent Lateral Force procedure provided in Chapters 11 and 12 of ASCE 7-05. The design values for story shear generated by the procedure ensure that the lateral system is capable of handling the shear and moment resulting from seismic motion, taking into account both site and building properties.

Intermediate hand calculations showing the determination of all factors and loads are included in Appendix A.3.

### 8.1 Design Factors

Identical design factors were used in the longitudinal and transverse directions because the lateral system in both directions is the same. In lieu of the significantly more extensive analysis needed to determine the actual fundamental period of the building, the approximate fundamental period described in ASCE 7-05 Section 12.8.2.1 was determined, as permitted by Section 12.8.2.

| Design Factor                                                                      | ASCE 7-05 Reference | Value |
|------------------------------------------------------------------------------------|---------------------|-------|
| Short-period Spectral<br>Response Acceleration<br>Parameter (Ss)                   | (USGS/Existing)     | 0.291 |
| One-second Spectral<br>Response Acceleration<br>Parameter (S1)                     | (USGS/Existing)     | 0.081 |
| Site Class                                                                         | (USGS/Existing)     | С     |
| Short-period Site<br>Coefficient (Fa)                                              | Table 11.4-1        | 1.2   |
| Long-period Site<br>Coefficient (Fv)                                               | Table 11.4-2        | 1.7   |
| Adjusted MCE Short-<br>period Spectral<br>Response Acceleration<br>Parameter (SMs) | Equation 11.4-1     | 0.349 |

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

| Adjusted MCE One-<br>second Spectral<br>Response Acceleration<br>Parameter (SM1) | Equation 11.4-2 | 0.138   |
|----------------------------------------------------------------------------------|-----------------|---------|
| Design Short-period<br>Spectral Response<br>Acceleration Parameter<br>(SMs)      | Equation 11.4-3 | 0.233   |
| Design One-second<br>Spectral Response<br>Acceleration Parameter<br>(SM1)        | Equation 11.4-4 | 0.0918  |
| Maximum Height from<br>Base (hn)                                                 | n/a             | 108.3'  |
| Approximate Period<br>Parameter (Ct)                                             | Table 12.8-2    | 0.028   |
| Approximate Period<br>Parameter (x)                                              | Table 12.8-2    | 0.8     |
| Approximate<br>Fundamental Period<br>(Ta)                                        | Equation 12.8-7 | 1.19 Hz |
| Building Type                                                                    | Table 1-1       | 111     |
| Importance Factor (I)                                                            | Table 11.5-1    | 1.25    |
| Seismic Design<br>Category                                                       | Table 11.6-2    | В       |
| Response Modification<br>Coefficient ®                                           | Table 12.2-1    | 3.0     |
| System Overstrength<br>Factor ( <b>omega)</b>                                    | Table 12.2-1    | 3.0     |
| Deflection Amplification<br>Factor (Cd)                                          | Table 12.2-1    | 3.0     |
| Flexible Diaphragm<br>Condition                                                  | Section 12.3.1  | Rigid   |
| Long-period Transition<br>Period (TL)                                            | Figure 22-15    | 6       |
| Seismic Response<br>Coefficient (Cs)                                             | Equation 12.8-3 | 0.0321  |

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

### 8.2 Effective Seismic Weight

The effective seismic weight throughout the building was calculated using typical floor, roof, facade, and penthouse wall values determined in the "Design Gravity Loads" portion of this report. Additional loads were considered per Section 12.7.2. Partition weight was not included due to the previous assumption that all floor areas were designed for live load in excess of 80 PSF. The mechanical penthouse live load of 200 PSF was included because the mechanical equipment is permanent. Roof snow load was not included because the ground snow load is not in excess of 30 PSF.

| Level            | Floor<br>Area<br>(96 PSF) | Roof<br>Area<br>(62.5<br>PSF) | Penthouse<br>Floor Area<br>(296 PSF) | Brick<br>Veneer<br>Facade<br>Perimeter<br>(510.6<br>PLF) | Glass<br>Curtainwall<br>Perimeter<br>(122.4<br>PLF) | Penthouse<br>Wall<br>Perimeter<br>(246 PLF) | Effective<br>Seismic<br>Weight |
|------------------|---------------------------|-------------------------------|--------------------------------------|----------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|--------------------------------|
| 7 (PH-C)         |                           | 4497<br>SF                    |                                      |                                                          |                                                     |                                             | 281.06k                        |
| 6(RF-<br>C/PH-B) |                           | 7894<br>SF                    | 4497 SF                              |                                                          |                                                     | 288.7'                                      | 1895.08k                       |
| 5 (RF-B)         | 10832 SF                  | 9375<br>SF                    | 1557 SF                              | 421.3'                                                   |                                                     | 161.3'                                      | 2341.01k                       |
| 4                | 21814 SF                  |                               |                                      | 589.7'                                                   | 89.5'                                               |                                             | 2406.21k                       |
| 3                | 21814 SF                  |                               |                                      | 589.7'                                                   | 89.5'                                               |                                             | 2406.21k                       |
| 2                | 21814 SF                  |                               |                                      | 589.7'                                                   | 89.5'                                               |                                             | 2406.21k                       |
| 1                | 21814 SF                  |                               |                                      | 589.7'                                                   | 89.5'                                               |                                             | 2406.21k                       |
| Total            | 98088 SF                  | 21766<br>SF                   | 6054 SF                              | 2780'                                                    | 382'                                                | 450'                                        | 14141.9k                       |

### Table 8.1.1 | Effective Seismic Weight by Level

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

### 8.3 Design Seismic Loads

The seismic base shear (V) was determined to be 453.9 kips, and the overturning moment at the base was determined to be 34250 ft-kips. The actual seismic base shear used for the existing design is not known, but this value falls within the range determined for similarly sized buildings in design guides and Technical Reports from prior years.

