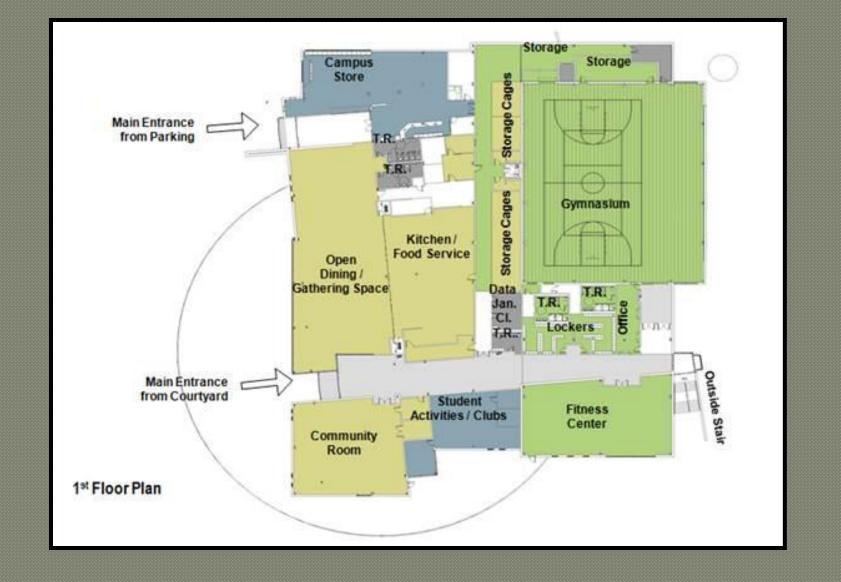
Introduction
Project Overview
Braced Frame Analysis
Fire Suppression Analysis
Roofing Analysis
Project Delivery Study
Summary
Acknowledgments

Kendall Slivka
Construction Management
Advisor: Robert Leicht

Introduction
Project Overview
Braced Frame Analysis
Fire Suppression Analysis
Roofing Analysis
Project Delivery Study
Final Recomendations
Acknowledgments

General Building Data						
Location	Rt 715 & Railroad Drive Pocono Township, Monroe County, PA					
Occupant	Northampton Community College					
Function	Gymnasium, Fitness Center, Cafeteria, Conference Rooms					
Size	68,000 SF					
Number of Stories	One Story with Basement					
Dates of Construction	January 2012- January 2014					
Project Delivery Method	Design-Bid-Build					
Cost	\$18 Million					
LEED certification	Silver					

Introduction
Project Overview
Braced Frame Analysis
Fire Suppression Analysis
Roofing Analysis
Project Delivery Study
Final Recomendations
Acknowledgments



Northampton Community College

"We believe that learning thrives when there is a sense of curiosity and excitement about the world in which we live.

As such, we value:

Excellence, Innovation, Sustainability, Accountability, Integrity, and Engagement."

