DORMITORY BUILDINGS C & D

MANSFIELD UNIVERSITY, MANSFIELD PA

SENIOR THESIS FINAL REPORT

APRIL 3, 2013

MIKE MAHONEY

The Pennsylvania State University Department of Architectural Engineering Construction Management Option

AE482 – Spring 2012 Faculty Advisor: Ray Sowers

	FEATUI Size: Bu Bu	Buildings C a Mike Mah	sity Dormitories and D Mansfield, PA oney Construction Delivery: GMP Contract Stories: 4 Stories Height: 58.5 FT	
 MECHANICAL 13 - 3,000 CFM Energy Recovery Unit 2 - Geothermal Well Fields 2 - Water-to-Air Water Source Heat Put 		• 2 - 208Y/120V N	0V Oil Filled Transformer latural Gas Generators - Energy Efficient T5 Bulbs	
 STRUCTURAL Concrete Strip Footers and Slab on Gr Structural CMU Block Ground and 1st Structural Wood Units on Floors 2-4 Steel Framing in Core Areas Dimensional Lumber Supported Floori 	Floor	 ARCHITECTURE Both Buildings Will Hold Over 750 Students Provides Suite-Style Student Living Options Brick Façade to Match Campus Style Modular Unit Construction Increases Speed Design-Build MEP Subcontractors 		
and the second s	OWNEF Mansfie	R Id Auxiliary Corp	ARCHITECT WTW Architects	
	STRUCTURAL ENGINEER Taylor Structural Engineers		LANDSCAPE ARCHITECT LaQUATRA BONCI Assoc.	
		ngineer nz Company	GENERAL CONTRACTOR Wohlsen Construction	
WTW ARCHITECTS			Wohlsen works.	

http://www.engr.psu.edu/ae/thesis/portfolios/2013/mdm5274/index.html

EXECUTIVE SUMMARY

The Senior Thesis Final Report is the compilation of four individual analyses. These analyses emphasize critical industry issues, value engineering, constructability and schedule reduction of the construction process for the Mansfield University dormitory project. In addition to these construction process analyses, there are structural and acoustic breadth topics reviewed to further investigation into the four individual analyses.

Analysis 1: Flooring System Analysis

An alternative flooring system to the current structural steel and wood was investigated. A 10 inch thick concrete flat plate system was checked during the structural breadth to meet all of the design loads. The acoustical breadth showed that the concrete floor stops the sound transmission about 14 dB better than the steel and wood flooring. Costs estimates were configured using RS Means. The concrete system was estimated to cost \$401,974.50. The steel and wood system was estimated to cost \$484,358.08. There is an about a \$82,000 difference. Other factors that influence the constructability of the concrete system is the availability of large concrete subcontractors in the north central Pennsylvania area and the cold winters of the area. The steel and wood system was found to be easier to construct given the these factors.

Analysis 2: Modularization Preconstruction Planning

After a schedule was created for the stick built construction, the difference between the stick built construction and the modular construction was 82 days or 4 months. For those 4 months, the general conditions savings was estimated at \$680,000. The owner saved 4 months of general conditions costs, but also paid for 4 months of preconstruction fees.

During preconstruction, BIM would have increased productivity for the MEP rough ins during the first set of modular units, and created a great starting point for the 3D modeling for the onsite MEP subcontractors. BIM would not have been as effective for the modular MEP crews after the first set of units were completed though, because the units are extremely repetitive. Also, the modular MEP crews work for the same company which promotes better coordination. Most issues that would arise out in the field are easier and faster to fix when building in a factory.

Analysis 3: Exterior Façade Redesign

There was an investigation into a panelized façade system instead of the traditional masonry façade. The owner's expectations influenced the investigation into a thin brick panelized façade and a precast concrete panel system. After cost estimates were completed, the thin brick panels cost about \$926,154.06 more than the masonry brick, and the precast concrete system costs \$193,928.80 more than the masonry cast stone, with a total difference of \$1.12 million dollars more for the panelized façade systems. The schedule showed that the panelized systems reduced the schedule by 60 days in Building C and 89 days in Building D. The owner's expectations made the panelized façade system impossible to have a similar price.

Analysis 4: Modular Unit Connection Procedure

A GPS system similar to the one that dozers use to grade terrain was investigated to see its possible uses during the modular unit setting. After seeing how the modular subcontractor ensured precision, the GPS positioning system would really be helpful, when setting the very first column of units. After the first column, the system would not be needed, because the crew can use the previously set units as a reference. The extreme precision in the factory really made it easy for the crew in the field to set the units. When evaluating the GPS positioning system, the extra value of precision was compared to the cost of over \$14,000.

CONTENTS

Abstract
Executive Summary
Project Information
Building Systems Overview
Structural Steel
Masonry10
Cast-in-Place Concrete10
Curtain Wall1
Support of Excavation1
Modular Units1
Technical Analysis Descriptions12
Analysis 1: Core Flooring System Analysis12
Introduction12
Potential Solution
Potential Solution
Research12
Research
Research 12 Structural Breadth 13 Potential Solution 14 Structural Breadth 14 Acoustic Breadth 14 Research 12 Final Recommendation 15
Research 12 Structural Breadth 13 Potential Solution 14 Structural Breadth 14 Acoustic Breadth 14 Research 13 Final Recommendation 14 Analysis 2: Modularization Preconstruction Planning 20
Research 12 Structural Breadth 13 Potential Solution 14 Structural Breadth 14 Acoustic Breadth 14 Research 15 Final Recommendation 14 Analysis 2: Modularization Preconstruction Planning 20 Introduction 20

Analysis 3: Exterior Façade Redesign	26
Introduction	26
Potential Solution	26
Research	27
Final Recommendation	33
Analysis 4: Modular Unit Connection	34
Introduction	34
Research	34
Potential Solution	37
Research	38
Final Recommendation	39
Works Cited	41
Acknowledgements	42
Appendix	43

PROJECT INFORMATION

The following report is based on the construction process of the two dormitory buildings located on the southwest corner of Mansfield University's campus. Both buildings consist of 4 floors above grade with a partial basement level. Building C is approximately 79,500 square feet, and Building D is approximately 135,400 square feet.

Building D has the same layout as Building C, with an added wing, see Figure 1. Both buildings provide suite-style student living options for just under 700 students. The suite-style rooms include private bathrooms, individual bedrooms and a living area. These buildings also contain recreational, laundry, lounge, kitchen, and study spaces on each floor. The ground floor of Building D has a snack shack and health center.

According to their Mansfield's department of geography and geology website, Mansfield University has seen growth in recent years due to the increase in natural gas exploration in northern Pennsylvania. Mansfield University has added programs that supply these new businesses with educated employees. They now have a natural gas production and services bachelor's degree (mansfield). The increase in students has caused a strain on on-campus housing. This pushed the Board of Trustees to start analyzing possible solutions. According to Cheryl Clarke of the Sun Gazette, at the current project site there were dormitory buildings that were unsuitable for student use because of their decrepit status. They sat there unused for years. The Board of Trustees decided to demolish the existing buildings and create two new dormitories (sungazette).

Building C is situated north of Morris Dr. and Building D is just south. Equipment cannot travel across Morris Dr. during peak traffic hours. Clinton St. is the main road marking the west end of the campus. Most of the utilities needed for the project are located underneath Clinton St. This project is the second phase of a completely new dormitory rejuvenation movement on Mansfield's campus. The first phase of dormitories was constructed in 2011 located 100 yards east of Building D. They both have a similar layout to Building C. The town is located in the north central region of Pennsylvania. This area is known for harsh winters. The construction schedule must be created around the weather. Most of the earthwork, will be completed during this time. Foundations and basement walls were constructed during the better weathered days. There were several snow storms that delayed the progress a few days.

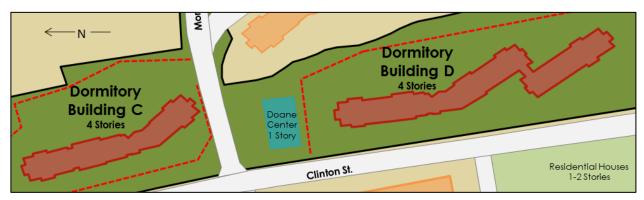


Figure 1 Site Plan

For this phase of dormitory construction, the owner decided to implement modular construction to speed up the construction schedule. Modular units can be placed as fast as 12 units per day. The Phase 1 dormitories were completely stick built. The owner made it clear that he wanted the architecture of these dormitories to match the architecture of the other buildings on campus. A brick and cast stone masonry façade was used for most of the exterior. In the central core area, a glass curtain façade was used. The core area is the only part of these buildings that are stick built.

Figure 2 Modular Unit

On August 16, 2012, the Mansfield Auxiliary Corp. awarded the Phase 2 dormitory project to Wohlsen Construction Company. The contract was a GMP valued at \$39 million. Initially, the project was bid at \$41 million. The owner asked the CM to perform value engineering. Eventually, they got the project cost down \$2 million, and the owner received the needed financing to start the project. Wohlsen Construction would take the role of Construction Manager at risk. There was a savings sharing that awarded 20% of savings to the CM. The liquidated damages for finishing the job late are \$65 per a bed per a day. So that equals \$16,640/day for Building C and \$27,690/day for Building D.

Wohlsen holds lump sum contracts with all of the subcontractors except for the mechanical/plumbing, electrical and fire protection (MEP) subcontractors. The MEP's hold design-build contracts with the CM, because at the time of bidding, there wasn't a complete set of MEP design documents for the modular units. Building C's substantial completion date was scheduled for August 5, 2013, and Building D's was set at October 17, 2013.

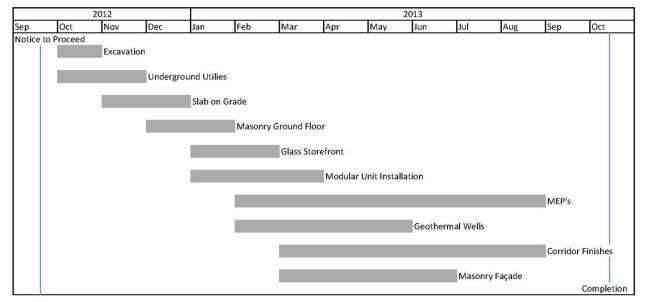
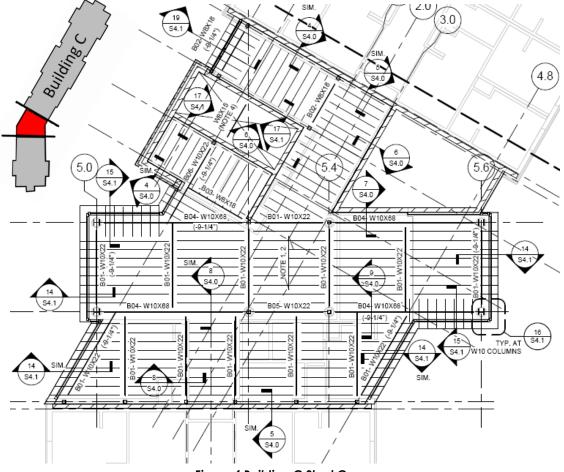


Figure 3 Total Building Schedule

Because Building C's completion date was earlier than Building D's, excavation started on Building C's site first. During excavation of Building D's site, there was poor quality soil and debris unearthed. The demolition contractor that took down the buildings that stood on the site before construction started, filled in the site with building debris and unsuitable soil. More time was spent cleaning out all of the bad material than previously expected. This created a 2 month delay that caused the start of modular unit placement to shift to the middle of Feburary. The Construction Manager began to look for accelleration techniques. The most effective technique was shift work for the MEP sub contractors.

The owner expects construction to cause as little disturbance to all university activities as possible. While students are on campus, construction cannot start before 7:00 AM. During university breaks, there are no restrictions on construction work hours. Driveways, footpaths and entrances adjacent to the site cannot be blocked at any time. Deliveries are expected to be scheduled so they do not interfere with regular university traffic. The contractor must give a two week notice before interrupting any services to existing buildings. The entire site is to be fenced in with a locked gate when no one is working.


BUILDING SYSTEMS OVERVIEW

STRUCTURAL STEEL

Structural steel is used mostly on the first floor and the core spaces of these buildings. Figure 4 shows the structural drawing for core area of the second floor of Building C. Most of these buildings are modular units. The modular units are created to structurally support themselves. The core is the only part that is not modular. The structural steel used in the core space is W10, W12 and W14 girders with HSS 6x6 steel columns. The girders range from 15 lbs/ft to 53 lbs/ft. All girder to beam connections are shear with optional moment reinforcement. All girder to column connections are welded-moment.

On the basement and first floor, structural steel columns and girders are used to provide additional support the modular units. HSS columns used were similar to the core space, but the girders are bigger. The girders range from W14 to W18. The weight ranges from 40 lbs/ft to 67 lbs/ft.

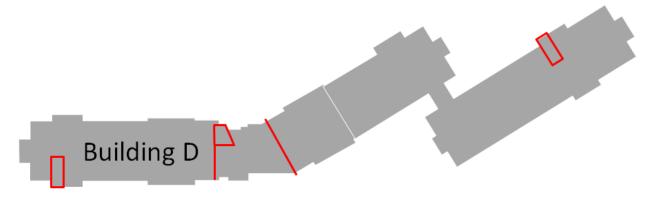

A separate, smaller, crane from the one used for the modular units will be used to erect the steel. The crawler crane was mostly set at the inside of the angle of the core area.

Figure 4 Building C Steel Core Details from Sheets S1.3C - Architectural Plans – WTW Architects

MASONRY

Masonry block is used in these buildings mostly as a 2 hour fire rating around stairwells and elevators. There are three stairwells and two elevators. Also, CMU walls are in between the core spaces and the modular units. The block used in these walls is typically 16" x 8". Temporary scaffolding will be used to construct these walls.

Figure 5 CMU Stairwells/Partitions Building D

CMU walls are used as the exterior walls on the basement level of the buildings. The CMU below grade are 14" thick typically. Once above grade, the block is typically 10" because of the façade. The walls connect to the spread footings with grouted rebar as shown below. The exterior façade of the top three floors of the buildings is mostly brick veneer. The basement and first floor exterior facade is masonry stone block. There are precast stone heads and sills around the windows. Behind the brick and precast stone are the modular units above the basement. The masonry facade ties into the modular units' sheathing which will help support the block. Metal lintels are used around window openings. A scaffolding structure will be built to complete the exterior façade.

CAST-IN-PLACE CONCRETE

Because the buildings are built on a hill, the basement level is only under a portion of the first floor. Some of the first floor sits on grade. A building footer will be poured under the basement level and parts of the first floor. This will provide support for the structural masonry block on the exterior of the building up to the second floor. The footer and spread footings are to be designed for a soil bearing pressure of 4000 psf. On both buildings, a 4" concrete slab on grade will be poured on the basement floor and parts of the first. Lumber forms will be used for these flat pours. The foundation has 3000 psi concrete and the slabs have 4000 psi concrete. There are also 24" x 24" rebar reinforced concrete piers. Plywood sheathing with lumber reinforcing will be used for formwork for the piers. These piers are only under the core spaces of the buildings to withstand the support of the structural steel above. The concrete will be poured using a pumping truck with labor to screed.

CURTAIN WALL

In the core areas, there is a glass store front façade. The architect, WTW Architects, is responsible for the design. The mullions are aluminum with a carbon steel reinforcing. The mullions are 2" think and extend out 4.5". The glazing used is insulating glass. It is 1" thick with a 1/2" air gap. The glazing has a low-emissivity coating and allows 62% visible light transmittance.

The metal frame will be constructed after the structural steel in the core is set. The storefront will start at the basement and work its way up. The glass will be set in the frame with two workers on a man lift and one in the building. After the glass is set, the gaskets can be installed and the frame can be finished. Ideally there would be three crews. One would initially install the frame; another would set the glass, and the last would finish the frame and seal the glass.

SUPPORT OF EXCAVATION

Excavation will be used for the basement floor and parts of the first floors on each building. The excavation will be supported by benching. Most of the site has been leveled to the required grade by the demolition contractor. Most of the underground utility work will use trench boxes to excavate. The water table is below the excavation of the buildings, so no dewatering is necessary. The ground source water pump wells will be below the water table. Dewatering will be used for well excavation.

MODULAR UNITS

The modular units are created in a factory located in Scranton, PA. The modular subcontractor, Simplex Inc. creates the structure of each unit, MEP rough ins, and completes most of the finishes on the interior. The hallway between the two rooms was not completed with interiors, because the MEP contractors still needed to connect the room MEP feeds to the mains located down the hall. It takes Simplex 10 days to create one unit in assembly line fashion. The modular units' structure is dimensional lumber. There are 2x6 wall studs with a double 2x10 perimeter sill plate at the bottom and top to create added strength during transportation.

Figure 6 CMU Modular Unit Structure

Figure 7 CMU Modular Unit MEP Rough

TECHNICAL ANALYSIS DESCRIPTIONS

ANALYSIS 1: CORE FLOORING SYSTEM ANALYSIS

INTRODUCTION

The current structural design has a 2x10 wood joist floor with plywood sheathing flooring in the core area of both buildings. The core also has a structural steel frame to support the flooring system. This type of structure and flooring is an unconventional pairing. Particularly, the steel beam connection with the wood 2x10 flooring joists is not ideal.

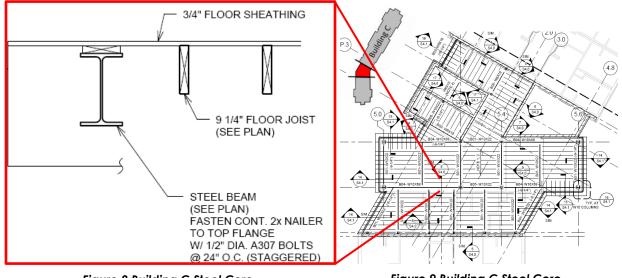
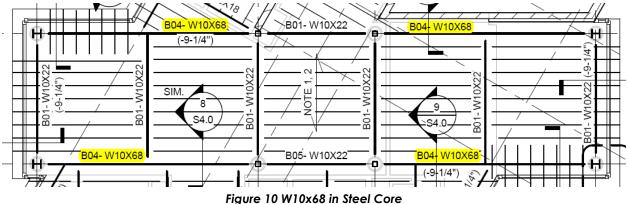


Figure 8 Building C Steel Core Details from Sheets S4.0 - Architectural Plans – WTW Details from Sheets S1.3C - Architectural Plans – WTW

POTENTIAL SOLUTION


The first flooring system investigated was a metal deck with concrete topping flooring system. The steel structure was already there to support the deck. The metal deck flooring could provide schedule acceleration compared to the lumber framing. Instead of using a carpenter crew to finish the flooring, a concrete crew would be needed to follow the steel crew.

RESEARCH

The first work completed was a take-off of the current flooring system. There are four floors with an area of 2,040 square feet each. The total area equals 8,160 SF. The vertical height of the columns is 52 feet. There are (4) W10 steel columns and 15 HSS steel tube columns spanning from the bottom floor to the roof. The surface area of the CMU wall that encases the stairwells and elevator shafts equals 9531 SF. That also includes the CMU wall that separates the stick built core from the modular room construction.

STRUCTURAL BREADTH

Next, a structural analysis on the steel beams was checked. This check will conclude if there was a 10 inch depth restriction on the beams. The W10x68 beams were checked first. They span 22' 6", which would have the most deflection out of all of the beams in the steel core.

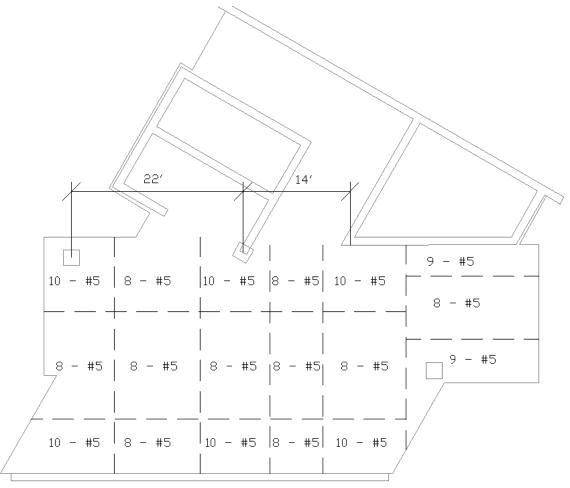
Details from Sheets \$1.3C - Architectural Plans – WTW

The first thing that was checked was the design live load required by ASCE code. According to ASCE 7 code, for residential public rooms the design live load is 100 PSF. The dead weight of the wood flooring was calculated at 6 PSF. A 10 PSF superimposed weight was figured into the dead weight calculation.

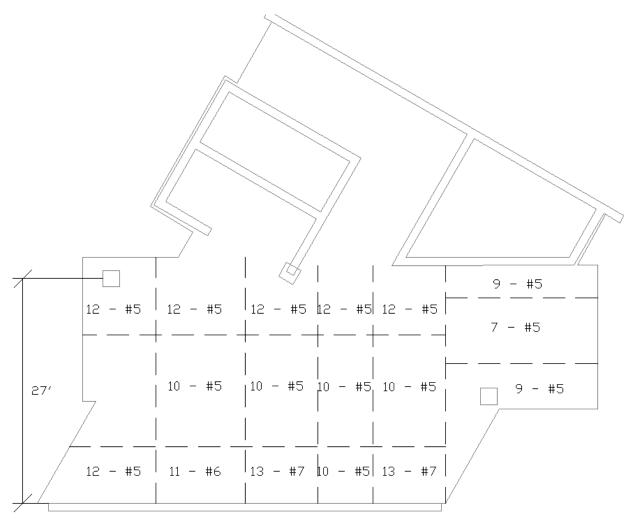
For structural breadth calculations and sources see Appendix A

The maximum shear was found to be 19.1 Kips. The maximum moment was 107 ft-Kips. The deflection for the total load was 0.85 inches and for the live load was 0.73 inches. All of these passed the maximum allowable for the W10x68 beam. The deflection of the live load was .02 inches from the maximum. The W10x68 beam had a moment of inertia of 394 in⁴, which was the only variable for the deflection of this span. The shear and moment were 13% and 33% respectively of the maximum. Clearly the deflection controlled the size of the beam. From the Z tables from the *AISC Steel Construction Manual*, the most cost effective beam for this moment, shear and deflection is a W18x35. It has a moment of inertia of 510 in⁴, which means the deflection would be structurally stronger. This means there was a 10 inch depth restriction on the steel beams. There was very little plenum space in the building, because of the transportation restrictions on the modular units. The smaller the engineer could keep the beams, the more space the MEP's had for their work.

After finding out about this restriction, a metal deck flooring system was dismissed. The deck and concrete would add another 5.25 inches on the depth of the structure, decreasing the floor to ceiling height. If there was more space in the plenum, then the metal deck flooring system would become more applicable to the project.


POTENTIAL SOLUTION

After speaking with Professor Hanagan, a flat plate concrete structural system was examined. The concrete system would have a 10 inch thick slab and 2 way reinforcing. The 10 inch thick slab would take up just as much depth as the structural steel.


STRUCTURAL BREADTH

The dead load of the concrete on the slab was 125 PSF with an added 10 PSF for MEP hanging from the ceiling. A 100 PSF live load was used. #5 rebar was assumed to be used for the 2 way reinforcing. The maximum applied moment was found to be 27.2 ft-Kip. The maximum moment capacity of the 10 inch thick 2 way slab is 537.3 ft-Kip. The capacity is almost 20 times larger than the applied moment. This 10 inch thick slab is overdesigned and a thinner slab would probably be ideal. No further analysis was computed for this design, because the steel was 10 inches thick. If the MEP's fit all of their equipment with the steel then they can fit in the concrete design. The shear was not looked at throughout this process because the moment usually controls for a 27 foot span.

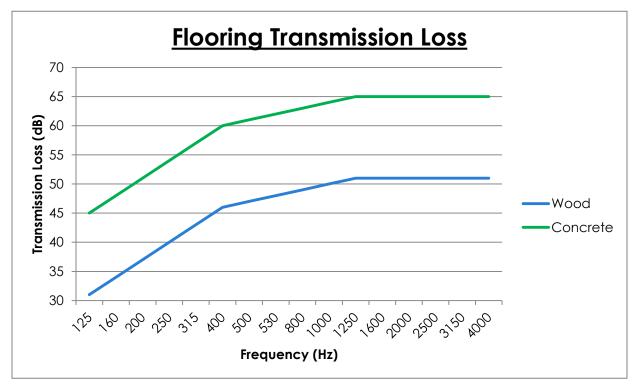
Finally, the rebar was designed for the concrete system. The CRSI Rebar Design tables were used to complete this analysis. Figures 11 and 12 below describe the 2 way rebar design.

Figure 11 Horizontal Rebar

ACOUSTIC BREADTH

Now that the concrete structural design has been checked and approved, the next analysis is the sound transmission through the flooring systems. After consulting Professor Vigeant, she reported that actual acoustical data for each of my flooring types would be impossible to do without vibration equipment. She did, however, provide STC and IIC information of various flooring types.

The IIC or impact insulation class is used for predicting the transmission of impact sound from one side of the floor to the other. It is increasingly harder to limit the impact sound transmission of lower frequencies. The type of architectural flooring impacts the IIC greatly. Carpet deafens the impact noise more than tile. If the surface is soft or resilient, there will be less impact noise transmission. It was decided that because the architectural flooring will stay the same between the two flooring systems, the difference in the IIC would be small or even negligible.


The STC or sound transmission class is used for predicting the overall sound transmission loss effects on speech noise. The curve's emphasis is on the speech bands of frequency. Sound transmission classes are not good for predicting the transmission loss for low frequency noise.

Source information of the STC curves can be found in Appendix B

A similar flooring system to the current wood floor was found. The chosen flooring system had 2x10 wood joists 16" o.c., two layers of plywood, resilient channels 16" o.c., 3 inch thick sound attenuation blanket, and ½ inch gypsum board ceiling. The difference between this floor and the actual floor is there are no resilient clips and there is 6" of insulation instead of 3". No resilient clips would decrease the TL, but the added 3 inches of insulation would increase the TL. No adjustments were made to the chosen flooring systems STC.

A similar flooring system to the designed concrete floor was found. The chosen flooring system had 8 inches of concrete at 95 PSF. The designed flooring system has 10 inches of concrete at 120 PSF. The more massive concrete floor would increase the transmission loss. From a 6 inch slab to an 8 inch slab, the STC increased 3 dB. A 3 dB adjustment was added to the chosen 8 inch to get it to the STC of the 10 inch thick slab.

The information given from the book is just one STC number. That number is the transmission loss at the 500Hz noise level. A best fit curve formula has been configured by acoustic researchers and has been widely accepted by the acoustics community. The curve increases 3 dB every third-octave from 125Hz to 400Hz, 1dB every third-octave from 500Hz to 1125Hz and levels off from 1125Hz to 4000Hz. The chart below describes the best fit lines for the two flooring systems. The wood flooring has a STC of 47 and the concrete flooring has a STC of 61.

Graph 1 Sound Transmission Loss

RESEARCH

Finally, the cost of both flooring systems was examined. *RS Means* was used for prices. For the concrete columns, an assembly was used that includes plywood formwork (4 uses), chamfer strip, reinforcing with ties, 4000 psi concrete, pumped and vibrated and finished. A 24 inch x 24 inch column that can handle a 900 Kip load with 14 feet story height was chosen. #5 rebar was estimated at \$0.65/foot. An additional tie was added to the column per a vertical foot.

RS Means Data can be found in Appendix C.

For the concrete slab, an assembly was used that includes 15 feet high formwork (4 uses), edge forms (4 uses), reinforcing #4 - #7 bars, 3000 psi concrete, vibrated and pumped, finished with a steel trowel and cured with sprayed membrane curing compound. A slab thickness of 10 inches was chosen.

For the concrete walls, an assembly was used that includes plywood formwork (4 uses), reinforcing, 3000 psi concrete, pumped, vibrated and finished. A 12" thick plain finish wall was chosen. The reinforcing in this was seemed light, so an extra two #5 bars were added per a square foot.

Concrete Columns							
Cost Data	Amount	Cost	Number	Total Cost			
\$180.00 vert LF	52 vert LF	\$ 9,360.00 /column	3 columns	\$ 28,080.00			
Additional Reinforci	ng						
\$ 5.20 SF	52 SF	\$ 270.40 /column	3 columns	\$ 811.20			
Concrete Flat Plate							
\$ 16.05 SF	8160 SF	\$130,968.00		\$130,968.00			
Concrete Walls							
\$ 24.15 SF	9532 SF	\$230,197.80		\$230,197.80			
Additional Reinforci	ng						
\$ 1.25 SF	9534 SF	\$ 11,917.50		\$ 11,917.50			
			Total	\$401,974.50			

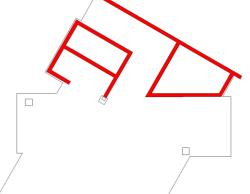


Table1 Concrete Flooring System Estimate

The total cost of the concrete system was calculated at \$401,974.50. That includes the flat plate slabs, concrete columns, and concrete walls. The 12 inch thick walls accounted for 60% of the total cost. Figure 13 shows a view of the concrete walls in the core floor plan.

Figure 13 Concrete Walls

Figure 14 Steel Frame

RS Means page 78

Next, the cost of the current flooring was estimated. For the steel columns, there were two different types: wide flange and square tube. A 300 Kip load was used for both types of steel columns. The wide flange was a 10 inch deep column with a story height of 14 feet. There was a 10 feet story height and 16 feet story height. Both of these numbers were used to interpolate the 14 feet story height cost. The square tube column was 6 inches in cross-section. It also only had a 10 feet and 16 feet story height so these numbers were interpolated to find the 14 feet story height cost.

The fire proofing on the columns were two layers of $\frac{1}{2}$ inch fire rated gypsum board. The square steel columns were 6 inches thick and the W10's were 10 inches thick. RS Means gave this cost in cost per a vertical linear foot.

The steel frame closest to the frames in the core of both dormitories is shown in Figure 14. The structural steel and spray on fireproofing is included. The total load, as used in the structural breadth, was 200 PSF. There was a discrepancy in the depth of the steel framing. RS Means shows that the steel beams should have a depth of 24 inches, but only W10's were used.