| Level        | Effective<br>Seismic<br>Weight<br>(wx) | Height<br>from<br>Base<br>(hx) | wxhx^k     | Vertical<br>Distribution<br>Factor<br>(Cvx) | Lateral<br>Seismic<br>Force<br>(Fx) | Seismic<br>Design<br>Story<br>Shear<br>(Vx) | Overturni<br>ng<br>Moment |
|--------------|----------------------------------------|--------------------------------|------------|---------------------------------------------|-------------------------------------|---------------------------------------------|---------------------------|
| 7 (PH)       | 281.06k                                | 108'-4″                        | 3298551.4  | 0.06542042                                  | 29.698k                             | 29.7k                                       | 3217.3ft-k                |
| 6<br>(RF/PH) | 1895.08k                               | 93'-0″                         | 16390546.9 | 0.32507488                                  | 147.57k                             | 177.3k                                      | 13724ft-k                 |
| 5 (RF)       | 2341.01k                               | 76'-8″                         | 13759936.5 | 0.27290179                                  | 123.89k                             | 301.2k                                      | 9498.2ft-k                |
| 4            | 2406.21k                               | 61'-4″                         | 9051627.3  | 0.17952157                                  | 81.495k                             | 382.7k                                      | 4998.3ft-k                |
| 3            | 2406.21k                               | 46'-0″                         | 5091540.4  | 0.10098088                                  | 45.841k                             | 428.5k                                      | 2108.7ft-k                |
| 2            | 2406.21k                               | 30'-8″                         | 2262905.8  | 0.04488037                                  | 20.374k                             | 448.9k                                      | 624.67ft-k                |
| 1            | 2406.21k                               | 15'-4″                         | 565726.7   | 0.01122010                                  | 5.093k                              | 454.0k*                                     | 78.091ft-k                |
| Total        | 14141.9k                               |                                | 50420835   | 0.993 ~ 1.0                                 |                                     |                                             | 34250ft-k                 |

\*Calculated Seismic Base Shear = **453.9k** 

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

### 9. Gravity Member Spot Checks

Designs for a span of composite metal deck and slab, a transverse composite beam, and a wide-flange column were each checked against strength and serviceability requirements and compared to members at the same locations in the existing design.





### 9.1 Composite Metal Deck and Slab

With the design loads determined in the "Design Gravity Loads section of this report, the total superimposed load on the slab is 125 PSF live load plus 20 PSF miscellaneous dead load, for a total of 145 PSF. Using Vulcraft 3VLI18 as representative, the 3" composite metal deck with 4-1/2" normal weight concrete topping can support a superimposed live load of approximately 210 PSF with a conservative 11'-0" clear span. The deck is also suitable for unshored construction, with the 12'-0" maximum unshored clear span exceeding the design span of 10'-8".

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

Based on this check, the deck and slab specified in the existing design is suitable for the design loads.

### 9.2 Composite Beam

The beam selected for design spans transversely between columns A4 and B4 and supports a biology laboratory. The initial check was performed using the design live load of 100 PSF for laboratory occupancy, which was subsequently reduced to 75 PSF per ASCE 7-05 Section 4.8. The design dead load was determined in the "Design Gravity Loads" section of this report.

The results of this check are shown in Table 9.2.1.

| Table 9.2.1   Comparison of Trial Member to Existing | Design |
|------------------------------------------------------|--------|
|------------------------------------------------------|--------|

| Design Loads<br>D = 96 PSF<br>L = 75 PSF<br>1.2D + 1.6L = 235.2 PSF | Beam Size   | Bare Beam<br>Flexure<br>Capacity | Bare Beam<br>Moment of<br>Inertia | Composite<br>Beam<br>Design<br>Strength | Composite<br>Lower-<br>Bound<br>Moment of<br>Inertia |
|---------------------------------------------------------------------|-------------|----------------------------------|-----------------------------------|-----------------------------------------|------------------------------------------------------|
| Required                                                            |             | 306 ft-k                         | 1004 in4                          | 556 ft-k                                | 1354 in4                                             |
| Trial Member                                                        | W21x55 [24] | 473 ft-k                         | 1140 in4                          | 695 ft-k                                | 2110 in4                                             |
| Existing Design                                                     | W24x76 [36] | 750 ft-k                         | 2100 in4                          | 1230 ft-k                               | 4480 in4                                             |
| Ratio of Existing/Trial                                             | 1.38 [1.5]  | 1.58                             | 1.84                              | 1.77                                    | 2.12                                                 |

The most apparent reason for the discrepancy would be underestimation of the design live load. Considering that institutions typically plan for a much longer building life cycle than commercial owners, it is reasonable to assume that the system was designed for maximum flexibility. From this reasoning, the highest design floor live load of 125 PSF was used. Because this live load is greater than 100 PSF, it could not be reduced per ASCE 7-05 Section 4.8. To isolate variables, the design live load remained unchanged.

The results of this check are shown in Table 9.2.2.

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

| Design Loads<br>D = 96 PSF<br>L = 125 PSF<br>1.2D + 1.6L = 315.2 PSF | Beam Size   | Bare Beam<br>Flexure<br>Capacity | Bare Beam<br>Moment of<br>Inertia | Composite<br>Beam<br>Design<br>Strength | Composite<br>Lower-<br>Bound<br>Moment of<br>Inertia |
|----------------------------------------------------------------------|-------------|----------------------------------|-----------------------------------|-----------------------------------------|------------------------------------------------------|
| Required                                                             |             | 306 ft-k                         | 1004 in4                          | 745 ft-k                                | 2332 in4                                             |
| Trial Member                                                         | W24x55 [24] | 503 ft-k                         | 1350 in4                          | 865 ft-k                                | 2500 in4                                             |
| Existing Design                                                      | W24x76 [36] | 750 ft-k                         | 2100 in4                          | 1230 ft-k                               | 4480 in4                                             |
| Ratio of Existing/Trial                                              | 1.38 [1.5]  | 1.49                             | 1.55                              | 1.42                                    | 1.79                                                 |

### Table 9.2.2 | Comparison of Trial Member to Existing Design

To troubleshoot this result, a second location was then checked. The new member also spans transversely, but on the opposite side of the building between columns B4 and C4. The beam supports graduate student offices, rests on longitudinal girders, and does not participate in the flexible moment frame system.

Selecting a beam that is not framed into columns and in a different occupancy area was hoped to determine whether the member size mis-match was driven either by 1) an unaccounted-for aspect of the lateral system, or 2) additional strength or serviceability requirements in the area of the first member. If the trial member were substantially oversized, it would suggest that the former is true, and the live load assumption was a false lead. If the trial member were close to the existing design, it would suggest that the latter is true and the live load assumption was appropriate. If the trial member were undersized by a ratio similar to that of the second trial member, it would suggest that the same unknown load conditions exist throughout the building.

The results of this check are shown in Table 9.2.3.

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

| Design Loads<br>D = 96 PSF<br>L = 125 PSF<br>1.2D + 1.6L = 315.2 PSF | Beam Size   | Bare Beam<br>Flexure<br>Capacity | Bare Beam<br>Moment of<br>Inertia | Composite<br>Beam<br>Design<br>Strength | Composite<br>Lower-<br>Bound<br>Moment of<br>Inertia |
|----------------------------------------------------------------------|-------------|----------------------------------|-----------------------------------|-----------------------------------------|------------------------------------------------------|
| Required                                                             |             | 233 ft-k                         | 671 in4                           | 569 ft-k                                | 1672 in4                                             |
| Trial Member                                                         | W21x48 [22] | 401 ft-k                         | 959 in4                           | 597 ft-k                                | 1810 in4                                             |
| Existing Design                                                      | W24x55 [26] | 473 ft-k                         | 1350 in4                          | 852 ft-k                                | 2910 in4                                             |
| Ratio of Existing/Trial                                              | 1.14 [1.18] | 1.17                             | 1.41                              | 1.42                                    | 1.61                                                 |

Surprisingly, applying a live load in excess of twice the office occupancy load to this member did result in a trial size that is still less than the existing design, but even closer than the corresponding trial size in the laboratory occupancy area. This suggests the possibility that the increased beam sizes throughout the building were selected to provide increase diaphragm stiffness in order to meet serviceability requirements like vibration control and increased sensitivity to live load deflection in a laboratory environment.