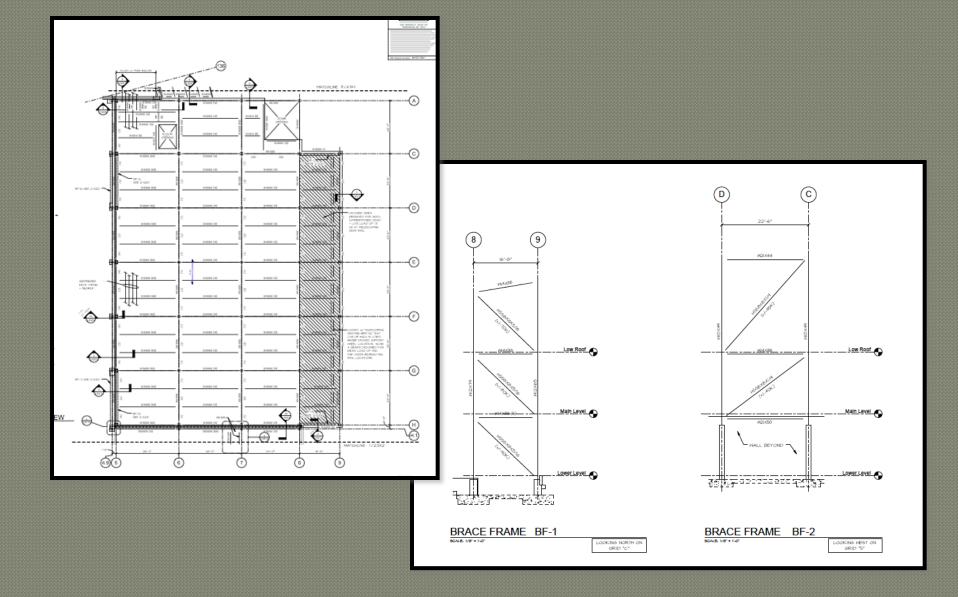
Introduction

Project Overview

Braced Frame Analysis

Fire Suppression Analysis

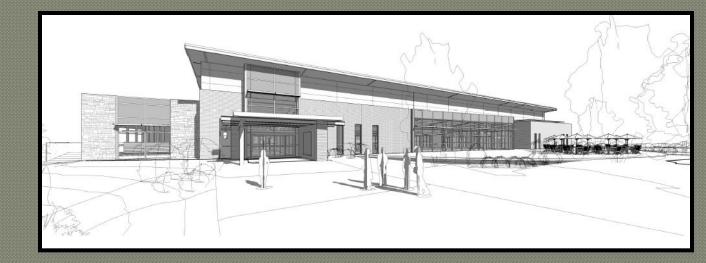
Roofing Analysis

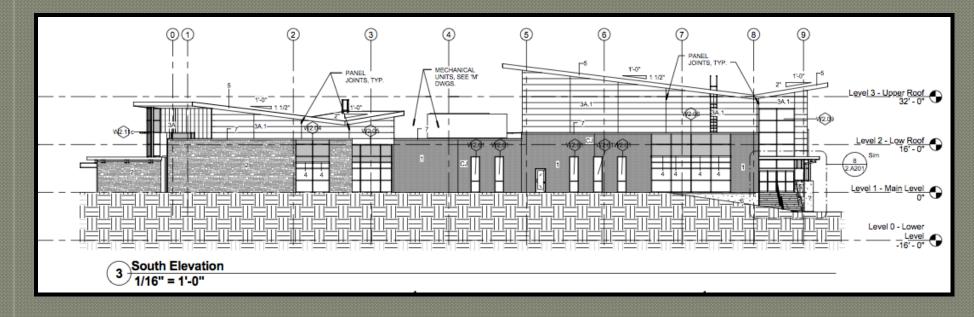

Project Delivery Study

Final Recomendations

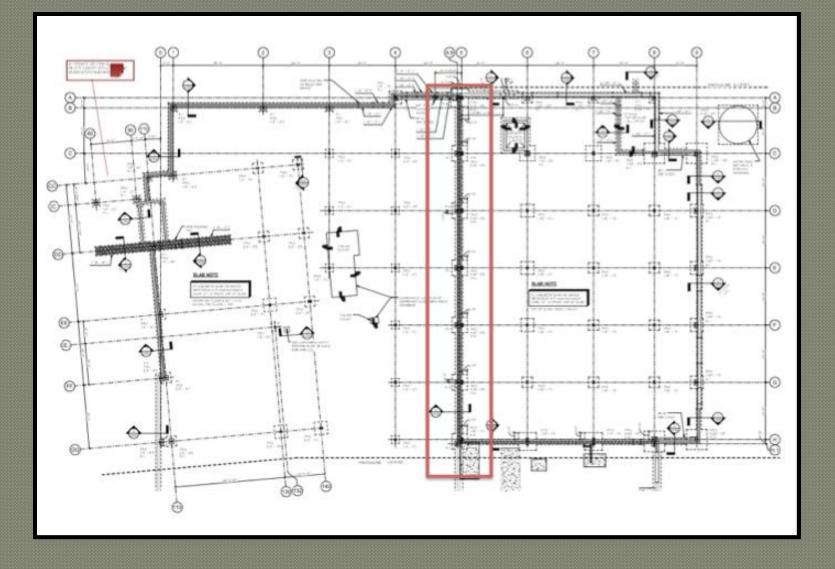

Acknowledgments

- Braced Frame Analysis
 Structural Breadth
- Fire Suppression System
 Mechanical Breadth
- Roofing Membrane Analysis
 - Project Delivery Research


Project Overview
Braced Frame Analysis
Fire Suppression Analysis
Roofing Analysis
Project Delivery Study
Final Recomendations
Acknowledgments

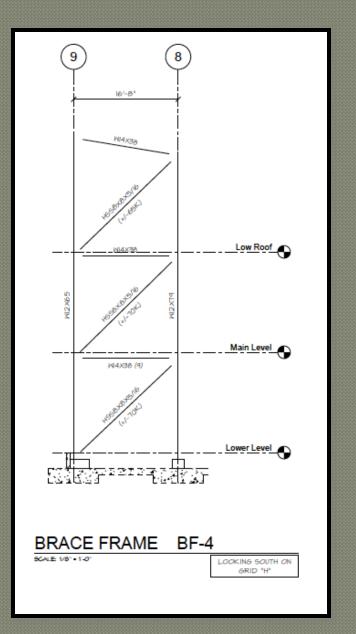

- Braced Frame Analysis
 Structural Breadth
- Fire Suppression System
 Mechanical Breadth
- Roofing Membrane Analysis
 - Project Delivery Research

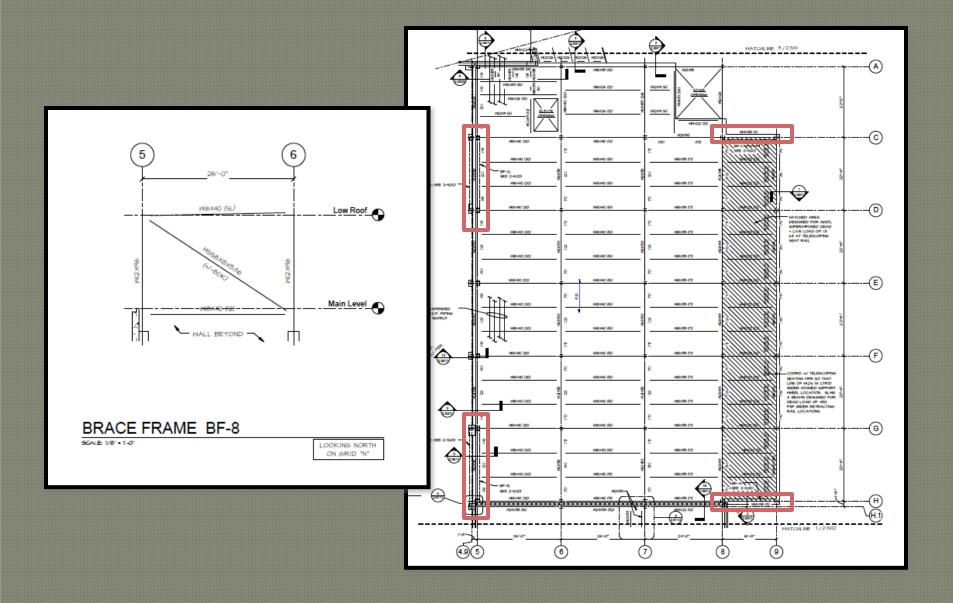
Project Overview
Braced Frame Analysis
Fire Suppression Analysis
Roofing Analysis
Project Delivery Study
Final Recomendations
Acknowledgments