There is wood framing running between the steel beams. The flooring assembly used had 2" x 10" floor joists 16 inches on center. There is also one layer of ½ inch plywood subflooring. Another ¾ inch plywood underlayment layer was added to match the actual flooring assembly. A layer of 6 inch thick batt insulation was also added.

The CMU walls have vertical reinforcing of #5's at 32 inches on center. The block size is 12"x8"x16". Horizontal joint reinforcing alternate courses and control joints were also included in the chosen assembly.

Steel Columns												
Туре		Cost	Data	Amo	ount		Cost	t	Nun	nber	Т	otal Cost
W10	\$1	20.00	vert LF	52	vert LF	\$	6,240.00	/column	4	columns	\$	24,960.00
HSS	\$	97.00	vert LF	52	vert LF	\$	5,044.00	/column	15	columns	\$	75,660.00
Steel Colu	Steel Column Fireproofing											
W10	\$	33.61	vert LF	52	vert LF	\$	1,747.72	/column	4	columns	\$	6,990.88
HSS	\$	31.83	vert LF	52	vert LF	\$	1,655.16	/column	15	columns	\$	24,827.40
Structural	Ste	el Floo	r									
	\$	19.95	SF	8160	SF	\$16	52,792.00				\$1	L62,792.00
2x10 Woo	d Jo	ists										
	\$	3.47	SF	8160	SF	\$ 2	28,315.20				\$	28,315.20
3/4 Plywo	od L	Jnderla	ayment									
	\$	1.13	SF	8160	SF	\$	9,220.80				\$	9,220.80
6" Batt Ins	ulat	ion										
	\$	0.59	SF	8160	SF	\$	4,814.40				\$	4,814.40
CMU walls	CMU walls											
	\$	15.40	SF	9531	SF	\$14	46,777.40				\$2	L46,777.40
										Total	\$4	184,358.08

Table 2 Structural Steel Floor System Estimate

The final cost of the steel structure, wood floor joists, plywood subflooring, and CMU walls is \$484,358.08.

FINAL RECOMMENDATION

The current structural steel with wood floors was an unconventional system, which is the main reason why another flooring system was explored. At first, a metal deck flooring system was investigated, but the extra space required for a 2 inch thick deck and 3 ¼ inches of concrete topping would not leave enough space for the MEP's in the plenum. This was shown by the structural designer deciding to go with a more expensive, yet shallower beam. A 10 inch thick concrete flat plate system met all of the structural calculations. Actually, the 10 inch thickness was over designed. The flat plate could possibly have been designed down to 9 or 8 inches thickness.

Now that it is known that the structure of new concrete system can hold the design loads, they can be compared. The acoustical analysis showed that the sound transmission through the concrete floor was better than the wood floor. The sound transmission class, STC, of the wood floor was 47 dB and the STC of the concrete floor was 61 dB. The impact insulation class, IIC, was also investigated, but the floor covering has the most impact on the class. Because both flooring systems have the same floor covering, the IIC was the same. Acoustically, the concrete floor would be the better option. It has more mass to absorb the vibrations.

The cost of the two systems was calculated with numbers from RS Means. The concrete system cost \$401,974.50. The steel and wood system cost \$484,358.08. There is an estimated \$82,000 difference. The 15 steel tube columns cost almost \$100,000. This is where most of the difference is in the estimate. The 3 concrete columns cost \$28,000. According to RS Means, the concrete design is drastically cheaper.

There are other factors that came into play for this project. First, there are not many concrete subcontractors that have the capacity to complete this size of work. There are not many large concrete buildings in the north-central Pennsylvania area. Also, lumber is readily available in this area. The price of the concrete should probably increase and the price of wood should probably decrease for the Mansfield area.

The second factor is the time of year. The core of the building would be constructed during the winter. Mansfield has very cold winters. Concrete needs to be kept insulated in order to correctly cure in cold temperatures. Also, it takes longer to cure concrete in the cold. Steel erection is a lot easier in the winter than cast in place concrete.

The final recommendation is either system would work. The concrete system in the middle of summer in an urban area would be a lot cheaper than the steel and wood system. For this situation, the steel and wood system's constructability is a lot easier for Mansfield in the middle of winter. The steel and wood system is probably the best system for this project, but the concrete system could be a great alternative.

ANALYSIS 2: MODULARIZATION PRECONSTRUCTION PLANNING

INTRODUCTION

Modularization requires additional planning and design in order to take full advantage. The preconstruction time can add months onto the project. Modularization also causes a reduction in the construction time. A shorter construction schedule reduces general condition costs. If modularization is installed correctly, the owner should come out with a cheaper project.

POTENTIAL SOLUTION

The amount of time used for preconstruction, to create the modular units and to place the modular units will be examined. The preconstruction method will be investigated. The inclusion of BIM in the preconstruction process could reduce time.

RESEARCH

The first part of research was contacting the modular subcontractor. Mark Russell of Simplex Industries was the contact for the Mansfield project. During the phone call, the following information was retrieved:

- Preconstruction started in February, 2012.
- Preconstruction took 4 months.
- The drawings from the stick-built Phase 1 project were altered to fit modular construction.
- The modular units took 10 days each to complete the structure, MEP's and finishes.
- The longest lead items were doors and windows. The lead time was 8 weeks.
- There was storage onsite for 100 modular units.
- Their two factories can have 41 units in production at one time.
- No BIM was used during the preconstruction process.

From the phone conversation, the preconstruction started with the architect coming to the modular subcontractor with the drawings from the first phase of dormitory construction. The modular subcontractor re-drew the drawings so the rooms would fit the modular unit dimensions.

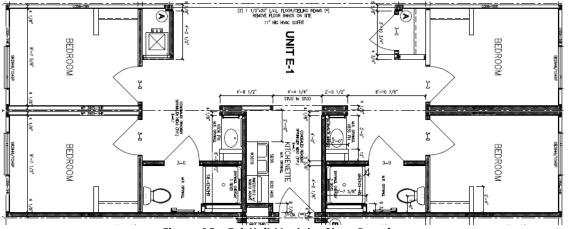


Figure 15 – E-1 Unit Modular Shop Drawing Details from Sheet 2A – Modular Shop Drawings – Simplex Industries The restrictions on the modular dimensions are set by the transportation of the units. The units must make it under all of the bridges which restricts the transportation height of the units to 13' 6". They also must fit in the road lanes. The size of one unit typically is 9' 8" x 49' 5" x 9' 11" tall. Once the drawings were modularized, the architect and engineers updated the rest of the drawings to match the modular design. The modular units are constructed with all of the MEP's installed. The modular subcontractor has mechanical and electrical engineers on staff to create the MEP drawings for their crew. Those MEP drawings then will have to be sent to the MEP subcontractors onsite to coordinate how each of the room's rough ins attach to the mains and feeders.

There are eight different types of rooms. The most common type of room is type C: a two bedroom suit with a personal bathroom and a foyer area. There are larger suites that contain full kitchens and a refrigerator. The room breakdown for each building is in Tables 3 and 4 below.

Building C	Building C								
Туре	Gr	1	2	3	4	Total	Ppl/Rm	Residents	
В	0	12	12	12	12	48	2	96	
С	0	16	16	16	16	64	2	128	
D	0	0	0	0	0	0	4	0	
E	0	1	1	1	1	4	4	16	
F	0	0	0	0	0	0	2	0	
G	0	1	1	1	1	4	2	8	
Н	1	0	0	0	0	1	2	2	
I	2	0	0	0	0	2	3	6	
								256	

Table 3 Building C Modular Units

Building D								
Туре	Gr	1	2	3	4	Total	Ppl/Rm	Residents
В	0	14	14	14	14	56	2	112
С	6	29	29	29	29	122	2	244
D	0	1	1	1	1	4	4	16
E	0	1	1	1	1	4	4	16
F	1	2	2	2	2	9	2	18
G	0	1	1	1	1	4	2	8
Н	0	1	1	1	1	4	3	12
								426

Table 4 Building D Modular Units

There are a total of 27 modular units on one floor of Building C and 4 floors total, so 108 modular units were used in Building C. In Building D, there were 48 units per a floor, with 192 total in the building. Simplex had to create a total of 300 units for this project.

At 10 days per a unit, the total length of construction for the units would be 3,000 working days. That's about 11 ½ years. There are some differences between the modular construction and stick built construction though. The crews that work on the units have 2 or 3 workers at one time. According to the project manager at Wohlsen, a stick built crew size on this project would be expected around 25 men. That's about 10 times the size of the crews working on the modular units. Also with this schedule, it is assuming that all of the carpentry is finished in the project before the MEP's can begin roughing in their work. This is not the case in most construction. Once a floor's carpentry is completed, the carpenters move up to the next level and the MEP's begin to rough in on that floor.

Schedules can be found in Appendix D

An initial schedule was created to show the flow of construction through the two dormitory buildings taking 320 days. 320 days was used instead of 3,000 days, because of the increased crew size. The amount of total construction time was divided by 10, because the crews are about 10 times larger. The activities were the carpentry of the floor and walls, MEP rough ins, door frames, drywall, and finishes. Durations for each activity on each floor were created. Finally, once the durations were set, the activities were given predecessors and successors in order to compact the schedule as much as possible. An example of this is after the MEP rough ins move up to the second floor, the drywalls begin on the first floor, instead of waiting for the MEP's to finish on every floor. The duration of projected schedule of the stick built construction is 112 days.

Next, there was analysis on the modular unit construction. According to Mark Russell, Simplex's facility can have 41 units in production at one time. With 300 total units needed for the Mansfield project, it would take 8 cycles of 10 days to complete them all. The total construction time of the modular units is 80 days.

February 12, 1:00 PM

February 13, 1:00 PM

The modular subcontractor can set 8 to 12 units in a day. Figures 16 and 17 show the progress of the modular unit setting in one day. With an average of 10 modular units per a day, all 300 units can be set in 30 days. This is 82 days less than the 112 day stick built schedule. This is over 16 weeks of schedule reduction. The schedule reduction isn't the only savings. The owner is saving 16 weeks of general condition costs. Everything seems great about modular construction, but

Figure 16 and 17 Modular Setting

there was a lot of planning needed in order to complete the modular construction without any issues.

According to the conversation with Mark Russell, the preconstruction process took approximately 16 weeks. The owner ended up paying for 16 weeks of preconstruction fees for the architect, engineers, and modular subcontractor. The preconstruction fees should cost less than the saved general conditions costs, but this shows that the general condition costs are completely saved.

Another thing that was found out from the conversation with Mark Russell was that BIM was not used during the preconstruction of the modular units. BIM is "building information modeling". It is the process when all of the construction plans are digitally represented in 3 dimensions. The most common construction drawing sets used in BIM are architectural, structural, mechanical, electrical, lighting, plumbing, and fire protection. Once each set of plans are loaded into the same file, a program looks for clashes. Clashes are where parts of the building wrongly intersect, as seen in Figure 19.

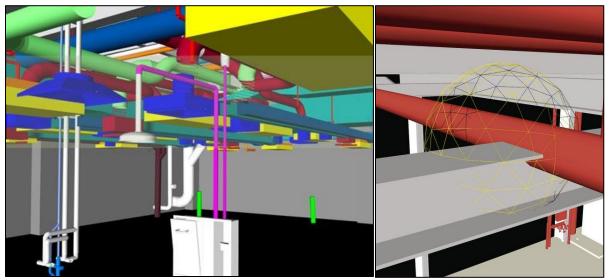


Figure 18 3D Modeling Picture Courtesy of Allied Fire Protection

Figure 19 Clash Example Picture Courtesy of Tec Channel

After clash detection, the architects and engineers will change their plans and submit again for clash detection. The changes that are made to avoid one clash may create another clash. This process is repeated until all of the clashes are fixed. Usually most of the changes are in the MEP plans, because it usually cheaper to move a pipe or duct than to move a structural steel beam.

BIM's main advantage is better productivity in the field. There are no clashes that need to be redesigned in the field. The crews can follow exactly what's on the plans, and not have any issues. Without BIM, work in the field would be stopped, an RFI would be sent to the architect and then the problem would be redesigned. This process can add days to the schedule. Also, having a 3D image of the work that is to be put in place adds clarity to the subcontractors that are building it.

During the construction of the modular units, no BIM was used. If BIM would have been added, it would have helped the modular construction workers complete the units faster. The cost of BIM during preconstruction may not always be worth it. In the case of the modular units, there are two reasons why BIM does not make sense.

The first reason why BIM would not be used is because of the repetitiveness of the units. Most of the rooms in Building C and D are type B and C rooms. There are over 180 type C rooms and 100 type B rooms. After the first set of type C room units were completed all of the clashes were found and redesigned, so they knew what to do for the next set. There was time lost for the first set, but after that, the units were created with the same speed as BIM would allow.

Second, all trades work for the same company. On a normal project, the trades will fight with each other over redesigned work. Both sides think it's the other contractor's issue. By working for the same company, crew members realize working together with other trades will look a lot better to their bosses rather than causing trouble. This creates a good atmosphere for collaboration and clashes get settled faster.

Figure 20 MEP Hallway Connections

There is one big positive advantage of the using BIM throughout the modular unit construction process. The modular contractor would have a 3D model of where every room's MEP connection entered the hallway. As written earlier in the report, the onsite MEP subcontractors have to take all of the room connections, and feed them down the hall to the vertical mains and feeders. By having the modular unit 3D model, the MEP subcontractors have a model to create their plans from.

The MEP subcontractors hold design-build contracts with construction manager. This means they designed the plans for their onsite work. They created a 3D model and preformed clash detection for their plans. Less time would have been wasted on modeling, if they could have started with the modular subcontractor's model.

FINAL RECOMMENDATION

The modular unit preconstruction process was examined. The process started with the modular subcontractor redesigning the first phase of Mansfield University's dormitory expansion drawings to modular dimensions. The complete preconstruction process took 16 weeks to complete.

About 10 modular units were set per a day. With 300 modular units ideally, all of the units could be set in 30 work days. After a schedule was created for the stick built construction, the stick built schedule was estimated at 112 work days. The difference was 82 days of over 16 weeks or 4 months. The general conditions of this project were estimated at \$170,000 per a month. That is a total savings of \$680,000.

This analysis shows that the 16 weeks used during preconstruction offset 16 weeks during construction. The owner saved 4 months of general conditions costs, but also paid for 4 months of preconstruction fees. The general condition costs should be higher than the precon fees, but this analysis still shows that not all of the general conditions costs were saved from modularization.

BIM was not used during the preconstruction process of the modular units, but was used by the onsite MEP subcontractors. BIM would have increased productivity for the MEP rough ins during the first set of modular units, and created a great starting point for the 3D modeling for the onsite MEP subcontractors. BIM would not have been effective for the modular MEP crews after the first set of units were completed though. The units are extremely repetitive, and once they figured out the issue on the first unit, they could repeat their fix the whole way through the rest of the units. Also, the modular MEP crews work for the same company which promotes better trade coordination. Stoppages don't take as long. Overall, BIM would not be recommended for the modular subcontractor. Most of the issues that would arise out in the field are easier and faster to fix when building in a factory. The designer can literally walk down the stairs and see the issue. There would not be as much lag time between questions and answers.

ANALYSIS 3: EXTERIOR FAÇADE REDESIGN

INTRODUCTION

These dormitories have a cast stone and brick façade. The masonry facade requires full four story scaffolding to complete. A different façade may accomplish the same aesthetic look taking less labor and installation time. Figure 21 below shows the masonry façade of the first phase of dormitory buildings.

Figure 21 Masonry Façade Phase 1 Dormitory

POTENTIAL SOLUTION

For the brick façade on floors 2-4, a panelized thin brick would provide the schedule reduction and can look like masonry brick. The Convergence Center Building in Virginia Beach is using a panelized thin brick façade similar to the one proposed in this depth. This product was produced by Advanced Exterior Systems from Raleigh, North Carolina.

For the ground and 1st floors, a cast masonry stone façade is used. A precast concrete façade can provide the masonry look, and a reduction in schedule also. The aesthetics of precast concrete has come a long way.

Figure 22 Panelized Thin Brick Facade Courtesy of Advanced Exterior Systems

RESEARCH

The first area of research was the owner's expectations. Mansfield University wanted these dormitories to match the existing facades of buildings around campus. Figure 23 and 24 shows the façades of two of the buildings on Mansfield's campus. The library building is the most important building on the campus. Both buildings have masonry brick and stone facades. They have a traditional style of architecture.



Figure 23 North Hall Library Courtesy of Mansfield.edu

Figure 24 Straughn Hall Courtesy of Mansfield.edu

Figure 25 Building C Rendering Courtesy of WTW Architects

The architects tried to keep a similar architecture style to the other buildings on campus, with adding some modern style. Figure 25 shows the brick and stone masonry façade. The cast stone lintels and sills relate to the older buildings. The glass curtain façade integrates a more modern style of architecture.

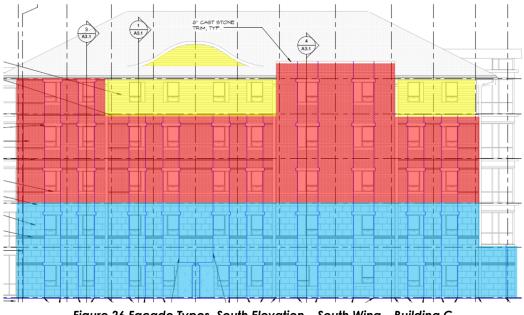
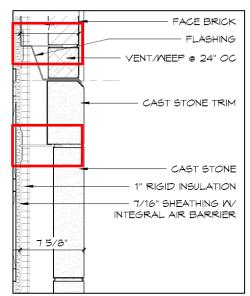
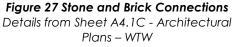




Figure 26 Façade Types, South Elevation – South Wing – Building C Details from Sheet A2.1C - Architectural Plans – WTW

The architect designed Building C and D with a masonry stone façade (blue), masonry brick façade (red) and a fiber cement panel façade (yellow). The fiber cement siding is only used on the fourth floor to accent the brick. The brick and stone masonry facades cover most of the buildings. There is an estimated 13,800 square feet of brick façade in Building C and 23,800 square feet in Building D. There is an estimated 9,100 square feet of stone façade in Building C and 14,200 square feet in Building D.

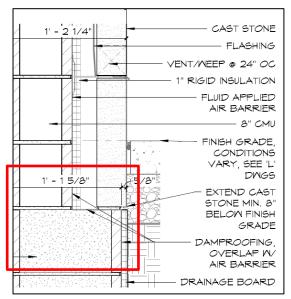


Figure 28 Stone Façade Foundation Details from Sheet A4.1C - Architectural Plans – WTW

Figure 27 shows the masonry ties that are used to secure the stone and brick masonry units. The ties are between every other course of stone and every three courses for brick. The brick sits on steel relief angles every floor. The one to two stories of stone masonry units sit on the CMU block foundation. CMU block is 14 inches thick underground. The ground level has 8 inch thick CMU block. Figure 28 shows the detail of how the stone façade is supported on 14 inch thick CMU block.

At first, a panelized EiFS façade was investigated as a substitute for the brick façade. EiFS stands for exterior insulation finishing system. It is also called synthetic stucco. The EiFS would save money and the panels would reduce schedule. Before the project started, the owner asked the construction manager to preform value engineering to reduce the project cost \$2 million. One of the CM's ideas was to change the brick to EiFS. This change would save approximately \$780,000. The owner rejected the EiFS, because it did not look close enough to the other masonry brick facades of buildings on campus.

Because EiFS was rejected, a more expensive product was investigated. Advanced Exterior Systems makes a thin brick panelized façade system. The thin brick system uses a ½ inch thick brick and mortar exterior. Behind the thin brick, a water proof skim coat, Durrock substrate and 2x10 metal studs provide the structure of the panel.

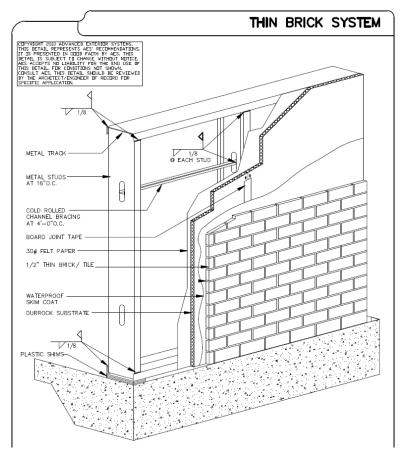


Figure 29 Thin Brick Panel Cut Sheet Courtesy of Advanced Exterior Systems

Figure 30 Convergence Center Courtesy of Advanced Exterior Systems

Figure 31 Thin Brick Panel Courtesy of Advanced Exterior Systems

The Convergence Center was shown on Advanced Exterior Systems website. The thin brick system looks very similar to masonry brick. After seeing Figures 30 and 31, it was determined that this system has a more natural appearance and would be more likely to be approved by the owner than the EiFS system. The next step was to have a conversation with Tony Murphy at Advanced Exterior Systems. He told me that the material cost of the thin brick panels was approximately \$35 per square foot. He also said that the EiFS equivalent would cost \$15 per square foot. From their website, they can erect approximately 900 square feet of panelized façade per an 8 hour day.

Because the stone masonry units have a foundation, a precast concrete panel was investigated as a substitute. The concrete panels would add too much load for the wood structured modular units. As seen in Figure 28, the stone is sitting on the foundation walls. This means the walls are not holding all of the precast panels. From RS Means, a precast concrete panel that is 4 inches thick and is about 200 square feet costs \$42.18 per square foot. 4 inches was chosen because the stone masonry units are 4 inches thick. The installation cost of the precast panels was \$4.18 per square foot.

Figure 32 Cast Stone Finish Courtesy of Craftstone 2000 Limited

Figure 33 Cast Stone Panels Courtesy of Modern Pre-Cast Inc.

The next step was to design the types of panels needed for this project. Figures 33 and 34 show the 9 different types of panels needed for both buildings. These panels were counted and the outcome is shown in Table 5. The total cost of the panelized systems and the masonry façade is displayed in Tables 6 and 7.

Figure 34 Types of Panels

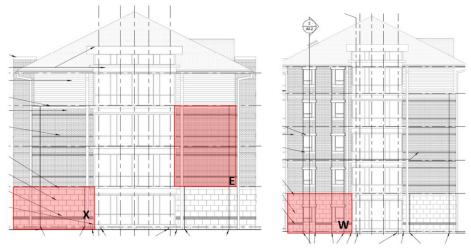


Figure 35 Types of Panels

Panel Type	Size (SF)	Total Number	Total Area (SF)
Thin Brick			
Α	165	111	18,315
В	148	16	2,368
С	250	40	10,000
D	162	20	3,240
E	280	10	2,800
Precast			
Z	380	24	9,120
Y	270	36	9,720
Х	170	16	2,720
W	215	40	8,600

Table 5 Area Panelized Facade

		Thin Bri	ck	Precast Concrete			
	SF	Cost/SF	Cost	SF	Cost/SF	Cost	
Building C	13,098.00	\$ 43.18	\$ 565,571.64	16,510.00	\$ 42.18	\$ 696,391.80	
Building D	23,625.00	\$ 43.18	\$ 1,020,127.50	13,650.00	\$ 42.18	\$ 575,757.00	
			\$ 1,585,699.14			\$ 1,272,148.80	

Table 6 Cost of Panelized Facade	Ş
----------------------------------	---

		Brick		Stone			
	SF	Cost/SF	Cost	SF	Cost/SF	Cost	
Building C	13,098.00	\$ 17.96	\$235,240.08	16,510.00	\$ 35.75	\$ 590,232.50	
Building D	23,625.00	\$ 17.96	\$424,305.00	13,650.00	\$ 35.75	\$ 487,987.50	
			\$659,545.08			\$ 1,078,220.00	

Table 7 Cost of Masonry Facade

The thin brick panelized façade cost an estimated \$1,585,699.14. The masonry brick was estimated to cost \$659,545.08. The thin brick façade costs \$926,154.06 more than the masonry brick. The precast concrete costs \$1,272,148.80. The cast stone masonry façade costs \$1,078,220.00. The precast concrete costs an estimated \$193,928.80 more than the cast stone.

These estimates show that the prefabricated systems do cost a fair amount more than standard masonry. They both should reduce the schedule though. First, the initial schedule of the masonry façade was examined. Figure 36 shows the plan for erecting the façade. Masonry started in the northwest corner of both buildings and proceeded around the building in the counter clockwise direction. This same plan was used for the panelized façade. Durations for the panelized façade were calculated using the information from Advanced Exterior System that they could construct 900 square feet of façade per a day.

Schedule can be found in Appendix F

Figure 36 Façade Construction Plan

The schedule shows that, in Building C, the prefabricated façade would take 21 days versus the 81 days that were scheduled by the construction manager for the masonry façade. The schedule also shows that, in Building D, the prefabricated façade would take 31 days versus the 120 days for the masonry façade. The difference is 60 days in Building C and 89 days in Building D.

FINAL RECOMMENDATION

The owner's expectations had a lot of influence on the type of façade substitutes that were chosen to examine. The owner did not want EiFS or anything that did not look like the other buildings on campus. This lead to the decision to research a thin brick panelized façade system instead of the masonry brick and a precast concrete panel system instead of masonry cast stone.

The thin brick panels cost about \$926,154.06 more than the masonry brick. The panelized system cost more than \$25 more per a square foot. The precast concrete system costs \$193,928.80 more than the masonry precast stone. There was a \$6 per a square foot difference between the precast concrete and masonry stone facades. The schedule showed that the thin brick and precast concrete systems reduced the schedule by 60 days in Building C and 89 days in Building D.

The cost estimates did not include the scaffolding that is needed for the masonry. The scaffolding extends up four floors, and must be erected and taken down. There would need to be a lot of scaffolding rented in order to work simultaneously on both buildings. The prefabricated systems use a crane to place the panels. The cost of the crane also is not included in the estimate. One crane could be rented for a total of 52 work days. Because there were roads made for the delivery of the modular units, the tractor trailer trucks could easily back the panels up to the crane.

The masonry crew will be large in order to complete enough work on both buildings to meet the substantial completion date. The crew increases site congestion and traffic and decreases site safety. The general condition costs would rise for more bathroom facilities and possibly more safety supervision.

Having said all of these extra general condition costs that are associated with the masonry façade, there is no way that their cost gets close to the \$1.12 million difference in cost between the two systems. It would be very hard to convince an owner to spend an extra \$1.12 million dollars on a comparable looking façade. The owner's expectations made the prefabricated façade system impossible to have a comparable price. According to the conversation with Tony Murphy, from Advanced Exterior Systems, the panelized EiFS system starts at \$15 per a square foot. This would be more comparable to the price of the masonry brick. The cost difference is just too high to switch to the prefabricated systems. The Construction Manager can have the masonry crew man-up to meet the schedule requirement.

ANALYSIS 4: MODULAR UNIT CONNECTION

INTRODUCTION

The quality inside the modular units should be better than any stick built building. They are built in factories, which takes out many variables such as weather. The one place where the quality of the units could be at question is at the joints between the units. These joints can be very hard to perfectly connect. There is a constructability challenge with setting modular units to avoid uneven joints.

RESEARCH

The first thing that was investigated was the actual modular setting procedure. Brian Laub, the project manager for the Construction Manager was contacted. He provided some insight on the process of modular subcontractor's setting techniques. The modular subcontractor had a 9 person crew. There was a crane operator, crane signaler, 3 men rigging the units and 4 men in lifts.

1. The first step is to move the modular unit next to the building.

Figure 37 Modular Unit on Trailer

2. The rigging crew men attach the lifting rig to the modular unit.

Figure 38 Modular Unit Crane Rigging

3. The crane lifts the modular unit close to its final placement. The crane operator is being helped by a signaler.

Figure 39 Modular Unit Moved by Crane

4. Crew members in lifts guide the unit to its final setting place. The crew members rotate and push the unit into the right position as the crane sets down the unit.

Figure 40 Men on Lifts Adjusting the Modular Unit

5. Crew men in lifts detach to rigging and start fastening the unit to the other units.

Figure 41 Anchoring Modular Unit

The main area for error during this process is when the men on lifts are adjusting the modular units. How do they know that their position is precise? The men on lifts can only do so much. Next is an example of how non precise setting could affect the gaps between units. Say the bottom unit is set with a 0.5° off. The next unit is set another 0.5° off. This problem compounds up all 4 floors. At the top, there would be a 10.5 inch gap between the units. This is a worst case scenario and obviously 10.5 inches would be noticeable. But just an 0.5° off for 4 stories makes a significant gap.

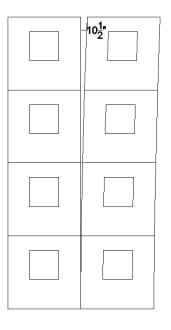


Figure 42 Modular Unit Setting Error

POTENTIAL SOLUTION

A potential solution is to a GPS system similar to the ones that are used in bulldozers. An 3D model of the site is loaded into the program. There is a sensor on the dozer that through GPS allows the program to know its location. The program then adjusts the blade to what the 3D model's design elevation. This system makes sitework so much faster. The dozer operator just drives and doesn't have to worry about the blade.

If this technology could be used with the crane operator and the men on lifts, then there would be less human error involved. The following are images of the Topcon 3D machine control system for dozers.

Figure 43 Operator Interface Courtesy of Topcon Inc.

Figure 44 GPS Transmitter Courtesy of Topcon Inc.

Figure 45 Sensor Courtesy of Topcon Inc. 37

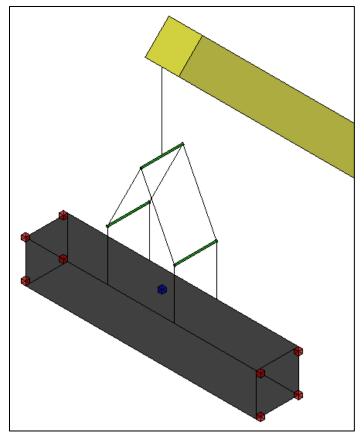


Figure 46 GPS Positioning System

Figure 46 shows the set up for a modular unit. Sensors would be placed on the corners of the unit and the GPS unit would be placed in the center of the unit. A 3D model of the construction project would be entered in the program. Then, the crane operator would enter in which unit in the model he is setting. While in the process of setting, the program can track the location of the unit. Once the unit is in the precise location according to the program where there is no angle or overhang, the men in lifts should shim and secure the unit. This system ensures that the modular unit is in the perfect location.