Hand calculations showing the determination of required capacity and the selection of the members are included in Appendix A.4.

### 9.3 Column Gravity Check

The column selected for design was B4 mid-height between levels 3 and 4, an interior column adjacent to the beams used for the check above. All columns used in the existing design have a depth of 14", and that restriction was also used to design the trial member.

Gravity loads accumulate from floor and roof areas within the tributary area of the column. These loads include floor dead and live loads; roof dead, live, uniform snow, and snow drift loads; and penthouse dead and live loads. The design loads used were determined in the "Design Gravity Loads" section of this report, and are calculated in detail, with live load reductions as permitted, in Appendix A.5.

These loads are totaled in Table 9.3.1.

Table 9.3.1 | Accumulated Gravity Loads in Column B4

| Level          | Dead Load | Reduced Live Load | Snow Load |
|----------------|-----------|-------------------|-----------|
| Penthouse Roof | 30.3k     | 5.82k             | 11.2k     |
| Roof Level     | 71.0k     | 90.9k             | 6.84k     |
| Level 5        | 80.9k     | 84.3k             |           |
| Level 4        | 80.9k     | 84.3k             |           |
| Total          | 263.1k    | 265.3k            | 18.1k     |

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

In determining the factor G needed to enter the nomograph (AISC Figure C-C2.4), the girder length was doubled following the procedure outlined in Geschwinder/Desque 2005. This method of modeling flexible moment connections assumes that the far end of each girder is pinned, reflecting the limited capacity of flexible moment connections to support girder moments. Because each connection is designed to resist lateral loads only, it has no remaining capacity to absorb moment and stiffen the column under design lateral loading. This is also the reason horizontal members are designed as simply supported beams.

The column, like all other major columns in the building, is part of the lateral load resisting system. Because the analysis required to determine the design lateral load for the frame is beyond the scope of this report, and the beams do not transmit any floor load flexure to the column, the trial member was designed for gravity load only.

The results of this check are shown in Table 9.3.2.

| Design Loads<br>D = 96 PSF<br>L = 265.3 kips<br>S = 18.1 kips<br>1.2D + 1.6L 0.5S = 749.25 kips | Column Size | Column Axial<br>Capacity w/<br>(KL)eff = 21' | Column Moment<br>of Intertia |
|-------------------------------------------------------------------------------------------------|-------------|----------------------------------------------|------------------------------|
| Required                                                                                        |             | 750 ft-k                                     |                              |
| Trial Member                                                                                    | W14x90      | 848 ft-k                                     | 999 in4                      |
| Existing Design                                                                                 | W14x193     | 1925 ft-k                                    | 2400 in4                     |
| Ratio of Existing/Trial                                                                         | 2.14        | 2.27                                         | 2.4                          |

 Table 9.3.2 | Comparison of Trial Member to Existing Design

The extreme difference between the trial member and existing design reflects the design for gravity load only, and demonstrates that lateral loads and second order effects will govern column design due to the flexible moment frame system.

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

Hand calculations showing the determination of required capacity and the selection of a member are included in Appendix A.5.

### A.1 Design Snow Load Calculations

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

TECH REPORT ++1 SHOW LONDS CALCULATIONS FLAT ROOF SHOW LONG I DETERMINE GROUD SHOW LOND (Pg) (FIG 7-1) EN MAP, Pa = 30 PSF · PETERMUNE EXPOSE FACE (CE) LARGE NEORIDAL PROPHER SS FILLY EXPERIED ENFOCINE ( TEPENING THEE - THEE E (DENEEDINGED IN WIND ANNELESIS) (TABLE 7-2) 20 Cc = 019 · DETERMINE THERMAL FACTUR (C) BEES NOT MEET EXCEPTION REQUIREMENTS 20 Gt = 1.0 (TABLE 7-5) "PERSONNE SHOW LOND IMPOSTANCE FACTUR (I) (TASLE7-4) (ATECANEL III do I = 11) · ADTERNATIVE MUNICIPAL SINCE LONG (PS, MUS) Pa + to PSF > 2+ PSF - USE FSHIM = (20)(1) = (20)(11) = 22 PSP (§ 7.2) + PLAT BACT SHALS LONG (Pg) (Eq. 7-1) P1 - O. TCECTIP2 Z PAININ - (a.2)(a.9)(1.0)(1.1)(50) = 21 4 22 "" PS = ZZ PSF

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN



JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN



### A.2 Design Wind Pressure Calculations

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

1. TECH REPORT #1 CALCULATIONS WIND LOADS · USE ANALYTICAL PROCEDURE (ASCE 7-05 \$ 6.5) DESIGN WIND SPEED (V) 1 = 90 MPH (FIG 6-1C) BOILDWARE TYPE 1 COLLERS + ELOCATION USE ] THE III (TALE 1-1) (I) SOTTAGE SACTOR (I) TYPE II; V < 100 00 I= 1.15. (THELE 6-1) WARE ENGLINESS/ EXPLORE THRE USE ROUGHNESS "B" (UREN (SARESN)) (§ 6.5.6.2) 6312" X "C" wirder Ń 18" WING 66 13.1 (PET.S) h - 841 (ANG) 7 4 EAST ELEVATION NE WIRK L = 86.21 B = 275.3 E/W "4 "121 (154)(841) + (121.3)(681) h 68' = 78' h = (154+121.8) (AVG) \* DED WEIGHTED ANDDAGE to simplify excertances 89'4"-L = 275.3' B = 86.21 NIS PLAN h = 100 1 \* USED PORTH ELD HY TO TE MORE CONSERVATIVE: h1 => n, 1 => Gr1=> p1