- Braced Frame Analysis
 Structural Breadth
- Fire Suppression System
 Mechanical Breadth
- Roofing Membrane Analysis
- Project Delivery Research

Project Overview
Braced Frame Analysis
Fire Suppression Analysis
Roofing Analysis
Project Delivery Study
Final Recomendations
Acknowledgments

- Braced Frame Analysis
 Structural Breadth
 - Fire Suppression System
 Mechanical Breadth
- Roofing Membrane Analysis
- Project Delivery Research

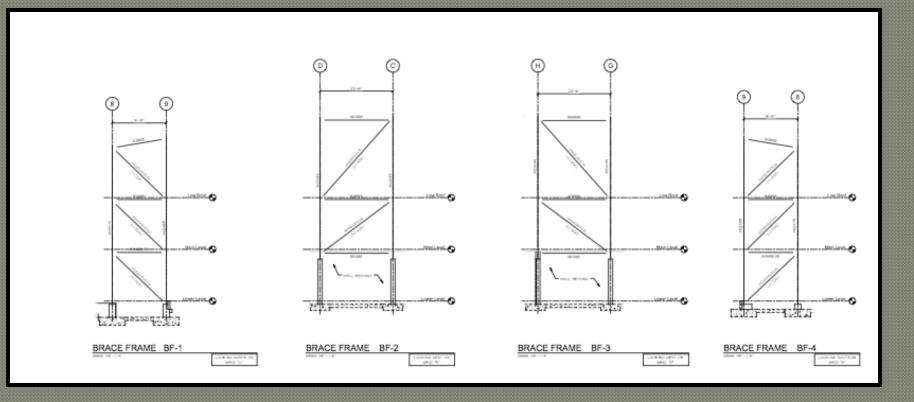

Introduction
Project Overview


Braced Frame Analysis
Fire Suppression Analysis
Roofing Analysis
Project Delivery Study
Final Recomendations
Acknowledgments

Problem Statement:

Braced walls interfere with building expansion and curtain walls.

Research Goal: Resize columns to withstand load, and compare costs of each alternative.



Introduction
Project Overview

Braced Frame Analysis
Fire Suppression Analysis
Roofing Analysis
Project Delivery Study
Final Recomendations
Acknowledgments

Current System Estimate:

Frame	Location	Size		Unit Weight (lb/ft)	Total Weight (tons)
BF 1	8 and 9	W14X38	16.6	` '	· /
		HSS8X8X5/16	21.5	31.84	0.34228
		W14X38	16.67	38	0.31673
		HSS8X8X5/16	21.5	31.84	0.34228
		W14X38	16.67	38	0.31673
		HSS8X8X5/16	21.5	31.84	0.34228
		W12X79	48	79	1.896
		W12X65	50.77	65	1.650025
BF 2	D and C	W24X55	22.5	44	0.495
		HSS8X8X1/4	32.3	25.82	0.416993
		W14X38	22.5	38	0.4275
		HSS8X8X1/4	26.4	25.82	0.340824
		W21X50	22.5	50	0.5625
		W10X49	57	49	1.3965
		W10X49	57	49	1.3965

System Estimate \$84,000

Introduction
Project Overview

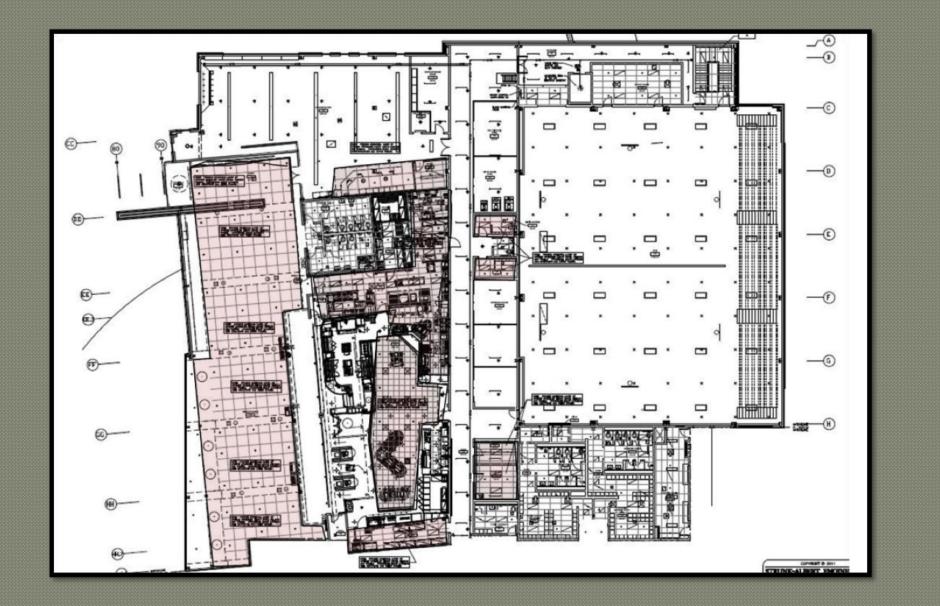
Braced Frame Analysis
Fire Suppression Analysis
Roofing Analysis
Project Delivery Study
Final Recomendations
Acknowledgments