RESEARCH

The next step was to investigate how the modular subcontractor actually ensured precision in setting the modular units. The first check came in the factory. The dimensions of the structural shell of every unit were double checked before the other trades were allowed to start construction. This precision decreases the chance of overhang. After the modular units are completed, they are once again checked for plumbness. Usually the units stay plumb, because of the cross bracing in the structure. As the units leave the factory for transportation, they have been double checked for dimensions.

The next check comes in the order that they set the units. Figure 47 shows the order that units were set. The row furthest to the left is the most important during the process. The first one needs to be set in the exact right position and plumb, because the next unit will use the first one as a guide to the right location. If the first one is off, then the rest of the units will be off because they all use each other as references. The 3rd, 6th and 10th also must be placed plumb, but their location is already set by the unit below them. Because the units have all been checked for dimensions and 90 degree angles, there is no need to worry about the units not fitting in their correct spot.

10	13	15	16	
6	9	12	14	
3	5	8	11	
1	2	4	7	

Figure 47 Unit Setting Order

The final check comes from the crew men in lifts and on the ground. The crew makes sure that the units are directly on top of each other before nailing them together. Once again because the dimensions were checked in the factory, the units should fit perfectly on top of each other. If there is a small gap somewhere, the crew will add shims in between the units to get them to the right location.

FINAL RECOMMENDATION

After seeing how the modular subcontractor ensured precision, the GPS positioning system would really be helpful when setting the very first column of units. After the first column, the system would not be needed, because the crew can use the previously set units as a reference. The extreme precision in the factory really made it easy for the crew in the field to set the units. According to the Project Manager, Brian Laub, the men in the lifts did not even use levels before fastening the units. They didn't even check for plumbness, because they were so confident in the dimensions of the units. This attention to detail in the preconstruction phases paid dividends during construction.

Overall the system would help at least in the beginning of setting. The crew set on average 10 units a day. That equals one every 48 minutes. According to the Project Manager, the very first unit did not take over an hour. This means that the GPS positioning system would take off 12 minutes for each unit in the first column at the most. The total time saved would be 48 minutes. According to Topcon's website, the dozer GPS machine control system costs about \$14,000. That system only uses one sensor. The proposed modular unit GPS system uses 8 sensors.

When evaluating the GPS positioning system, the value of the system must be compared to the cost. Is a possible 48 minutes of reduced schedule worth over \$14,000? The GPS positioning system would not be recommend for this project. In a more detailed modular project with different sized units, this positioning system would be more helpful. After investigating the setting process of the project, there were very few, if any, problems with the joints and connections of the units. Everything that modular subcontractor did to ensure precision worked perfectly. The modular subcontractor, Simplex Industries Inc., should have their setting procedure down by now, because they have been in the modular construction business since 1971. The GPS system technology is just too expensive now to be used this way in construction. It may come along in the future, but it just isn't worth it now.

WORKS CITED

"3D-MC² Dozer." Topcon Positioning Systems, Inc. Web. 01 Apr. 2013.

"Advanced Exterior Systems :: Welcome." Advanced Exterior Systems :: Welcome. Web. 01 Apr. 2013.

Clarke, Cheryl R. "New Residence Hall to Be Open by Mid-January." - *SunGazette.com*. Sun Gazette, 16 Dec. 2011. Web. 01 Apr. 2013.

"College Search - Mansfield University of Pennsylvania." College Search - Mansfield University of Pennsylvania. Web. 01 Apr. 2013.

DuPree, Russell B. Catalog of STC and IIC Ratings for Wall and Floor Assemblies. Sacramento, CA: California Department of Health Services, n.d. Print.

"Mansfield University - Developing Tomorrow's Leaders." Mansfield University - Developing Tomorrow's Leaders. Web. 01 Apr. 2013.

Mehta, Madan, Walter Scarborough, and Diane Armpriest. Building Construction: Principles, Materials, and Systems. Boston: Prentice Hall, 2010. Print.

Minimum Design Loads for Buildings and Other Structures. Reston, VA: American Society of Civil Engineers/Structural Engineering Institute, 2006. Print.

"Modular Homes." Modular Homes. Web. 01 Apr. 2013.

Phillip, Waier, Charest Adrian, and RSMeans Eng Dept. "RS Means Building Construction Costs 2013." *RS Means Building Construction Cost Data 2013 Book*. N.p., 28 Sept. 2012. Web. 01 Apr. 2013.

Salter, Charles M. Acoustics: Architecture, Engineering, the Environment. San Francisco [Calif.: William Stout, 1998. Print.

Steel Construction Manual. [Chicago, III.]: American Institute of Steel Construction, 2011. Print.

Thornley, B. K., and Edward S. Hoffman. *CRSI Handbook*. Schaumburg, IL (933 N. Plum Grove Rd., Schaumburg 60195): Concrete Reinforcing Steel Institute, 1982. Print.

"What Can I Study?" Natural Gas Production and Services AAS. N.p., n.d. Web. 01 Apr. 2013.

ACKNOWLEDGEMENTS

Project Team Members

Brian Laub – Wohlsen Construction

Bob Hopkins – Wohlsen Construction

Melissa Scaramuzzino – Wohlsen Construction

David Cummings – Mansfield Auxiliary Corporation

Brian DiPietro – WTW Architects

Mark Russell – Simplex Industries

Special Thanks for Support

Ciro Gambone - Wohlsen Construction

Louis Gonsauls – Wohlsen Construction

Tony Murphy – Advanced Exterior Systems

AE Faculty

Ray Sowers

Linda Hanagan

Michelle Vigeant

APPENDIX A

STRUCTURAL BREADTH INFORMATION

$$W 10 \times 6\%$$

$$l = 22! 6"$$

$$W_{v} = (1.2)(6psf + \frac{68}{9!} + 10psf) + 1.6(100 psf)$$

$$W_{v} = 189 psf$$

$$V_{max} = 189 psf \times 9' \times \frac{22.5'}{2} = 19.1^{L} \times 147^{L} / M_{max} = \frac{1}{2}(19.1^{L})(\frac{22.5}{2}) = 107.^{L} \times 320^{L} / M_{max} = \frac{270'}{240} = 1.13^{H}$$

$$M_{max} = \frac{270'}{240} = 1.13^{H}$$

$$M_{max} = \frac{5(189'\times9'\times1728)(22.5')^{2}}{374(29,000)(394 in4)} = 0.73^{H} \times 0.75^{H}$$

$$K_{Iive} = \frac{5(1289'\times9'\times1728)(22.5)^{4}}{384(29,000,000)(394 in4)}$$

$$\Delta_{\text{Total}} = \frac{270}{360} = 0.75^{\circ}$$

3

.

1.375" 9,25 Volume of wood in a square foot $\left(\frac{1.375'' \times 1' \times 1'}{12''} + \left(\frac{12''}{16''} \right) \left(\frac{9.25''}{12''} \times \frac{1.75''}{12''} \times 1' \right) = 0.199 \text{ft}^3$ Wood weighs: 30 lbs/ft3 Weight per SF 30 165 × .199 ft3 = 6 105/5F

10 in thick slab from Zway slab table
pg 9-35 of CRS1
Max span of ZGA
DL:
$$hSO(\frac{12}{10}) = 125 psf$$

10 psf Misc DL
L: $hSO(\frac{12}{10}) = 125 psf$
10 psf Misc DL
L: $hOPSF$ (Residential Public Rooms) pg 42 404 notes
 $\omega = 1.2(125+10)+1.6(100) = 322 psf$
 $\frac{12^{10}}{10}$
 $\frac{12^{10}}{10}$
 $\frac{12^{10}}{12}$
 $\frac{12^{10}}{12}$
 $\frac{12^{10}}{12}$
 $\frac{112}{12} = 0.31$ $33 = 34^{11}$ $\pm 5 rebor$
 $A_{s} = 0.009 (12) (10^{11} - 3/4^{11} - 3/4^{11}) = 1.13$
 $\pm 5 A_{s} = 0.31$ $400 is congestion + deflection problems$
 $\frac{1.12}{12} = 0.31$ $33 = 34^{11}$ $\pm 5^{1}s \oplus 3^{10}$ O.
 $A_{s} = .31 \times \frac{12^{11}}{3^{10}} = 1.24 in^{2}$
 $b = 12^{11}$
 $h = 10^{11}$
 $d = 10^{-\frac{3}{4}} - 57_{2} = 8.94^{11}$
 $a = A_{s}fu_{s} = (a0ks:(1.24in^{2})) = 1.82^{11}$

Mn= CD(1.24 in2) (8.94" - 1.82") Mn= 597'k Mu= wlz (322)(26') = 27.2'K Conservative (all positive moment) \$Mn= 0.9 (597 12)= 537.31K Mu= 27.2'K ≤ qMn = 537.3'K /

Occupancy or Use	Uniform psf (kN/m ²)	Cone, lb (kN)
Office buildings		Se),
 File and computer rooms shall be designed for heavier loads based on anticipated occupancy. 		
Lobbies and first-floor corridors	100 (4.79)	2,000 (8,90)
Offices	50 (2.40)	2,000 (8,90)
Corridors above first floor	80 (3,83)	2,000 (8,90)
Penal institutions		
Cell blocks	40 (1.92)	
Corridors .	100 (4.79)	
Recreational uses		
Bowling alleys, poolrooms, and similar uses	75 (3.59)"	
Dance halls and ballrooms	100 (4.79)"	
Gymnasiums	100 (4.79)*	
Reviewing stands, grandstands, and bleachers	100 (4.79)**	
Stadiums and arenas with fixed seats (fastened to the floor)	60 (2.87) ^{nk}	
Residential		
One- and two-family dwellings	11	
Uninhabitable attics without storage	10(0.48)'	
Uninhabitable attics with storage	$20(0.96)^{\mu}$	
Habitable attics and sleeping areas	30 (1,44)	
All other areas except stairs	40 (1.92)	
All other residential occupancies Private rooms and corridors serving them	40 (1.92)	
Public rooms' and corridors serving them	100(1.92)	
Roofs		
Ordinary flat, pitched, and curved roofs	20 (0,96)"	
Roots used for roof gardens	100 (4.79)	
Roofs used for assembly purposes	Same as occupancy served	
Roofs used for other occupancies		
Awnings and canopies		
Fabric construction supported by a skeleton structure	5 (0.24) nonreducible	300 (1.33) applied to skeleton structure
Screen enclosure support frame	5 (0.24) nonreducible and	200(0,89) applied to
Second the second second	applied to the roof frame members only, not the screen	supporting roof frame members only
All other construction	20 (0.96)	
Primary roof members, exposed to a work floor		
Single panel point of lower chord of roof trusses or any point along primary structural members supporting roofs over		2,000 (8,9)
manufacturing, storage warehouses, and repair garages		200771-225
All other primary roof members All roof surfaces subject to maintenance workers		300 (1,33) 300 (1,33)
Schools		1007 (1455/1
Classrooms	40 (1.92)	1,000 (4.45)
Classicionis Corridors above first floor	80 (3.83)	1,000 (4,45)
First-floor corridors	100 (4,79)	1,000 (4,45)
		200 (0,89)
Schudes, skylight fibs, and accessible conducts		
Scuttles, skylight ribs, and accessible ceilings Sidewalks, vehicular driveways, and vards subject to trucking	250 (11.97)22	8.(110) (35.60)
Setutes, skylight ribs, and accessible cernings Sidewalks, vehicular driveways, and yards subject to trucking Stairs and exit ways	250 (11.97)** 1(K) (4.79)	8,000 (35,60) ² 300:

 Table 4-1 (Continued)

~

3-25

Copyright C American Institute of Steel Construction, Inc.

permission. All rights reserved

Reprinted with

W-SHAPE SELECTION TABLES

34

Table 3-2 (continued) Z_x W-Shapes Selection by Zx

3-26

 $F_v = 50$ ksi

DESIGN OF FLEXURAL MEMBERS

Mar Do VoMax Mrx Do VoMex BF/220 40BF Vir Dy Oalin 4 Z_X Lp 1x Shape kip-ft kip-ft kip-ft kip-ft kips kips. klps kips In.7 ASD LRFD ASD LRFD ASD LRFD ΪŤ. ft in.4 ASD LRFD 4.31 12.3 510 106 159 66.5 166 249 101 151 8.14 12.3 W18×35 241 151 3.80 5.80 6.89 22.4 348 81,1 122 W12×45 64.2 160 101 148 6.24 9.36 5.37 15,2 448 93.8 141 ₩16×36 64.0 160 240 98.7 87.4 131 385 W14×38 61.5 153 231 95.4 143 5.37 8 20 5.47 16.2 3.71 8.97 272 68.0 102 60.4 151 95.4 143 2.46 31.6 W10×49 227 89.3 134 W9×58 59.8 149 224 90.8 137 1.70 2.55 7.42 41.6 228 5.54 6.85 21.1 307 70.2 105 57.0 142 214 89.9 135 3.66 W12×40 7.10 248 70.7 106 137 85.8 129 2.59 3.89 26.9 W10×45 54.9 206 340 79.8 120 W14×34 54.6 136 205 84.9 128 5.01 7.55 5.40 15.6 54.0 203 82.4 124 10.3 4.13 11.8 375 87.5 131 135 6,86 W16×31 5.44 16.6 285 75.0 113 51.2 128 192 79.6 120 4.34 6.45 ₩12>35 69 0 102 122 75 1 113 1.67 2.55 7.35 35.2 184 W8×48 49.0 184 74.5 112 W14×30 47.3 118 177 73.4 110 4.63 6.95 5.26 14.9 291 62,5 93.7 73.5 111 2.53 3.78 6.99 24.2 209 W10×39 46.8 176 3.96 11.2 301 70.5 105 44.2 110 165 67.1 101 5.93 8.98 W16×26 87.4 101 3.97 5.96 5.37 15.6 238 64.0 05.9 43.1 108 162 ₩12×30 70.9 106 W14x26 40.2 100 151 61.7 92.7 5.33 8.11 3.81 11.0 245 W8×40 39.8 99.3 149 62.0 93.2 1.64 2.46 7.21 29.9 146 59.4 89.1 6.85 21.8 171 66.4 84.7 38.8 96.8 146 61.1 91.9 2.39 3.52 W10×33 56.1 84.2 5.33 14.9 204 37.2 92.8 58.3 87.7 3.61 5.46 W12×26 140 63.0 85.1 3.08 4.61 4.84 16.1 170 94.5 W10×30 36.6 91.3 137 56.6 54.5 81.9 1.82 2.43 7.17 27.0 127 50.3 75.5 W8×35 34.7 86.6 130 33.2 82.8 50.6 76.1 4.78 7.27 3.67 10.4 199 63.0 94.5 W14×22 125 144 53.6 80.3 W10×26 31.3 78.1 117 48.7 73.2 2.91 4.34 4.80 14.9 30.4 75.8 114 48.0 72.2 1.58 2.37 7.18 24.8 110 45.6 68.4 W8×31 64.0 95.9 29.3 73.1 7.06 3.00 9.13 156 W12-22 110 44.4 66.7 4.68 5.72 21.0 98.0 45.9 68.9 W8×28 27.2 87.9 102 124 63.8 1 57 2.50 64.9 40.5 60.9 2.68 4.02 4.70 13.8 118 49.0 73.4 W10×22 26.0 97.5 4.27 6.43 2.90 8.61 130 57.3 86.0 61.6 92.6 37.2 55.9 W12×19 24.7 58.3 2.40 5.69 18.9 82.7 38.9 W8x24 23.1 57.6 86.6 36.5 54,9 1.60 51.0 76.5 96.3 W10×19 21.6 53.9 81.0 32.8 49.4 3.18 4.76 3.09 9.73 62.1 50.9 76.5 31.8 47.8 1.85 2.77 4.45 14.8 75.3 41.4 WBx21 20.4 LRFD Shape exceeds compact limit for flexure with $F_{y} = 50$ ksi. **D**SA Shape does not meet the h/t_w limit for shear in AISC Specification Section G2.1(a) with $F_y = 50$ kst; therefore, $\phi_{y} = 0.90$ and $\Omega_{y} = 1.67$. $\Omega_{\Phi} = 1.67$ 0.6 0.90 $\Omega_{v} = 1.50 \quad \phi_{v} = 1.00$

F _y =	50 ksi		1		1-S	hap	es	ed)			Ζ	'x
				Se	lecti	on b	y Z _X					
Shape	Zĸ	Mps/12a klip-11	Ng Mpa kip-ft	M _{rx} /Ω _ð kip-tt	∂ _b M _{rz} kip-ft	BF/Ωb klps	u _{th} BF klps	Lp	Lr	I _X	Mar/10y kips	o _v V _u r kips
onape						ASD	LAFD	n	ft	in.4	ASD	LRFD
	In. ³	ASD	LRFD	ASD	LRFD	10000	16.3		17.4	1140	156	234
W21×55	126	314	473	192	289	10.8 5.31	8.05	6.11 8.76	31.0	795	128	192
N14×74	126	314	473	196	294	9.62	14.4	5.93	18.2	984	151	227
N18×60	123	:107	461 446	189 187	284 281	3.78	14.4	10.8	39.9	662	117	175
N12×79	119	297	431	180	270	5.19	7.81	8.69	29.3	722	116	174
N14×68 N10×88	115 113	282	424	172	259	2.62	3.94	9.29	51.2	534	131	196
						11-11-11-12-					1 1.15	
W18×55	112	279	420	172	258	9.15	13.8	5.90	17.6	890	141	212
W21×50	110	274	413	165	248	12.1	18.3	4.59	13.6	984	158	237
N12×72	108	269	405	170	256	3.69	5 56	10.7	37.5	597	106	159
W21×48	107	205	398	162	244	8.89	14.8	6.09	16.5	959	144	216
W16×57	105	262	394	.161	242	7.98	12.0	5.65	18.3	758	141	212
¥14×61	102	254	383	161	242	4.93	7.48	8.65	27.5	640	104	156
N18×50	101	252	379	155	233	8.76	13.2	5.83	16.9	800	120	192
N10×77	97.6	244	366	150	225	2.50	3.90	9.18	45.3	455	112	169
N12×65 ⁴	96.8	237	356	154	231	3,58	5 39	11.9	35.1	533	94.4	142
W21×44	95.4	238	358	143	214	11.1	16.8	4,45	13.0	843	145	217
M16×50	92.0	230	345	141	213	7.69	11.4	5.62	17.2	659	124	186
N18×46	90.7	226	340	138	207	9.63	14.5	4.56	13.7	712	130	195
№14×53	87.1	217	327	136	204	6,22	7.93	6,78	22.3	541	103	154
N12×58	86.4	216	324	138	205	3.82	5.69	8.87	29.8	475	87 8	132
W10×68	85.3	213	320	132	199	2,58	3,85	9.15	40.6	394	97.8	147
N16×45	82.3	205	509	127	191	7,12	10.8	5.55	16.5	586	111	167
N18×40	78.4	196	294	119	180	8,94	13.2	4.49	13.1	612	113	159
N14×48	78.4	196	294	123	184	5.09	7.67	6.75	21.1	484	93.8	141
N12×53	77.9	194	292	123	185	3.65	5.50	8.76	28.2	425	83.5	125
N10×60	74.6	186	280	176	175	2,54	3.82	9.08	36.6	341	85.7	129
W16×40	73.0	182	274	113	170	6.67	10.0	5.55	15.9	518	97.6	146
N12×50	71.9	102	270	113	169	3.97	5.98	6.92	23.8	391	90.3	135
W8×67	70.1	175	263	105	159	1.75	2.59	7.49	47.6	272	103	154
#14×43	69.6	174	261	109	164	4,82	7.28	6.68	20.0	428	83.6	125
W10×54	66.6	166	250	105	158	2.40	3.75	9.04	33.6	303	74.7	112
	0010		AL.Y V									
ASD	LRFD	Shape e	exceeds c	ompact an	nil for the	cure with f	y = 50 ks	i.				
Ω _k = 1.67 Ω _v = 1.50	na 0.90 Sy = 1.06											

	T PLA						•	•	SQUA	RE EI	DGE F	ANEL				sq	UAR		RIOR	PANE	EL		4,00 e 60 l	
PAN	Factored			Sector Contents	anel Mo	ments		Rein	forcing Ba	rs			Ind Pane	L. n	(2)	(3)	(1)		Reinforc	ing Bars				
CC. Cols. $f_1 = \ell_2$	Superim- posed Load		i) Square umn	-M Ext.	+M Int.	-M 1st int.	Col	Each Iumn Strip	mil High wind	Ea Middle	e Strip	<u> </u>	Steel (psf) ation of P		Span		Min. Sq. Col.	Colum	n Strip	Middle	Strip		Steel (psi ation of P	
(R)	(psi)	(in.)	Yr	11/2 8/5-30 / 40	(fl-kip)	(ft-kip)	Top Ext. +	Bottom	Top Int	Bottom	Top Int.	E	EC	C	сс. (ft)	Load (psf)	(in.)	Тор	Bottom	Тор	Bottom	1	IE	1. 20
10 in.	= TOTAL	THICK	NESS C	F SLA	B								0.833 c	:.f./s.f.	10 in.	= TOT	AL THIC	KNESS	OF SL	AB		0.1	833 c.f.,	/s
20 20 20 20 20 20 20 20 20	50 100 150 200 250 300 350	10 13 16 18 21 24 26	0.860 0.836 0.794 0.797 0.752 0.643 0.623	48 59 68 78 87 96 104	96 118 137 156 175 192 209	129 159 184 210 235 259 281	9-#5 1 9-#5 2 9-#5 2 9-#5 3 9-#5 3 9-#5 1 9-#5 1	7-#5 7-#5 7-#5 8-#5 9-#5 10-#5 8-#6	9-#5 11-#5 12-#5 10-#6 11-#6 9-#7 10-#7	7-#5 7-#5 7-#5 7-#5 7-#5 8-#5	7-#5 7-#5 7-#5 7-#5 7-#5 7-#5 7-#5	2.22 2.26 2.34 2.53 2.68 2.79 3.05	2.22 2.28 2.36 2.55 2.69 2.82 3.07	2.23 2.28 2.36 2.57 2.65 2.82 3.03	20 20 20 20 20 20 20 20 20	50 100 150 200 250 300 350	10 10 15 18 19 21 24	9-#5 10-#5 12-#5 9-#6 11-#6 16-#5 10-#7	7-#5 7-#5 7-#5 7-#5 7-#5 7,#5 8-#5	7-#5 7-#5 7-#5 7-#5 7-#5 7-#5 7-#5	7-#5 7-#5 7-#5 7-#5 7-#5 7-#5 7-#5	2.21 2.27 2.42 2.49 2.69 2.70 3.04	2.21 2.28 2.42 2.52 2.68 2.73 3.04	Manual Financial and a submatching space space statistics and a fight
21 21 21 21 21 21 21 21	50 100 150 200 250 300 350	11 15 18 21 24 26 29	0.864 0.802 0.780 0.738 0.714 0.704 0.656	55 68 79 90 100 110 119	111 136 158 179 201 220 238	149 183 212 241 270 296 320	10-#5 1 10-#5 1 10-#5 2 10-#5 2 10-#5 3 10-#5 3 11-#5 2	8-#5 8-#5 9-#5 7-#6 8-#6 12-#5 7-#7	10-#5 12-#5 10-#6 16-#5 10-#7 11-#7 12-#7	8-#5 8-#5 8-#5 8-#5 8-#5 8-#5 9-#5	8-#5 8-#5 8-#5 8-#5 8-#5 8-#5 8-#5 8-#5	2.33 2,43 2.57 2.72 2.89 3.01 3.28	2.33 2.45 2.59 2.73 2.92 3.05 3.31	2.31 2.45 2.56 2.65 2.87 3.18 3.35	21 21 21 21 21 21 21 21	50 100 150 200 250 300 350	10 10 15 18 20 24 27	10-#5 12-#5 13-#5 11-#6 12-#6 10-#7 20-#5	8-#5 8-#5 8-#5 8-#5 8-#5 8-#5 9-#5	8-#5 8-#5 8-#5 8-#5 8-#5 8-#5	8-#5 8-#5 8-#5 8-#5 8-#5 8-#5 8-#5 8-#5	2.35 2.47 2.55 2.74 2.84 3.00 3.14	2.35 2.47 2.57 2.74 2.88 3.04 3.20	An used it orthogonal course and the second course
22 22 22 22 22 22 22 22 22 22	50 100 150 200 250 300 350	13 17 20 23 26 29 32	0.830 0.785 0.747 0.730 0.691 0.673 0.632	63 77 91 103 114 124 134	127 155 181 205 228 249 268	170 208 244 276 307 335 361	10-#5 1 10-#5 2 10-#5 2 10-#5 3 10-#5 3 11-#5 3 12-#5 2	8-#5 8-#5 10-#5 8-#6 12-#5 13-#5 10-#6	11-#5 10-#6 16-#5 10-#7 11-#7 12-#7 10-#8	8-#5 8-#5 8-#5 8-#5 9-#5 10-#5	8-#5 8-#5 8-#5 8-#5 8-#5 8-#5 8-#5	2.29 2.40 2.58 2.75 2.95 3.12 3.41	2.29 2.41 2.59 2.78 2.95 3.16 3.44	2.31 2.37 2.52 2.75 3.03 3.27 3.54	22 22 22 22 22 22 22 22 22 22	50 100 150 200 250 300 350	10 12 15 19 23 27 31	11-#5 13-#5 11-#6 17-#5 11-#7 11-#7 12-#7	8-#5 8-#5 8-#5 8-#5 9-#5 10-#5	8-#5 8-#5 8-#5 8-#5 8-#5 8-#5	8-#5 8-#5 8-#5 8-#5 8-#5 8-#5 8-#5 8-#5	2.30 2.42 2.60 2.69 2.98 3.09 3.30	2.30 2.44 2.60 2.72 2.98 3.12 3.33	the summary of star and source or star good and so that the
23 23 23 23 23 23 23 23 23	50 100 150 200 250 300 350	15 19 22 26 29 32 36	0.836 0.798 0.737 0.668 0.656 0.620 0.612	72 88 102 115 128 140 151	144 175 204 231 256 280 301	194 236 275 311 345 378 406	11-#5 3 11-#5 4 11-#5 2 11-#5 2 11-#5 3 12-#5 2 13-#5 2	9-#5 9-#5 8-#6 12-#5 10-#6 8-#7 16-#5	13-#5 11-#6 13-#6 11-#7 13-#7 11-#8 12-#8	9-#5 9-#5 9-#5 9-#5 9-#5 10-#5 8-#6	9-#5 9-#5 9-#5 9-#5 9-#5 8-#5 9-#5	2.47 2.62 2.81 3.00 3.20 3.47 3.70	2.49 2.62 2.83 3.00 3.23 3.49 3.73	2.48 2.53 2.80 3.02 3.26 3.47 3.76	23 23 23 23 23 23 23 23 23	50 100 150 200 250 300 350	10 13 18 22 26 30 34	12-#5 11-#6 17-#5 11-#7 12-#7 13-#7 13-#7	9-#5 9-#5 9-#5 9-#5 9-#5 10-#5 8-#6	9-#5 9-#5 9-#5 9-#5 9-#5 9-#5 9-#5	9-#5 9-#5 9-#5 9-#5 9-#5 9-#5 9-#5	2.48 2.70 2.79 3.06 3.20 3.40 3.69	2.49 2.70 2.81 3.06 3.22 3.42 3.73	a obtobulences prevent from a conversion of a conjuster way o
24 24 24 24 24 24 24 24 24	50 100 150 200 250 300 350	17 21 24 28 32 35 40	0.804 0.769 0.727 0.723 0.667 0.641 0.611	81 99 115 130 144 157 167	163 197 230 260 287 315 333	219 266 310 350 387 423 448	11-#5 3 11-#5 4 11-#5 3 12-#5 5 13-#5 4 14-#5 3 15-#5 2	9-#5 8-#6 12-#5 10-#6 8-#7 9-#7 8-#8	11-#6 13-#6 11-#7 13-#7 11-#8 12-#8 13-#8	9-#5 9-#5 9-#5 9-#5 10-#5 8-#6 12-#5	9-#5 9-#5 9-#5 9-#5 9-#5 10-#5	2.46 2.69 2.84 3.10 3.35 3.71 3.97	2.48 2.71 2.85 3.13 3.37 3.74 4.02	2.43 2.71 2.90 3.16 3.40 3.78 4.13	24 24 24 24 24 24 24 24 24	50 100 150 200 250 300 350	11 15 20 24 29 33 40	14-#5 12-#6 11-#7 12-#7 13-#7 11-#8 12-#8	9-#5 9-#5 9-#5 10-#5 10-#5 8-#6 12-#5	9-#5 9-#5 9-#5 9-#5 9-#5 9-#5 9-#5	9-#5 9-#5 9-#5 9-#5 9-#5 9-#5 9-#5	2.48 2.67 2.92 3.11 3.24 3.53 3.74	2.51 2.69 2.92 3.14 3.28 3.56 3.79	and the state of t
25 25 25 25 25 25 25 25 25	50 100 150 200 250 300 350	18 23 27 31 35 39 46	0.810 0.753 0.704 0.671 0.617 0.611 0.610	92 111 128 145 160 173 181	183 221 257 290 321 346 361	247 298 346 390 432 466 486	12-#5 3 12-#5 4 12-#5 4 13-#5 4 14-#5 3 15-#5 3 16-#5 2		16-#5 14-#6 13-#7 14-#7 12-#8 13-#8 14-#8	9-#5 9-#5 9-#5 10-#5 11-#5 12-#5 9-#6	9-#5 9-#5 9-#5 9-#5 10-#5 10-#5 11-#5	2.46 2.73 2.97 3.23 3.58 3.84 4.10	2.47 2.75 3.01 3.25 3.60 3.89 4.13	2.44 2.69 3.04 3.29 3.75 4.14 4.28	25 25 25 25 25 25 25 25 25 25	50 100 150 200 250 300 350	12 17 22 27 32 39 48	16-#5 14-#6 12-#7 13-#7 12-#8 12-#8 12-#8 13-#8	9-#5 9-#5 9-#5 11-#5 12-#5 12-#5 9-#6	9-#5 9-#5 9-#5 9-#5 10-#5 10-#5	9-#5 9-#5 9-#5 9-#5 9-#5 9-#5 9-#5	2.49 2.72 2.91 3.18 3.55 3.62 3.89	2.49 2.72 2.94 3.21 3.56 3.66 3.94	Analysis and he approximates to any set of the