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

| 1 | TECH BETOET #1                                            | CALCOLATIONS                                                                       | WWD LONDS            | 3/ |
|---|-----------------------------------------------------------|------------------------------------------------------------------------------------|----------------------|----|
|   | · JEASEMINE FEL                                           | NCED TREADENCY ()                                                                  | ۵,)                  |    |
| 0 |                                                           | el u                                                                               | MZ                   |    |
|   | $w_1 = \frac{w_1 \ Lz}{v_2}$                              | N, - 3.78 Hz                                                                       | N= 3,16Hz (2016-12)  |    |
|   | · DETERMUSE DAN                                           | pine sure (B)                                                                      |                      |    |
|   | STEEL FRAME                                               | 2 = 0 = 0 = 0                                                                      | (28 294)             |    |
|   | · DETEXIDANE CAR                                          | CARELING RESPONSE (                                                                | a)                   |    |
|   | 6 . (8.h)0.13                                             | E/w                                                                                | Nls                  |    |
|   | $Q = \sqrt{(1+0.63\left(\frac{344}{L_2}\right)^{10})}$    | ) Q=01765                                                                          | 8=0.847 (20.6-6)     |    |
|   | · DETERMINE RESO                                          | WANT RESTONSE THE                                                                  | ee (2)               |    |
|   |                                                           | <u> </u>                                                                           | 2/4                  |    |
| 0 | $M_{\rm H} = \frac{416n_{\rm i}M}{\nabla_{\rm Z}}$        | Mu= 3,77                                                                           | Mn = 3,73 (ER6-13)   |    |
|   |                                                           | $R_{\rm H} = 0.230$                                                                | 24 - 01232 ( 11 )    |    |
|   | $M_8 = \frac{U_{16} M_1 B}{V_{-}}$                        | MB = 13.3                                                                          | Me-3.21 ( 11 )       |    |
|   |                                                           | P 010723                                                                           | R m 263 1 11 1       |    |
|   | · .                                                       | rg                                                                                 | ng bitte t           |    |
|   | $M_{L} = \frac{15.4411L}{\overline{V}_{2}}$               | ML = 13.9                                                                          | ML 34.4 ( · )        |    |
|   |                                                           | RL = 010719                                                                        | R1 = 010266 ( " )    |    |
|   | * ABONE RJ = 1                                            | $\overline{j} = \frac{1}{\mathbb{Z}M_j^2} \left( 1 - e^{-\mathbb{Z}M_j^2} \right)$ | ( )                  | -  |
| 0 | $\mathcal{R}_{N} = \frac{7.47N_{1}}{(1+10.3N_{1})^{5/3}}$ | $R_n = 0.0605$                                                                     | Rn =0.0773 (Ea 6-11) |    |
|   | R - = = Rn Rn Rg (0153 + 0.471                            | RL) R= 010238                                                                      | R=0.0506 (296-10)    |    |
|   |                                                           |                                                                                    |                      |    |

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

|   | TECH REPORT #1                                             | CALCULATIONS             | WIND LON                   | DS                  | 4/ |
|---|------------------------------------------------------------|--------------------------|----------------------------|---------------------|----|
| 0 | $6_{f} = 0.925 \left[ \frac{1 + 1.7 I_{2}}{1 + 1} \right]$ | VIZAL + JZR2 ] i grotzla | (3600 n;) + VZh            | 01 597<br>(3600 v ) |    |
|   | 3R - 3v = 3x4                                              |                          |                            | (6.5.8.2)           |    |
|   |                                                            | Elw                      | MS                         |                     |    |
|   |                                                            | 9K= 4,09                 | 92 = 4104                  | (296-9)             |    |
|   |                                                            | Gf = 0.877               | Gg - 0.914                 | (226-6)             |    |
|   | VELOCITY REESSIVE                                          | (B=)                     |                            |                     |    |
|   | Kzt = 1.0                                                  |                          |                            | (6.5.7.1-2)         |    |
|   | BULVOING C                                                 | Ka = 0.85                |                            | (TABLE 6-4)         |    |
|   | Wz = 2,01 (15)                                             | ) = 0157 tax 2< 15       | 1 CASE Z                   | (TARLE 6-3)         |    |
| 0 | $K_2 = Z_{101} \left(\frac{2}{2}\right)$                   | ter 15'52520             | , CASE Z                   | LTABLE 6-3)         |    |
|   | where Zg = 1                                               | 2001 &= 7.0              |                            | (Treels 6-2)        |    |
|   | · SAMPLE CALCU                                             | 4 = 2.01 (100/1200)      | NIS NEWS FOOT              | H7, h -             |    |
|   | 92 = 0,00256                                               | Ke Ket Ka V2 I           | 0110,                      | (200 6-15)          |    |
|   | gh = 0100256                                               | (0.98)(1.0)(0.65)(902)(  | (1.15)                     |                     |    |
|   | = 19.9 7                                                   | PSF                      |                            |                     |    |
|   | · SANGLE CALCU                                             | numeron of 92 5 E        | IN MELL EDO                | + HT,N              |    |
|   | h = 78 00                                                  | . KZ = Z.01(78/120       | 50,0 <sup>2/7</sup> = 0,92 |                     |    |
|   | Bh = 0,00256                                               | (0.92)(1.0)(0.85)(902)(  | 1,15)                      |                     |    |
| 0 | = 1 <u>8.6</u> P                                           | SF                       |                            |                     |    |
|   | * ALL VALUES CAL                                           | CULATED + TASULATED      | ON FOLLOWING               | PAGE                |    |
|   |                                                            |                          |                            |                     |    |