FLOOR LOADS					
ITEM	VALUE (PSF)				
FINISH	1				
4 1/2" N.W. CONC. SLAB	42				
MTL, DECK	3				
FRAMING	6				
MECHIL & MISC.	7				
DEAD LOAD	59				
LIVE LOAD	100				
TOTAL	159				

ROOF DESIGN LOADS				
DEAD LOAD	>			
ITEM	VALUE (PSF)			
ROOFING	7			
ROOF DECK	2			
FRAMING	6			
MECHANICAL & MISC.	7			
FUTURE SOLAR PANELS	5			
LIVE LOAD				
BASIC LIVE LOAD 20				

Proposed System Estimate:

L=length K=.5


$$Y_4$$
, Y_3 from table 1.1 in Steel Hanual
 $F_e = \frac{TT^2(29000)}{(\frac{.5(L)}{Y_2})^2}$
 $F_{CR} = .054^{\circ}(\frac{50}{F_e}) \times 50$
 $\Phi_n = F_{CR}(\Phi)$ (wt from 1.1)

System Estimate \$94,300

V12x72 51 0.0255 otal 151 V12x87 49 0.0245 otal 49 V12x120 17.5 0.00875 V12x120 17.5 0.00875 otal 35 V10x60 44 0.022 V10x60 44 0.022 V10x60 44 0.022 V10x60 44 0.022 V10x60 17.5 0.00875 V10x60 17.17 0.008585 V10x60 17.17 0.008585	V12x72	51	0.0255
otal 151 V12x87 49 0.0245 otal 49 V12x120 17.5 0.00875 V12x120 17.5 0.00875 otal 35 V10x60 44 0.022 V10x60 44 0.022 V10x60 44 0.022 V10x60 17.5 0.00875 V10x60 17.17 0.008585	V12x72	49	0.0245
V12x87 49 0.0245 V12x120 17.5 0.00875 V12x120 17.5 0.00875 V10x60 44 0.022 V10x60 17.5 0.00875 V10x60 17.17 0.008585	V12x72	51	0.0255
votal 49 v12x120 17.5 0.00875 v12x120 17.5 0.00875 otal 35 v10x60 44 0.022 v10x60 44 0.022 v10x60 44 0.022 v10x60 44 0.022 v10x60 17.5 0.00875 v10x60 17 0.0085 v10x60 17.17 0.008585	otal	151	
votal 49 v12x120 17.5 0.00875 v12x120 17.5 0.00875 otal 35 v10x60 44 0.022 v10x60 44 0.022 v10x60 44 0.022 v10x60 44 0.022 v10x60 17.5 0.00875 v10x60 17 0.0085 v10x60 17.17 0.008585			
V12x120 17.5 0.00875 V12x120 17.5 0.00875 otal 35 V10x60 44 0.022 V10x60 44 0.022 V10x60 44 0.022 V10x60 44 0.022 V10x60 17.5 0.00875 V10x60 17.17 0.008585	V12x87	49	0.0245
V12x120 17.5 0.00875 otal 35 V10x60 44 0.022 V10x60 44 0.022 V10x60 44 0.022 V10x60 44 0.022 V10x60 17.5 0.00875 V10x60 17 0.0085 V10x60 17.17 0.008585	otal	49	
V12x120 17.5 0.00875 otal 35 V10x60 44 0.022 V10x60 44 0.022 V10x60 44 0.022 V10x60 44 0.022 V10x60 17.5 0.00875 V10x60 17 0.0085 V10x60 17.17 0.008585			
V10x60 44 0.022 V10x60 44 0.022 V10x60 44 0.022 V10x60 44 0.022 V10x60 17.5 0.00875 V10x60 17 0.0085 V10x60 17.17 0.008585	V12x120	17.5	0.00875
V10x60 44 0.022 V10x60 44 0.022 V10x60 44 0.022 V10x60 44 0.022 V10x60 17.5 0.00875 V10x60 17 0.0085 V10x60 17.17 0.008585	V12x120	17.5	0.00875
V10x60 44 0.022 V10x60 44 0.022 V10x60 44 0.022 V10x60 17.5 0.00875 V10x60 17 0.0085 V10x60 17.17 0.008585	otal	35	
V10x60 44 0.022 V10x60 44 0.022 V10x60 44 0.022 V10x60 17.5 0.00875 V10x60 17 0.0085 V10x60 17.17 0.008585			
V10x60 44 0.022 V10x60 44 0.022 V10x60 17.5 0.00875 V10x60 17 0.0085 V10x60 17.17 0.008585	V10x60	44	0.022
V10x60 44 0.022 V10x60 17.5 0.00875 V10x60 17 0.0085 V10x60 17.17 0.008585	V10x60	44	0.022
V10x60 17.5 0.00875 V10x60 17 0.0085 V10x60 17.17 0.008585	V10x60	44	0.022
V10x60 17 0.0085 V10x60 17.17 0.008585 V10x60 17.17 0.008585 V10x60 17.17 0.008585 V10x60 17.17 0.008585	V10x60	44	0.022
V10x60 17.17 0.008585 V10x60 17.17 0.008585 V10x60 17.17 0.008585 V10x60 17.17 0.008585	V10x60	17.5	0.00875
V10x60 17.17 0.008585 V10x60 17.17 0.008585 V10x60 17.17 0.008585	V10x60	17	0.0085
V10x60 17.17 0.008585 V10x60 17.17 0.008585	V10x60	17.17	0.008585
V10x60 17.17 0.008585	V10x60	17.17	0.008585
	V10x60	17.17	0.008585
otal 279.18	V10x60	17.17	0.008585
	otal	279.18	

Column to use | Height | Total Weight (ton)

Introduction
Project Overview
Braced Frame Analysis
Fire Suppression Analysis
Roofing Analysis
Project Delivery Study
Final Recomendations
Acknowledgments

Problem Statement: The system being used seems redundant and will be expensive.