	HOUT	SUC		248.00	5.527.527		12000000	Dete	SQUA	A 1996 6 12		Lauranteen Statute 2018.00	End Pane		(2)	(3)	(1)	1	1. Jan 19 19 19 19 19 19 19 19 19 19 19 19 19	PAN			
SPAN cc. Cols. $\ell_1 = \ell_2$	Factored Superim- posed Load	Min,	1) Square umn Yr	-M Ext. (ft-kip)	Panel M +M Int. (fl-kip)	-M 1st int. (ft-kip)	A Co Top Ext +	Each lumn Strij Bottom	lorcing Ba P (Top Int	Ea	ch Strip GTop Int		Steel (psf ation of P EC	1	Span cc. (ft)	Load (psf)	Min. Sq. Col. (in.)	Colum E Top		Middle Ht Top	Strip J Bottom	and the same	Steel (p ation of IE
10 in.			NESS C										0,833 a	.f./s.f.	10 in.	= TOT	AL THIO	KNESS	OF SL	AB		0,	833 c.
26 26 26 26 26 26 26 26 26	50 100 150 200 250 300 350	20 25 29 34 38 45 52	0.791 0.723 0.696 0.617 0.658 0.610 0.609	102 123 143 161 178 188 196	204 247 286 322 355 376 392	275 332 385 434 478 507 528	12-#5 4 12-#5 4 13-#5 4 14-#5 3 16-#5 5 12-#6 2 17-#5 2	11-#5 13-#5 11-#6 9-#7 10-#7 14-#6 9-#8	13-#6 12-#7 14-#7 12-#8 17-#7 14-#8 15-#8	10-#5 10-#5 11-#5 9-#6 13-#5	10-#5 10-#5 11-#5	2.59 2.84 3.11 3.46 3.81 3.99 4.32	2.61 2.85 3.13 3.48 3.84 4.02 4.37	2.55 2.79 3.13 3.61 4.05 4.20 4.43	26 26 26 26 26 26 26 26	50 100 150 200 250 300 350	14 19 25 30 36 45 55	17-#5 15-#6 13-#7 12-#8 13-#8 13-#8 13-#8 14-#8	10-#5 10-#5 10-#5 12-#5 9-#6 13-#5 10-#6	10-#5 10-#5 10-#5 10-#5 10-#5 10-#5 11-#5	10-#5 10-#5 10-#5 10-#5 10-#5 10-#5 10-#5	2.60 2.85 3.06 3.49 3.73 3.78 4.09	2.62 2.87 3.09 3.49 3.74 3.82 4.14
27 27 27 27 27 27 27 27 27	50 100 150 200 250 300 350	22 27 32 36 43 51 58	0.760 0.710 0.639 0.671 0.610 0.609 0.608	113 137 159 179 193 204 212	227 274 317 358 386 407 423	305 369 427 481 520 548 570	12-#5 4 12-#5 5 14-#5 3 16-#5 5 12-#6 2 13-#6 1 19-#5 1	12-#5 <u>11-#6</u> <u>9-#7</u> 10-#7 11-#7 <u>9-#8</u> 12-#7	20-#5 13-#7 12-#8 14-#8 15-#8 16-#8 16-#8	10-#5 11-#5 9-#6 10-#6	10-#5 10-#5 11-#5 12-#5 12-#5 9-#6	2.60 2.92 3.26 3.69 4.04 4.24 4.47	2.62 2.93 3.28 3.74 4.10 4.31 4.52	2.61 2.91 3.29 3.93 4.26 4.55 4.72	27 27 27 27 27 27 27 27 27 27	50 100 150 200 250 300 350	16 21 33 42 52 63	14-#6 13-#7 19-#6 13-#8 14-#8 14-#8 14-#8 15-#8	10-#5 10-#5 12-#5 9-#6 10-#6 11-#6 11-#6	10 <i>-</i> #5 10 <i>-</i> #5 10 <i>-</i> #5 11 <i>-</i> #5 11 <i>-</i> #5 12 <i>-</i> #5	10-#5 10-#5 10-#5 10-#5 10-#5 10-#5 10-#5	2.66 2.93 3.18 3.58 3.87 4.03 4.26	2.66 2.93 3.22 3.62 3.91 4.10 4.30
28 28 28 28 28 28 28 28 28 28	50 100 150 200 250 300 350	24 29 34 41 48 56 64	0.743 0.698 0.686 0.611 0.609 0.608 0.607	126 151 175 195 209 220 229	252 303 350 390 418 440 457	339 407 472 525 563 592 616	13-#5 4 13-#5 5 15-#5 6 17-#5 4 13-#6 1 19-#5 3 20-#5 1	11-#7 12-#7	16-#6 15-#7 13-#8 15-#8 16-#8 17-#8 18-#8	11-#6	10-#5 10-#5 12-#5 12-#5 13-#5	2.64 3.01 3.42 3.88 4.19 4.40 4.67	2.65 3.03 3.44 3.90 4.24 4.47 4.75	2.63 3.07 3.54 4.03 4.46 4.68 4.93	28 28 28 28 28 28 28 28 28 28	50 100 150 200 250 300 350	17 24 30 37 49 60 70		10-#5 11-#5 13-#5 10-#6 11-#6 11-#6 16-#5	10-#5 10-#5 10-#5 11-#5 12-#5 12-#5 12-#5	10-#5 10-#5 10-#5 10-#5 10-#5 10-#5 11-#5	2.63 3.00 3.43 3.70 4.02 4.08 4.33	2.65 3.02 3.43 3.74 4.06 4.15 4.42
29 29 29 29 29 29 29 29	50 100 150 200 250 300 350	26 32 37 45 54 63 71	0.711 0.674 0.638 0.610 0.608 0.607 0.607	139 167 192 212 226 236 245	277 333 385 423 451 472 490	373 448 518 570 607 635 659	13-#5 4 15-#5 5 17-#5 4 19-#5 3 14-#6 3 15-#6 0 16-#6 0	10-#7 20-#5 12-#7 10-#8 11-#8	13-#7 13-#8 15-#8 16-#8 17-#8 18-#8 19-#8	11-#5 12-#5 10-#6 11-#6 16-#5 12-#6 17-#5	11-#5 11-#5 13-#5 13-#5 10-#6	2.85 3.29 3.71 4.07 4.34 4.72 4.90	2.86 3.32 3.74 4.12 4.39 4.77 4.97	2,85 3.38 3.82 4.31 4.55 4.94 5.18	29 29 29 29 29 29 29 29	50 100 150 200 250 300 350	19 26 33 43 55 67 78	15-#7 14-#8 15-#8 16-#8 17-#8	11-#5 12-#5 10-#6 11-#6 16-#5 12-#6 12-#6	12 - #5 12 - #5	11-#5 11-#5 11-#5 11-#5 11-#5 11-#5 11-#5	2.90 3.15 3.62 3.92 4.10 4.40 4.46	2.89 3.19 3.65 3.96 4.14 4.45 4.55
30 30 30 30 30 30 30 30	50 100 150 200 250 300 350	28 34 41 50 60 69 78	0.724 0.665 0.663 0.609 0.608 0.607 0.606	152 183 210 228 242 254 262	305 366 420 457 484 507 523	410 493 565 615 652 683 704	14-#5 6 16-#5 5 19-#5 6 20-#5 5 15-#6 3 16-#6 2 23-#5 1	16-#5 14-#6 12-#7 10-#8 11-#8 11-#8 10-#9	15-#7 14-#8 16-#8 18-#8 19-#8 20-#8 20-#8	16-#5 12-#6 10-#7	11-#5 13-#5 10-#6	2.92 3.37 3.96 4.19 4.57 4.93 5.16	2.94 3.42 3.97 4.26 4.64 4.99 5.23	2.90 3.55 4.00 4.44 4.81 5.25 5.60	30 30 30 30 30 30 30 30	50 100 150 200 250 300 350	21 28 36 49 62 74 86		11-#5 13-#5 11-#6 16-#5 12-#6 10-#7 10-#7	11-#5 11-#5 12-#5 13-#5 13-#5 10-#6 10-#6	11-#5 11-#5 11-#5 11-#5 11-#5 12-#5 12-#5	2.89 3.29 3.76 3.96 4.22 4.64 4.70	2.91 3.32 3.79 4.03 4.29 4.72 4.72
31 31 31 31 31 31 31 31 31	50 100 150 200 250 300 350	30 36 46 56 66 75 85	0.708 0.695 0.610 0.608 0.607 0.606 0.606	167 200 226 245 259 271 279	334 401 452 489 519 542 558	450 540 608 658 699 730 752	15-#5 6 18-#5 7 14-#6 3 16-#6 2 23-#5 3 17-#6 2 18-#6 0	11-#8 12-#8 12-#8	16-#7 15-#8 17-#8 19-#8 20-#8 21-#8 22-#8	12-#5 14-#5 16-#5 12-#6 13-#6 14-#6 14-#6	12-#5 13-#5 11-#6 11-#6	3.03 3.51 4.01 4.45 4.79 5.05 5.33	3.04 3.57 4.03 4.52 4.86 5.12 5.42	3.11 3.70 4.18 4.71 5.13 5.45 5.72	31 31 31 31 31 31 31 31 31	50 100 150 200 250 300 350	23 31 42 56 69 82 94	15-#7 14-#8 16-#8 17-#8 18-#8 19-#8 19-#8	12-#5 14-#5 16-#5 17-#5 13-#6 14-#6 14-#6	11-#5 11-#5 13-#5 13-#5 14-#5 11-#6 11-#6	11-#5 11-#5 12-#5 12-#5 12-#5 13-#5	2.93 3.35 3.80 4.08 4.40 4.79 4.85	2.95 3.38 3.82 4.17 4.48 4.85 4.96

: 13

ř,

\$1

APPENDIX B

ACOUSTICAL BREADTH INFORMATION

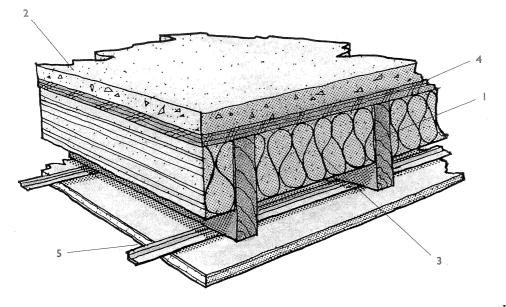
California Office of Noise Control	137		,		1700
Sketch	Brief Description		Laboratory Test Number Year Frequencies Tested Source of Data	STC IIC	Section Number
1. 2. 3. 4a. 4b. 5. 6. 7.	 2x8 joists, 16"o.c. 1/2" plywood subfloor nailed to joists. 3/8" plywood nailed to joists. 4a. carpet and pad. 4b. no floor covering. 5. resilient channels, 24"o.c. 6. 5/8" type X gypsum board screwed 12" o.c. 7. 3" thick sound attenuation blanket. 		National Gypsum Co. 4021 5027 5026 1964 16f Gypsum Association	47 a. 62 b. 43	2.1.2.2.1.5
	 2x10 joists, 16"o.c. 1/2" plywood nailed with 6d nails 6"o.c. at edges and 10"o.c. in field. 5/8" plywood stapled 3"o.c. at edges and 6"o.c. in field. 4a. 44 oz. carpet on 40 oz. hair pad. 4b. 1/16" vinyl asbestos tile. resilient channels, 16"o.c. 1/2" type X gypsum board screwed 12"o.c. 3" thick sound attenuation blanket. 		Cedar Knolls Acoustical Labs. 6712-8 6712-7 1967 16f Domtar Gypsum America Inc.	47 a. 59 b. 44	2.1.2.2.1.6
	 2x10 joists, 16"o.c. 1/2" plywood glued continuously and nailed 12"o.c. 2x2 sleepers between joists, 16"o.c., glued continuously and lightly nailed. 4 mil. plastic over subfloor and sleepers. 1 1/2" sand. 5/8" tongue and groove plywood, stapled 12"o.c. .07" vinyl asbestos tile. resilient channels, 24"o.c. 5/8" gypsum board screwed 12"o.c. 3" thick sound attenuation blanket. 	· · · ·	Riverbank Acousti- cal Labs. TL71-279 IN71-19 1971 16f U.S. Dept. of Agri- culture	59	2.1.2.2.1.7
	 2x8 joists, 16"o.c. 1/2" plywood nailed with 8d nails 6"o.c. at edges and 10"o.c. in the field. 1/2" wood-fiber board stapled 24"o.c. each way. 2x3 furring strips, 16"o.c. glued to insula- tion board, parallel to and between joists. 25/32" wood strip flooring. resilient channels, 24"o.c. 5/8" gypsum board screwed 12"o.c. 3" thick sound attenuation blanket. 		Kodaras Acoustical Labs. 224-10-65 224-9-65 1965 11f 16f American Plywood Assn.	51	2.1.2.2.1.8

