

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Water Bottling Facility

Mid-Atlantic **United States**

Justyne Neborak

Mid-Atlantic United States

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

Photovoltaic Design

Acoustical Design

<u>Conclusion</u>

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

Introduction

- Water Bottling Facility
 - Production
 - Warehouse
 - Office
- Mid Atlantic Region
- 30 ft Ceiling Warehouse
- 23 ft 6 in Draft Curtain Production
- 8 30 ft Ceiling Office

Mid-Atlantic United States

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

<u>Photovoltaic Design</u>

<u>Acoustical Design</u>

<u>Conclusion</u>

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

Outdoor Design Conditions

	Summer Design Cooling (0.4%)	Winter Design Heating (99.6%)	
OA Dry Bulb (°F)	88°F	5°F	
OA Wet Bulb (°F)	72°F	-	

Introduction

Indoor Design Conditions

	Conditioned Offices, QC Lab Process & Parts Office		Warehouse & Packaging	Storage, Maintenance & Mechanical	
Cooling Set Point 85°F		72°F 95°F		95°F	
Heating Set Point 65°F		72°F 48°F		60°F	
Relative Humidity		45%	-	-	

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

Photovoltaic Design

Acoustical Design

<u>Conclusion</u>

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

Mid-Atlantic

United States

- Heating Water System
 - Only used for Manufacturing Purposes
- Chilled Water System
 - 3 Ammonia Chillers
 - 4 Cooling Towers
- Air Side
 - 5 Air Handing Units
 - 17 VAV Terminal Units
 - 8 Makeup Units

Existing Mechanical Systems

Space	Max Cooling Dry Bulb	Cooling Dew Point/Max	
Warehouse	80°± 2°F	48°F/50°F	
Shipping Office	74°F	-	
Main Office	74°F	-	
Production	80°± 2°F	48°F/50°F	
Maintenance	104°± 2°F	-	
QC Lab	75°F	59°F/64°F	
H-3 Essence	80°± 2°F	48°F/50°F	
Mechanical	80°± 2°F	48°F/50°F	

Relative Humidity	Min Heating Temperature
-	60°F
45%	68°F
45%	68°F
-	60°F
45%	60°F
-	68°F
-	50°F
-	60°F

Mid-Atlantic United States

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

Photovoltaic Design

Acoustical Design

<u>Conclusion</u>

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

Existing Mechanical Systems

Main Office

Quality Control Lab

Mid-Atlantic **United States**

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

Cost Analysis

Emissions Analysis

Photovoltaic Design

Acoustical Design

<u>Conclusion</u>

Justyne Neborak

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

5,000,000.00 (**ng**) 4,000,000.00 3,000,000.00 σ l ອີ່ງ 2,000,000.00 **Š** 1,000,000.00

Existing Mechanical System

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

Photovoltaic Design

Acoustical Design

<u>Conclusion</u>

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

Function	Energy (kW)	Total Energy (%)	
HVAC	27,354,233	28.1	
Lighting	12,686,111	12.1	
Electrical Equipment	64,583,837	61.7	

Existing Mechanical System

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

Cost Analysis

Emissions Analysis

Photovoltaic Design

Acoustical Design

<u>Conclusion</u>

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

Mid-Atlantic

United States

- Vertical Layout
 - Pros

 - Maintains Thermal Properties of Ground
 - Less Pipe
 - Less Pump Energy
 - Cons
 - Expensive
 - Specialized equipment

Ground Coupled Heat Pump

Less Space

- Pipe Sizing
 - 6" Diameter Bores
 - 1" Diameter U-Tube
- Bore Fill
 - 15% Bentonite, 85% SiO₂

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

Photovoltaic Design

Acoustical Design

<u>Conclusion</u>

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

Mid-Atlantic

United States

$$L_{c} = \frac{q_{a}R_{ga} + (q_{lc} - 3.41W_{c})(R_{b} + PLF_{m}R_{gm} + R_{gd}F_{sc})}{t_{g} - \frac{t_{wi} + t_{wo}}{2} - t_{p}}$$

$$L_{h} = \frac{q_{a}R_{ga} + (q_{lh} - 3.41W_{h})(R_{b} + PLF_{m}R_{gm} + R_{gd}F_{sc})}{t_{g} - \frac{t_{wi} + t_{wo}}{2} - t_{p}}$$
(2)