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

|   | TECH BE                                                 | ROET -H-1                         | CA      | rcura  | TON   | 5       | win               | 0 10   | HOS  |        |       | 5/ |
|---|---------------------------------------------------------|-----------------------------------|---------|--------|-------|---------|-------------------|--------|------|--------|-------|----|
|   | Emeresta                                                | - TRESS                           | R8 (    | 0277   | 1018  | 375     | (CP)              |        |      |        |       |    |
| 0 |                                                         |                                   |         | Elu    | ,     |         | 121               | 5      |      |        |       |    |
|   | U.                                                      | B                                 | 86      | 12/275 | 3 - 6 | 31      | 275,3/            | 86.2   | 3.1  | ٩      |       |    |
|   | LEE                                                     | WARD                              |         | Gp.=   | -01   | 50      | Gp                | = 0,Z4 | . (  | F16r 6 | -6)   |    |
|   | 63100                                                   | OWARD                             |         | Cp =   | 0.6   |         | CP                | e 018  |      |        |       |    |
|   | LOLNO PE                                                | ETARE                             | (0)     |        |       |         |                   |        |      |        |       |    |
|   | Enci                                                    | ENCLOSED RULLDINGE EN GON - FOILB |         |        |       |         |                   |        |      |        |       |    |
|   | · SAM                                                   | RLE CALL                          | Julanor | S OF   | =/1   | N LEI   | ewhere 7          | Ress   | ee   |        |       |    |
|   | P                                                       | - 9 Gic                           | - 91    | (acm)  |       |         |                   |        | ( =  | R 6-7  | 20    |    |
|   | Ph                                                      | = (18.6                           | )(0.37  | )(-015 | ) - ( | (18.6)  | (0115)            |        |      |        |       |    |
|   | = -11.5 PSF                                             |                                   |         |        |       |         |                   |        |      |        |       |    |
|   | · SAMPLE CALCULATION OF NOS LANDWARD PRESLICE & LEVEL 4 |                                   |         |        |       |         |                   |        |      |        |       |    |
|   | 2 = 62' 20 92 = 17.5 PSF                                |                                   |         |        |       |         |                   |        |      |        |       |    |
|   | P621 = (17.5)(0,914)(016) - (19.9)(-0110)               |                                   |         |        |       |         |                   |        |      |        |       |    |
|   | = 16,4 PSF                                              |                                   |         |        |       |         |                   |        |      |        |       |    |
|   | TABULATE                                                | O VALU                            | ES PR   | ine Kz | 187   | (PSE    | ) / P2 (7         | SF)    |      |        | 1.1   |    |
|   | Lener                                                   | LIT                               | 510     | 0      | P.I.  | 1 8.01. | NIS               | i wi   | E.   | P.h.S  | R/11  |    |
|   | -COEL                                                   | -1                                | Wa      | -DZ    | 1.510 | i me    | -10 <sup>11</sup> | 1.50   | U.E. | 151003 | (U(F) |    |
|   | 6.2                                                     | -                                 | -       |        |       |         | 00                | 0157   | 11.5 | 10.0   | 2014  |    |
|   | 61                                                      | 5'0"                              | 0.57    | 11.5   | 11.8  | -1115   | 10.               | 0.59   | 11.4 | 12+2   |       |    |
|   | LZ                                                      | 15' 4"                            | 0158    | 11.7   | 114   | -11.5   | 31,4 ,            | 0,71   | 14.4 | 14.1   | -15:9 |    |
|   | L3                                                      | 30'5"                             | 0.71    | 14.4   | 13-8  | -11.5   | 46'8"             | 0179   | 16.0 | 15.3   | -15.7 |    |
| 0 | LH                                                      | 45'0"                             | 0179    | 16.0   | 15.0  | -11.5   | 62'0"             | 0.86   | 17.5 | 16.4   | -15,9 |    |
| - | EF/15                                                   | 6018"                             | 0.65    | 17,2   | 15,9  | -11.5   | 77'4"             | 0,92   | 18.6 | 17.2   | -15.9 |    |
|   | PH/ EF                                                  | 7710                              | 0.92    | 1816   | 16.9  | -11.5   | 92 '0"            | 0.96   | 19.5 | 17.8   | -15-A | -  |
|   | -/PH                                                    | -                                 | -       |        | -     |         | 105,411           | 1.01   | 205  | 18.6   | -159  |    |

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

|   | TECH F        | REREA            | #1      | CALC   | olano         | 225    |            | www I  | -0 45 | S              | 6/ |
|---|---------------|------------------|---------|--------|---------------|--------|------------|--------|-------|----------------|----|
|   | TABULATES     | O VALU           | 85, 0   | o sna  | VED           |        |            |        |       |                |    |
| 0 | LEVEL         | NIS<br><u>HT</u> | 1 6000  | D THE  | en N<br>Belwi | Rale)  | E/I<br>Par | n nie  | (s)   | (4) 2/4<br>TET |    |
|   | GE            | -                | -       | -      | -             | -16.1  | -          | 12     | 1.0   | -16.1          |    |
|   | LI            |                  | -       | -      |               | -16,1  | 23.3       | 3 17   | 2.3   | -16.1          |    |
|   | LZ            | 9'4"             | 0157    | 11,5   | 11.6          | -16.1  | 23,        | 5 3    | 0     | 29.7           |    |
|   | L3            | 24 18 11         | 0166    | 13,4   | 12.9          | -15,1  | 25,9       | 1 3    | 1.2   | 31.0           |    |
|   | LY            | 40 10"           | 0176    | 15.4   | 14.4          | - 18.1 | 27.4       | 5 3    | 3213  | 32.5           |    |
|   | 2#1.15        | 54 18"           | 0183    | 16.5   | 15.4          | -16,   | 26.5       | 7      | 33.1  | 335            |    |
|   | PHIRF         | 71'o"            | 0:96    | 16,2   | 16.5          | - 16.1 | 301        | 1      | 33.7  | 3416           |    |
|   | -/PH          | -                | -       | -      | -             |        | -          |        | 34.5  | -              |    |
|   |               |                  |         |        |               | -      |            | 14     |       | 24             |    |
| 0 | РН K          |                  |         | -      | 1             |        |            |        | 1.0   | ISI6 EF        |    |
| ~ | 15.4<br>RF C- |                  |         |        |               |        |            |        |       | 17.8           |    |
|   | 15,9          |                  |         |        |               |        |            |        |       | 17.2           |    |
|   | 15,9          | N                |         |        |               |        |            |        | 5     | 16.4           |    |
|   | 15.9          | >                |         |        |               |        |            |        |       | 153            |    |
|   |               | \$               | -       |        |               |        |            |        |       | 181            |    |
|   | DIAGEAN       | is l             | MUL PRE | escess | IN PS         | F)     |            | T      |       | 16.1           |    |
|   |               | ~1               | 6.9     |        |               | 1 ~    | 165        | -/\?·H | Méa   | - Ecop HT      |    |
|   |               | 14               | 19      | 1      |               | 1      | ILS        | 2¢     | F.(   | 751)           |    |
|   |               | 1                | 5.9     |        |               | -      | 11.5       | LS     |       |                | 1  |
|   |               |                  | 15,0    | OF     |               | t of   | 11.5       | LĄ     |       |                |    |
| 0 |               | 4                | 1315    | E      |               | W      | W-S        | - 13   |       |                |    |
|   |               |                  | 11.95   |        |               |        | 11.5       | N.Z    | MERN  | AR. LEVEL      |    |
| - |               |                  | 1       |        |               |        |            | LI     | - (   | irig .         |    |

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

### A.3 Design Seismic Load Calculations

TEM SERVER H1 CREATIONS SEISTIC LONDS 1/2  
TEM SERVER H1 CREATIONS  
STE CREATINGS + ACCELERATION  
• FROM USES CONTINUE SEISTIC HARVED CALCULATER, JEC. 2005  

$$S_5 = 0.261$$
  $S_1 = 0.061$   
 $STE CRESS = B$   
• AN SERVERATION , USE WITE FORSESTIMUTE VIEWES  
DETERMINED E GEOMETRIC RATER FORSESTIMUTE VIEWES  
DETERMINED FOR SECURITIES RATER FORSESTIMUTE VIEWES  
DETERMINED FOR SECURITIES RATER FORSESTIMUTE VIEWES  
DETERMINED FOR  
 $STE CRESS C, SS = 0.281$   
 $STE CRESS C, SS = 0.081$   
 $E Fy = 1.4$  (TOBE 11.4-1)  
 $S = SIS = 0.2849$   
• DETERMINE SMA  
 $Sma = Fx S_a = (1.4)(0.081)$  (SA 11.4-2)  
 $S = Sma = 0.125$ 