Research Goal: Redesign the system so that only one layer of sprinkler heads is needed.

Introduction
Project Overview
Braced Frame Analysis
Fire Suppression Analysis
Roofing Analysis
Project Delivery Study
Final Recomendations
Acknowledgments

FIRST FLOOR DESIGN CRITERIA

NFPA 13 (2007) - Light Hazard

Sprinkler discharge density: .10 gpm/sq. ft.

Area of application: 1500 sq. ft.

Outside hose allowance: 100 GPM

Maximum Sprinkler Coverage: 225 sq. ft.

NFPA 13 (2007) - Ordinary Hazard Group 1

Sprinkler discharge density: .15 gpm/sq. ft.

Area of application: 1500 sq. ft.

Outside hose allowance: 250 GPM

Maximum Sprinkler Coverage: 130 sq. ft.

NFPA 13 (2007) - Ordinary Hazard Group 2

Sprinkler discharge density: .20 gpm/sq. ft.

Area of application: 1500 sq. ft.

Outside hose allowance: 250 GPM

Maximum Sprinkler Coverage: 130 sq. ft.

SECOND FLOOR DESIGN CRITERIA

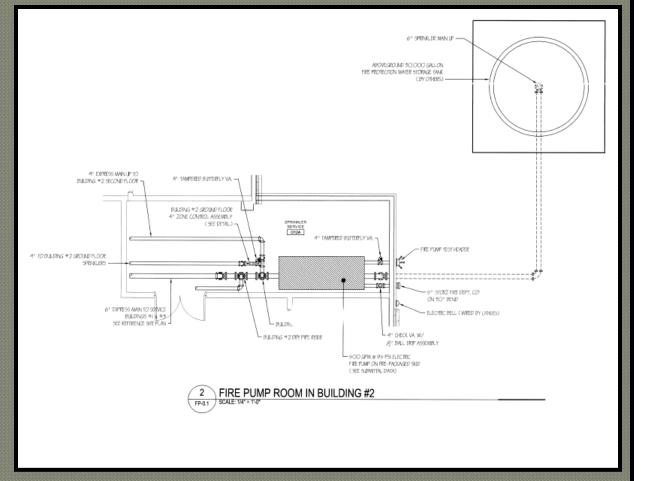
NFPA 13 (2007) - Light Hazard

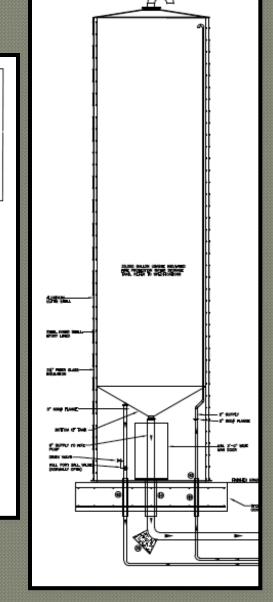
Sprinkler discharge density: .10 gpm/sq. ft.

Area of application: 1500 sq. ft.

Outside hose allowance: 100 GPM

Maximum Sprinkler Coverage: 225 sq. ft.

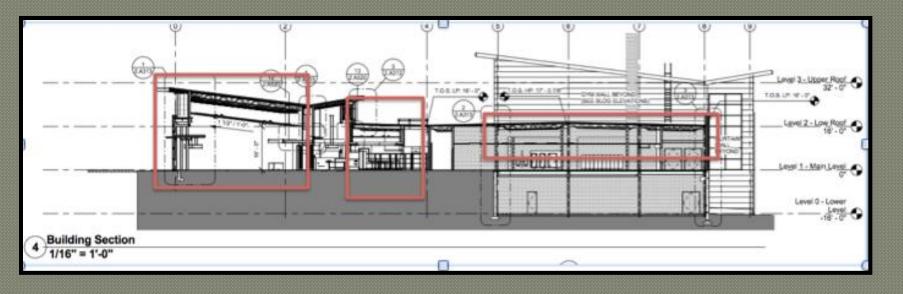

NFPA 13 (2007) - Ordinary Hazard Group 1


Sprinkler discharge density: .15 gpm/sq. ft.

Area of application: 1500 sq. ft.

Outside hose allowance: 250 GPM

Maximum Sprinkler Coverage: 130 sq. ft.