Ground Coupled Heat Pump

(1)

F _{sc}	Short-Circuit Heat Loss Factor				
PLF _m	Part-Load Factor during Design Month				
q_a	Net Annual Average Heat Transfer to Ground				
q_l	Building Design Block Load				
R_{ga}, R_{gd}, R_{gm}	Effective Thermal Resistance of Ground				
R _b	Thermal Resistance of Bore				
t_g	Undisturbed Ground Temperature				
t_p	Temperature Penalty for Interference of Adjacent Bores				
t _{wi} , t _{wo}	Liquid Temperature at Heat Pump				
W	System Power Input at Design Load				

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

Cost Analysis

Emissions Analysis

Photovoltaic Design

Acoustical Design

<u>Conclusion</u>

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

Mid-Atlantic

United States

- Short-Circuit Heat Loss Factor, F_{sc}
 - 1 bore/loop + 3 gpm/loop = 1.04 short-circuit heat loss factor
- Part-Load Factor during Design Month, *PLF*_m Unknown therefore use maximum of 1.0
- Building Design Block Load, q_{1c} (Cooling), q_{1h} (Heating) - Found using block load analysis, 6,125,519 Btu/hr & 0 Btu/hr
- Net Annual Average Heat Transfer to Ground, q_a
 - Difference between heating and cooling, 6,125,519 Btu/hr

Ground Coupled Heat Pump

• Undisturbed Ground Temperature, t_a

Average Ground Temperature

53°

Mid-Atlantic **United States**

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

Cost Analysis

Emissions Analysis

Photovoltaic Design

Acoustical Design

<u>Conclusion</u>

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

Rock Type	Dry Density (lb/ft ³)
Limestone	150 to 175
Average Value	162.5

Conductivity (Btu/h·ft·°F)	Diffusivity (ft²/day)
1.4 to 2.2	0.9 to 1.4
1.8	1.15

- Effective Thermal Resistance of Ground, R_{ga} (Annual), R_{gd} (Daily), R_{gm} (Monthly)
 - Calculate Fourier number
 - Use table to find G-Factor
 - Calculate Thermal Resistance

Time Pulse Fourier Number		G-Factor	Thermal Resistance (ft·h·°F/Btu)	
Annual	67,716.6	0.94	0.211	
Monthly	556.6	0.56	0.183	
Daily Peak	4.6	0.22	0.122	

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

Cost Analysis

Emissions Analysis

Photovoltaic Design

Acoustical Design

<u>Conclusion</u>

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

Mid-Atlantic

United States

- Thermal Resistance of Bore, R_h
 - 15% Bentonite 85% SiO₂, 0.10 Btu/h·ft·°F
- Temperature Penalty for Interference of Adjacent Bores, ι_p
 - 20 ft spacing results in a penalty of 1.8°F
- System Power Input at Design Load, W_c (Cooling), W_h (Heating)
 - Based on pump selection, 112,000 W

- Liquid Temperature at Heat Pump, t_{wi} (Inlet), t_{wo} (Outlet)
 - Inlet 20 to 30°F higher for heating, 10 to 20°F lower for cooling
 - 68°F Cooling
 - 38°F Heating
 - Outlet 10°F increase from inlet
 - 78°FCooling
 - 48°F Heating

Mid-Atlantic United States

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

Photovoltaic Design

Acoustical Design

<u>Conclusion</u>

Justyne Neborak

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Cooling Value Variable F_{sc} PLF_m qa 6,125,519 R_{ga} R_{gd} R_{gm} Rh 78 88 wo 112,000 W 125,020

	Heating Value	Units
1.	04	-
1	.0	-
5,125	5,519	Btu/h
	0	Btu/h
0.2	211	ft·h·°F/Btu
0.1	.83	ft·h·°F/Btu
0.1	.22	ft·h·°F/Btu
0.	10	ft·h·°F/Btu
5	3	°F
1	.8	°F
	38	°F
	48	°F
	112,000	W
	0	ft