California	Office of	Noise	Control


~~~
UXIN

ŝ

California Office of Noise Control	157	<u> </u>	T	<u> </u>	1980
Sketch	Brief Description	•••	Laboratory Test Number Year Frequencies Tested Source of Data	STC IIC	Section Number
	1. 6" thick concrete slab, 75 psf.		Riverbank Acousti- cal Labs. NA NA 16f Prestressed Concrete Inst.	34	2.3.2.1.1.1
	1. 8" thick concrete slab, 95 psf.		Riverbank Acousti- cal Labs. TL 76-77 1977 16f Prestressed Concrete Inst.	58 NA	2.3.2.1.1.2


. -

÷

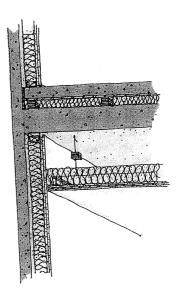
.

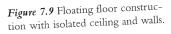
133

Acoustics, Salt, 1998



The following can be gleaned from the measured data for floor/ceiling constructions: (1) The combination of resilient channels and batt insulation increases the STC by 10 points; (2) 19 mm ( $^{3}/_{4}$  in.) gypsum cement or 38 mm (1½ in.) cellular concrete adds about 9 points to the STC rating when the ceiling is isolated; (3) 19 mm ( $^{3}/_{4}$  in.) gypsum cement provides about the same sound insulation performance as 38 mm (1½ in.) cellular concrete; and (4) Mineral wool is acoustically equivalent to glass fiber batt for a given thickness.


## Data for Concrete Floating Floors


Figure 7.9 shows a floating floor construction on structural concrete slab with a resiliently suspended ceiling below. The separate gypsum board walls help control the flanking of sound around the floor/ceiling construction. This construction can attain STC 80 with the isolated wall constructions but would be limited to about STC 65 without the "anti-flanking" isolated wall constructions. This construction is called a room within a room technique since the walls, floors, and ceilings are double and isolated from one another.

### Data for Impact Insulation

Table 7.3 lists the IIC values for laboratory tests conducted on (1) wood frame and (2) concrete floor/ceiling constructions. Commercial flooring products are available that allow hard-surfaced floors such as ceramic tile and hardwood to achieve IIC values that meet the building code requirements.

Figure 7.8 Wood-frame floor/ ceiling construction. Key: (1) 38 x 235 mm (2 x 10) joists; (2) 38 mm  $(1\frac{1}{2} \text{ in.})$  cellular concrete or 19 mm (3/4 in.) gypsum cement topping; (3) batt insulation or mineral wool; (4) 16 mm (5/8 in.) plywood subflooring, (5) 13 mm ( $\frac{1}{2}$  in.) resilient channels.





#### 1. Wood frame

2. Concrete slab without ceilir	g
Floor finish	IIC
None	35
Parquet	50
Sheet vinyl	51
Cushioned vinyl	58
Carpet/pad	80

Table 7.3 IIC ratings of floor/ceiling constructions. Ceilings are 16 mm (5/8 in.) gypsum board. Batts are 76 mm (3 in.) thick.

Lightweight concrete	Insulation batts	Resilient channels	Floor finish	llC
Yes	None	Yes	Sheet vinyl	36
None	None	None	Parquet	39
Yes	None	None	Parquet	40
Yes	None	None	Cushioned vinyl	41
Yes	None	Yes	Parquet	50
Yes	Yes	Yes	Parquet	52
Yes	None	Yes	Cushioned vinyl	55 .
Yes	None	None	Carpet/pad	61
None	None	None	Carpet/pad	61
Yes	None	Yes	Carpet/pad	76
Yes	Yes	Yes	Carpet/pad	79

#### **10 General Rules about Sound Insulation**

- 1. A doubling in mass is expected to cause a 5 STC point increase.
- 2. For air spaces greater than 25 mm (1 in.) between panels, every doubling is expected to increase STC by about 5 points if reverberant sound in cavity is controlled.
- 3. Adding insulation in a construction with direct framing attachment is of limited value-typically about a 2 point improvement.
- 4. Increasing the number of direct framing attachments results in lower STC.
- 5. In constructions with rigid framing attachments, the TL values can vary significantly due to subtle differences in connections.
- 6. STC increases by 5 to 10 points when insulation is added to isolated constructions.
- 7. Staggered stud construction is acoustically comparable to resilient channel construction.
- 8. The small air space between the two single stud walls significantly reduces the STC rating as compared to a double stud partition (compare 6d to 6f).
- 9. Light gauge 0.6 mm (25 ga.) metal studs are acoustically equivalent to wood studs and resilient channels or staggered wood stud construction.
- 10. It is important to seal both faces of a concrete masonry wall in order to control sound leaks. (Sealing can be achieved by painting, plastering, or gypsum board furring.)

#### Conclusion

The principles of sound insulation are important when addressing noise control in buildings. They are helpful in understanding the information discussed in Chapter 17, 18, 19, and 21.

#### Notes

1. NBS results were published in NBS Building Science Series 77: Acoustical and Thermal Performance of Exterior Residential Walls, Doors and Windows, November 1975.

2. M. David Egan, Architectural Acoustics (McGraw-Hill Book Company, 1988).

3. Data compiled in Catalog of STC and IIC Ratings for Walls and Floor/Ceiling Assemblies, California Office of Noise Control, 1981.

n

it

a

7.

#### **Impact and Vibration**

Impact and vibration are the two most common sources of structureborne sounds. Impact is the result of a force that occurs for a short duration. Though an impact force may be repetitive, its repetition is usually not periodic in nature. Vibration, on the other hand, is periodic and continuous.

Walking, jogging and dancing are obvious examples of impact sounds. Other impact sources are playing basketball, bowling, wheeling equipment and furniture, slamming of a door, etc. Vibration is usually produced by machinery and equipment mounted on floors, such as air conditioning equipment, fans, pumps etc. Vibration control is best achieved by mounting the equipment on vibration isolators. Since this is a specialized subject, it is covered separately in Chapter 15.

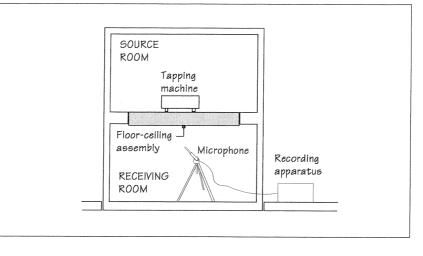
In this chapter, we shall deal only with impact sound insulation. Although airborne sound insulation is required of all barriers — walls, floor-ceiling assemblies and roofs — impact sound insulation is primarily required of floors, because most impact-producing sources rest on floors. Therefore, this chapter is limited to the sound insulation of floor-ceiling assemblies only.

#### **Insulation and Isolation**

In most architectural acoustics literature, the terms "sound insulation" and "sound isolation" are used synonymously, although, there is a subtle difference between the two terms. Sound insulation is similar to thermal insulation, and is the reduction of sound energy as the sound passes through an element from one side to the other.

The reduction in sound energy caused by isolating the sound source from the receiver is referred to as sound isolation. Thus, a reduction in the transmission of sound energy obtained through structural discontinuity or break is referred to as sound isolation. Similarly, enclosing a sound source in an enclosure is also a form of sound isolation.

Since the most important factor that affects the transmission of impact sound from one side of the floor to the other is structural isolation, the term "impact isolation" is used interchangeably with "impact insulation".

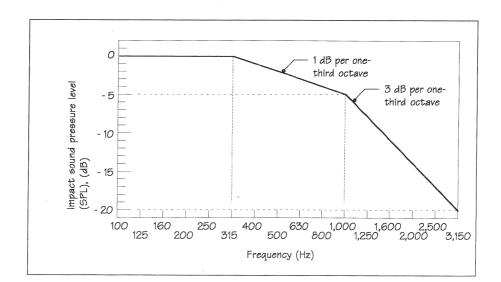

### 7.1 IMPACT INSULATION CLASS (IIC)

The structure-borne sound insulation of a floor-ceiling assembly is measured in a two-room set-up, one room above the other. The floor between the two rooms has an opening in which the floor-ceiling assembly, to be tested, is tightly fitted, Figure 7.1. A standard tapping machine, which has five equally spaced hammers, is placed on the test assembly to produce impact at a constant rate. The tapping machine noise transmitted to the lower receiving room is measured in sixteen one-third octave bands, from 100 Hz to 3,150 Hz. The greater the noise level in the receiving room, the lower the sound insulation of floor-ceiling assembly.

Using the above noise level data, a single number rating of structure-borne sound insulation of the assembly is obtained by comparing it with a standard contour, Figure 7.2. The rating so obtained is called the *impact insulation class* (IIC), and the standard contour is referred to as the IIC contour^[7.1].

Mohta

**7.1** Experimental set-up for measuring structure-borne sound insulation of a floor-ceiling assembly.




The procedure to determine the IIC value is similar to that of determining the STC value of an assembly. The measured noise levels are plotted on a graph paper. Next we overlay the IIC contour on this plot and move the contour vertically as far down as possible until the following two conditions are met.

- The sum of deficiencies at 16 one-third octave bands does not exceed 32 dB.
- The maximum deficiency at any single one-third octave does not exceed 8 dB.

A deficiency is a measurement that lies above the IIC contour, not below the contour (unlike the STC measurement). When both conditions are met, the noise level corresponding to 500 Hz is subtracted from 110 dB. The resulting value is the IIC of the assembly, as further explained at the end of this chapter.

In stating the IIC value, the unit dB is omitted. Therefore, IIC is simply a number, just like the STC. The greater the IIC value, the higher the structure-borne sound insulation of the assembly.



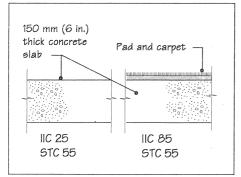
7.2 Standard IIC contour.

145

NC

Note that the shape of IIC contour is reverse of STC contour (see Figure 5.16). The reason is that STC is determined from the transmission loss data — the difference in levels between the source room and the receiving room. The greater the transmission loss, the higher the STC. IIC, on the other hand, is determined from the noise levels in receiving room. The greater these noise levels, the smaller the IIC.

A major criticism of IIC rating is that it does not correlate well with the ear's perception of insulation. It is highly skewed in favor of low frequencies. Consequently, a lightweight floor (e.g., a plywood subfloor on wood floor joists) whose structure-borne sound insulation is worse than a heavy concrete floor, particularly at low frequencies, may have a higher IIC rating than a concrete floor. Despite the criticism, no better single number rating procedure has yet been agreed upon.


Another criticism of IIC rating is that the massive impacts (people jogging and dropping weights etc.) in modern exercise facilities are not represented by the standard low-mass hammers of the tapping machine.

### 7.2 STRATEGIES TO INCREASE IMPACT INSULATION

In general, there are four basic strategies available to increase the structure-borne sound insulation of a floor-ceiling assembly, as listed below and discussed in the following sections.

- Soft or resilient floor covering
- Resiliently supported floor floating floor
- Resiliently supported ceiling
- Structural discontinuity in floor and ceiling reducing flanking transmission through the structure

### 7.3 SOFT OR RESILIENT FLOOR COVERING



**7.3** Increase in IIC of a concrete slab by the addition of a pad and a carper. Adapted primarily from Reference 7.2. The best means of insulating a floor against structure-borne sound is to weaken the impact on the floor at the source — before the impact becomes structure-borne. Thus, a soft floor covering, such as a carpet backed by a foam underlayment (pad), is an excellent way of improving the structure-borne sound insulation of a floor.

For example, a 6 in. thick bare concrete slab has an STC rating of nearly 55, but its IIC rating is only 25. The same slab when covered with a pad and a carpet gives an IIC rating of nearly 85 (an improvement of 60 points), but its STC rating remains unchanged at 55, Figure 7.3.

The increase in structure-borne sound insulation due to a carpet is far greater for a hard inflexible floor such as concrete than for a relatively flexible wood floor. For example, a typical residential floor with a plywood subfloor and gypsum board ceiling attached directly to floor joists gives an IIC of 34 and an STC of 38.

If the same floor is covered with a pad and a carpet, its IIC increases to 55 (an improvement of 21 points) and the STC increases to 39, Figure 7.4. The small increase in STC is partially due to the (airborne sound) absorption provided by the carpet and partially due to the covering of joints of the floor by the carpet.

Although a carpet is the best way to improve the structure-borne insulation of a floor, resilient floor coverings such as cork, rubber and vinyl also provide some improvement, Table 7.1.

r

e

e e e r

11

)r

d

n S,

n

le re

١g

he ed

ng

1 is

act

pet

of

ing

red (an d at

pet or a

Itial

hed

IIC ases the due

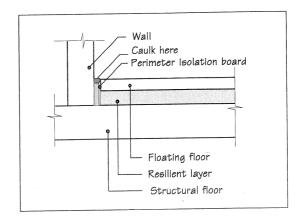
orne

bber

Floor	Improvement in IIC
Pad and carpet on: Wood floor Concrete floor	20 60
Vinyl, rubber, etc., on: Wood floor Concrete floor	5 7

#### Adapted from Reference 7.3.

It is important to emphasize that a soft or a resilient floor covering has virtually no effect on airborne sound insulation, except that a carpet, because of its absorption at high frequencies may slightly increase the airborne sound insulation at these frequencies.




**7.4** *Improvement in IIC of a conventional residential wood floor by the addition of a pad and a carpet.* 

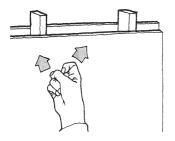
#### 7.4 FLOATING FLOOR

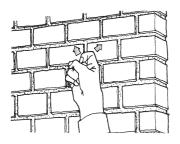
Although a soft floor covering improves the structure-borne sound insulation of a floor, in many situations a hard concrete or wood surface is required. In such a situation, a floating floor is the answer. Unlike a carpet or a resilient floor covering, a floating floor also increases the airborne sound insulation. Thus, a floating floor is used where high values of both STC and IIC are required.

A floating floor is an additional layer of floor (concrete or wood) supported on a structural floor (concrete or wood) through resilient mounts. To be effective, the floating floor must be isolated at all sides from walls or other building components, so that the impact or vibration from the floor does not flank to other parts of the building through the wall. This isolation is provided by a *perimeter isolation board* (fiberglass board or a plastic foam), Figure 7.5.




7.5 Essential elements of a floating floor.


#### 7.4.1 Floating Floor on Conventional Wood Floor


A simple plywood floating floor is shown in Figure 7.6. It consists of plywood panels glued and nailed to  $50 \times 100 (2 \times 4)$  wood sleepers. The sleepers are laid over 25 to 40 mm (1 to  $1^{1}/_{2}$  in.) thick compressed fiberglass boards, placed over a conventional plywood subfloor. Note that the sleepers are simply laid over fiberglass boards with no attachment to the structural floor.

Because of its low cost and simple construction, this floor is commonly used for homes and apartments. With a gypsum board ceiling attached to floor joists through resilient channels, this floorceiling assembly gives an STC of nearly 55 and an IIC of nearly 50. With a carpet and pad, an IIC of nearly 70 may be achieved.



**7.6** Plywood floating floor on conventional wood floor.





A major disadvantage of such a floor is that, due to its light weight, it transmits low frequency impact noise, which the lower floor occupants perceive as thumps or rattling sound as people walk on the floor above. This fact is not obvious in IIC values since, as stated in Section 7.1, the IIC contour is skewed in favor of low frequencies, which overrates lightweight floors.

Another disadvantage of a lightweight floor is that it creates more noise within its own space. Tapping on a lightweight wall versus a heavy concrete or masonry wall makes this fact at once obvious.

A layer of portland cement or gypsum concrete in place of plywood provides the necessary weight and improves low frequency insulation, Figure 7.7. In practice, nearly 40 to 50 mm  $(1^{1}/_{2}$  to 2 in.) thick lightly reinforced cement (or gypsum) concrete layer is used. A polyethylene sheet between compressed fiberglass and concrete provides necessary waterproofing. This assembly gives an IIC of nearly 58 and an STC of nearly 60. With a pad and carpet, an IIC of up to 80 is achieved.

Portland cement concrete or gypsum concrete Polyethylene sheet Welded wire mesh Pad and carpet reinforcement - <u>e</u>o. . . 00 Compressed ----fiberglass Plywood subfloor Resilient channel Gypsum board . IIC 58 IIC 80 STC 60 STC 60

**7.7** Concrete floating floor on conventional wood floor.

One manufacturer of floating floor system uses a honeycomb floorboard in place of compressed fiberglass. This floor board consists of a thin layer of fiberglass laminated to both sides of a cellulosic honeycomb core, Figure 7.8. With a total thickness of only 16 mm  $(^{5}/_{8}$  in.), it makes an excellent cost-effective alternative to compressed fiberglass board, and is particularly suitable with concrete-topped floating floors.



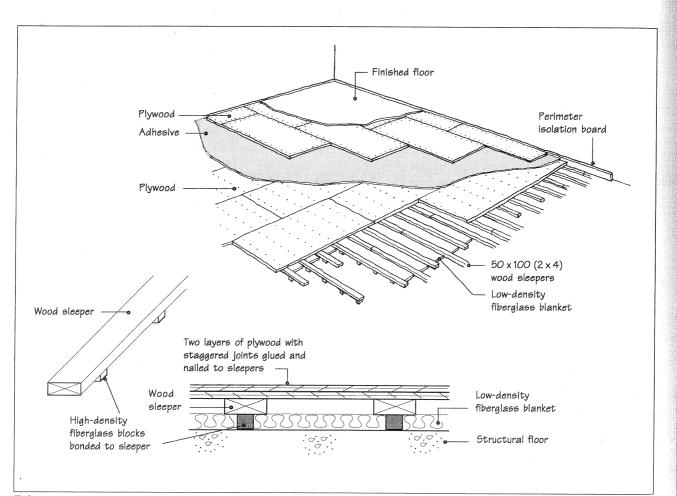
**7.8** Honeycomb resultent floor board. Sample courtesy of Kinetics Noise Control Inc., Dublin, Ohio. Photo by Madan Mehta.

St

7.1

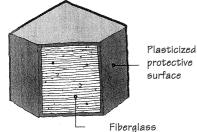
Table 7.2 Approximate IIC and STCValues for Some Floating Floors

Floating floor	IIC	STC
Wood floating floor on: Wood structural floor Concrete structural floor	52 64	58 62
Concrete floating floor on: Wood structural floor Concrete structural floor	58 74	60 62


These values are approximate and are provided to compare one type of floating floor with the other. The actual values depend a great deal on the thickness of materials, depth of air cavity, the presence or absence of fiberglass in the cavity, etc. The values represent bare floors with no carpeting.

#### 7.4.2 Wood Floating Floor over Concrete Structural Floor

A wood floating floor over a concrete structural floor is ideal for aerobic exercise halls, gymnasiums, dance floors, high-rise apartments, etc., particularly over suspended concrete slabs. Although there are different versions, a typical wood floating floor over a concrete structural floor is shown in Figure 7.9. Impact absorption is provided by high-density fiberglass blocks 50 mm x 50 mm x 50 mm (2 in. x 2 in. x 2 in.).


The fiberglass blocks are bonded to  $50 \times 100$  (2 x 4) wood sleepers at nearly 300 mm (12 in.) on centers. Depending on the load on the floor, the sleepers are simply laid (not attached) on the concrete floor at 300 to 400 mm (12 to 16 in.) on centers.

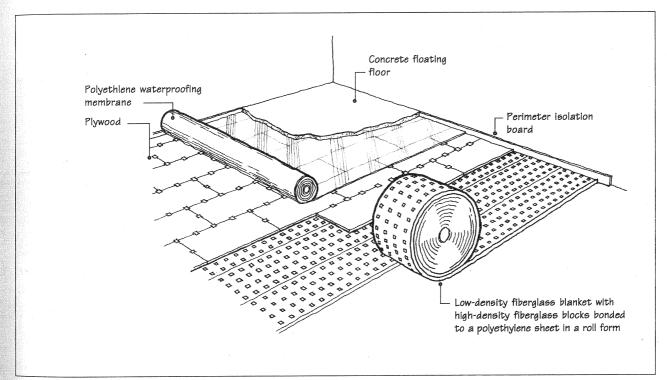
The space between sleepers is filled with low-density fiberglass. Next a layer of plywood panels is nailed to the sleepers. Finally, a second layer of plywood is adhesively bonded and nailed to the lower plywood, with staggered joints. The STC and IIC values depend on the thickness of the structural floor. A floor covering, such as a hardwood floor, carpet, etc., provides the floor finish. Table 7.2 gives some representative STC and IIC values of floating floors.



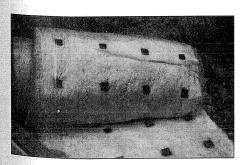
**7.9** Wood floating floor on a reinforced concrete structural floor — a system supplied by Kinetics Noise Control Inc., Dublin, Ohio.






CUTAWAY SECTION THROUGH A HIGH-DENSITY FIBERGLASS BLOCK

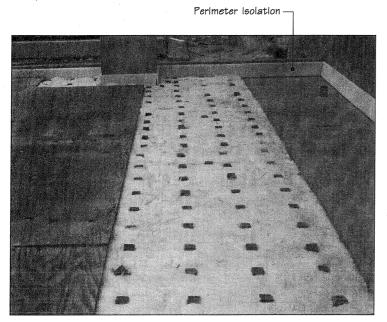
1


)

7.4.3 Floating Concrete Slab over Concrete Structural Floor

A concrete topped floating floor is similar to a wood floating floor described previously, and is commonly used in suspended floors for mechanical rooms, squash and racquetball courts, exercise rooms, gymnasiums, etc. A typical concrete floating floor consists of nearly 100 mm (4 in.) thick reinforced concrete slab supported on high-density fiberglass blocks, placed at nearly 300 mm (12 in.) on center over the concrete structural floor, Figure 7.10.

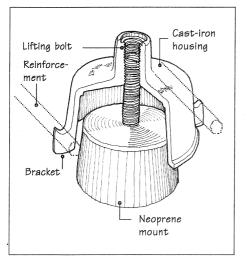



7.10 Concrete floating floor assembly supplied by Kinetics Noise Control Inc., Dublin, Ohio.



Plywood panels over fiberglass blocks function as a permanent form for the floating concrete slab. The air space between the floating concrete slab and the structural floor is filled with low density fiberglass. In fact, one manufacturer supplies the blocks and lowdensity fiberglass blanket bonded to a plastic sheet, all packaged in rolls, Figure 7.11.

**7.11** 50 mm x 50 mm x 50 mm (2 in. x 2 in. x 2 in.) highdensity fiberglass blocks and low-density fiberglass blanket bonded to a plastic sheet — by Kinetics Noise Control Inc., Dublin, Ohio. Photo by Madan Mehta. 151


Thus, the low-density fiberglass blanket with high-density fiberglass blocks bonded to it is unrolled over the structural floor and covered with plywood panels, Figure 7.12. The panels are connected together at joints with steel plates, Figure 7.13, and a polyethylene sheet placed over them. Reinforcement is now laid and concrete poured.



**7.12** Plywood form and high-density fiberglass blocks bonded to low-density fiberglass blanket. Photo by Madan Mehta.



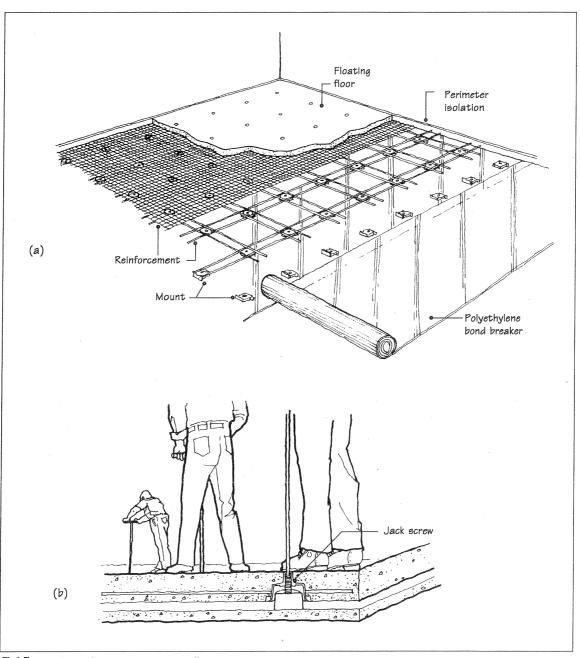
**7.13** Connecting plywood panels together. Photo by Madan Mehta.



**7.14** *Cast-iron housing and neoprene mount.* 

#### 7.4.4 Jack-up Floating Concrete Slab

A jack-up concrete floating floor has the same finished appearance as the floor described previously. The difference between the two floors is in the processes of construction and the impact-absorbing mounts. Each mount consists of a neoprene block enclosed in a cast-iron housing, Figure 7.14. The housing is supported on a lifting bolt, which in turn rests on the neoprene block. The cast iron housing has two cantilevered brackets to support reinforcing bars.


The process of construction is shown in Figure 7.15(a). First, a plastic sheet is laid over the structural concrete floor. This sheet works as a bond breaker between the structural floor and the floating slab. Depending on the load on the floor, the mounts are then placed at 600 to 1,200 mm (2 to 4 ft) on centers each way. Reinforcing bars are now placed over the brackets of the mounts. Additional reinforcement is now laid over the previously laid reinforcement, and concrete is poured.

1

)

1

After the slab has cured and attained the necessary strength, it is jacked up with the help of jack screws, Figure 7.15(b). One or two people can lift a large floor little by little, ensuring a uniform lift at all points. The total lift of the floor need be only 25 mm (1 in.), but a greater lift may be specified for a higher insulation. A jack-up floor is particularly suitable for heavily loaded floors, or floors that have an irregular shape.



^{7.15} Jack-up floating concrete floor.

153

#### Table 5.14 (Continued)

10.11

Representative Construction Assemblies	Weight in lb./sq. ft.	STC	IIC
Standard oak flooring with $\frac{1}{2}$ -in. plywood subfloor on 2 $ imes$ 10 wood joists, 16-in. o.c.	7.7	25	20
Standard oak flooring with $^{1}\!\!/_{2}$ -in. plywood subfloor on 2 $\times$ 10 wood joists, 16-in. o.c., with $^{5}\!\!/_{8}$ -in. gypsum board ceiling	9.7	37	32
Standard oak flooring with $\frac{1}{2}$ -in. plywood subfloor on 2 × 10 wood joists, 16-in. o.c., with $\frac{5}{8}$ -in. gypsum board ceiling attached to resilient channels crossing joists @ 24-in. o.c.	10.3	45	39
Standard oak flooring with $\frac{1}{2}$ -in. plywood subfloor on 2 × 10 wood joists with 3-in. cavity insulation, 16-in. o.c., with $\frac{5}{8}$ -in. gypsum board ceiling attached to resilient channels crossing joists @ 24-in. o.c.	11.0	49	46
