

# Hershey Research Park Building One





Jonathan Krepps Structural Option Senior Thesis 2013 Faculty Advisor: Dr. Hanagan



### Presentation Outline

- 0
- Conclusion
- Comments

 Building Introduction Existing Conditions • Structural Depth – Structural Redesign • Breadth One – Sustainability Breadth Two – Mechanical



# **Building Introduction**

- Hershey, PA Research Facility • 80,000 square feet • Three Stories, 50 feet tall Construction started in April 2006 • Opened in May 2007 • \$10.7 Million



Site Master Plan

# Project Team

- Owner: Wexford Technology, LLC
- Architect: Ayers/Saint/Gross Inc.
- Engineers: Brinjac Engineering
- Construction

# Construction Mangers: Whiting – Turner



Typical Floor Frame

### Existing Structural System

Steel Moment Frame
Composite Metal Deck
Vulcraft 3VLI18
Piers with Concrete Caps



**Deck Cross Section** 



Lateral Frame

### Existing Structural System

Steel Moment Frame
Composite Metal Deck
Vulcraft 3VLI18
Piers with Concrete Caps



**Deck Cross Section** 



Lateral Frame





### RAM Model - Lateral Frame

RAM Model – Existing Structure



### Structural Depth

- Steel to Concrete • One Way Slab with Beams
- System Redesign Lateral Design
  - Concrete Moment Frame
- Goals

  - Design an adequate system • Cost effective and easy to construct

### Thesis Breadths

- Breadth One Sustainability
- Breadth Two Mechanical
- Goals
  - LEED Certification through the addition of green roof
  - More energy efficient



- Controlling Load Combination • 1.2D + 1.6L
- Live Load = 100 psf
- Superimposed Dead Load = 25 psf
- Total Load = 190 psf
- As = Mu / 4d



### Redesign Details

- Table 9.5(a) of ACI used to help determine
  - beam depths

# Slab Design

- Span Length • 10.67 ft
- Slab Thickness
  - 5.5 in
- Slab Weight
  - 68.75 psf
- Reinforcement
  - Flexural # 4 bars @ 12 in OC
  - Transverse # 4 bars @ 18 in OC



- Controlling Load Combination • 1.2D + 1.6L
- Live Load = 100 psf
- Superimposed Dead Load = 25 psf
- Total Load = 190 psf
- As = Mu / 4d



### Redesign Details

- Table 9.5(a) of ACI used to help determine
  - beam depths

### Beam B1 Design

- Span Length
  - 32.5 ft
- Beam Section
  - 16" x 28"
- $Mu = 237 \text{ k-ft} < \Phi Mn = 264 \text{ k-ft}$
- $Vu = 39 k < \Phi Vn = 78 k$
- Reinforcement
  - Exterior Spans (3) # 7 bars
  - Interior Spans (4) # 7 bars
  - #4 Stirrups





- Span Length
- $Mu = 247 \text{ k-ft} < \Phi Mn = 267 \text{ k-ft}$ •  $Vu = 41 k < \Phi Vn = 88 k$
- Exterior Spans (3) # 7 bars
- Interior Spans (4) # 7 bars
- # 4 Stirrups



### Beam B2 Design

- 32.5 ft
- Beam Section
  - 20" x 28"

Reinforcement

### Beam B1 Design

- Span Length
  - 32.5 ft
- Beam Section
  - 16" x 28"
- $Mu = 237 \text{ k-ft} < \Phi Mn = 264 \text{ k-ft}$
- $Vu = 39 k < \Phi Vn = 78 k$
- Reinforcement
  - Exterior Spans (3) # 7 bars
  - Interior Spans (4) # 7 bars
  - #4 Stirrups





- Span Length
- $Mu = 247 \text{ k-ft} < \Phi Mn = 267 \text{ k-ft}$ •  $Vu = 41 k < \Phi Vn = 88 k$
- Reinforcement
  - Exterior Spans (3) # 7 bars
  - Interior Spans (4) # 7 bars
  - # 4 Stirrups



### Beam B2 Design

- 32.5 ft
- Beam Section
  - 20" x 28"

# Girder Design

- Span Length
  - 32 ft
- Beam Section • 20" x 28"
- $Mu = 302 \text{ k-ft} < \Phi Mn = 333 \text{ k-ft}$
- $Vu = 47 \text{ k} < \Phi \text{Vn} = 117 \text{ k}$
- Reinforcement
  - Exterior Spans (3) # 7 bars
  - Interior Spans (5) # 7 bars
  - #4 Stirrups