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN



JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

|   | TECH REPORT +1     | CALCULATIONS                 | SERMIC     | LOADS          | 3/6 |
|---|--------------------|------------------------------|------------|----------------|-----|
|   | · CHECK COLONNO    | w the the the second S links |            |                |     |
| 0 | Ta 2 016 TS        |                              |            |                |     |
|   | Ts = Sos =         | 0.0916 = 01393               |            |                |     |
|   | 7a = 1.19 >        | 0.075 = 0.315 X .            | ac Good    |                |     |
|   | Bu Go the TAG      | ere 11.6 - 2                 |            |                |     |
|   | 501 = 0.0981       | , occ - categood = ]         | 11         |                |     |
|   | Go menerat         |                              |            |                |     |
|   | RESPONSE MODIFICAS | CORPTICIENT (R)              | >          | (marine )      |     |
|   | TIPE H>            | E = 310                      |            | (INDLE 122-1)  |     |
|   | MATEN OVERSTRAND   | ATH TACTOR ( Do'             | >          |                |     |
| 0 | the H>             | Qo = 310                     |            | (TASLE 12-2-1) |     |
|   | DEPLECTION ANTUFA  | cutions frame (C2)           |            |                |     |
|   | tipe H -> C        | 2 = 310                      |            | (TABLE 12.2-1) |     |
|   | FLEMELE DADADA     | Contines.                    |            |                |     |
|   | Slac on Dec        | u do Ergod DIAPH             | IEAQA      | \$ 12.3. 1     |     |
|   | STRUCTURE IPPendit | ARITHES                      |            |                |     |
|   | a Hassischart 1    | PREGULEITIES                 |            |                |     |
|   | DRIFT ON T         | MULER C-LOWING EN            | CODIO EM   | IFT ON         |     |
|   | 15 1780000         | TO ESTABLISH                 | CONSCIENCE |                |     |
| 0 | = VERMENT 188      | EQUINCIPIES                  | (-100 m)   |                |     |
|   | BEDATEAN PL        | cos 4 AND 5 , BOT            | NORT NOR   | UCARLE         | 4   |
|   |                    |                              | 121        |                |     |

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

| 1 | TECH REPART #1        | Chicournows          | SEISMIC LOADS      | 46  |
|---|-----------------------|----------------------|--------------------|-----|
|   | SEIGMIC BESINISE      | CORFFICIENT (Cs)     |                    |     |
| 0 | T SUMMETER            |                      | (FIG 22-15)        |     |
|   | PT MANE CPP           | ERE LIMIN FOR CS     | (100,00,00)        |     |
|   | $T_q = 1.19 \leq$     | TL = 6               | ( 29, 17,8-3)      |     |
|   | 30 G5 E               | + (E/I) = (1.19)(3.5 | (esi) = 0.0321     |     |
|   | · CHORE SI CEN        | TEXCIA               |                    |     |
|   | SI = 6.046 g          | A OILY               | (Fig ZI=2)         |     |
|   | · SERANC RESTON       | SE COENTICIENT       |                    |     |
| ~ | $G = \frac{Sos}{R/I}$ | = 01233 = 010        | (Failib-2)         |     |
| 0 | C5 = 0.0970           | 2 GS, MLY - 01032    | 1                  |     |
|   | in use cy =           | 0.0321               |                    |     |
|   | AREAS TON EFFECT      | NE SEICHIC LUEIGH    |                    |     |
|   | CHECK AND T           | BEFTYNNYRA CHEM      | DEIPT CALLOUTIONS  |     |
|   | CUNNE FLOOR           | e Aven = 121,3 "     | x 89.31 = 10532 SF |     |
|   | B varia tuna          | ARRA - 132 )         | * 83.1' = 10982 SF |     |
|   | To constr Person      | tose here = 10 10    | 46'B' = 1557 SF    | -   |
| - | C broady . Trace      | AREA = 1053          | 2 - 44077 - 62375F |     |
| 0 | 8 DANG ROS            | + AREA = 10987       | z - 1557 - 9375 SP |     |
|   |                       |                      |                    | 141 |

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

6/6 SEISHIC LONDS CALCULATIONS TECH REPERT #11 · SEIEMIC DESIGN STOORY SHEAR (Vy) AT LEVEL " : V2 = \$ Fg = 29.7 + 147.6 + 123.9 + 51.5 + 45.5 0 - V3 - 426.5 WIRS O OVERSENNO MOMENT (Mor) AT LEVEL 2 : MOMELT - FORCE & DIVINICE Moris = V3 \* M3 = (428.5 K)(461) 2. Moris = 2105.7 H.K

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN



### A.4 Typical Beam Spot Check Calculations

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

|   | TEAH PERSon #1                                                                              | GALCOLATORISS                                                          | SEAM STOT CHECK | 3/8 |  |  |  |  |
|---|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------|-----|--|--|--|--|
| 0 | LIVE IOND REDUCTIONS                                                                        |                                                                        |                 |     |  |  |  |  |
|   | At - (42,25)(10,6) - 447,8 SF                                                               |                                                                        |                 |     |  |  |  |  |
|   | · LETREMUL INFLUENCE MEEN (A2)                                                              |                                                                        |                 |     |  |  |  |  |
|   | Az - (42,25)(21,5) - 895,9 50                                                               |                                                                        |                 |     |  |  |  |  |
|   | $K_{LL} = \frac{A_{2}}{A_{2}} = \frac{B95.7}{447.6} = 2.0$ (TABLE 4-2)                      |                                                                        |                 |     |  |  |  |  |
|   | · REDUCED LIVE LOND (L)                                                                     |                                                                        |                 |     |  |  |  |  |
| 0 | L = Lo (oizs :                                                                              | $\left(\frac{15}{\sqrt{k_{w} A_{T}}}\right) = (100) \left(0.05\right)$ | + 15 (E& 4-1)   |     |  |  |  |  |
|   | ". L = 0.75 (100) = 75 PSF                                                                  |                                                                        |                 |     |  |  |  |  |
|   | REQUERD STREMATCH FOR DECISION LONG                                                         |                                                                        |                 |     |  |  |  |  |
|   | · personine menses univer lone (w)                                                          |                                                                        |                 |     |  |  |  |  |
|   | w = (235,2)(10.6) = 2149 KUF                                                                |                                                                        |                 |     |  |  |  |  |
|   | · Testan nement (Mu) and state (Vu)                                                         |                                                                        |                 |     |  |  |  |  |
|   | Mu = <u></u>                                                                                | $\frac{(z, 49)(4z, z_5)^2}{s_5} = 655$                                 | S. L FTIN       |     |  |  |  |  |
|   | V 2 -                                                                                       | 2<br>C. 11(1000) - 62                                                  | . L wirs        |     |  |  |  |  |
|   | · DETERMINE GO                                                                              | vermon long che                                                        |                 | 1   |  |  |  |  |
|   | wy = max or 1.40 = 1.4 (76+5)(10.6) - 1.20 KLF                                              |                                                                        |                 |     |  |  |  |  |
|   | = PEQUIZED = TREEWER-W                                                                      |                                                                        |                 |     |  |  |  |  |
|   | $M_{4} = \frac{w l^{2}}{6} = \frac{(1.37)(42.25)^{2}}{6} = 305.7 \text{ FT} \cdot \text{K}$ |                                                                        |                 |     |  |  |  |  |