Mid-Atlantic United States

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

<u>Photovoltaic Design</u>

Acoustical Design

<u>Conclusion</u>

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

Head Loss Calculations

	Length (ft)	Multiplicity	Total Length (ft)	Head Loss (ft/100 ft)	Total Head Loss (ft)	
Bore	Bore 400 2		800	2.5	20	
Longest Branch	20	60	1200	2.5	30	
Tee-Fittings 7		2	2 14		0.35	
Elbows	3.5	4	14	2.5	0.35	
Total			50.7			

	Length (ft)	Flow Rate (gpm)	Fittings	Equivalent Length (ft)	Head Loss (ft/100ft)	Total Head Loss (ft)
Header	2800	1531	6 90° elbows	66	3.5	100.31
1	100	1505	2 Tees	14	3.5	3.99
2	100	1480	2 Tees	14	3.5	3.99
3	100	1455	2 Tees	14	3.5	3.99
4	100	1430	2 Tees	14	3.5	3.99
5	100	1405	2 Tees	14	3	3.42
6	100	1380	2 Tees	14	2.5	2.85
	:	:	÷	:	:	
60	100	25	2 Tees	14	0.7	0.798
Total						203.252

Mid-Atlantic United States

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

Photovoltaic Design

<u>Acoustical Design</u>

<u>Conclusion</u>

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

Pump

Manufacturer	Bell & Gossett
Model	4x6x10M HSC ³
Flow Rate (gpm)	1531
Head (ft)	254
Impeller Diameter (in)	8.3
RPM	3565
HP	150

Ground Coupled Heat Pump

Heat Pump

- 21 Rooftop Units
 - Twenty 25 ton
 - One 10 ton

Mid-Atlantic United States

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

Photovoltaic Design

Acoustical Design

<u>Conclusion</u>

Justyne Neborak

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Cost Analysis

Month	Original Energy (kWh)	GCHP Energy (kWh)	Difference (kWh)
January	2,275,032	1,713,184	561,848
February	2,056,716	1,547,770	508,946
March	2,285,022	1,707,854	577,168
April	2,228,204	1,654,628	573,576
May	2,344,024	1,729,509	614,515
June	2,291,104	1,690,252	600,852
July	2,390,752	1,765,344	625,408
August	2,389,709	1,764,376	625,333
September	2,273,169	1,677,335	595,834
October	2,319,265	1,715,919	603,346
November	2,223,874	1,655,288	568,586
December	2,277,362	1,712,482	564,880
Largest Difference			116,462
Average Value			585,024

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

Photovoltaic Design

Acoustical Design

Conclusion

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

Cost Analysis

Design	Energy Usage (kWh)	Electric Cost
Original	27,354,230	\$ 2,065,428
Ground Source Heat Pump	19,201,080	\$ 1,449,730
Difference	8,153,150	\$ 615,698

Mid-Atlantic United States

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

Photovoltaic Design

Acoustical Design

<u>Conclusion</u>

Justyne Neborak

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Regional Grid Emission Pollutant Factors 2007 (lb/kWh) CO2_e 1.74E+00 CO₂ 1.64E+00 3.59E-03 **CH**₂ 3.87E-05 N_2O NO_x 3.00E-03 SO_x 8.57E-03 CO 8.54E-04 **TNMOC** 7.26E-05 1.39E-07 Lead 3.36E-08 Mercury 9.26E-05 **PM10** Solid Waste 2.05E-01

Emissions Analysis

Calculated Emissions (lb/year)		Reduction in
Original	GCHP	Emissions
3.96E+06	2.98E+06	25%
3.37E+06	2.54E+06	25%
8.20E+03	6.13E+03	25%
8.62E+01	6.40E+01	26%
7.03E+03	5.19E+03	26%
1.96E+04	1.45E+04	26%
2.04E+03	1.51E+03	26%
1.73E+02	1.28E+02	26%
3.16E-01	2.33E-01	26%
7.79E-02	5.77E-02	26%
2.06E+02	1.53E+02	26%
4.67E+05	3.51E+05	25%