Standard oak flooring on furring strips over $\frac{1}{2}$ -in. fiberboard on $\frac{1}{2}$ -in. plywood subfloor on 2 × 10 wood joists, 16-in. o.c. with 3-in. cavity insulation, with $\frac{5}{8}$ -in. gypsum board ceiling suspended on resilient channels	13.0	53	51
Carpeting with padding on double $\frac{5}{8}$ -in. plywood with felt between panels, on 2 × 10 wood joists, 16-in. o.c. with 3-in. cavity insulation, with $\frac{1}{2}$ -in. gypsum plaster ceiling on $\frac{3}{8}$ -in. gypsum lath suspended on resilient channels	12.0	50	68
2 to $2^{1}/_{2}$ -in. concrete slab on cellular metal decking on steel joists with $1_{/_{8}}$ -in. resilient floor tile and $1_{/_{2}}$ -in. gypsum board ceiling	41.0	48	35
2 to $2^{1}/_{2}$ -in. concrete slab on cellular metal decking on steel joists with carpeting on pad and $1/_{2}$ -in. gypsum board ceiling	41.0	49	64
4-in. reinforced concrete slab	53.0	44	25
4-in. reinforced concrete slab with 1/8-in. resilient tile	. 54.0	44	28
4-in. reinforced concrete slab with $\frac{1}{2}$ -in. oak flooring	55.0	44	45
4-in. reinforced concrete slab with $\frac{1}{2}$ -in. oak flooring on $\frac{1}{2}$ -in. fiberboard	56.0	44	45
1-in. reinforced concrete slab with carpeting on padding	54.0	44	80
I-in. reinforced concrete slab with carpeting on padding over $\frac{1}{2}$ -in. oak flooring	56.0	44	84
ô-in. reinforced concrete slab	75.0	55	34
-in, reinforced concrete slab with $^{3}\!\!/_{4}$ -in. T&G wood flooring on $1^{1}\!\!/_{2}$ × 2 wooden battens floated in 1-in, glass fiber	78.0	55	57
-in. hollow-core concrete panel with $1^{1}\!/_{2}$ -in. lightweight concrete	55.0	50	23
-in. hollow-core concrete panel with $1^{1}\!\!/_{2}$ -in. lightweight concrete and carpeting on pad	56.0	51	69
-in. hollow-core concrete panel with 1 ¹ / ₂ -in. lightweight concrete	67.0	52	24
-in. hollow-core concrete panel with $1^{1}\!\!/_{2}$ -in. lightweight concrete and carpeting on padding	68.0	52	74
eavy carpet laid on pad over $1^5$ %-in. concrete slab on $5$ %-in. plywood on 18-in. steel joist, 5-in. o.c., with $5$ %-in. gypsum board ceiling attached to joists		47	62
In. concrete topping on 14-in. precast concrete tees with 2-in. thick slab	75.0	54	24
in. concrete topping on 14-in. precast concrete tees with 2-in. thick slab and carpeting on adding	75.0	54	72

Note: This table is compiled from various sources to provide an indication of differences in STC that occurs with different but similar construction. Due to the variation in source, the listed data might not be totally accurate.

to pass through a sound barrier so that the effective maximum transmission loss across the barrier, regardless of its STC rating, would be less than 30 dB. If the opening were 1% of the total area, the effective maximum transmission loss for the barrier would be only 20 dB. This clearly indicates that it makes no sense to choose a partition with a high STC rating unless we are also committed to ensuring

that the partition is properly sealed along all edges, such as the ceiling, floor, and adjacent walls, and that there are no holes within the partition, such as back-to-back electric outlets.

While Figure 5.25 can also be used to indicate the transmission loss if there is an opening within the barrier, another graph, Figure 5.27, shows the performance for

## APPENDIX C

### COST DATA

## **B1010** Floor Construction

(A) Wide Flange (B) Pipe (C) Pipe, Concrete Filled (D) Square Tube (E) Square Tube • • • Concrete Filled

(F) Rectangular Tube

(G) Rectangular Tube, Concrete Filled

20

General: The following pages provide data for seven types of steel columns: wide flange, round pipe, round pipe concrete filled, square tube, square tube concrete filled, rectangular tube and rectangular tube concrete filled.

Design Assumptions: Loads are concentric; wide flange and round pipe bearing capacity is for 36 KSI steel. Square and rectangular tubing bearing capacity is for 46 KSI steel.

The effective length factor K=1.1 is used for determining column values in the tables. K=1.1 is within a frequently used range for pinned connections with cross bracing.

#### How To Use Tables:

- a. Steel columns usually extend through two or more stories to minimize splices. Determine floors with splices.
- b. Enter Table No. below with load to column at the splice. Use the unsupported height.
- c. Determine the column type desired by price or design.

#### Cost:

a. Multiply number of columns at the desired level by the total height of the column by the cost/VLF. b. Repeat the above for all tiers.

Please see the reference section for further design and cost information.

B1(	010 208			Steel Colu	mns			
	LOAD (KIPS)	Unsupported Height (FT.)	WEIGHT	SIZE	ТҮРЕ	C	OST PER V.L.	F
1000	25		(P.L.F.)	(IN.)		MAT.	INST.	TOTAL
1000		10	13	4	A	22.50	10.65	33.15
1020	RB1010 -130		7.58	3	В	13.10	10.65	23.75
1040			15	3-1/2	С	16	10.65	26.65
1000			6.87	3	D	11.90	10.65	22.55
1100			15	3	E	15.45	10.65	26.10
1120			8.15	4x3	F	14.10	10.65	24.75
1200		10	20	4x3	G	18.45	10.65	29.10
1220		16	16	5	A	25.50	8	33.50
1240			10.79	4	В	17.30	8	25.30
1260			36	5-1/2	С	24	8	32
1280			11.97	5	D	19.15	8	27.15
1300			36	5	E	25.50	8	33.50
1320			11.97	6x4	F	19.15	8	27.15
1400		20	64	8x6	G	37	8	45
1420		20	20	6	A	30.50	8	38.50
1440			14.62	5	В	22	8	30
1460			49	6-5/8	С	29.50	8	37.50
1480			11.97	5	D	18.15	8	26.15
1500			49	6	E	30	8	38
1520			14.53	7x5	F	22	8	30
1600	50	10	64	8x6	G	35	8	43
1620		10	14.62	5	A	27.50	10.65	38.15
1640			24	5	В	25.50	10.65	36.15
1660			12.21	4-1/2	С	19.05	10.65	29.70
1680			25	4	D	21	10.65	31.65
1700			25 11.97	4	E	21.50	10.65	32.15
1720			28	6x4	F	20.50	10.65	31.15
			20	6x3	G	24.50	10.65	35.15

## **B10** Superstructure

## **B1010** Floor Construction

### B1010 208

	LOAD	UNSUPPORTED	WEIGHT	SIZE	TYPE	CC	ost per V.L.I	
	(KIPS)	HEIGHT (FT.)	(P.L.F.)	(IN.)	ITE	MAT.	INST.	TOTAL
1800	50	16	24	8	A	38.50	8	46.50
1820			18.97	6	В	30.50	8	38.50
1840			36	5-1/2	C	24	. 8	32
1860			14.63	6	D	23.50	8	31.50
1880			36	5	E E	25.50	8	33.50
1900			14.53	7x5	F	23.50	8	31.50
1920			64	8x6	G	37	8	45
1940								
2000		20	28	8	A	42.50	8	50.50
2020			18.97	6	В	29	8	37
2040			49	6-5/8	С	29.50	8	37.50
2060			19.02	6	D	29	8	37
2080			49	6	E	30	8	38
2100			22.42	8x6	F	34	8	42
2120			64	8x6	G	35	8	43
2200	75	10	20	6	A	34.50	10.65	45.15
2220			18.97	6	В	33	10.65	43.65
2240			36	4-1/2	С	48	10.65	58.65
2260			14.53	6	D	25	10.65	35.65
2280			28	4	E	21.50	10.65	32.15
2300			14.33	7x5	F	25	10.65	35.65
2320			35	6x4	G	27.50	10.65	38.15
2400		16	31	8	A	49.50	8	57.50
2420			28.55	8	В	45.50	8	53.50
2440			49	6-5/8	С	31.50	8	39.50
2460			17.08	7	D	27.50	8	35.50
2480			36	5	E	25.50	8	33.50
2500			23.34	7x5	F	37.50	8	45.50
2520			64	8x6	G	37	8	45
2600		20	31	8	A	47	8	55
2620			28.55	8	В	43.50	8	51.50
2640			81	8-5/8	С	45	8	53
2660			22.42	7	D	34	8	42
2680			49	6	E	30	8	38
2700			22.42	8x6	F	34	8	42
2720			64	8x6	G	35	8	43
2800	100	10	24	8	A	41.50	10.65	52.15
2820			28.57	6	В	49.50	10.65	60.15
2840			35	4-1/2	С	48	10.65	58.65
2860			17.08	7	D	29.50	10.65	40.15
2880			36	5	E	27.50	10.65	38.15
2900			19.02	7x5	F	33	10.65	43.65
2920			46	8x4	G	33.50	10.65	44.15
3000		16	31	8	A	49.50	8	57.50
3020		10	28.55	8	B	45.50	8	53.50
3040			56	6-5/8	c	46.50	8	54.50
3060			22.42	7	D	36	8	44
3080			49	6	E	31.50	8	39.50
			22.42	8x6	F	36	8	44
3100			64	8x6	G	30	8	45
3120			04	0,0	u u	5/		10

Steel Colum	ns	
CI7E		CO

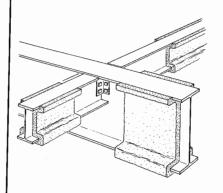
# B1010 Floor Construction

B1	010 208			Steel Colu	ymns			
	LOAD (KIPS)	Unsupported Height (FT.)	WEIGHT	SIZE	TYPE	0	OST PER V.	L.F.
3200			(P.L.F.)	(IN.)		MAT.	INST.	TOTAL
32200	100	20	40	8	A	60.50	8	68.50
3240			28.55	8	В	43.50	8	51.50
3260			81	8-5/8	С	45	8	53
3280			25.82	8	D	39	8	47
3300			66	7	E	35.50	8	43.50
3320			27.59	8x6	F	42	8	50
3400	125	10	70 31	8x6	G	50.50	8	58.50
3420		10	28.57	8	A	53.50	10.65	
3440			81	6	В	49.50	10.65	
3460			22.42	8 7	С	51	10.65	
3480			49	· · ·	D	39	10.65	
3500			22.42	6 8x6	E	34	10.65	44.65
3520			64	8x6	F	39	10.65	49.65
3600		16	40	8	G	40	10.65	50.65
3620			28.55	8	A	64	8	72
3640			81	8	В	45.50	8	53.50
3660			25.82	8	С	47.50	8	55.50
3680			66	7	D	41.50	8	49.50
3700			27.59	8x6	E F	37	8	45
3720			64	8x6	G	44	8	52
3800		20	48	8	A	37	8	45
3820			40.48	10	B	73	8	81
3840			81	8	C	61.50	8	69.50
3860			25.82	8	D	45 39	8	53
3880			66	7	E	39	8	47
3900			37.59	10x6	F	55.50 57	8	43.50
3920			60	8x6	G	50.50	8 8	65
4000	150	10	35	8	A	60.50	0 10.65	58.50 71.15
4020			40.48	10	В	70	10.65	80.65
4040			81	8-5/8	c	51	10.65	61.65
4060			25.82	8	D	44.50	10.65	55.15
4080			66	7	E	40	10.65	50.65
4100 4120			27.48	7x5	F	47.50	10.65	58.15
4120			64	8x6	G	40	10.65	50.65
4200		16	45	10	А	72	8	80
4220			40.48	10	В	65	8	73
4260			81	8-5/8	С	47.50	8	55.50
4280			31.84	8	D	51	8	59
4300			66	7	E	37	8	45
4320			37.69	10x6	F	60.50	8	68.50
4400		20	70	8x6	G	53.50	8	61.50
4420		20	49	10	A	74.50	8	82.50
4440			40.48	10	В	61.50	8	69.50
4460			123	10-3/4	С	64	8	72
4480			31.84	8	D	48.50	8	56.50
4500			82	8	Ε	41	8	49
4520			37.69 86	10x6	F	57	8	65
			00	10x6	G	50	8	58

# **B10** Superstructure

## **B1010** Floor Construction

B1010 208


DIVIV	208			Steel Colu	mns			
	LOAD	UNSUPPORTED	WEIGHT	SIZE	TYPE	C	OST PER V.L.	F.
	(KIPS)	Height (FT.)	(P.L.F.)	(IN.)	I IFE	MAT.	INST.	TOTAL
4600	200	10	45	10	A	78	10.65	88.65
4620			40.48	10	В	70	10.65	80.65
4640			81	8-5/8	С	51	10.65	61.65
4660			31.84	8	D	55	10.65	65.65
4680			82	8	E	46.50	10.65	57.15
4700			37.69	10x6	F	65	10.65	75.65
4720			70	8x6	G	57.50	10.65	68.15
4800		16	49	10	A	78.50	8	86.50
4820			49.56	12	В	79.50	8	87.50
4840			123	10-3/4	С	67	8	75
4860			37.60	8	D	60	8	68
4880			90	8	E	62	8	70
4900			42.79	12x6	F	68.50	8	76.5
4920			85	10x6	G	62	8	70
5000		20	58	12	A	88	8	96
5020		20	49.56	12	B	75	8	83
5040			123	10-3/4	C	64	8	72
5060			40.35	10 3/4	D	61	8	69
5080			90	8	E	58.50	8	66.5
5100			47.90	12x8	F	72.50	8	80.5
			93	10x6	G	75.50	8	83.5
5120	200	10	61	1000		106	10.65	116.6
5200	300	10			A	100	10.65	123.6
5220			65.42	12	В			99.6
5240			169	12-3/4	C	89	10.65	
5260			47.90	10	D	83	10.65	93.6
5280			90	8	E	66.50	10.65	77.1
5300			. 47.90	12x8	F	83	10.65	93.6
5320			86	10x6	G	86	10.65	96.6
5400		16	72	12	А	115	8	123
5420			65.42	12	В	105	8	113
5440			169	12-3/4	С	83	8	91
5460			58.10	12	D	93	8	101
5480			135	10	E	79.50	8	87.5
5500			58.10	14x10	F	93	8	101
5600		20	79	12	A	120	8	128
5620			65.42	12	В	99	8	107
5640			169	12-3/4	С	78.50	8	86.5
5660			58.10	12	D	88	8	96
5680			135	10	E	75	8	83
5700			58.10	14x10	F	88	8	96
5800	400	10	79	12	A	137	10.65	147.6
5840			178	12-3/4	С	117	10.65	127.6
5860			68.31	14	D	118	10.65	128.6
5880			135	10	E	85.50	10.65	96.1
5900			62.46	14x10	F	108	10.65	118.6
6000		16	87	12	A	139	8	147
6040			178	12-3/4	C	108	8	116
6060			68.31	14	D	109	8	117
6080			145	10	E	103	8	111
6100			76.07	1 10	F	103	8	130

-----

Version of the second se

### **Steel Columns**

## **B1010** Floor Construction



B1010 241

General: The following table is based upon structural W shape beam and girder framing. Non-composite action is assumed between beams and decking. Deck costs not included.

The deck spans the short direction. The steel beams and girders are fireproofed with sprayed fiber fireproofing.

Design and Pricing Assumptions: Structural steel is A36, with high strength A325 bolts.

Fireproofing is sprayed fiber (non-asbestos).

Total load includes steel, deck & live load.

Spandrels are assumed the same as interior beams and girders to allow for exterior wall loads and bracing or moment connections. No columns included in price.

See Tables B1010 258 and B1020 128 for metal deck costs.

System Components			COST PER S.F.			
	QUANTITY	UNIT	MAT.	INST.	TOTAL	
SYSTEM B1010 241 1350 15' X 20' BAY, 40 P.S.F. L.L., 12" DEPTH, .535 P.S.F. FIREPROOF, 50 PSF T.LOAD Structural steel Spray mineral fiber/cement for fire proof., 1" thick on beams	3.200 .535	Lb. S.F.	4.67 .31	1.38 .54		
TOTAL			4.98	1.92	6	

## W Shape Beams & Girders

	BAY SIZE (FT.) BEAM X GIRD	SUPERIMPOSED LOAD (P.S.F.)	STEEL FRAMING	FIREPROOFING	TOTAL LOAD		COST PER S.	E.
1350			DEPTH (IN.)	(S.F. PER S.F.)	(P.S.F.)	MAT.	INST.	TOTAL
1350	15x20	40	12	.535	50	4.98	1.92	6.9
1400		40	16	.65	90	6.50	2.47	8.9
1450		75	18	.694	125	8.60	3.10	
1500	''	125	24	.796	175	11.85	4.31	16.1
1600	20.15	200	24	.89	263	13.40	3.96	17.3
1650	20x15	40	14	.659	50	5.05	2.05	7.10
1700		40	14	.69	90	6.80	2.60	9.40
1800		75	14	.806	125	8.35	3.14	11.49
1900		125	16	.86	175	9.85	3.75	13.60
2000	20x20	200	18	1.00	250	11.65	3.51	15. <b>16</b>
2050	20,20	40	12	.55	50	5.60	2.10	7.70
2100		40 75	14	.579	90	7.65	2.74	10.39
2150		75	16	.672	125	9.15	3.26	12. <b>41</b>
2200	·	125	16	.714	175	10.90	3.96	14.86
2300	20x20	200	24	.841	263	13.65	3.97	17. <b>62</b>
2400	20820	40 40	14	.67	50	5.65	2.22	7.87
2500	4 1	40 75	14	.718	90	7.70	2.87	10.57
2550		75 125	18	.751	125	8.90	3.25	12.15
2600	''	200	21	.879	175	12.20	4.49	16.69
2650	20x20	40	21	.976	250	14.60	4.33	18.93
2700	20/20	40 40	14	.746	50	5.70	2.29	7.99
2750		40 75	14	.839	90	7.80	2.99	10.79
2800	۱	125	18	.894	125	9.85	3.66	13.51
2850	,	200	21	.959	175	13.10	4.84	17.94
2900	20x25	40	21	1.10	250	16.10	4.79	20.89
2950		40		.53	50	6.15	2.25	8.40
3000	1	75	18	.621	96	9.70	3.39	13.09
3050		125	18	.651	131	11.20	3.85	15.05
78		123	24	.77	200	14.75	5.20	19.95

# **B10** Superstructure

## **B1010** Floor Construction

1010	0 241		W Sha	pe Beams &	& Girders			
T	BAY SIZE (FT.) Beam X gird	SUPERIMPOSED LOAD (P.S.F.)	STEEL FRAMING DEPTH (IN.)	FIREPROOFING (S.F. PER S.F.)	TOTAL LOAD (P.S.F.)	MAT.	OST PER S.F. INST.	TOTAL
	20 x 25	200	27	.855	275	16.80	4.75	21.
100	20 x 25 20x25	40	14	.608	50	6.20	2.33	8.
00	20820	40	21	.751	90	8.60	3.16	11.
350			21 24	.793	125	10.70	3.81	14
400	·	75				10.70	4.63	14
450	II	125	24	.846	175	1 1		20
500		200	24	.947	256	16	4.63	
550	20x25	40	14	.72	50	7.15	2.70	9
500	.	40	21	.802	90	8.65	3.21	11
550	1	75	24	.924	125	11.05	4.03	15
700		125	24	.964	175	13.40	4.94	18
750		200	27	1.09	250	16.95	4.98	21
300	25x20	40	12	.512	50	6.15	2.24	8
350	11	40	16	.653	90	8.25	2.99	11
00	1	75	18	.726	125	10.65	3.74	14
000	·	125	21	.827	175	13.35	4.79	18
100		200	24	.928	250	16.25	4.67	2
200	25x20	40	12	.65	50	6.20	2.38	
300	·,	40	18	.702	90	9.15	3.29	1
100	1	75	21	.829	125	10.70	3.84	14
500		125	24	.914	175	13.10	4.79	1
500		200	24	1.015	250	16.05	4.70	2
700	25x20	40	14	.769	50	6.60	2.59	
300	ZJAZO	40	16	.938	90	9.90	3.70	1
		75	18	.969	125	11.95	4.33	1
00		125	24	1.136	175	16.70	6.10	2
000	I	200	24 24	1.130	250	21.50	6.20	2
00	0505	40	18	.486	50	6.70	2.39	
200	25x25		18	.592	96	10	3.43	1
300		40				1 1	4.12	1
100	1	75	21	.668	131	12.05		
450	II	125	24	.738	191	15.90	5.50	2
500		200	30	.861	272	18.50	5.15	2
550	25x25	40	18	.597	50	6.50	2.41	
500	11	40	18	.704	90	10.35	3.63	1
550	1	75	21	.777	125	11.85	4.14	1
700	· II	125	24	.865	175	15.10	5.40	2
750		200	27	.96	250	18.30	5.20	2
300	25x25	40	18	.71	50	7.15	2.69	
350	11	40	21	.767	90	10.35	3.70	1
900	1	75	24	.887	125	12.50	4.43	1
950		125	24	.972	175	15.75	5.65	2
000		200	30	1.10	250	19.25	5.55	2
)50	25x30	40	24	.547	50	8.50	2.95	1
100	11	40	24	.629	103	12.05	4.07	1
150	1	75	30	.726	138	14.45	4.85	1
200	,	125	30	.751	206	17.10	5.90	2
	II	200	33	.868	200	20.50	5.65	2
250	0500			.568	50	7.65	2.73	1
300	25x30	40	21					1
350		40	21	.694	90 125	10.35	3.62	
100	·	75	24	.776	125	13.30	4.57	1
450	II	125	30	.904	175	16	5.70	2
500		200	33	1.008	263	19.15	5.45	2

B1010 241

## **B1010** Floor Construction

## W Shape Beams & Girders

	BAY SIZE (FT.)	SUPERIMPOSED	STEEL FRAMING	FIREPROOFING	TOTAL LOAD		COST PER	S.F.
CEEO	BEAM X GIRD	LOAD (P.S.F.)	DEPTH (IN.)	(S.F. PER S.F.)	(P.S.F.)	MAT.	INST.	TOT
6550 6600	25x30	40	16	.632	50	7.95		
6650		40	21	.76	90	10.95		
6700		75	24	.857	125	13.05		
6750	'	125	30	.983	175	16.35		1 7
6800	20-05	200	33	1.11	250	20.50		
6850	30x25	40	16	.532	50	7.30		
6900		40	21	.672	96	11.20		
6950		75	24	.702	131	13.25		-
7000		125	27	1.020	175	17.25		-
7100	30x25	200	30	1.160	250	22	7.45	
7150	50%20	40	18	.569	50	7.65	2.73	3 10
7200		40	24	.740	90	10.65	3.75	
7300		75	24	.787	125	13.30	4.58	-
7400		125	24	.874	175	16.55	5.85	
7400	30x25	200	30	1.013	250	20.50	5.70	
7500	30820	40	16	.637	50	7.95	2.88	
7550		40	24	.839	90	11.30	4.03	
7600		75	24	.919	125	13.65	4.80	
7650		125 200	27	1.02	175	17.25	6.15	
7700	30x30	40	30	1.160	250	21.50	6.15	27
7750	ı	40	21	.52	50	8.20	2.85	11
7800	1	40 75	24	.629	103	12.60	4.25	16
7850	۲ <u> </u>	125	30	.715	138	15	5	20
7900		200	36	.822	206	19.75	6.75	26
7950	30x30	40	36	.878	281	22	6	28
8000	I	40 40	24 24	.619	50	8.55	3.02	11.
8020	1	75	24 27	.706	90	11.50	3.97	15,
8040		125	30	.818	125	13.60	4.69	18.
8060		200	30 33	.910	175	17.45	6.15	23.
8080	30x30	40	18	.999	263	21.50	5.95	27.
8100	II	40	24	.631	50	9.15	3.21	12.
8120	1	75	24 27	.805	90	12.45	4.34	16.
8150		125	30	.899	125	14.85	5.10	19.9
8200		200	30 36	1.010	175	18.40	6.50	24.9
8250	30x35	40	21	1.148	250	22	6.20	28.2
8300	II	40	21	.508	50	9.35	3.18	12.5
8350	1	75	33	.651	109	13.80	4.62	18.4
8400	′ I	125	36	.732 .802	150	16.75	5.55	22.3
8450		200	36		225	21	7.10	28.1
8500	30x35	40	24	.888 .554	300	27.50	7.30	34. <b>8</b>
8520	ı I	40	24		50	8.20	2.89	11.0
8540		75	30	.655 .751	90	12.05	4.11	16.1
8600		125	33	.751 .845	125	15.05	5.05	20.10
8650		200	36	.936	175	18.30	6.35	24.6
8700	30x35	40	21	.644	263	24	6.55	30.5
8720	<u> </u>	40	24	.733	50	8.85	3.14	11.99
8740		75	30	.833	90 105	12.70	4.36	17.06
8760		125	36		125	15.95	5.40	21 <b>.35</b>
8780		200	36	.941	175	18.35	6.45	24.80
			50	1.03	250	24.50	6.65	31.15

# **B10 Superstructure**

## **B1010** Floor Construction

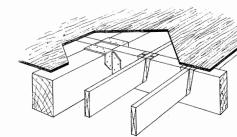
B10	10 241		W Sha	ipe Beams &	& Girders			
	BAY SIZE (FT.)	SUPERIMPOSED	STEEL FRAMING	FIREPROOFING	TOTAL LOAD	C	OST PER S.F.	
	BEAM X GIRD	LOAD (P.S.F.)	DEPTH (IN.)	(S.F. PER S.F.)	(P.S.F.)	MAT.	INST.	TOTAL
8800	35x30	40	24	.540	50	9.05	3.12	12.17
8850	ı——ı	40	30	.670	103	13.55	4.55	18.10
8900	1	75	33	.748	138	16.50	5.50	22
8950	' II	125	36	.824	206	20.50	6.95	27.45
8980		200	36	.874	281	24.50	6.60	31.10
9000	35x30	40	24	.619	50	8.85	3.11	11.96
9050	ı——ı	40	24	.754	90	13	4.46	17.46
9100		75	27	.844	125	15.40	5.25	20.65
9200	/i	125	30	.856	175	18.90	6.50	25.40
9250		200	33	.953	263	21	5.80	26.80
9300	35x30	40	24	.705	50	9.45	3.38	12.83
9350	J <del></del>	40	24	.833	90	13.35	4.62	17.97
9400	1	75	30	.963	125	16.35	5.60	21.95
9450		125	33	1.078	175	20.50	7.20	27.70
9500		200	36	1.172	250	24.50	6.90	31.40
9550	35x35	40	27	.560	50	9.65	3.33	12.98
9600	I <u></u> I	40	36	.706	109	17.65	5.80	23.45
9650	1	75	36	.750	150	18.25	6	24.25
9820	*	125	36	.797	225	24.50	8.20	32.70
9840		200	36	.914	300	29	7.70	36.70
9860	35x35	40	24	.580	50	8.80	3.08	11.88
9880	I <u></u> I	40	30	.705	90	13.55	4.58	18.13
9890	4	75	33	.794	125	16.50	5.55	22.05
9900	•	125	36	.878	175	20.50	7	27.50
9920		200	36	.950	263	25	6.80	31.80
9930	35x35	40	24	.689	50	9.45	3.37	12.82
9940	11	40	30	.787	90	13.90	4.76	18.66
9960	1	75	33	.871	125	17.75	5.95	23.70
9970	<u>ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا </u>	125	36	.949	175	19.55	6.80	26.35
9970 9980	·	200	36	1.060	250	27	7.35	34.35
1000		200	30	1.000	200	<i>L1</i>	1.00	J+.J.

<u>, - -</u> - -

 $\sim$ 

### **B1010** Floor Construction




**Description:** Table below lists the S.F. costs for wood joists and a minimum thickness plywood subfloor.

Design Assumptions: 10% allowance has been added to framing quantities for overlaps, waste, double joists at openings or under partitions, etc. 5% added to subfloor for waste.

System Components				COST PER S.F.			
	QUANTITY UNIT MAT. INST.				INST.	TOTAL	
SYSTEM B1010 261 2500							
WOOD JOISTS 2" X 6", 12" O.C.							
Framing joists, fir, 2"x6"		1.100	B.F.	.68	.97	1	
Subfloor plywood CDX 1/2"		1.050	S.F.	.67	.78	1	
	TOTAL			1.35	1.75	3	

R10	10 261		Wood Joist			COST PER S.F.		
			WOOD JOISI		MAT.	INST.	TOTAL	
2500	Wood jo	ists, 2"x6", 12" O.C.			1.35	1.75	3. 2.	
2550		16″ O.C.			1.18	1.51	2.	
2600		24″ O.C.		1.23 1.42				
2900		2"x8", 12" 0.C.			1.62	1.89	2. 3. 3. 2. 4.	
2950		16″ O.C.			1.39	1.62	3.	
3000		24" O.C.			1.37	1.49	2.	
3300		2"x10", 12" 0.C.			1.99	2.15		
3350		16″ O.C.			1.66	1.81	3.	
3400		24″ O.C.			1.54	1.61	3.	
3700		2"x12", 12" 0.C.			2.28	2.17	4.	
3750	-	16" O.C.			1.87	1.82	3.	
3800		24" O.C.			1.69	1.62	3.	
4100		2"x14", 12" 0.C.			2.76	2.37	5.	
4150	_	16" O.C.			2.24	1.98	4.	
4200		24″ O.C.			1.94	1.73	3.	
4500		3"x6", 12" O.C.			2.31	2.09	4.	
4550		16″ O.C.			1.90	1.77	3.	
4600		24" O.C.			1.72	1.59	3.	
4900		3"x8", 12" O.C.			3.37	2.06	5.	
4950		16" O.C.			2.69	1.74	4.	
5000		24" O.C.			2.24	1.57	3.	
5300		3"x10", 12" O.C.			4.04	2.33	6.	
5350		16″ O.C.			3.21	1.95	5.	
5400		24″ O.C.			2.58	1.71	4.	
5700		3"x12", 12" 0.C.			4.04	2.03	6.	
5750		16″ O.C.			3.71	2.31	6.	
5800		24" O.C.			2.91	1.94	4.	
6100		4"x6", 12" 0.C.			3.37	2.13	5.	
6150		16″ O.C.			2.69	1.79	4.	
6200		24" O.C.			2.24	1.61	3.	

# **B10 Superstructure B1010** Floor Construction



### System Components

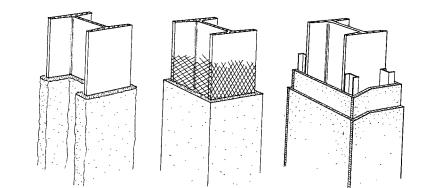
SYSTEM B1010 264 2000

15' X 15' BAY, S. LOAD 40 P.S.F. Beams and girders, structural grade, 8" x 12" Framing joists, fir 4" x 12" Framing joists, 2" x 6" Beam to girder saddles Column caps Drilling, bolt holes Machine bolts Joist hangers 18 ga. Subfloor plywood CDX 3/4"

R10	10 264		Wa	od Beam &	Joist			
			GIRDER BEAM	JOISTS	TOTAL LOAD	C	ost per s.f.	
	BAY SIZE (FT.)	Superimposed Load (p.s.f.)	(IN.)	(IN.)	(P.S.F.)	MAT.	INST.	TOTAL
0000	1 1	40	8 x 12 4 x 12	2 x 6 @ 16	53	9	4.36	13.36
2000	15x15	75	8 x 16 4 x 16	2 x 8 @ 16	90	11.90	4.77	16.67
2050	RB1010	125	12 x 16 6 x 16	2 x 8 @ 12	144	18.45	6.10	24.55
2100	-100		14 x 22 12 x 16	2 x 10 @ 12	227	37	9.35	46.35
2150		200	10 x 16 8 x 12	2 x 6 @ 16	58	11.60	4.45	16.05
2500	15x20	40	10 x 10 8 x 12 12 x 14 8 x 14	2 x 8 @ 16	96	15	5.15	20.15
2550		75	10 x 18 12 x 14	2 x 8 @ 12	152	22	6.90	28.90
2600		125	10 x 18 12 x 14 14 x 20 14 x 16	2 x 10 @ 12	234	32	8.50	~ 40.50
2650		200	11/12/11/11/11	2 x 8@16	63	11.05	4.39	15.44
3000	20x20	40	10 x 14 10 x 12	2 x 10 @ 16	102	15.80	4.92	20.72
3050		75	12 x 16 8 x 16	2 x 10 @ 12	163	31	7.80	38.80
3100		125	14 x 22 12 x 16	Z X 10 @ 12	105	01		



Description: Table lists the S.F. costs, total load, and member sizes, for various bay sizes and loading conditions.


**Design Assumptions:** Dead load = girder, beams, and joist weight plus 3/4" plywood floor.

Maximum deflection is 1/360 of the clear span.

Lumber is stress grade f(w) = 1,800 PSI

				COST PER S.F.	
	QUANTITY	UNIT	MAT.	INST.	TOTAL
	.730 .660 .840 .510 .510 .510 .213 1.050	B.F. B.F. Lb. Lb. Lb. Ea. S.F.	1.71 .92 .52 3.54 .95 .15 .30 .89	.23 .41 .74 .73 .10 .35 .16 .71 .93	1.94 1.33 1.26 4.27 1.05 .35 .31 1.01 1.82
TOTAL			8.98	4.36	13.34

### **B1010** Floor Construction



Listed below are costs per V.L.F. for fireproofing by material, column size, thickness and fire rating. Weights listed are for the fireproofing material only.

ystem Components			COST PER V.L.F.			
SYSTEM B1010 720 3000	QUANTITY	UNIT	MAT.	INST.	T	
CONCRETE FIREPROOFING, 8" STEEL COLUMN, 1" THICK, 1 HR. FIRE RATING Forms in place, columns, plywood, 4 uses Welded wire fabric, 2 x 2 #14 galv. 21 lb./C.S.F., column wrap Concrete ready mix, regular weight, 3000 psi Place and vibrate concrete, 12" sq./round columns, pumped	3.330 2.700 .621 .621	SFCA S.F. C.F. C.F.	2.93 1.24 2.46	27.97 5.24 1.76		
TOTAL			6.63	34.97		

B1(	010 720		Steel	Column Fi	reproofing			