Introduction
Project Overview
Braced Frame Analysis
Fire Suppression Analysis
Roofing Analysis
Project Delivery Study
Final Recomendations
Acknowledgments

Current System Estimate:

Pipe Diameter (in)	Length (ft)	
1	1265.99	
1.25	4815.21	-
2.25	584.83	
3	586.68	-
4	395.4	L
6	96.58	

prinkler ype	Basement	First Floor	Total
pright	152	122	274
prigged pright	43	151	194
endant Prop	2	172	174

System Total \$239,500

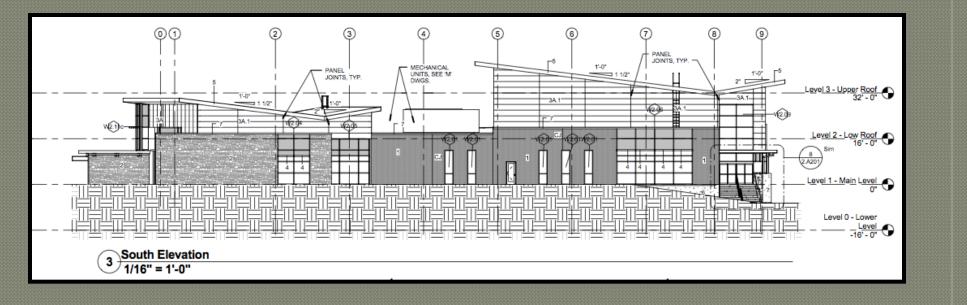
Acoustic Ceiling							
Item Description	Takeoff Quantity	Unit	Unit Price	Total			
Detailing	5000	S.F	2	\$10,000.00			
Acoustic Tiles 2X2	12100	S.F	2	\$24,200.00			
Acoustic Tiles 4X4	7200	S.F	2	\$14,400.00			
Suspended Grid 2X2	12100	S.F	3	\$36,300.00			
Suspended Grid 4X4	7200	S.F	3	\$21,600.00			
			Total	\$106,500.00			

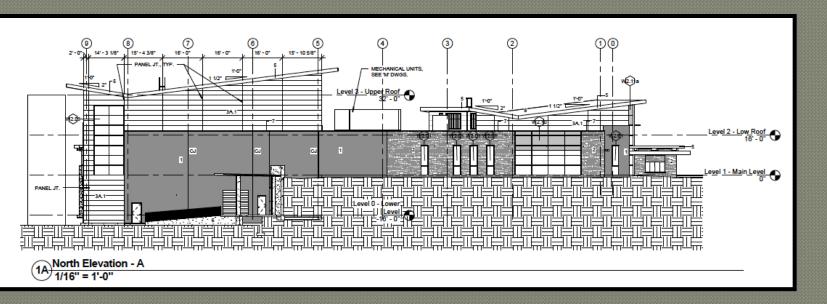
Introduction
Project Overview
Braced Frame Analysis
Fire Suppression Analysis
Roofing Analysis
Project Delivery Study
Final Recommendations
Acknowledgments

Proposed System:

- Wet System
- Code Requirements Remain Same
- Keep Water Storage Tank
- Paint Exposed Ceiling Space

Quantity	LineNumber	Description	Crew	Daily Output	Labor Hours	Unit	Material	Labor	Total	Ext.	Fotal
40000		Paints & Coatings, walls & ceilings, interior, concrete, drywall or plaster, zero voc latex, 2 coats, smooth finish,		400-							
19300	099123740880	spray	1 Pord	1625	0.01	S.F.	\$ 0.11	\$ 0.18	\$0.29	\$ 5	,597.00
4	000402740000	Paints & coatings, walls & ceilings, interior, zero voc latex, for work 8'-15'		0		0.5		Φ 0.00	40.00		0.47.40
1	099123740880	high, add		0	0	S.F.	\$ -	\$ 0.02	\$0.02	\$	347.40
Total										F \$5	5944.40

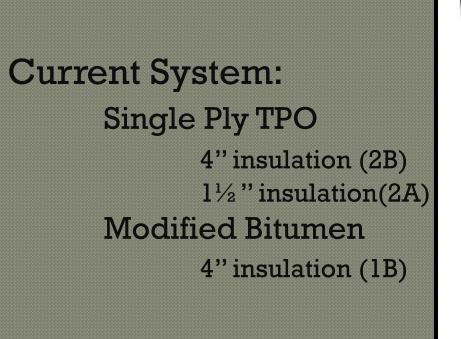

Sprinkler Type	Basement	First Floor	Total	
Upright	152		274	

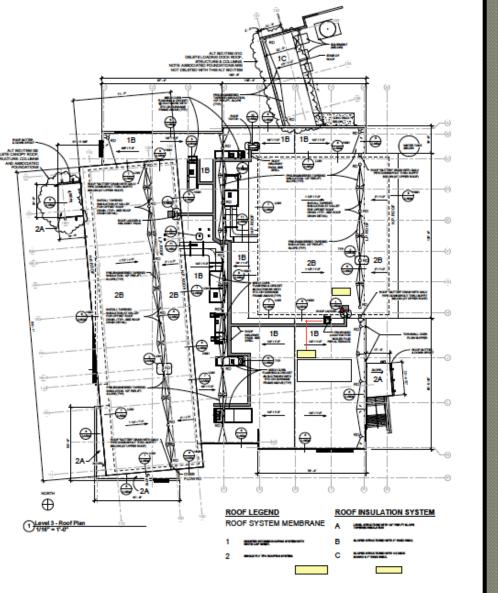

F map place.