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

TECH REPART #1 CHICKLARDONS Bell SPAT CHECK PEQUIERO MEMOUT OF INSERNA FOR DUIL " DETERINTE NAMMUN DEFLECTION L/240 - (42.25)(12) / 240 = 2.11" · DEADERMINE UNITERAL LORO Wwe + (76 +5)(10,6) - 01858 KLF · EFRUMED MOMENT OF INFERTA (IKAN) Sure = 2.11" = 5 (01550) (42.25)" (12)3 (204) (29000) (Ireno) So Iread = 100% IN4 REALIZED MOMENT OF WEATH FOR ALL + DETERMINE MANAUN DETURCTION 6/ 360 = (4225)(12) / 360 = 1.41" · DETERMUSE UNIFORM LOAD Wil = (75) (196) - 01795 KLE I REQUIRED MOMENT OF WEETLA (JEERS) An = 1.41" = 5(0,705)(42.15)"(12)3 (384)(2900)(12000) " I TREAD - 1364 104 EFFECTIVE WIDTH OF COMPOSITE BELIN b1 = MIN OF 151 = 5 (4615) = 5.25' 1/2 TASE TO ASS - + (10.3) - 5.151 best = (5.15 + 5.15)(12) = 123.4 "

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

1/3 LOUIS IST CHECK TEAN REPORT -111 CALCUMATIONS FELENT THEIL MEURER 10 TEL WORL - 55 Ix = 1140 > 1004 into ou you suc QUILS = 445 7 30517 PTIN YOU BUR DUR NOSHERED. POINT. Accure a = 1" == 42 - 716 - 015 = 7" W Elan - 203 H 1 Hu = 695 > 555.6 FTIN / V ave Fre Mu. Jue = 2110 > 1554 104 - or FOR ALL 2 Qu = 200 KIPS : 10 - 18 - 24 2005/2M CHECK a = 1" 1 a = (0185)(1236)(4) = 0148 < 1" Vok 2 USE WILL X55 W/ 24 SHOS COMPAGE TO EXECTION MEMBER · DESIGN USED WERE ATE WI BE SHOPS THI THAT IN' BOL - SOE WAS S. NET CLOSE - THE AGAINS LO U. + 125 FEF RE- FUTURTE RESUMPED TRENSION TO SEEKAN LOND I DETERMINE FRONTED UNIFORM LONG 120 + 1.66 - 1.2(96) + 1.6(125) = 3152 FOF W = (815,2)(10,6) = 3,34 KUF - Traiger Moncor ( Ma) and Strand ( Ma)  $M_{u} = \frac{w lz}{6} = \frac{(2.24)(44.25)^2}{6} = 7.45 \text{ FT } x}{5}$   $V_{u} = \frac{w l}{2} = \frac{(2.24)(46.05)}{2} = 70.5 \text{ KPS}$ 

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

8 TECH REFLECT ILI CALCULATIONS BEAM THAT CHECK RE-EUKLANTE REALD HOMEST OF INTERNA FOR ALL \$ MARMUM SEFLECTION - 1.41" (From HOVE) · DETERMANE UNIFORM LOND 1000 = (125)(1016) = 1.33 WEF = REQUEED HOMENT OF INTERTA (IRED) Lu = 1.41" = 6(1.23)(12,25)(12)= (0000)(000)(12) & IREED = 2382 1N4 SELECT THINK MENEER = 4F-1 W24×55 Is - 1350 > 1004 with where the Ame 46Mp - 303 7 30517 MOLE FOR UNRAPED CONST. ASSUME Q = 1" 2. YZ = 75-015 = 7" " 201 = 203 W ONA = SES > THS FT X V ON FER MU ILE = 2500 7 2332 104 V on FOR ALL EQN = 202 4195 : 203 = 11.8 -> 24 STLDS (EM CHECK a = 1" : a = (000)/12402(4) = 0.46 < 1" V ak · CONTROL EFOLIONY TO WELX 46 w/ EDW = 357 KIPS 361 - 2012 - 5 42 SLOS - S WON'T FIT 1702 = 24, 2 -5 50 STUDS , 2 PEE EIB 14.6 AT 1. STO = 10 # STEEL WE4255: (55)(42.25) + 124/10) = 2564 # ETL WZIX40: (45)(4225) + (50)(10) - 2528 # 512 About the same of Go w/ Less shop

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

CALCULATIONS BEAM SPOT CHECK TECH EGRORT #1 · SELECT WEYESS W/ 24 STUDS CHEDA SECT - WT ASSUMPTION · ASSUMED 5 PEF (5)(10.6) - 53 PLF < 55 PLF - OU (CHECK Amongoe Been on crocke side to check II = 125 TSF.) I Shire he have -> DL = 96 FEF LIVE LOAG + SAME AS ASING - S IL - 125 PSP w/ NO PERISTICIA REALIZED STREETING THE DESTALS LOND · DETERMINE FACTURED UNIFERT LONG Shine AS ABOVE -> W = 324 WLF · DESIGNS MOMENT (Hu) and SHEAR (Vu) Mu = 108 = (3.34) 136.012 = 545.5 PT. 4 Vu - wh = (3:34)(359) = 61.6 4185 REQUIRED STRANGTH THE UNSTREED CONSTRUCTION · DETERMINE GROUPSET LOND CASE SAME AS ADDE - - WW - 1.37 KUT · FERNIERO CTORIGTO My = whi = (137)(869)2 = 233 Frik