	ENCASEMENT SYSTEM	COLUMN SIZE (IN.)	THICKNESS (IN.)	FIRE RATING (HRS.)	WEIGHT		COST PER V.	L.F.
3000	Concrete	8		(nko.)	(P.L.F.)	MAT.	INST.	TO
3050		0	1	1	110	6.65	35	
3100			1-1/2	2	133	7.60		1 4
3150		10	2	3	145	8.55		
3200		10	1	1	145	8.65	43.50	
3250			1-1/2	2	168	9.60	46.50	
3300		14	2	33	196	10.65	49.50	
3350		17	11/2	1	258	10.90	51	6
3400			1-1/2 2	2	294	11.85	54	6
3450	Gypsum board	8	1/2	3	325	13	58	
3500	1/2" fire rated	10	1/2 1/2	2	8	3.25	21.50	2
3550	1 layer	14	1/2	2	11	3.40	22.50	2
3600	Gypsum board	8		2	18	3.48	23	20
3650	1/2" fire rated	10	1	3	14	4.33	27.50	31
3700	2 layers	14	1	3	17	4.61	29	31 33
3750	Gypsum board	8	l-1/2	<u>`</u>	22	4.76	30	34
3800	1/2" fire rated	10	1-1/2	3	23	5.60	34.50	40
3850	3 layers	14	1-1/2	3	27	6.25	38	44
3900	Sprayed fiber	8	1-1/2	3	35	6.90	42	48
3950	Direct application	-	2	2	6.3	3.93	6.85	10
4000			2-1/2	3	8.3	5.40	9.45	14
4050		10	1.1/2	4	10.4	7	12.20	19.
4100			2	2	7.9	4.75	8.25	13
150				3	10.5	6.50	11.30	17.
			2-1/2	4	13.1	8.40	14.60	23

# 810 Superstructure

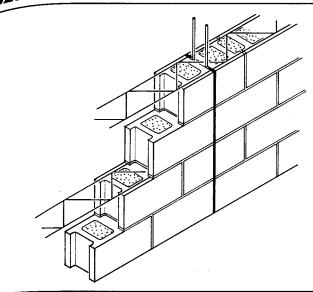
# B1010 Floor Construction

B19	010 720		Steel	Column Fire	eproofing			
-	ENCASEMENT	COLUMN SIZE	THICKNESS	FIRE RATING	WEIGHT	CC	)st per V.L.F	
	SYSTEM	(IN.)	(IN.)	(HRS.)	(P.L.F.)	MAT.	INST.	TOTAL
4200	Sprayed fiber	14	1-1/2	2	10.8	5.90	10.25	16.15
4250	Direct application		2	3	14.5	8.05	14.05	22.10
4300			2-1/2	4	18	10.30	17.95	28.25
4350	3/4" gypsum plaster	8	3/4	1	23	6.70	27.50	34.20
4400	On metal lath	10	3/4	1	28	7.70	31	38.70
4450		14	3/4	1	38	9.35	39	48.35
4500	Perlite plaster	8	1	2	18	7.60	30.50	38.10
4550	On metal lath		1-3/8	3	23	8.30	34	42.30
4600			1-3/4	4	35	9.85	41	50.85
4650	Perlite plaster	10	1	2	21	8.75	35.50	44.25
4700			1-3/8	3	27	9.90	40.50	50.40
4750			1-3/4	4	41	11.15	46.50	57.65
4800		14	1	2	29	11	44.50	55.50
4850			1-3/8	3	35	12.40	51	63.40
4900			1-3/4	4	53	12.85	53	65.85
4950	1/2 gypsum plaster	8	7/8	1	13	6.10	23	29.10
5000	On 3/8" gypsum lath	10	7/8	1	16	7.30	27	34.30
5050		14	7/8	1	21	8.95	33	41.95
5100	5/8" gypsum plaster	8	1	1-1/2	20	6.15	25	31.15
5150	On 3/8" gypsum lath	10	1	1-1/2	24	7.30	29.50	36.80
5200	-	14	1	1-1/2	33	8.95	36.50	45.45
5250	1"perlite plaster	8	1-3/8	2	23	6.05	26	32.05
5300	On 3/8" gypsum lath	10	1-3/8	2	28	6.90	30	36.90
5350		14	1-3/8	2	37	8.60	38	46.60
5400	1-3/8" perlite plaster	8	1-3/4	3	27	7.50	29.50	37
5450	On 3/8" gypsum lath	10	1-3/4	3	33	8.60	34	42.60
5500		14	1-3/4	3	43	10.85	43	53.85
5550	Concrete masonry	8	4-3/4	4	126	10.30	32	42.30
5600	Units 4" thick	10	4-3/4	4	166	12.90	40	52.90
5650	75% solid	14	4-3/4	4	262	15.45	48	63.45

104

. سیسی

### **Steel Column Fireproofing**


### **B20 Exterior Enclosure**

## **B2010** Exterior Walls

B2010	init-up concrete Panel		COST PER S.
4500	8" thick, 3000 PSI	MAT.	INST.
1550	5000 PSI	6.45	6.75
1600	Exposed aggregate & vert. rustication 5-1/2" thick, 3000 PSI	6.65	6.60
650	5000 PSI	6.65	7.65
700	6" thick, 3000 PSI	6.75	7.55
750	5000 PSI	7.05	7.80
300	7-1/2" thick, 3000 PSI	7.15	7.70
350	5000 PSI	8.25	8
000	8" thick, 3000 PSI	8.45	8 7.90
50	5000 PSI	8.70	8.15
00	Vertical rib & light sandblast, 5-1/2" thick, 3000 PSI	8.85	
50	5000 PSI	6.65	8.05 10
00	6" thick, 3000 PSI	6.75	1
50	5000 PSI	7.10	9.90
00	7-1/2" thick, 3000 PS	7.20	10.15
50	5000 PS/	8.30	10.05
0	8" thick, 3000 PSI		10.40
0	5000 PSI		10.30
0	Broom finish w/2" polystyrene insulation, 6" thick, 3000 PSI		10.55
)	5000 PSI	8.90	10.45
	Broom finish 2" fiberplank insulation, 6" thick, 3000 PSI		7.45
	5000 PSI	3.99	7.45
	Exposed aggregate w/2" polystyrene insulation, 6" thick, 3000 PSI	4.33	7.35
	5000 PSI	4.48	7.35
	Exposed aggregate 2" fiberplank installing control	4.11	7.45
	Exposed aggregate 2" fiberplank insulation, 6" thick, 3000 PSI 5000 PSI	4.26	7.45
	2000 F3	4.60	7.35
		4.75	7.35

# 820 Exterior Enclosure

**B2010 Exterior Walls** 



#### System Components

SYSTEM B2010 109 1400

Control joint

UNREINFORCED CONCRETE BLOCK WALL, 8" X 8" X 16", PERLITE CORE FIL Concrete block wall, 8" thick Perlite insulation Horizontal joint reinforcing, alternate courses

B2010 109 STRENGTH (P.S.I.) SIZE (IN.) TYPE 1200 1250 2,000 4x8x16 Hollow 4,500 1300 2,000 6x8x16 RB2010 -200 1310 1340 1350 4,500 1360 1390 . 1400 8x8x16 2,000 1410 1440 1450 4,500 1460 1490 1500 12x8x16 2,000 1510 1540 1550 4,500 1560 1590 2000 75% solid 4x8x16 2,000 2050 4,500

Exterior concrete block walls are defined in the following terms; structural reinforcement, weight, percent solid, size, strength and insulation. Within each of these categories, two to four variations are shown. No costs are included for brick shelf or relieving angles.

				COST PER S.F.	
	QUANTITY	UNIT	MAT.	INST.	TOTAL
٦LL					
	1.000	S.F.	2.50	6.65	9.15
	1.000	S.F.	1.70	.41	2.11
	.800	S.F.	.16	.17	.33
	.050	L.F.	.07	.07	.14
TOTAL			4.43	7.30	11.73

### **Concrete Block Wall - Regular Weight**

	-	-		
CORE FILL		0	OST PER S.F	
		MAT.	INST.	TOTAL
none		1.85	6	7.85
none		2.25	6	8.25
perlite		3.70	6.80	10.50
styrofoam		3.80	6.45	10.25
none		2.55	6.45	9
perlite		3.92	6.80	10.72
styrofoam		4.02	6.45	10.47
 none		2.77	6.45	9.22
perlite		4.43	7.30	11.73
styrofoam		3.98	6.90	10.88
none		2.73	6.90	9.63
perlite		5.10	7.30	12.40
styrofoam		4.63	6.90	11.53
none		3.38	6.90	10.28
perlite		6.85	9.75	16.60
styrofoam		6.25	8.95	15.20
none		4.07	8.95	13.02
perlite		7.25	9.75	17
styrofoam		6.65	8.95	15.60
none		4.47	8.95	13.42
none		2.23	6.10	8.33
none		2.76	6.10	8.86

### **B20 Exterior Enclosure**

### **B2010** Exterior Walls

B2010	) 111	Reinfo	orced Conc	rete Block Wo	all - Regula			
	TYPE	SIZE (IN.)	STRENGTH (P.S.I.)	VERT. REINF & GROUT SPACING			ost per s.f Inst.	
- 400				#4 @ 48"		MAT. 3.11	7.60	TO
5400	Hollow	8x8x16	2,000	#4 @ 48" #5 @ 32"		3.28	8	
5430						3.82	9.15	
5440		0.0.10	4 500	#5 @ 16"		3.62	7.70	
5450		8x8x16	4,500	#4 @ 48"				
5480				#5 @ 32"		3.93	8	
5490				#5 @ 16"		4.47	9.15 9.80	
5500		12x8x16	2,000	#4 @ 48"		4.51		
5530				#5 @ 32"		4.82	10.10	
5540				#5 @ 16"		5.55	11.30	1
5550			4,500	#4 @ 48"		4.91	9.80	
5580				#5 @ 32″		5.20	10.10	
5590				#5 @ 16″		5.95	11.30	
6100	75% solid	6x8x16	2,000	#4 @ 48"		3.23	7.10	
6130				#5 @ 32″		3.39	7.35	
6140				<b>#5 @</b> 16″		3.68	8.10	0
6150			4,500	#4 @ 48"		3.52	7.10	
6180				#5 @ 32"		3.68	7.35	Series .
6190				#5 @ 16″		3.97	8.10	2
6200		8x8x16	2,000	#4 @ 48"		3.43	7.65	
6230			_,	#5 @ 32″		3.60	7.90	
6240				#5 @ 16"		3.91	8.85	and the second se
6250			4,500	#4 @ 48"		4.28	7.65	Ţ
			4,500	#5 @ 32″		4.45	7.90	
6280				#5 @ 16"		4.43	8.85	
6290		12x8x16	2,000	#4 @ 48"		5.20	9.75	
6300		12x0x10	2,000	#4 @ 48 #5 @ 32"		5.40	10	
6330						5.40	10.95	
6340			4 500	#5 @ 16"				
6350			4,500	#4 @ 48"		5.70	9.75	
6380				#4 @ 32"		5.95	10	
6390				#5 @ 16"		6.40	10.95	
6500	Solid-double	2-4x8x16	2,000	#4 @ 48" E.W.		5.10	14.05	
6530	Wythe			#5 @ 16" E.W.		5.80	14.95	
6550			4,500	#4 @ 48" E.W.		7.05	13.95	
6580				#5 @ 16″ E.W.		7.80	14.85	
6600		2-6x8x16	2,000	#4 @ 48" E.W.		5.10	15.10	
6630				#5 @ 16" E.W.		5.85	16	
6650			4,000	#4 @ 48" E.W.		8.40	14.90	
6680				#5 @ 16″ E.W.		9.15	15.80	
B2010	0 112	Rein	forced Co	crete Block	Wall - Light	weigh	+	
	ТҮРЕ	SIZE	WEIGHT	VERT REINF. &		C	OST PER S.F	
		(IN.)	(P.C.F.)	GROUT SPACING		MAT.	INST.	TOT
7100	Hollow	8x4x16	105	#4 @ 48″		2.88	7.30	
7130				#5 @ 32″		3.12	7.60	
7140				#5 @ 16″		3.66	8.75	
7150			85	#4 @ 48"		4.15	7.15	
				#5 @ 32"		4.39	7.45	
		1	1	NO O VL			,	
7180				#5@16"		4 93	8.60	
7180 7190 7200		4x8x16	105	#5 @ 16" #4 @ 48"		4.93 2.15	8.60 6.55	

# **B20 Exterior Enclosure**

82010 82010	112	Rein	forced Co	ncrete Block \	Nall - Lightv	veight		
82010		SIZE	WEIGHT	VERT REINF. &		CO	st per s.f.	
	TYPE	(IN.)	(P.C.F.)	GROUT SPACING		MAT.	INST.	TOTAL
	Hollow	6x8x16	105	#4 @ 48"		3.07	7	10.07 10.53
300	11011011			#5 @ 32″		3.28	7.25	10.55
7330				#5 @ 16″		3.75	8.20	11.95
7340			85	#4 @ 48"		3.71	6.85	10.50
7350				#5 @ 32″		3.92	7.10	12.44
7380				#5 @ 16"		4.39	8.05	12.44
7390 7400		8x8x16	105	#4 @ 48"		3.69	7.55	11.7
7430				#5 @ 32"		3.93	7.85 9	13.4
				<b>#5 @</b> 16″		4.47		11.3
7440		8x8x16	85	#4 @ 48"		3.96	7.40	11.5
7450				#5 @ 32"		4.20	7.70	13.5
7480 7490				#5 @ 16"		4.74	8.85 9.55	13.5
7510		12x8x16	105	#4 @ 48"		4.67		14.2
7530				#5 @ 32″		4.98	9.85	14.0
7540				#5 @ 16"		5.70	11.05	15.2
7550			85	#4 @ 48"		5.95	9.30	15.2
7580				#5 @ 32"		6.25	9.60	
				#5 @ 16"		7	10.80	17.8
7590		4x8x24	105	#4 @ 48"		1.67	7.25	8.9
7600			85	#4 @ 48"		3.69	6.15	9.8
7650		6x8x24	105	#4 @ 48"		2.35	7.55	9.9
7700		onone i		#5 @ 32"		2.56	7.80	10.3
7730 7740				#5 @ 16"		3.03	8.75	11.7
7750			85	#4 @ 48"		5.30	6.45	11.7
				#5 @ 32″		5.50	6.70	12.2
7780				<b>#5 @ 16</b> "		6	7.65	13.6
7790		8x8x24	105	#4 @ 48"		2.85	8.10	10.9
7800		UNDAL 1		#5 @ 16″		3.63	9.55	13.
7840			85	#4 @ 48″		6.40	6.95	13.
7850 7880				#5 @ 32″		6.65	7.25	13.
				#5 @ 16"		7.15	8.40	15.
7890 7900		12x8x24	105	#4 @ 48"		3.63	9.20	12.
7930		TENONE		#5 @ 32″		3.94	9.50	13.
7930				#5 @ 16"		4.67	10.70	15.
7940			85	#4 @ 48"		8.05	9	17.
7980				#5 @ 32″		8.35	9.30	17.
7990				#5 @ 16″		9.10	10.50	19.
8100	75% solid	6x8x16	105	#4 @ 48"		4.24	6.90	11
8130	70% SUIU	0,0,10		#5 @ 32"		4.40	7.15	
8130				#5 @ 16"		4.69	7.90	
8140 8150			85	#4 @ 48"		4.41	6.75	
8180				#5 @ 32″		4.57	7	11
8190				#5 @ 16″		4.86	7.75	
8190		8x8x16	105	#4 @ 48"		5.05	7.50	
8200		01010		#5 @ 32"		5.25		
				#5 @ 16″		5.55		
8240			85	#4 @ 48"		4.63		
8250			0.0	#5 @ 32"		4.80		
8280 8290				#5 @ 16"		5.10	8.50	13

----

crete Block Wall - Lig	htweigl	nt	
VERT REINF. &		COST PER S.	
	1147	INCT	TO

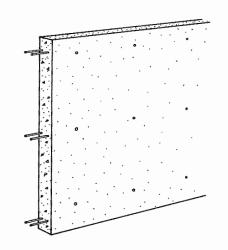
### 06 16 Sheathing 06 16 23 - Subflooring

06 14	5 23.10 Subfloor			Daily					Bare Costs	n en angelen en samt de sin sin ser
0010	SUBFLOOR		Crev	v Uutpu	it Hou	ırs Uni	t Material	Labor	Equipment	Total
0011	Plywood, CDX, 1/2" thick			1000						
0017	Pneumatic nailed		2 La	rp 1500	1.6					1.(
0102	5/8" thick			1860		and the second second	.58			
0102	•			1350	영국 위험 영화 같이 다		.73	사람이 아무		1.1
)202	Pneumatic nailed 3/4" thick		transmission	1674	÷.		.73			1.1
)202			nama ay dan	1250		1	.77	.57		1.3
)302	Pneumatic nailed		r m - o canadora de la composición de la compo	1550	1		.77	.46		1.2
Artese in Low Rose	1-1/8" thick, 2-4-1 including underlayment			1050	.01		1.53	.68		2.2
)440	With boards, 1" x 6", S4S, laid regular		11	900	.010	0.02.02.02.02.02.02.02.02.02.02.02.02.02	1.80	.80		2.6
)452	1" x 8", laid regular			1000	.010	的复数形式数据	1.81	.72		2.5
462	Laid diagonal			850	.019		1.81	.85		2.6
1502	1" x 10", laid regular			1100	.015	5	1.84	.65		2.4
602	Laid diagonal		*	900	.018		1.84	.80	n - 2011 - 2017 (C.) (C.)	2.6
990	Subfloor adhesive, 3/8" bead		1 Carj	2300	.003	3 L.F.	.12	.16	And a second second	.2
000	Minimum labor/equipment charge		"	4	2	Job	1907200000000	90		90
16 1	626 – Underlayment								. <u> </u>	
6 16	26.10 Wood Product Underlayment									<u></u>
		0/1/0/ 0/					1		1	
030	Plywood, underlayment grade, 3/8" thick	2061636-20	211년 2019년 21년 21년 21년 21년 21년 21년 21년 21년 21년 21	1000	011	CE FI				
080	Pneumatic nailed		2 Carp		.011	1. S.		.48		1.2
102	1/2" thick			1860	.009		.81	.39		1.20
107	Pneumatic nailed	GANGANNA	92348	1450	.011		.94	.50		1.44
202	5/8" thick		Madaaaan aa	1798	.009		.94	.40	tali de se	1.34
207	Pneumatic nailed		144444 August 1	1400	.011		1.09	.51	The second second	1.60
802	3/4'' thick			1736	.009	-	1.09	.41	and a star of a star of a	1.50
106	Pneumatic noiled	1940 - Albain		1300	.012		1.24	.55	t shi ta sa	1.79
602	Particle board, 3/8" thick			1612	.010		1.24	.45		1.69
07	Pneumatic nailed			1500	.011	11	.37	.48		.85
.02	1/2" thick			1860	.009	11	.37	.39		.76
07	Pneumatic nailed		t Pa	1450	.011		.41	.50		.91
02	5/8″ thick			1798	.009	and the second property of	.41	.40	****	.81
07	Pneumatic nailed		and a second	1400	.011	and a second second second	.50	.51	<ul> <li>to dramaticate ;</li> </ul>	1.01
02	3/4" thick			1736	.009		.50	.41	and the second	.91
07	974 mick Pneumatic nailed			1300	.012		.68	.55		1.23
55		লি		1612	.010	*	.68	.45		1.13
60	Particleboard, 100% recycled straw/wheat, 4' x 8' x 1/4"	G		1450	.011	S.F.	.28	.50		.78
65	4' x 8' x 3/8"	G		1450	.011		.41	.50		.91
55 70	4' x 8' x 1/2"	G		1350	.012		.57	.53		1.10
24	4' x 8' x 5/8"	G	And and a second second second	1300	.012		.69	.55		1.24
75	4′ x 8′ x 3/4″	G	No. March Conceptual Science Sciences		.013		.79	.57	Laboration of the second second	1.36
80 NG	4′ x 8′ x 1″	G		1150	.014		1.05	.62		1.67
35	4' x 8' x 1-1/4"	G	Cidoreano.	1100	.015	v	1.20	.65	(Marine Second	1.85
0	Hardboard, underloyment grade, 4' x 4', .215" thick		*	1500	.011	SF Flr.	.57	.48	s de	1.05
0	Minimum labor/equipment charge		1 Corp	4	2	Job		90		90

#### ut to se - wood Panel Product Sheathing

### 06 16 36.10 Sheathing

0010   S	SHEATHING	R061636-20							1.08
0012	Plywood on roofs, CDX	N00100020							
0032	5/16" thick	2 Carp	1600	010	<b>SE</b>	.55	.45		
0037	Pneumatic nailed	R061110-30	1974 States	.008	1. S.	.55	.43	1	
0052	3/8" thick		1525	.010	1959-03	.51	.37	.92	1.0010.000
0057	Pneumatic nailed		1860	.009		.51	.47 .39	.98	1
0102	1/2" thick		1400	.007		.58	.57	.90	1 9
208				.011				1.09	


# 06 16 Sheathing

06 16	36.10 Sheathing
0103	Pneumatic nailed
0/202	5/8" thick
0207	Pneumatic nailed
<b>(13</b> 02	3/4" thick
0307	Pneumatic nailed
0502	Plywood on walls with exterior CDX, 3/8" thick
0502	Pneumatic nailed
0602	1/2" thick
0602	, Pneumatic nailed
0702	5/8" thick
Pre-	Pneumatic nailed
0707 0802	3/4" thick
0807	Pneumatic nailed
0840	Oriented strand board, 7/16" thick G
0840	Pneumatic nailed G
0845 0846	1/2" thick
0840	Pneumatic nailed G
0852	5/8" thick
0657	Pneumatic nailed G
1000	For shear wall construction, add
1200	For structural 1 exterior plywood, add
1402	With boards, on roof 1" x 6" boards, laid horizontal
1402	Laid diagonal
1502	1" x 8" boards, laid horizontal
1802	Laid diagonal
2000	For steep roofs, add
2200	For steep roots, and For dormers, hips and valleys, add
200	Boards on walls, 1" x 6" boards, laid regular
2502	
2702	Laid diagonal
2802	1" x 8" boards, laid regular
2852	Laid diagonal Gypsum, weatherproof, 1/2" thick
2052	······································
3000	With embedded glass mats
3100	Wood fiber, regular, no vapor barrier, 1/2" thick
3300	5/8" thick
3400	No vapor barrier, in colors, 1/2" thick
	5/8" thick
3600	With vapor barrier one side, white, $1/2^{\prime\prime}$ thick
3700	Vapor borrier 2 sides, 1/2" thick
3800	Asphalt impregnated, 25/32" thick
3850 1000	Intermediate, 1/2" thick
9000	Minimum labor/equipment charge

	-On Boarding	Daily	Labor-			2013 Bare Costs				
	Crew	Output	Hours	Unit	Material	Labor	Equipment	Total	Incl O&P	
	2 Carp	1708	.009	S.F.	.58	.42	an mandala	1	1.33	
		1300	.012		.73	.55		1.28	1,71	
		1586	.010		.73	.45		1.18	1.54	
		1200	.013		.77	.60		1.37	1.83	
		1464	.011		.11	.49		1.26	1.66	
		1200	.013		.51	.60		1.11	1.54	
	Active second	1488	.011		.51	.48		.99	1.35	
	aborea-terms	1125	.014		.58	.64	and a first starter	1.22	1.69	
		1395	.011	sterano	.58	.52	a se sensered	1.10	1.48	
		1050	.015		.73	.68		1,41	1.92	
		1302	.012		.73	.55		1.28	1.71	
		975	.016		.77	.74		1.51	2.06	
R	k des	1209	.013			.59		1.36	1.82	
G		1400	.011		.37	.51		.88	1.25	
G		1736	.009		.37	.41	And Adding of the	.78	1.09	
G	and a second second	1325	.012	1000 C	.37	.54	41.40 U	.91	1.30	
G		1643	.010		.37	.44		.81	1.13	
G		1250	.013		.47	.57		1.04	1.46	
G	Ý .	1550	.010	*	.47	.46		.93	1.28	
				<b>C</b> T	100/	20%				
	0.0	705	000	S.F.	10%					
	2 Carp	725	.022		1.80	.99	1-10-10-10-10-10-10-10-10-10-10-10-10-10	2.79	3.61	
		650	.025	a marine a	1.80	1.11		2.91	3.79	
		875	.018		1.81	.82		2.63	3.34	
04 <u>0</u> 2.3343	<b>V</b>	725	.022	Statural	1.81	.99	anana santang	2.80	3.62	
					F0/	40%				
	0.C	150	0.05		5%	50%				
	2 Carp	650	.025		1.80	1.11		2.91	3.79	
		585	.027	신기	1.80	1.23		3.03	3.99	
		765	.021	Weither Greeker	1.81	.94		2.75	3.53	
		650	.025	er an anna an a	1.81	1.11	THE ALTERNAL	2.92	3.80	
		1050	.015	A THE RECEIPTION	.41	.68	an dan dan dan san s	1.09	1.57	
	00001-1940	1100	.015	10000000	.72	.65	Salation States of the States	1.37	1.86	
		1200	.013	44	.56	.60		1.16	1.60	
		1200	.013		.71	.60		1.31	1.76	
		1200	.013		.68	.60		1.28	1.73	
		1200	.013	848)	.72	.60		1.32	1.77	
		1200	.013	***	.55	.60	ar row of the	1.15	1.59	
		1200	.013	- Androice Jonals	.77	.60	do proto de Bro	1.37	1.83	
		1200	.013	-distilition(p41	.30	.60	de- trace are	.90	1.31	
	www	1200	.013	1	.22	.60	-	.82	1.22	

### **B20 Exterior Enclosure**

### **B2010** Exterior Walls



The table below describes a concrete wall system for exterior closure. There are several types of wall finishes priced from plain finish to a finish with 3/4" rustication strip.

Design Assumptions: Conc. f'c = 3000 to 5000 psi Reinf. fy = 60,000 psi

System Components				COST PER S.F.		
		QUANTITY	UNIT	MAT.	INST.	TOT
SYSTEM B2010 101 2100						
CONC. WALL, REINFORCED, 8' HIGH, 6" THICK, PLAIN FINISH, 3,000 PSI						
Forms in place, wall, job built plyform to 8' high, 4 uses		2.000	SFCA	2.12	12.80	-
Reinforcing in place, walls, #3 to #7		.752	Lb.	.43	.32	
Concrete ready mix, regular weight, 3000 psi		.018	C.Y.	1.93		7
Place and vibrate concrete, walls 6" thick, pump		.018	C.Y.		.83	
Finish wall, break ties, patch voids		2.000	S.F.	.08	1.88	
TO	TAL			4.56	15.83	

R2(	010 101	Cast In Place Concrete		COST PER S.F.	
DZ			MAT.	INST.	TOT
2100	Conc wall reinford	ced, 8' high, 6" thick, plain finish, 3000 PSI	4.56	15.85	in 6
2200		4000 PSI	4.65	15.85	
2300		5000 PSI	4.77	15.85	
2400		Rub concrete 1 side, 3000 PSI	4.56	18.75	
2500		4000 PSI	4.65	18.75	
2600		5000 PSI	4.77	18.75	
2700		Aged wood liner, 3000 PSI	5.75	18	
2800		4000 PSI	5.85	18	
2900		5000 PSI	5.95	18	
3000		Sand blast light 1 side, 3000 PSI	5.40	18.05	
3100		4000 PSI	5.45	18.05	and it.
3300		5000 PSI	5.60	18.05	1
3400		Sand blast heavy 1 side, 3000 PSI	6.20	22.50	
3500		4000 PSI	6.30	22.50	
3600		5000 PSI	6.40	22.50	
3700		3/4" bevel rustication strip, 3000 PSI	4.73	16.80	
3800		4000 PSI	4.82	16.80	
3900		5000 PSI	4.94	16.80	
4000		8" thick, plain finish, 3000 PSI	5.40	16.25	
4100		4000 PSI	5.50	16.25	
4200		5000 PSI	5.65	16.25	
4300		Rub concrete 1 side, 3000 PSI	5.40	19.15	
4400		4000 PSI	5.50	19.15	
4500		5000 PSI	5.65	19.15	
4550		8" thick, aged wood liner, 3000 PSI	6.55	18.40	
4600		4000 PSI	6.70	18.40	

# **B20** Exterior Enclosure

	cterior Walls	C	OST PER S.F.	
B2010 101	Cast In Place Concrete	MAT.	INST.	TOTAL
4700	5000 PSI	6.85	18.40	25.2
4750	Sand blast light 1 side, 3000 PSI	6.20	18.45	24.6
4800	4000 PSI	6.30	18.45	24.7
4900	5000 PSI	6.50	18.45	24.9
5000	Sand blast heavy 1 side, 3000 PSI	7	22.50	29.5
5100	4000 PSI	7.15	22.50 22.50	29.0
5200	5000 PSI	7.30	17.20	29.0
5300	3/4" bevel rustication strip, 3000 PSI	5.55	17.20	22.8
5400	4000 PSI	5.85	17.20	23.0
5500	5000 PSI	6.15	16.60	22.
5600	10" thick, plain finish, 3000 PSI	6.30	16.60	22.9
5700	4000 PSI	6.55	16.60	23.
5800	5000 PSI	6.15	19.50	25.
5900	Rub concrete 1 side, 3000 PSI	6.30	19.50	25.
6000	4000 PSI	6.55	19.50	26.
6100	5000 PSI	7.35	18.80	26.
6200	Aged wood liner, 3000 PSI	7.50	18.80	26.
6300	4000 PSI	7.70	18.80	26
6400	5000 PSI	7	18.80	25
6500	Sand blast light 1 side, 3000 PSI	7.15	18.80	25
6600	4000 PSI	7.35	18.80	26.
6700	5000 PSI	7.80	23	30.
6800	Sand blast heavy 1 side, 3000 PSI	7.95	23	30
6900	4000 PSI	8.15	23	31
7000	3/4" bevel rustication strip, 3000 PSI	6.35	17.55	23
7100	4000 PSI	6.50	17.55	24
7200	5000 PSI	6.70	17.55	24
7300	12" thick, plain finish, 3000 PSI	7.10	17.05	24
7400 7500	4000 PSI	7.30	17.05	24
7600	5000 PSI	7.55	17.05	24
7700	Rub concrete 1 side, 3000 PSI	7.10	19.95	27
7800	4000 PSI	7.30	19.95	27
7900	5000 PSI	7.55	19.95	27
8000	Aged wood liner, 3000 PSI	8.30	19.25	27
8100	4000 PSI	8.45		27
8200	5000 PSI	8.75		28
8300	Sand blast light 1 side, 3000 PSI	7.95		27
8400	4000 PSI	8.10	1	
8500	5000 PSI	8.35		
8600	Sand blast heavy 1 side, 3000 PSI	8.75		
8700	4000 PSI	8.95		
8800	5000 PSI		1	2
8900	3/4" bevel rustication strip, 3000 PSI	7.30		2
9000	4000 PSI	7.45 7.70		2
9500	5000 PSI	7.70	10	

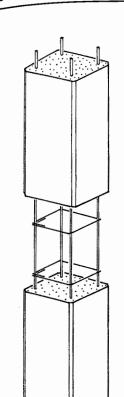
÷

-----

LOAD IVIDA

## **B1010** Floor Construction

### B1010 201


### C.I.P. Column - Round Tied

		OTODI						
	LOAD (KIPS)	story Height (FT.)	Column Size (In.)	COLUMN WEIGHT (P.L.F.)	CONCRETE		COST PER V.L	.F.
1940 1945	900	10	24		STRENGTH (PSI)	MAT.	INST.	TOT
1970	1000	12	24	439 445	6000	46.50	00.00	
1980		10	26	517	6000 6000	47.50 55.50		10
1995		14	26 26	524	6000	56.50	63.50 65	1
B10	010 202			528	6000	57.50	66.50	12

#### C.I.P. Columns, Round Tied - Minimum Reinforcing STORY

2500         100         10.14         12         107         4000         9.55         24.50         34.           2510         200         10.14         12         107         4000         9.55         24.50         34.           2520         400         10.14         16         190         4000         16.70         31         47.           2530         600         10.14         24         425         4000         26.50         39.50         66           2540         800         10.14         28         580         4000         37         48.50         85.5           2550         1100         10.14         32         755         4000         51         59.50         110.5           2560         1400         10.14         36         960         4000         78         81         159		I LUAD (KIPS)	I SIURY	COLUMN	00111111				
2510         200         1014         12         107         4000         9.55         24.50         34.           2520         400         1014         16         190         4000         16.70         31         47.           2530         600         10.14         26         295         4000         26.50         39.50         66           2540         800         10.14         28         580         4000         37         48.50         85.           2550         1100         10.14         32         755         4000         51         59.50         110.5           2560         1400         10.14         36         960         4000         78         69         134.5	2500		HEIGHT (FT.)	SIZE (IN.)	COLUMN WEIGHT (P1 F1	CONCRETE		COST PER V.	L.F.
	2510 2520 2530 2540 2550 2560	200 400 600 800 1100	10-14 10-14 10-14 10-14 10-14 10-14	12 16 20 24 28 32	107 190 295 425 580 755	4000 4000 4000 4000 4000 4000 4000	MAT. 9.55 16.70 26.50 37 51 65.50	INST. 24.50 31 39.50 48.50 59.50 69	TOTAL           34:           47.           66           85.           110.5           134.5

## **B10 Superstructure B1010** Floor Construction



#### CONCRETE COLUMNS

General: It is desirable for purposes of consistency and simplicity to maintain constant column sizes throughout the building height. To do this, concrete strength may be varied (higher strength concrete at lower stories and lower strength concrete at upper stories), as well as varying the amount of reinforcing.

The first portion of the table provides probable minimum column sizes with related costs and weights per lineal foot of story height for bottom level columns.

The second portion of the table provides costs by column size for top level columns with minimum code reinforcement. Probable maximum loads for these columns are also given.

#### How to Use Table:

- reinforcing) of the table with the the selected cast in place floor system.
- If the total load on the column does not exceed the allowable working load shown, use the cost per L.F.
- 2. If the total load on the column table, enter the first portion of the

#### System Components

#### SYSTEM B1010 203 0640

SQUARE COLUMNS, 100K LOAD, 10' STORY, 10" SQUARE