### Column Design

- Column Layout Unchanged • Simplified Design for Columns Alsamsam and Kamara Design Aids based of ACI Column Section • 20" x 20" Reinforcement • (12) # 10 bars

  - $Pu = 564 \text{ kips} < \Phi Pn = 1050 \text{ kips}$

## Girder Design

- Span Length
  - 32 ft
- Beam Section
  - 20" x 28"
- $Mu = 302 \text{ k-ft} < \Phi Mn = 333 \text{ k-ft}$
- $Vu = 47 \text{ k} < \Phi \text{Vn} = 117 \text{ k}$
- Reinforcement
  - Exterior Spans (3) # 7 bars
  - Interior Spans (5) # 7 bars
  - #4 Stirrups



### Lateral Redesign

- Concrete Moment Frame No addition lateral resisting needed • Analysis done using RAM Structural
- System
- Controlling Load Cases • Wind – 1.2 D + 1.0 L + 1.0 W • Seismic – 1.2 D + 1.0 L + 1.0 E

### **RAM Structural Model**



**RAM Structural Model** 

### Serviceability

| Controlling Wind Load Case 1.2D+1.0L+1.0W |                      |                      |                 |                 |                         |
|-------------------------------------------|----------------------|----------------------|-----------------|-----------------|-------------------------|
| Floor                                     | X Deflection<br>(in) | Y Deflection<br>(in) | X Drift<br>(in) | Y Drift<br>(in) | Allowable Drift<br>(in) |
| Roof                                      | 0.059                | 0.02152              | 0.0124          | 0.01            | 0.44                    |
| 3rd                                       | 0.04666              | -0.01148             | 0.0231          | 0.0066          | 0.44                    |
| 2nd                                       | 0.0236               | -0.00485             | 0.0236          | 0.0049          | 0.44                    |
| Total                                     |                      |                      | 0.0591          | 0.0215          |                         |

ASCE 7 – 10
Load Combination

1.2 D + 1.0 L + 1.0 W
Wind Case One

Max Story Drift

H/400

### Wind Loads



**RAM Structural Model** 

### Serviceability

| Controlling Seismic Load Case 1.2D+1.0L+1.0E |                      |                      |                 |                 |                        |
|----------------------------------------------|----------------------|----------------------|-----------------|-----------------|------------------------|
| Floor                                        | X Deflection<br>(in) | Y Deflection<br>(in) | X Drift<br>(in) | Y Drift<br>(in) | Allowable Drif<br>(in) |
| Roof                                         | 0.51621              | -0.019               | 0.1492          | 0.0008          | 2.64                   |
| 3rd                                          | 0.36698              | -0.00981             | 0.2005          | 0.0059          | 2.64                   |
| 2nd                                          | 0.16647              | -0.00424             | 0.1664          | 0.0045          | 2.64                   |
| Total                                        |                      |                      | 0.5161          | 0.0112          |                        |

### Seismic Loads

- ASCE 7 10 • 0.015 x H

  - R = 3.0
  - | = 1.25

 Load Combination • 1.2 D + 1.0 L + 1.0 E Max Story Drift Design Variables • Seismic Design Category = "D"



**RAM Structural Model** 



### Sustainability Breadth

- Main goal is to achieve LEED certification through the addition of a green roof Owners Future Plans – LEED Certification for all buildings Two different green roofs were compared

- LiveRoof
- TectaGreen
- Roof Structure
  - Extra 35 psf on Roof







LiveRoof Green Roof Design Detail

### Sustainability Breadth

- Both designs have similar advantages and disadvantages
- The LiveRoof system was chosen as the better choice
- Standard Module
- Mechanical Breadth
- Possible of obtaining over 20 LEED credits Optimized Energy Performance –

| LiveRoof System                                      |                            |                   |  |
|------------------------------------------------------|----------------------------|-------------------|--|
| LEED Category                                        | <b>Credit Abbreviation</b> | Credits Possible  |  |
| Protect or Restore Habitat and<br>Maximum Open Space | SS 5.1/5.2                 | l each (2 total)  |  |
| Storm Water Design                                   | SS 6.1/6.2                 | l each (2 total)  |  |
| Heat Island Effect                                   | SS 7.1/7.2                 | l each (2 total)  |  |
| Water Efficient Landscape                            | WE 1.1/1.2                 | 2/4 (6 total)     |  |
| <b>Optimized Energy Performance</b>                  | EA 1.1-1.19                | l each (19 total) |  |
| Construction Waste<br>Management                     | MR 2                       | 1 to 2            |  |
| Recycled Content                                     | MR 4.1/4.2                 | 1 to 2            |  |
| <b>Regional Materials</b>                            | MR 5.1/5.2                 | 1 to 2            |  |
| <b>Rapidly Renewable Materials</b>                   | MR 6                       | 1                 |  |