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

7/s TECH REPART #1 CMOULDING BENN TROT CHECK REQUIRED MOMENT of WERTLA FOR AME " DETERMINE MAXIMUM DEFLECTION L/240 = (36.9)(12) / 240 = 1.84" · DETECTIVE UNTREEM LONG WWC = (76+6)(10.6) - 0.658 KLF · REQUIRED MOMENT OF DESCENA (IREAD) Luc = het " = (0.550)(20 a)"(11)3 (154)(19000)(Iera) 1 Jeego = 671 104 FEQUIERD HOMELT OF INSERTLY THE ALL O DETERMINE MAXIMUM DEFLECTION L/ 360 = (26.9)(12) / 360 = 1.25" " DETERMINE UNIFORM LOND WH = (125)(10.6) = 1.33 KLF · FREUIRED MOMENT OF INSPITA (IFED) AUL - 128" = "5(182)(36.9)"(12)" (364)(2900)(1900) 2. IREAD = 1672 104 STEETINE WOTH OF CONTESTE BELLA 61 = MA OF = + (36.9) = + 61 2 TIST TO AUT = 2 (1016) = 5.3' patt = (4191 + A101)(15) = 1101 + 11

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

Chaukmens. TECH REPORT 441 BEAU SPOT CHECK SELECT TRIAL MENBER 6 TTY 1521 X HB Jy = 959 > 671 wt ~ at the Ame \$0 Mp = 401 > 235 Mt Vox to Untrationed count. ASSIME A= 1" = YZ - J.S - 015 = 2" 1 201 = 197 KIPS QMA = 5977 > 568.5 TT K VOK FOR MU Ine = 1810 > 1672 WH when An San - 177 KIPS & 177 - 1211 - + 26 5755 14.6 CHEOR a + 1" = a - 1== - 0.4=" < 1" - ox . So SELECT WELL HE w/ 26 STOS CHECK SELF-LAT ASSUMPTIONS + ASSUMED & PER (5)(1016) - 58 PLF 7 48 PLF V OK CONTRACE TO EARCHIOCH MENTER · CEGIAN USED WELLISS 1/28 57.05 Tv = 1350 SQA = 409 ON TELL MONTE IS STILL OURSELLERD - LIVING FOREBLE REALENDS IN REPORT

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN



### A.6 Typical Column Spot Check Calculations

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN



JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

|   | TECH REDUCT - al 1                                | CALCON | ARIONS | COLUMN | SPAT CHECK | 3/5 |  |  |
|---|---------------------------------------------------|--------|--------|--------|------------|-----|--|--|
|   | e ROOF LEVEL (Avanuese - 546 SF, Army = 297 SF)   |        |        |        |            |     |  |  |
|   | LE = 12 PSF LPH = 200 PSF (NOT VET REMOVED)       |        |        |        |            |     |  |  |
|   | De = 6215 PSF Dph = 96 PSF                        |        |        |        |            |     |  |  |
|   | S = ZZ PSF                                        |        |        |        |            |     |  |  |
|   | Pic = (12)(297) + (0.8)(200)(546) = 90.9 K        |        |        |        |            |     |  |  |
|   | Psc + (22)(297) + 4:25* = 6:54 K                  |        |        |        |            |     |  |  |
|   | PpL = (62.5)(297) + (96)(546) - 71.0 K            |        |        |        |            |     |  |  |
|   | A DEITT SUCCURRE                                  |        |        |        |            |     |  |  |
|   | [= (2136)(9,44) [21,3 [ 8 see = 17,9] = 4.25 KIPS |        |        |        |            |     |  |  |
| 0 | = FLOORS # AND 5 (Ar = 843 5=)                    |        |        |        |            |     |  |  |
|   | L = 100 PSF D = 96 PSF .                          |        |        |        |            |     |  |  |
|   | PLL - (100)(845) = 84.3 K                         |        |        |        |            |     |  |  |
|   | Por = (96)(843) = 50.9 K                          |        |        |        |            |     |  |  |
|   | ThT as 6                                          |        |        |        |            |     |  |  |
|   | Normon State                                      | DEAD   | LIVE   | 50000  |            |     |  |  |
|   | HIGH BOOT                                         | 30.3   | 5.8Z   | 11.2   | (KIPS)     |     |  |  |
|   | East Level                                        | 71.0   | 90.9   | 6.84   | (KIPS)     |     |  |  |
|   | Proce 5                                           | 50.9   | 84.3   | -      | ( KIPS)    |     |  |  |
|   | Proce 4                                           | 80.9   | 84.3   |        | (KIPS)     |     |  |  |
|   | TATAL                                             | 263.1  | 265.3  | 15.1   | (KIPS)     |     |  |  |
|   | LOAD CONSIMITION                                  |        |        |        |            |     |  |  |
| 0 | $P_4 = 1.20 + 1.6L + 0.55$                        |        |        |        |            |     |  |  |
|   | = 112(263.1) + 116(265.3) + 015(16.1)             |        |        |        |            |     |  |  |
|   | Pu = 749.25 KIPS                                  |        |        |        |            |     |  |  |
|   |                                                   |        |        |        |            |     |  |  |

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

4/5 CALLUCATIONS COLDMN SPOT CHECK TECH REPORT #1 COLUMN EFFECTIVE LEWORTH " DETERMINE A FOR STEDIOR AND FAC TO USE NOROGERPH WITH GREDER LEWATH THELED PER GESCHUNDER DISQUE TRIAL MENEER LASED ON AMAR LOAD Pa = 749125 K , KL = 16' to THA WILL & 90 (\$ Pa = 975 K, Ix = 999 11, 4, Iy = 567 14)  $G_{x} = \frac{\sum \frac{I_{c}}{L_{c}}}{\sum \frac{I_{a}}{z_{ha}}} = \frac{\frac{999}{15.3}}{\frac{16.10}{(35.7)(2)}} = 5.3$ · DETERMINE OF THE WELK AND APPENMENTE JA EASED ON IREAN FOR ALL & 340 · L/ 260 = (21.3)(12) / 360 = 0.71"  $A_{11} = 0.71 = \frac{PR^3}{4851} = \frac{(61.6 + 70.5)(21.5)^3(12)^3}{(45)(29000)(1000)}$ : USE Iq - IREAD = 2230 114  $G_{Y} = \frac{2 \frac{I_{c}}{L_{L}}}{\sum \frac{I_{c}}{2L_{q}}} = \frac{362}{153} \times 2 = 0.9$ · DETERMINE ENTERTIME LEATEN (the = 5.3 - Ky = ZIZ PER NOME GRAPH Gy = 0.9 - > Ky = 1.25 Pc= menomenet  $\frac{K_{x}}{r_{y}} = \frac{z.2}{1.66} = 1.33 > K_{y} = 1.25$ 00 (KL) = (1.33)(15.5) = 20.41 -7 USE 21

JADOT MARCHMAN-MOOSMAN | STRUCTURAL OPTION | FACULTY ADVISER: DR. LINDA HANAGAN