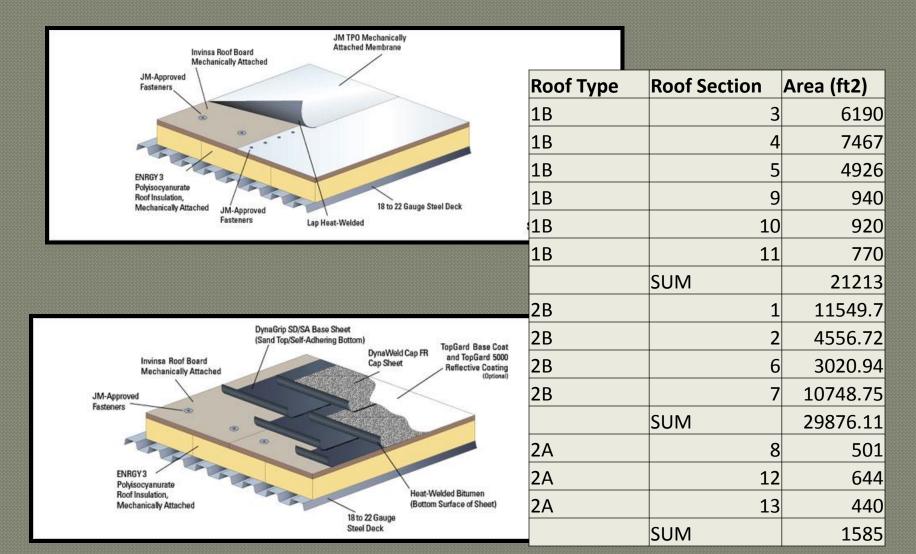
If map

System Total \$187,500

Introduction
Project Overview
Braced Frame Analysis
Fire Suppression Analysis
Roofing Analysis
Project Delivery Study
Final Recommendations
Acknowledgments



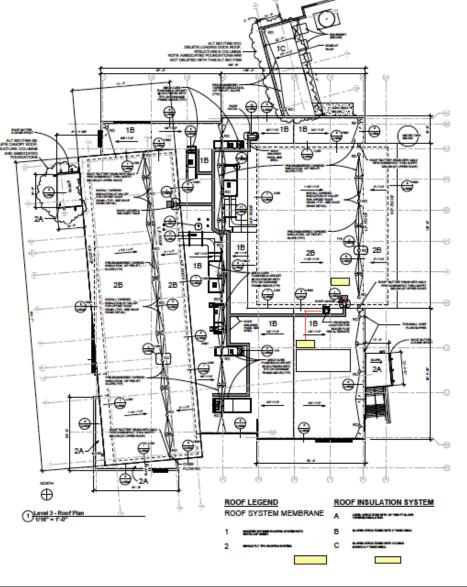


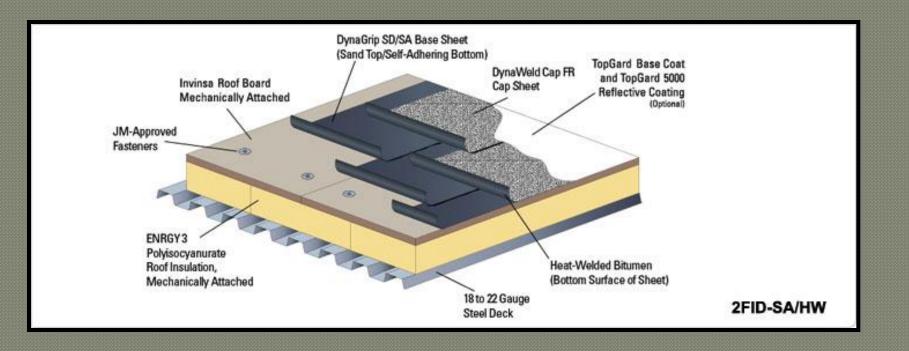

Problem Statement: The single-ply TPO system may not be able to withstand the mixture of environmental factors and sloped angles.

Research Goal: Determine a new system that is proven to work, and will be economical.

Introduction
Project Overview
Braced Frame Analysis
Fire Suppression Analysis
Roofing Analysis
Project Delivery Study
Final Recomendations
Acknowledgments

System Estimate \$246,800

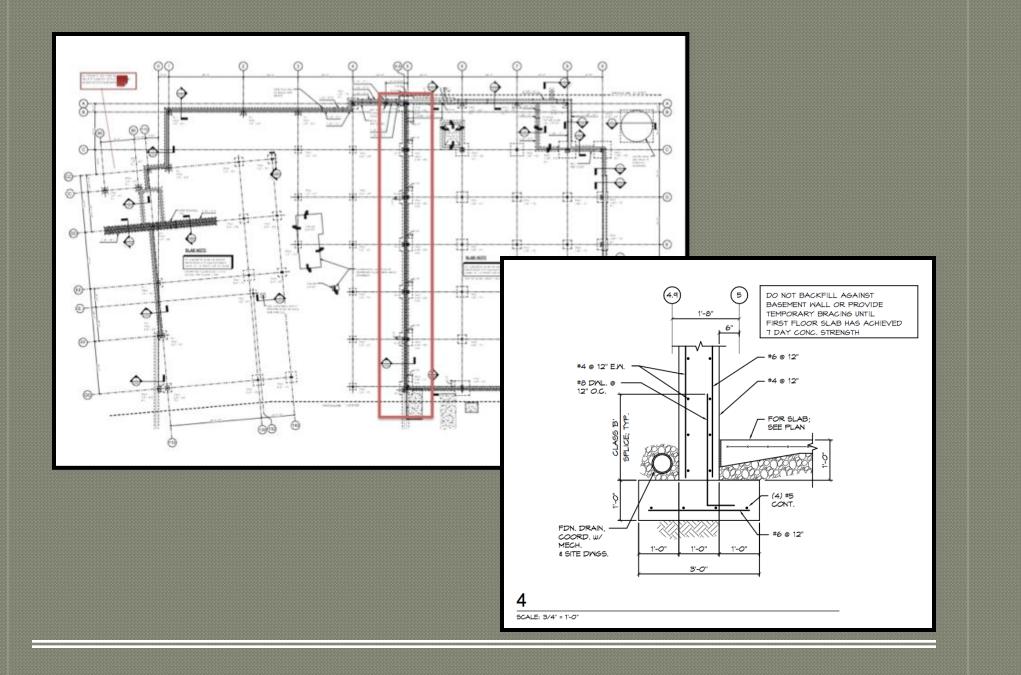

Introduction
Project Overview
Braced Frame Analysis
Fire Suppression Analysis
Roofing Analysis
Project Delivery Study
Final Recomendations
Acknowledgments