LiveRoof Green Roof Design Detail

### Sustainability Breadth

- Both designs have similar advantages and disadvantages
- The LiveRoof system was chosen as the better choice
- Standard Module
- Mechanical Breadth
- Possible of obtaining over 20 LEED credits • Optimized Energy Performance –



LiveRoof Green Roof

| Roof Slab Design Details                   |                |  |
|--------------------------------------------|----------------|--|
| Slab Thickness                             | 5.5"           |  |
| Flexural Reinforcement (Top and<br>Bottom) | # 4 Bars @ 12" |  |
| Transverse Reinforcement                   | # 4 Bars @ 18" |  |
| System Weight                              | 68.75 psf      |  |

| Roof Beam Design Details         |              |  |
|----------------------------------|--------------|--|
| Beam Section                     | 12"x22"      |  |
| Flexural Reinforcement (Exterior | (3) #7 Bars  |  |
| Spans)                           |              |  |
| Flexural Reinforcement (Interior | (2) #10 Bars |  |
| Spans)                           |              |  |
| Beam Weight                      | 206 plf      |  |
|                                  |              |  |

| Roof Girder Design Details        |             |  |
|-----------------------------------|-------------|--|
| Beam Section                      | 18"x22"     |  |
| Flexural Reinforcement (Midspan)  | (3) #7 Bars |  |
| Flexural Reinforcement (Supports) | (5) #7 Bars |  |
| Beam Weight                       | 310 plf     |  |

### Structural Effects

- Roof Loads

 Roof Live Load – 30 psf Superimposed Dead Load – 25 psf • Green Roof – 35 psf Snow Load – 30 psf Controlling Load Case • 1.2 D + 1.6 Lr Total Load – 120 psf



LiveRoof Green Roof



### **Breadth Conclusion**

- The add helpful
- LEED credits can help for LEED certification
  - Certified: 40 49 points
  - Silver: 50 59 points
  - Gold: 60 79 points
  - Platinum: 80 or more

• The addition of a green roof would be



LiveRoof Green Roof



- The existing steel frame is the more feasible structural system for the building Higher floor thickness Longer construction time • The addition of a green roof would be helpful Possible addition of over 20 LEED Credits 0 LEED Certification •

- Lower energy cost •

### Conclusions







### Acknowledgements

# Comments Or **Ouestions?**

Wexford Science and Technology, LLC Brinjac Engineering Ayers/Saint/Gross Inc. AE Staff Advisor: Dr. Linda Hanagan



### Mechanical Breadth

- Main goal was to find the energy saving ability of the green roof • The more energy the green saves, the
- better
- More LEED Credits • Optimized Energy Performance – Mechanical Breadth • Up to 19 Credits Possible



| <b>Roof Assembly R - Values</b>        |         |  |  |
|----------------------------------------|---------|--|--|
| Material                               | R–Value |  |  |
| Concrete Slab (5.5")                   | .4125   |  |  |
| Insulation                             | 22      |  |  |
| Roof Board                             | 1.09    |  |  |
| Water Proofing Membrane                | .12     |  |  |
| LiveRoof Standard Green<br>Roof System | 2       |  |  |

### Mechanical Breadth

- better

 Main goal was to find the energy saving ability of the green roof • The more energy the green saves, the

 More LEED Credits • Optimized Energy Performance – Mechanical Breadth • Up to 19 Credits Possible



Green Roof Assembly

| <b>Roof Assembly R - Values</b>        |         |  |  |
|----------------------------------------|---------|--|--|
| Material                               | R–Value |  |  |
| Concrete Slab (5.5")                   | .4125   |  |  |
| Insulation                             | 22      |  |  |
| Roof Board                             | 1.09    |  |  |
| Water Proofing Membrane                | .12     |  |  |
| LiveRoof Standard Green<br>Roof System | 2       |  |  |

credits • LEED points

### Mechanical Breadth

- Energy Saving of 77,375,928 BTU per year Additional financial benefits from tax
  - Federal 30% of total cost One Credit from energy reduction



Green Roof Assembly