Mid-Atlantic **United States**

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

Cost Analysis

Emissions Analysis

Photovoltaic Design

Acoustical Design

<u>Conclusion</u>

Justyne Neborak

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

200,000 180,000 (7 160,000 140,000 120,000 120,000 100,000 80,000 60,000 40,000 20,000 anuary narch April Nay June July Prest uper

diatio

Ra

Photovoltaic Design

Global Horizontal Radiation

—Daily Radiation —Monthly Radiation

Mid-Atlantic United States

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

Photovoltaic Design

<u>Acoustical Design</u>

<u>Conclusion</u>

Justyne Neborak

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Ор Maxir Sh Maxir Maxir Temp Temp Tem

Photovoltaic Design

Sharp ND-F4Q300 Electrical	Characteristics
laximum Power (P _{max})	300 W
en Circuit Voltage (V _{oc})	45.1 V
num Power Voltage (V _{pm})	35.2 V
ort Circuit Current (I _{sc})	8.94 A
mum Power Current (I _{pm})	8.52 A
Aodule Efficiency (%)	15.3%
num System (DC) Voltage	1000 V
erature Coefficient (P _{max})	-0.439%/°C
perature Coefficient (V _{oc})	-0.321%/°C
perature Coefficient (I _{sc})	0.050%/°C

Panel Length	Panel Width	Array Tilt Angle	Height From Ground	Horizontal Length	Distance Between Panels	Row Spacing
39.1 in	77.6 in	33°	21.3 in	32.8 in	63.9 in	96.7 in

Mid-Atlantic United States

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

Photovoltaic Design

<u>Acoustical Design</u>

<u>Conclusion</u>

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

	Beam Incident	Total Incident	Net DC	Net AC
Month	Radiation	Radiation	Output	Output
	(kWh/m2)	(kWh/m2)	(kWh)	(kWh)
January	55.95	90.61	50,402	41,602
February	50.55	97.46	84,698	75,567
March	76.06	134.88	154,112	142,010
April	79.07	146.97	226,988	212,703
May	77.37	153.18	274,686	258,784
June	69.07	151.30	275,015	259,367
July	83.74	163.15	295,087	278,953
August	80.86	152.08	237,668	223,063
September	74.28	134.93	165,337	153,409
October	76.37	124.04	93,685	83,602
November	43.55	80.11	55,004	46,542
December	50.17	79.11	42,569	34,245

Photovoltaic Design

Mid-Atlantic United States

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

Photovoltaic Design

<u>Acoustical Design</u>

<u>Conclusion</u>

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

	# of units	kW/unit	kW	\$/W	Total
Module	7695	0.3	2307.76	2.05	\$ 4,730,910.62
Inverter	5	500	2500	0.37	\$ 925,000.00
Balancing	-	-	-	0.43	\$ 992,337.3
Installation Labor	-	-	-	0.48	\$ 1,107,725.41
Margin And Overhead	-	-	-	0.81	\$ 1,869,286.64
Permitting	-	-	-	0.23	\$ 530,785.09
Grid Interconnection	-	-	-	0.01	\$ 23,077.61
Total				\$ 4.62	\$ 10,660,385.73

Photovoltaic Design

- Payback Period
 - Infinite

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

Photovoltaic Design

Acoustical Design

<u>Conclusion</u>

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

Mid-Atlantic

United States

Duration Per Day (h)	Sound Level (dBA)
8	90
6	92
4	95
3	97
2	100
1 ½	102
1	105
1/2	110
¼ or less	115

Acoustical Design

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

Photovoltaic Design

Acoustical Design

<u>Conclusion</u>

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

Acoustical Design

SL < 87 dBA

87dBA ≤ SL <90 dBA

SL≥90 dBA

Mid-Atlantic **United States**

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

Photovoltaic Design

Acoustical Design

<u>Conclusion</u>

Justyne Neborak

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Step 1: Determine Surface Area

Surface	Dimensions (ft)	Number of Surfaces	Area (ft²)
Walls	23.5 x 315 23.5 x 439	2 2	14,805 20,633
Floor	315 x 439	1	138,285
Ceiling	315 x 439	1	138,285
	Total		312,008