Proposed System:

Modified Bitumen

4" insulation

l ½" insulation

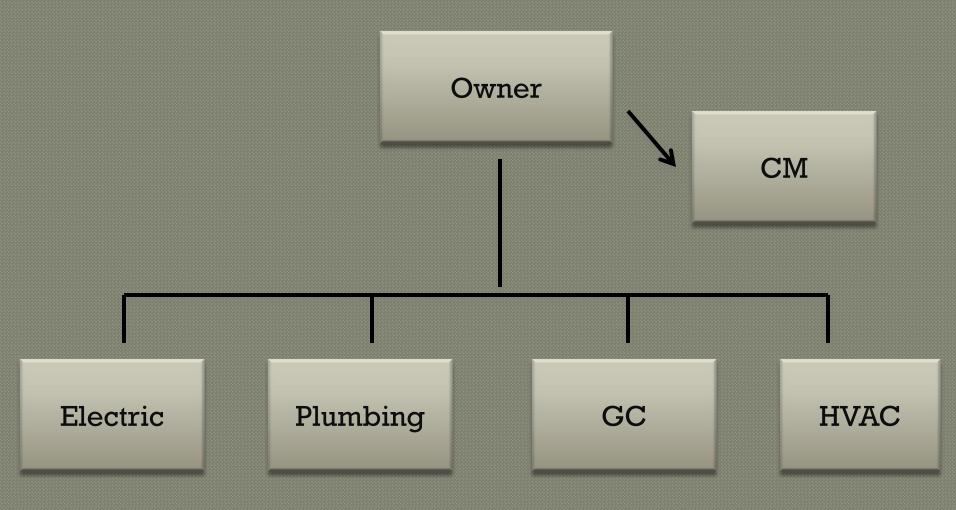


Quantity	LineNumber	Unit	Total		Ext. Total	Total O		Ext. Total O&P
52711	075216102000	S.F.	\$	2.61	\$137,575.71	\$	3.74	\$197,139.14
51126	072216101932	S.F.	\$	1.81	\$ 92,538.06	\$	2.16	\$ 110,432.16

Total \$230113.77 \$307,571.30

System Estimate \$307,570

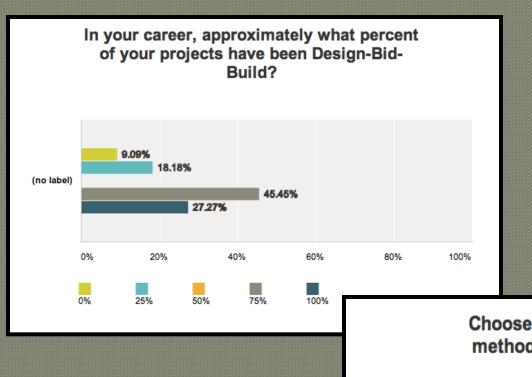
Introduction
Project Overview
Braced Frame Analysis
Fire Suppression Analysis
Roofing Analysis
Project Delivery Study
Final Recommendations
Acknowledgments

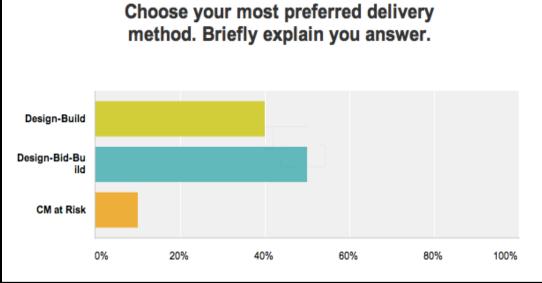

Problem Statement: Constructability issues with retaining wall show a larger issue with the use of multiple prime contractors.

Research Goal: Study industry feelings toward multiple prime contracts to gauge what would be a better delivery method.

Introduction
Project Overview
Braced Frame Analysis
Fire Suppression Analysis
Roofing Analysis
Project Delivery Study
Final Recommendations
Acknowledgments

Multiple Prime Contracts:


- Pennsylvania Separation Act 1913
- Projects > \$4,000
- Separated between 4 trades
- Publically Bid
- Risk stays with owner



Introduction
Project Overview
Braced Frame Analysis
Fire Suppression Analysis
Roofing Analysis
Project Delivery Study
Final Recommendations
Acknowledgments

Industry Survey:

- Most polled from Pa
- Majority CM, contractor
- Prefer design-bid-build
- Prefer GMP contract
- Most familiar with CM at risk/multiple prime

Introduction
Project Overview
Braced Frame Analysis
Fire Suppression Analysis
Roofing Analysis
Project Delivery Study
Final Recommendations
Acknowledgments

Braced Frame Analysis

Fire Suppression Redesign

Roofing System Analysis

Delivery Method Study

Thank You

I'd like to thank everyone involved with my Thesis project;

- Team members at D'Huy Engineering, most especially Jim Hana and Joseph Herman. Thank you for taking the time to walk me through the site every chance you got, and thank you for your availability.
- Rob Leicht, thank you for always steering me in the right direction.
- Northampton Community College for allowing me to use their project
- All participants in the industry survey
- My structural option friends that helped with my structural systems
- My sisters for helping me concentrate and keeping me focused
- My family for always encouraging me.

Thank You