Acoustical Design

-	
U	
-	

Step 2: Determine Overall Acoustical Character

Surface	Acou
Walls:	Ha Mediu
Floor:	
Ceiling:	
Combined Characteristic:	

ustical Characteristic

lard x 5 (Concrete) um x 1 (Stacked Pallets)

Hard (Concrete)

Hard (Steel)

Medium Hard

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

Cost Analysis

Emissions Analysis

Photovoltaic Design

Acoustical Design

<u>Conclusion</u>

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

Mid-Atlantic

United States

Acoustical Design

Steps 3-5: Plot Information from Previous Steps on Nomogram

Mid-Atlantic United States

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

Photovoltaic Design

Acoustical Design

<u>Conclusion</u>

Justyne Neborak

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

SUSPENSION CABLES 28" 28" - 72" ----

HONEYCOMB PATTERN

Acoustical Design

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

Photovoltaic Design

<u>Acoustical Design</u>

<u>Conclusion</u>

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

Conclusion

- Ground Coupled Heat Pump
 - Save Money
 - Reduce Emissions
- Photovoltaics
 - Not Feasible
- Acoustics
 - Able to reduce the Sound Level by 10 dBA

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

Photovoltaic Design

<u>Acoustical Design</u>

<u>Conclusion</u>

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

Acknowledgements

Thank You!

AE Professors, Advisors, & Staff The Water Bottling Facility Jack, Ron, & Chris My Parents & Family My Friends & Classmates

Mid-Atlantic

United States

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

Cost Analysis

Emissions Analysis

Photovoltaic Design

Acoustical Design

<u>Conclusion</u>

Justyne Neborak

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

http://www.luxurymetals.com/roofcaps.html>.

- Deru, M. and P Torcellini, Source Energy and Emission Factors for Energy Use in **Buildings.** Technical Report NREL/TP-550-38617
- "Energy.gov." *Geothermal Heat Pumps*. N.p., 24 June 2012. Web. 17 Dec. 2012.
- "Geothermal Heating Contractor for Massachusetts and surrounding area." Geothermal Heating Contractor for Massachusetts and surrounding area. 03 Mar. 2013 <http://www.geosundesign.com/Deep_Earth_Temperature_Map.html>.
- "Index of /images/Geologic." <u>Index of /images/Geologic</u>. 03 Mar. 2013 <http://mapagents.com/images/Geologic/>.
- McDowall, Robert, and Ross Montgomery. <u>Fundamentals of HVAC control</u> systems. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2011.

References

• "Copper Roof Vents and Steel Roof Caps for Exhaust by Luxury Metals." <u>Copper</u> Roof Vents and Steel Roof Caps for Exhaust by Luxury Metals. 03 Mar. 2013

- "Occupational Noise Exposure 1910.95." *OSHA.gov*. OSHA, n.d. Web. 17 Dec. 2012.
- "PA DCNR Map Viewer." PA DCNR Map Viewer. 03 Mar. 2013 http://www.gis.dcnr.state.pa.us/maps/index.html?geology=true>.
- "Pump manufacturer representatives, commercial pumps, residential pumps, submersible pumps, circulators, heating pumps, chiller pumps, condenser pumps." 04 Mar. 2013 < http://bell-gossett.com/pumpsbg.htm>.
- "Rooftop WSHP." DX Unitary HVAC System. 04 Mar. 2013 <http://www.trane.com/COMMERCIAL/Dna/View.aspx?i=1122>.
- "Solar PV Tilt Angle Graph." <u>PV System Tilt Angle Graph</u>. 09 Apr. 2013 <http://www.mrsolar.com/content/pv_tilt_angle.php>.
- Haskel Architects and Engineers Engineering Reports
- Water Bottling Facility Specifications and Images

Introduction

Existing Mechanical System

Ground Coupled Heat Pump

<u>Cost Analysis</u>

Emissions Analysis

Photovoltaic Design

<u>Acoustical Design</u>

<u>Conclusion</u>

Mechanical Option | Spring 2013 Advised by Dr. William Bahnfleth

Justyne Neborak