- Forms in place, columns, plywood, 10" x 10", 4 uses
- Chamfer strip,wood, 3/4" wide Reinforcing in place, column ties
- Concrete ready mix, regular weight, 4000 psi
- Placing concrete, incl. vibrating, 12" sq./round columns, pumped
- Finish, break ties, patch voids, burlap rub w/grout

B1010 203 C.I.P. Column, Square Tied										
	LOAD (KIPS)	STORY	COLUMN	COLUMN	CONCRETE	CC	ost per V.L.F			
	LUAD (KIPS)	Height (Ft.)	SIZE (IN.)	WEIGHT (P.L.F.)	STRENGTH (PSI)	MAT.	INST.	TOTAL		
0640	100	10	10	96	4000	11.25	47	58.25		
0680	RB1010	12	10	97	4000	11.40	47	58.40		
0700	-112	14	12	142	4000	14.85	57	71.85		
0710										

1. Enter the second portion (minimum minimum allowable column size from

multiplied by the length of columns required to obtain the column cost.

exceeds the allowable working load shown in the second portion of the

table with the total load on the column and the minimum allowable column size from the selected cast in place floor system. Select a cost per L.F. for bottom level columns by total load or minimum allowable column size. Select a cost per L.F. for top level columns using the column size required for bottom level columns from the second portion of the table. Btm. + Top Col. Costs/L.F. = Avg. Col. Cost/L.F. Column Cost = Average Col. Cost/L.F. x Length of Cols. Required. See reference section in back of book to determine total loads.

Design and Pricing Assumptions: Normal wt. concrete, f'c = 4 or 6 KSI, placed by pump. Steel, fy = 60 KSI, spliced every other level. Minimum design eccentricity of 0.1t. Assumed load level depth is 8" (weights

prorated to full story basis). Gravity loads only (no frame or lateral loads included).

Please see the reference section for further design and cost information.

				COST PER V.L.F.	
	QUANTITY	UNIT	MAT.	INST.	TOTAL
	2 202	0504	2.07	21	24.07
	3.323	SFCA	3.27	31	34.27
	4.000	L.F.	1.04	4.20	5.24
	1.405	Lb.	3.88	5.71	9.59
	.026	C.Y.	2.91		2.91
	.026	C.Y.		1.98	1.98
	3.323	S.F.	.13	3.77	3.90
TOTAL			11.23	46.66	57.89

### **B1010** Floor Construction

#### C.I.P. Column, Square Tied

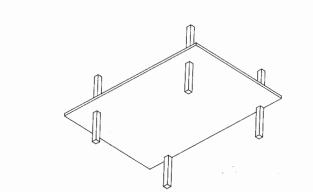
B1010	203		C.I.P.	Column, Sq	vare Tied			
	LOAD (KIPS)	Story Height (Ft.)	COLUMN SIZE (IN.)	Column Weight (P.L.F.)	CONCRETE STRENGTH (PSI)		OST PER V.L.	
						MAT.	INST.	TOTAL
0740	150	10	10	96	4000	13.15	49.50	62.6
0780		12	12	142	4000	15.40	58	73.4
0800		14	12	143	4000	15.70	58	73.7
0840	200	10	12	140	4000	16.25	59	75.2
0860		12	12	142	4000	16.50	59.50	76
0900	200	14	14	196	4000	19.05	66	85.0
0920	300	10	14	192	4000	20	67.50	87.5
0960		12	14	194	4000	20.50	68	88.5
0980	400	14	16	253	4000	23.50	75.50	99
1020	400	10	16	248	4000	25	77.50	102.5
1060		12	16	251	4000	25.50	78.50	104
1080		14	16	253	4000	26	79	105
1200	500	10	18	315	4000	29.50	86.50	116
1250		12	20	394	4000	35.50	98.50	134
1300	<u> </u>	14	20	397	4000	36	100	136
1350	600	10	20	388	4000	37	101	138
1400		12	20	394	4000	38	102	140
1600	700	14	20	397	4000	38.50	103	141.5
1900	700	10	20	388	4000	42.50	111	153.5
2100		12	22	474	4000	42.50	112	154.5
2300		14	22	478	4000	43.50	113	156.5
2600	800	10	22	388	4000	44.50	115	159.5
2900		12	22	474	4000	45.50	116	161.5
3200	000	14	22	478	4000	46.50	117	163.5
3400	900	10	24	560	4000	50	125	175
3800 4000		12	24	567	4000	51	127	178
4000	1000	14	24	571	4000	52	128	180
	1000	10	24	560	4000	54.50	132	186.5
4500 4750		12	26	667	4000	57.50	138	195.5
5600	100	14	26	673	4000	58.50	140	198.5
5800	100	10	10	96	6000	11.80	46.50	58.3
		12	10	97	6000	12	47	59
6000	150	14	12	142	6000	15.70	57	72.7
6200 6400	150	10	10	96	6000	13.75	49.50	63.2
6600		12 14	12 12	98 142	6000 6000	16.25 16.55	58 59	74.2
6800	200	14	12	143			58 59	74.5
7000	200	10	12	140 142	6000	17.10		76.1
7100		12		142	6000	17.40	59.50	76.9
7300	300	14	14		6000	20 21	66	86 88
7500	200			192	6000			
7600		12	14	194	6000	21.50	67.50	89 80 5
7600	400	<u>14</u> 10	14	196 192	6000	21.50	68	89.5
	400		14		6000	22.50	69.50	92
7800		12	14	194	6000	23	70	93
7900	500	14	16	253	6000	25.50	75.50	101
8000	500	10	16	248	6000	26.50	77.50	104
8050		12	16	251	6000	27	78.50	105.5
8100	600	14	16	253	6000	27.50	79	106.5
8200	600	10	18	315	6000	31	87.50	118.5
8300		12	18	319	6000	31.50	88.50	120
8400		14	18	321	6000	32	89	121

## **B10 Superstructure**

### p1010 Floor Construction

B10	10 203	onstruction	C.I.P.	Column, Squ	vare Tied			
BIU		07001/	COLUMN	COLUMN	CONCRETE	CO	ST PER V.L.F	
	LOAD (KIPS)	story Height (FT.)	Column Size (In.)	WEIGHT (P.L.F.)	STRENGTH (PSI)	MAT.	INST.	TOTAL
	700		18	315	6000	32.50	90	122.50
8500	700	10 12	18	319	6000	33.50	91	124.50
8600			18	321	6000	34	92	126
8700		14	20	388	6000	38	98.50	136.50
8800	800	10	20	394	6000	38.50	100	138.50
8900		12	20	397	6000	39.50	101	140.50
9000		14	20	388	6000	41	103	144
9100	900	10		394	6000	41.50	104	145.50
9300		12	20	397	6000	42.50	106	148.50
9600		14	20	469	6000	46.50	113	159.50
9800	1000	10	22	403	6000	47.50	115	162.50
9840		12	22	474	6000	48.50	116	164.50
9900		14	. 22	4/0				

B1010 204 Column Size (In.) Story Height (Ft.) LOAD (KIPS) 12 16 20 10-14 150 300 9913 10-14 9918 9924 9930 9936 9942 9948 9954 10-14 500 24 28 700 10-14 10-14 1000 32 36 1400 10-14 10-14 1800 40 2300 10-14


.....

10 -

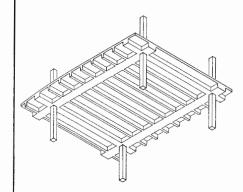
# C.I.P. Column, Square Tied-Minimum Reinforcing

-				AT DED WILE	
	COLUMN	CONCRETE	CO	ST PER V.L.F	
	WEIGHT (P.L.F.)	STRENGTH (PSI)	MAT.	INST.	TOTAL
	135	4000	13.45	55	68.45
	240	4000	21	72	93
	375	4000	31.50	93	124.50
	540	4000	43	115	158
_	740	4000	56.50	141	197.50
	965	4000	70	159	229
	1220	4000	87	185	272
	1505	4000	106	214	320

### **B1010** Floor Construction



General: Flat Plates: Solid uniform depth concrete two-way slab without drops or interior beams. Primary design limit is shear at columns. **Design and Pricing Assumptions:** 


Concrete f'c to 4 KSI, placed by concrete pump. Reinforcement, fy = 60 KSI. Forms, four use. Finish, steel trowel. Curing, spray on membrane. Based on 4 bay x 4 bay structure.

rstem Components				COST PER S.F.	
	QUANTITY	UNIT	MAT.	INST.	TOTA
SYSTEM B1010 223 2000 15' X 15' BAY, 40 PSF S. LOAD, 12" MIN. COL. Forms in place, flat plate to 15' high, 4 uses Edge forms to 6" high on elevated slab, 4 uses Reinforcing in place, elevated slabs #4 to #7 Concrete, ready mix, regular weight, 3000 psi Place and vibrate concrete, elevated slab less than 6", pump Finish floor, monolithic steel trowel finish for finish floor Cure with sprayed membrane curing compound	.992 .065 1.706 .459 .459 1.000 .010	S.F. L.F. Lb. C.F. C.F. S.F. C.S.F.	1.26 .01 .97 1.82 .09	5.70 .27 .73 .70 .88 .09	
TOTAL			4.15	8.37	

B1	010 223		Cas	t in Place Flo	at Plate			
	BAY SIZE (FT.)	SUPERIMPOSED LOAD (P.S.F.)	MINIMUM Col. Size (IN.)	SLAB THICKNESS (IN.)	TOTAL	the second s	OST PER S.	
2000 2200 2400 2600 3000 3400 3600 3800 4200 4400 4600 5000 5600 6600 6600 7000 7400 7400 7600	15 x 15 RB1010 -010 15 x 20 RB1010 -100 20 x 20 20 x 25 25 x 25	40 75 125 175 40 75 125 175 40 75 125 175 40 75 125 175 40 75 125 175 40 75	12 14 20 22 14 16 22 24 16 20 24 24 24 18 20 26 30 20 24	5-1/2 5-1/2 5-1/2 5-1/2 7 7-1/2 8-1/2 8-1/2 8-1/2 8-1/2 8-1/2 8-1/2 8-1/2 9 9-1/2 10 9 9-1/2 10	LOAD (P.S.F.)  109 144 194 244 127 169 231 281 127 175 231 281 146 188 244 300 152 194	MAT. 4.15 4.18 4.38 4.49 4.81 5.15 5.70 5.75 4.83 5.20 5.70 5.75 5.65 5.85 6.35 6.35 6.60 5.85 6.20	INST. 8.35 8.45 8.50 8.50 8.65 8.90 8.90 8.50 8.65 8.85 8.90 8.90 8.90 8.90 8.95 9.25 9.35 8.95 9.20	12.53 12.83 12.99 13.31 13.80 14.60 14.65 13.33 13.85 14.55 14.55 14.55 14.55 14.55 14.80 15.60 15.95 14.80
8000		125	30	10	250	6.65	9.40	15.40 16.05

## **B10** Superstructure

### **B1010** Floor Construction



General: Combination of thin concrete slab and monolithic ribs at uniform spacing to reduce dead weight and increase rigidity. The ribs (or joists) are arranged parallel in one direction between supports.

Square end joists simplify forming. Tapered ends can increase span or provide for heavy load.

not provided here.

#### System Components

#### SYSTEM B1010 226 2000

15' X 15' BAY, 40 PSF S. LOAD, 12" MIN. COLUMN Forms in place, floor slab, with 1-way joist pans, 4 use Forms in place, exterior spandrel, 12" wide, 4 uses Forms in place, interior beam. 12" wide, 4 uses Edge forms, 7"-12" high on elevated slab, 4 uses Reinforcing in place, elevated slabs #4 to #7 Concrete, ready mix, regular weight, 4000 psi Place and vibrate concrete, elevated slab, 6" to 10" pump Finish floor, monolithic steel trowel finish for finish floor

Cure with sprayed membrane curing compound

B101	10 226		Cast in Pl	ace Multisp	oan Joist Sla	b		
	BAY SIZE	SUPERIMPOSED	MINIMUM	RIB	TOTAL	C	OST PER S.F.	
	(FT.)	LOAD (P.S.F.)	COL. SIZE (IN.)	DEPTH (IN.)	LOAD (P.S.F.)	MAT.	INST.	TOTAL
2000	15 x 15	40	12	8	115	6.10	10.45	16.5
2100	BB1010	75	12	8	150	6.15	10.45	16.6
2200	-010	125	12	8	200	6.30	10.55	16.8
2300		200	14	8	275	6.45	10.95	17.4
2600	15 x 20	40	12	8	115	6.25	10.40	16.6
2800	<b>RB1010</b>	75	12	8	150	6.35	11.05	17.4
3000	-100	125	14	8	200	6.60	11.20	17.8
3300		200	16	8	275	6.90	11.40	18.3
3600	20 x 20	40	12	10	120	6.40	10.30	16.7
3900		75	14	10	155	6.65	10.90	17.5
4000		125	16	10	205	6.70	11.10	17.8
4100		200	18	10	280	7.05	11.60	18.6
4300	20 x 25	40	12	10	120	6.35	10.45	16.8
4400		75	14	10	155	6.65	11	17.6
4500		125	16	10	205	7.05	11.55	18.6
4600		200	18	12	280	7.35	12.10	19.4
4700	25 x 25	40	12	12	125	6.45	10.20	16.6
4800		75	16	12	160	6.85	10.75	17.6
4900		125	18	12	210	7.60	11.80	19.4
5000		200	20	14	291	8	12.05	20.0

Costs for multiple span joists are provided in this section. Single span joist costs are

#### Design and Pricing Assumptions: Concrete f'c = 4 KSI, normal weight placed by concrete pump. Reinforcement, fy = 60 KSI. Forms, four use. 4-1/2" slab. 30" pans, sq. ends (except for shear req.).

6" rib thickness.

Distribution ribs as required.

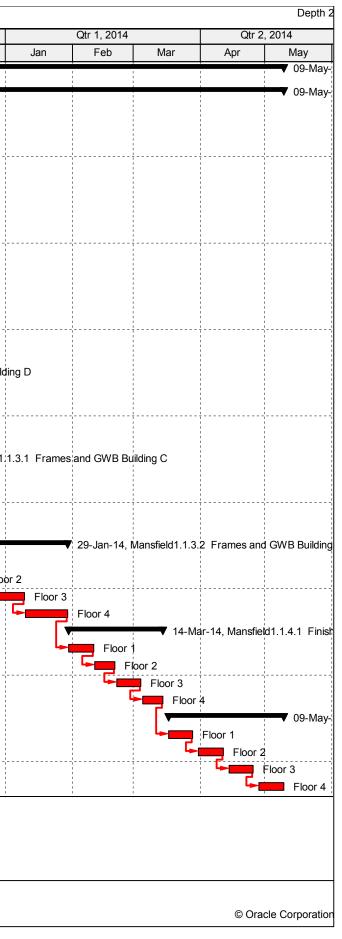
Finish, steel trowel.

Curing, spray on membrane.

Based on 4 bay x 4 bay structure.

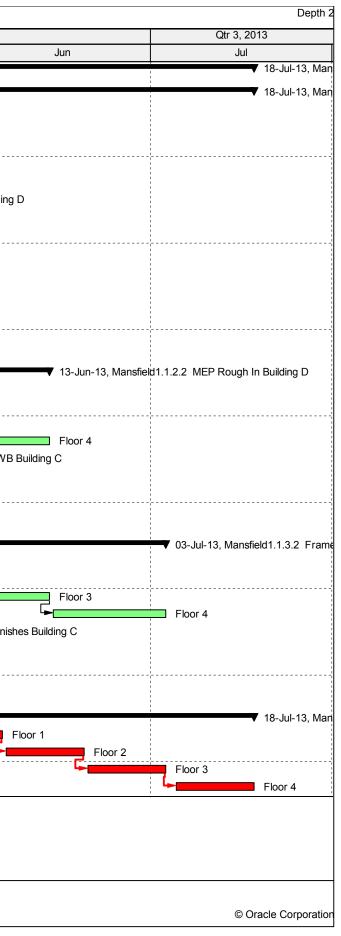
				COST PER S.F.	
	QUANTITY	UNIT	MAT.	INST.	TOTAL
	.905	S.F.	3.06	5.84	8.90
	.170	SFCA	.18	1.77	1.95
	.095	SFCA	.12	.81	.93
	.010	L.F.	.01	.07	.08
	.628	Lb.	.36	.27	.63
	.555	C.F.	2.30		2.30
	.555	C.F.		.73	.73
	1.000	S.F.		.88	.88
	.010	S.F.	.09	.09	.18
	.010	011	.05	.05	
TOTAL			6.12	10.46	16.58

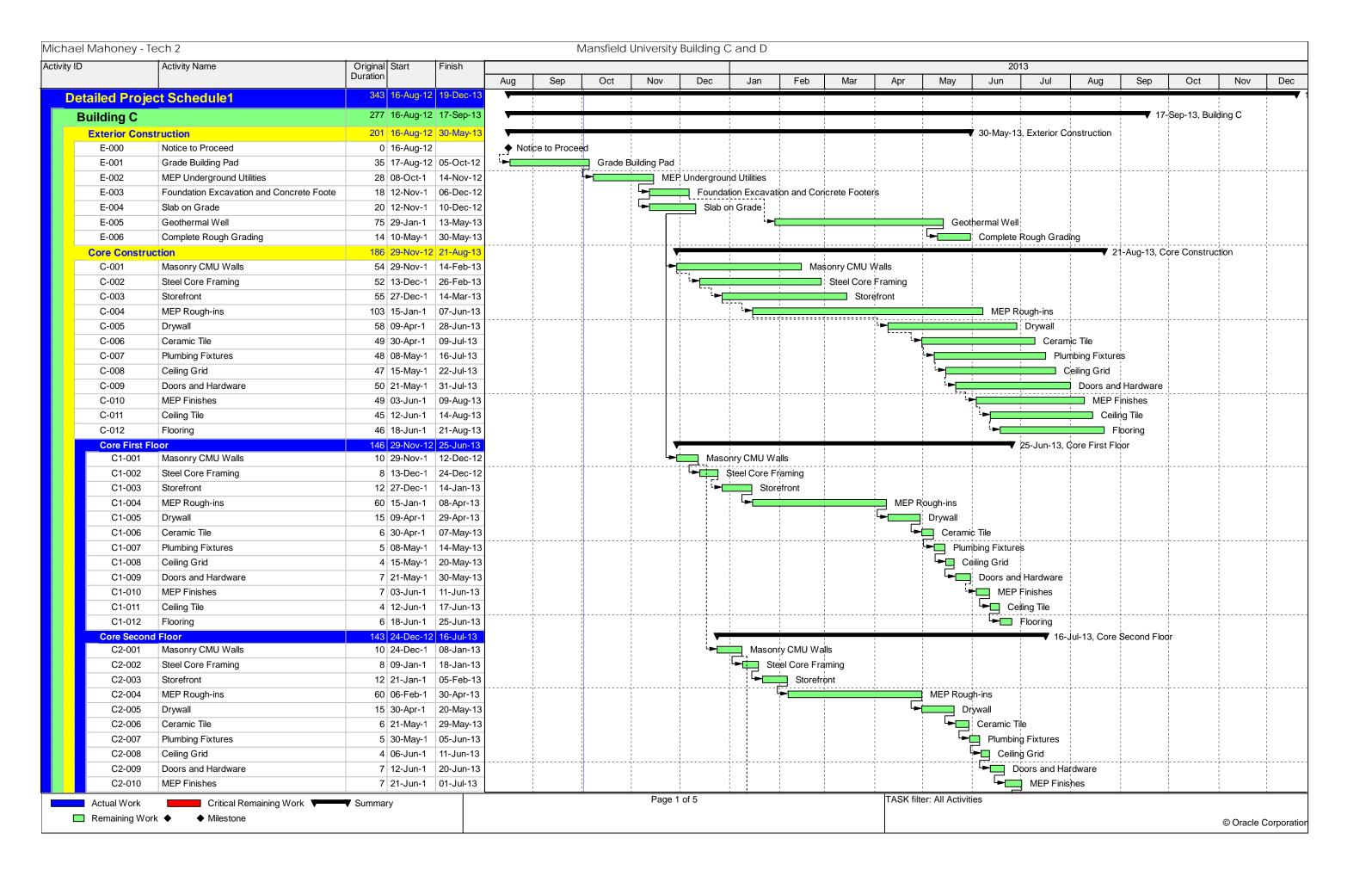
### APPENDIX D


#### STICK BUILT CORE SCHEDULE

	eld Dormitories				•							ggered Schedu						
tivity	ID	Activity Name	igina	I Start	Finish	ing	tr 1, 2013			Qtr 2, 2013	· ·		Qtr 3, 2013			Qtr 4, 2013		_
_	Monofield	Mansfield Dormitc	ation	11-Feb-13	09-May-14	ion 320	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
									1				1					
- 1		1 Non-Staggered (		11-Feb-13	09-May-14								1					
		1.1.1 Carpentry Buildin		11-Feb-13	14-Mar-13				ar-13, Mansfie	eld1.1.1.1 Carp	entry Building	C	1 1 1					
	👝 A1000	Floor 1		11-Feb-13	18-Feb-13	6		or 1										
	A1010	Floor 2		5 19-Feb-13	26-Feb-13			Floor 2						·				·
	A1020	Floor 3		27-Feb-13	06-Mar-13	6		Floor 3					1					
	🔲 A1030	Floor 4		6 07-Mar-13	14-Mar-13	6		Floor	4									į
		1.1.2 Carpentry Buildin		15-Mar-13	29-Apr-13	32				29-Apr-13, N	/lansfield1.1.1.	2 Carpentry Bu	uilding D					
	🔲 A1040	Floor 1		15-Mar-13	26-Mar-13	8			Floor 1									
	🔲 A1050	Floor 2		27-Mar-13	05-Apr-13	8			Floor 2				, , ,	·			¦ 	
	A1060	Floor 3		08-Apr-13	17-Apr-13	8			Flo	oor 3								
	A1070	Floor 4		8 18-Apr-13	29-Apr-13	8				Floor 4	- - 		, , ,					į
		1.2.1 MEP Rough In Bui	_	30-Apr-13	25-Jun-13	40					1	25-Jun-13, Ma	nsfield1.1.2.1	MEP Rough I	In Building C			
	A1080	Floor 1		30-Apr-13	13-May-13				La 14	Floor	1							
	A1090	Floor 2		14-May-13	28-May-13						Floor 2							
	🔲 A1100	Floor 3		29-May-13	11-Jun-13	10				<b>L</b>	Floor	3	   					
	🔲 A1110	Floor 4		12-Jun-13	25-Jun-13	10						Floor 4	1 1 1					
	Hansfield1.	1.2.2 MEP Rough In Bui		26-Jun-13	13-Sep-13	56				1 1 1			1	<b>13-</b> S	ep-13, Mar	nsfield1.1.2.2 MEF	Rough In B	uildin
	🔲 A1120	Floor 1		26-Jun-13	16-Jul-13	14					<b>L</b>	Floor						
	🔲 A1130	Floor 2	14	17-Jul-13	05-Aug-13							· · · · · · · · · · · · · · · · · · ·	Floor 2	¦				
	🔲 A1140	Floor 3		06-Aug-13	23-Aug-13						1 1 1			Floor 3				į
	🔲 A1150	Floor 4		26-Aug-13	13-Sep-13	14							┕╸	Floor	r 4			
	Hansfield1.	1.3.1 Frames and GWB	40	16-Sep-13	08-Nov-13	40								<b>—</b>		• 08-Nov	-13, Mansfie	id1.1
	🔲 A1160	Floor 1	10	16-Sep-13	27-Sep-13	10								· •	Floor 1			
	🔲 A1170	Floor 2	10	30-Sep-13	11-Oct-13	10							, 1 1	- <b>L</b>	Flo	or 2		į
	🔲 A1180	Floor 3	10	14-Oct-13	25-Oct-13	10							     		┕╸══	Floor 3		
	🔲 A1190	Floor 4	10	28-Oct-13	08-Nov-13	10							I I			Floor 4		
	Hansfield1.	1.3.2 Frames and GWB	56	i 11-Nov-13	29-Jan-14	56											1	<u> </u>
	🔲 A1200	Floor 1	14	11-Nov-13	29-Nov-13	14											Floor 1	1
	🔲 A1210	Floor 2	14	02-Dec-13	19-Dec-13	14							1 1 1			<b>4</b>		Floor
	🔲 A1220	Floor 3	14	20-Dec-13	09-Jan-14	14					1						<b>-</b>	
	🔲 A1230	Floor 4	14	10-Jan-14	29-Jan-14	14							1 1 1					
	Hansfield1.	1.4.1 Finishes Building	32	30-Jan-14	14-Mar-14	32												
	🔲 A1240	Floor 1	8	30-Jan-14	10-Feb-14	8							1					į
	🔲 A1250	Floor 2	8	11-Feb-14	20-Feb-14	8							1					
	🔲 A1260	Floor 3	8	21-Feb-14	04-Mar-14	8			; ; ;				 ! !	·-;		<del>;</del>		
	🔲 A1270	Floor 4	8	05-Mar-14	14-Mar-14	8							1     					
	Hansfield1.	1.4.2 Finishes Building	40	17-Mar-14	09-May-14	40												
	🔲 A1280	Floor 1	10	17-Mar-14	28-Mar-14	10							, 1 1					
	🔲 A1290	Floor 2	10	31-Mar-14	11-Apr-14	10												
	A1300	Floor 3		14-Apr-14	25-Apr-14	10			;				 ' '		- <del>;</del>			
	A1310	Floor 4		28-Apr-14	09-May-14					1 1 1								

Actual Level of
Actual Work


Actual Level of Effort Remaining Work


♦ ♦ Milestone Critical Remaining Work Summary Page 1 of 1

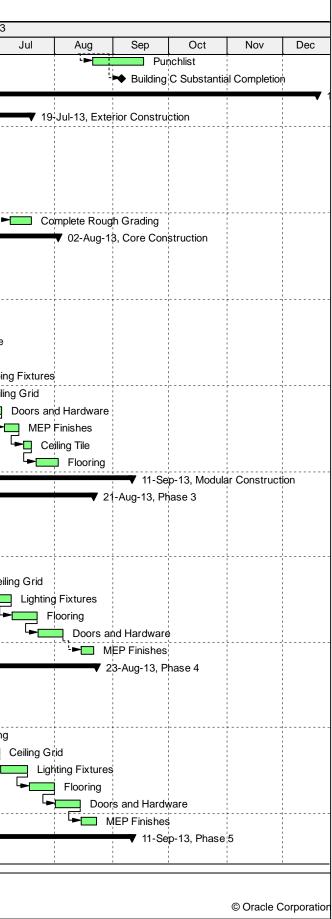


field Dormitories		1	1			ick Built Schedule	
y ID	Activity Name	iginal Start	Finish	ing	Qtr 1, 2013		Qtr 2, 2013
		ation 112 11-Fe	0-13 18-Jul-13	ion I12	Feb Mar	Apr	Мау
Mansfield1	Mansfield Dormitc			112			
🚹 Mansfield1	.1 Non-Staggered (	112 11-Fe	o-13 18-Jul-13	112			
Hansfield1	.1.1.1 Carpentry Buildin	24 11-Fe	o-13 14-Mar-13	24	▼ 14-M	ar-13, Mansfield1.1.1.1 Carpentry Building C	
A1000	Floor 1	6 11-Fe	p-13 18-Feb-13	6 6	Floor 1		
🔲 A1010	Floor 2	6 19-Fe	b-13 26-Feb-13	6	Floor 2		
🔲 A1020	Floor 3	6 27-Fe	b-13 06-Mar-13	6	Floor 3		
🔲 A1030	Floor 4	6 07-Ma	r-13 14-Mar-13	6	Floor	4	
nansfield1 💾	.1.1.2 Carpentry Buildin	32 15-Ma	r-13 29-Apr-13	32			29-Apr-13, Mansfield1.1.1.2 Carpentry Buil
💼 A1040	Floor 1	8 15-Ma	r-13 26-Mar-13	8 8		Floor 1	
🔲 A1050	Floor 2	8 27-Ma	r-13 05-Apr-13	8		Floor 2	
🔲 A1060	Floor 3	8 08-Ap	r-13 17-Apr-13	8		Floor 3	
🔲 A1070	Floor 4	8 18-Ap	r-13 29-Apr-13	8		L=	Floor 4
Hansfield1	.1.2.1 MEP Rough In Bui	40 19-Fe	b-13 15-Apr-13	40		▼ 15-Apr-13, Mans	field1.1.2.1 MEP Rough In Building C
🔲 A1080	Floor 1	10 19-Fe	b-13 04-Mar-13	8 10	Floor 1		
🔲 A1090	Floor 2	10 05-Ma	r-13 18-Mar-13	3 10	►	Floor <mark>2</mark>	
🔲 A1100	Floor 3	10 19-Ma	r-13 01-Apr-13	10		Floor 3	
🔲 A1110	Floor 4	10 02-Ap	r-13 15-Apr-13	10		Floor 4	
Hansfield1	.1.2.2 MEP Rough In Bui	56 27-Ma	r-13 13-Jun-13	56		V	1 I
A1120	Floor 1	14 27-Ma	r-13 15-Apr-13	14		Floor 1	
🔲 A1130	Floor 2	14 16-Ap	r-13 03-May-13	3 14		►	Floor 2
🔲 A1140	Floor 3	14 06-Ma	y-13 23-May-13	3 14			Floor 3
🔲 A1150	Floor 4	14 24-Ma	y-13 13-Jun-13	14			
Hansfield1	.1.3.1 Frames and GWB	40 05-Ma	r-13 29-Apr-13	40			29-Apr-13, Mansfield1.1.3.1 Frames and G
A1160	Floor 1	10 05-Ma	r-13 18-Mar-13	3 10		Floor 1	
🔲 A1170	Floor 2	10 19-Ma	r-13 01-Apr-13	10		Floor 2	
🔲 A1180	Floor 3	10 02-Ap	r-13 15-Apr-13	10		Floor 3	
🔲 A1190	Floor 4	10 16-Ap	r-13 29-Apr-13	10		►	Floor 4
Hansfield1	.1.3.2 Frames and GWB	56 16-Ap	r-13 03-Jul-13	56		<b>▼</b>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A1200	Floor 1	14 16-Ap	r-13 03-May-13	3 14			Floor 1
A1210	Floor 2	14 06-Ma	y-13 23-May-13	3 14			Floor 2
A1220	Floor 3		y-13 13-Jun-13				
A1230	Floor 4	14 14-Ju		14			
	.1.4.1 Finishes Building	32 27-Ma		3 32			▼ 09-May-13 Mansfield1.1.4.1
A1240	Floor 1		r-13 05-Apr-13			Floor 1	
A1250	Floor 2	8 08-Ap	r-13 17-Apr-13	8		Floor 2	
A1260	Floor 3	8 18-Ap					Floor 3
A1270	Floor 4	8 30-Ap					Floor 4
	.1.4.2 Finishes Building	40 22-Ma	-	40			
🔲 A1280	Floor 1		y-13 05-Jun-13				
A1290	Floor 2	10 06-Ju					
A1300	Floor 3	10 20-Ju		10			
A1310	Floor 4	10 05-Ju					

Actual Level of Effort	Remaining Work	♦ Milestone	Page 1 of 1	TASK filter: All Activities
Actual Work	Critical Remaining Work	summary		

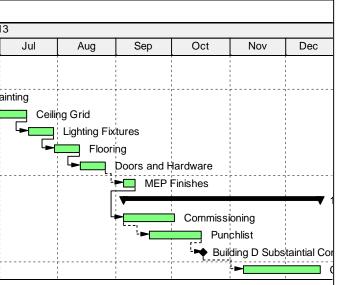





ity ID		Activity Name	Original	Start	Finish											
			Duration			Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
	C2-011	Ceiling Tile		02-Jul-13*		_									1	
	C2-012	Flooring		09-Jul-13*			, , ,			1					I	
	Core Third Fl				09-Aug-13		   		, , ,	1   						-+
	C3-001	Masonry CMU Walls			31-Jan-13	-	 		1	1			CMU Walls		1	
	C3-002	Steel Core Framing			12-Feb-13				1	1			el Core Frami	ng	1	
	C3-003	Storefront			28-Feb-13		   			1 1 1			Storefront		1	
	C3-004	MEP Rough-ins			23-May-13	_	   									MEP Rou
	C3-005	Drywall		24-May-1					i   							
	C3-006	Ceramic Tile			24-Jun-13	_	!   			1					1	¦ <b>⊢</b>
	C3-007	Plumbing Fixtures			01-Jul-13		   			i i i					1	[
	C3-008	Ceiling Grid		02-Jul-13*		_	   		1	1					4	
	C3-009	Doors and Hardware		09-Jul-13*			-   			1					I.	
	C3-010	MEP Finishes		18-Jul-13*			   		   	     		     	   	   	, , ,	
	C3-011	Ceiling Tile	4	29-Jul-13*	01-Aug-13		 			1 1 1					1	
	C3-012	Flooring		-	09-Aug-13		1 1 1 1		1	1 1 1					1	
	Core Fourth C4-001	Floor Masonry CMU Walls			21-Aug-13 14-Feb-13	_					L		asonry CMU V	/alle		-
	C4-001 C4-002	Steel Core Framing			26-Feb-13	_					-		Steel Core		1	
	C4-002 C4-003	Storefront			14-Mar-13		     		, ,	, , ,	'       		Steel Core		;	
		MEP Rough-ins			07-Jun-13	_	   		1	1	1			non	. <u> </u>	
	C4-004					-			1	1	1					
	C4-005				28-Jun-13	-	 		1	1					1	
	C4-006	Ceramic Tile		01-Jul-13*											1	
	C4-007	Plumbing Fixtures		10-Jul-13*					; ;						¦	
	C4-008	Ceiling Grid		17-Jul-13*		-									, 1	
	C4-009	Doors and Hardware		23-Jul-13*		_	   			i i i	i I I				1	
	C4-010	MEP Finishes		-	09-Aug-13				1	1	1				4	
	C4-011	Ceiling Tile		-	14-Aug-13	-									1	
	C4-012	Flooring		-	21-Aug-13				; ;						<u>.</u>	
	Nodular Const	ruction			06-Aug-13		   		1		1		1			
	Phase 1 M-1001	Set Modular Units		28-Dec-12	01-Jul-13 22-Feb-13								Set Modular	Inito		-
	M-1001 M-1002	MEP Rough-ins		11-Jan-1	01-Apr-13	-				i E		;		MEP Rou	hh inn	
-	M-1002	Drywall		15-Feb-1	24-Apr-13	-				1			1		Drywall	
					08-May-13											
	M-1004	Painting Ceiling Grid			17-May-13	-	1 								Paintin	ng eiling Grid
_	M-1005	-			20-May-13										1	ighting F
_	M-1006	Lighting Fixtures				-	, 1 1									-
	M-1007	Flooring			29-May-13	-										Floorin
_	M-1008 M-1009	Doors and Hardware MEP Finishes		19-Apr-1 29-Apr-1	06-Jun-13 01-Jul-13				; 				 			Do
	Phase 1 Fi				21-May-13		1 1 1 1		1	-	1	1		-		21-May-1
		Set Modular Units			11-Jan-13	-	1 1 1 1		1		Set N	/odular Uni	l6		<b>▼</b> ∠	. I - Way- I
	M1-002	MEP Rough-ins	26	11-Jan-1	15-Feb-13		   			1			¦∶ EP Rough-ins		, (	
	M1-003	-			11-Mar-13								Drywa		1	
		Painting		11-Mar-1	22-Mar-13		, ,		;				· · · · · · · · · · · · · · · · · · ·	ainting	; i !	
		Ceiling Grid			01-Apr-13									Ceiling Gr	id	
		Lighting Fixtures		02-Apr-1	10-Apr-13				1					-	ig Fixtures	
		Flooring		11-Apr-1;	18-Apr-13		   									
							I				; []	:	i.			<u> </u>

Jul	Aug	Sep	Oct	Nov	Dec
Ceiling	1 1				
Floc	pring	10. Cana T	ind Flags		
	V 09-Aug	-13, Core T	nira Floor		
ramic Tile					
Plumbing	Fixtures				
Ceiling					
	ors and Hard MEP Finishe				
- 	Ceiling Tile				
L,	Floorin				
	21	-Aug-13, Co	ore Fourth Fl	oor	
gh-ins					
rywall	·				
Ceram	hc Tile hbing Fixture	s			
	eiling Grid				
	Doors and				
	MEP F				
		boring			
			Construction	)	
01-Jul-13,	Phase 1				
	L				
Hardwar	ę				
MEP Finis					
e 1 First I	Floor				
·					
				© Oracle C	orporatior

ty ID		Activity Name	Original	Start	Finish											
			Duration			Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun
		Doors and Hardware	6	19-Apr-1	26-Apr-13			, , ,	, , , ,					· •		1
	M1-009	MEP Finishes		29-Apr-1	21-May-13									L.	- <b>M</b>	IEP Finish
	·	cond Floor			11-Jun-13				1	1 1 1		l I	1		1	11
		Set Modular Units			25-Jan-13						▕┝──	Set Modula				
	M2-002	MEP Rough-ins	26	28-Jan-1	04-Mar-13	i i			1			<b>ا</b> ر ا	MEP Ro	1		
	M2-003	Drywall	17	05-Mar-1	27-Mar-13			1	1 1 1			1		Drywall		
	M2-004	Painting	10	28-Mar-1	10-Apr-13									Paint		
	M2-005	Ceiling Grid	7	11-Apr-1;	19-Apr-13										eiling Grid	
	M2-006	Lighting Fixtures	7	22-Apr-1	30-Apr-13										📕 Lighting Fi	xtures
	M2-007	Flooring	6	01-May-1	08-May-13				1					-	Floorin	ģ
	M2-008	Doors and Hardware	6	09-May-1	16-May-13			1		1						ors and
	M2-009	MEP Finishes	17	17-May-1	11-Jun-13											
	Phase 1 Th	ird Floor		-	25-Jun-13							-		_		-
		Set Modular Units	10	28-Jan-1	08-Feb-13				1			Set N	odular Units	6		
	M3-002	MEP Rough-ins	26	11-Feb-1	18-Mar-13								M	EP Rough-ir	าร่	
	M3-003		17	19-Mar-1	10-Apr-13									Dryw		
	M3-004			11-Apr-1;	· ·					{ !				· · · F · · · · · · · ·	Painting	+
		Ceiling Grid		25-Apr-1	03-May-13				1						Ceiling G	irid
		Lighting Fixtures		06-May-1	14-May-13				i 1 1	1						1
	M3-007			15-May-1	22-May-13			1		1						
		Doors and Hardware		23-May-1	-			1	1	i i i						Door
		MEP Finishes			25-Jun-13											
	Phase 1 Fo				25-Jul-13				1							
	·	Set Modular Units			22-Feb-13								Set Modula	r Í Inits		
		MEP Rough-ins							1	1				MEP Ro		
	M4-002 M4-003	-		02-Apr-1	24-Apr-13							-	j C		Drywall	
	M4-003	•											 		- +	
				25-Apr-1	08-May-13	-									Painting	T
		Ceiling Grid		09-May-1	-				1						Cei	
		Lighting Fixtures		10-May-1	-	- i									· _ ·	ghting F
	M4-007			21-May-1	-				- - 						· – – ·	Floori
		Doors and Hardware			06-Jun-13			   	 				4			
		MEP Finishes			01-Jul-13			1	1	1						
	ase 2				06-Aug-13											1
		Set Modular Units			31-Jan-13					, , ,		Set Mod	ular Units			
		MEP Rough-ins		06-Feb-1	02-Apr-13								Г	MEP Ro		
		Drywall		03-Apr-1	30-Apr-13				; 	; ;	; {		۲ ۱	F	Drywall	
		Painting		01-May-1										4	P	ainting
		Ceiling Grid		22-May-1	04-Jun-13			1	1							Cei
		Lighting Fixtures		05-Jun-1	18-Jun-13											<b>&gt;</b>
		Flooring		20-Jun-1	03-Jul-13			1	1							-
		Doors and Hardware			16-Jul-13						¦ 				¥	¦ 
		MEP Finishes			06-Aug-13			1	1	1	1					
Faca	de				8 28-Jun-13								-			
F-0	0001	Exterior Masonry Veneer Phase 1			02-May-13			1	1 1 1	i i i	1				Exterior N	lasonry
F-C	0002	Exterior Masonry Veneer Phase 2			28-Jun-13										·►	
Final					17-Sep-13				- - 							
F-1	1001	Commissioning	20	17-Jul-13*	13-Aug-13								}			
	al Work	Critical Remaining Work	Summar	n.					Page 3	of 5	·	1		TASK fi	lter: All Activit	ties


	A	Com	Ort	Neur	Dee
Jul	Aug	Sep	Oct	Nov	Dec
3 Phase	1 Second Fl	oor			, , ,
J, Fliase		501			   
	, , ,				
re	1				, , ,
ishes					! 
1	hase 1 Third	l Floor			-   
					1   
	1				, , ,
				L	   
	1 1 1				, , ,
					1 1 1
ardware	   				
P Finishe	S				
) 1-Jul-13,	Phase 1 Fo	urth Floor			 
					1   
	1 1 1				
					1 1 1
Hardwar					   
VEP Finis					
	🔽 06-Aug-	13, Phase 2			
	1				, , ,
ng Fixture	e				, 1 1 1
Flooring					   
1	rs and Hard	vare			
D00	MEP Fin				
3-Jun-13,					
Phase 1					
	sonry Venee	r Phase 2	1 1	- - 	1 1 1
			Sep-13, Fina		   
•	Comr	nissioning			
_					
				© Oracle C	corporation

ID	Activity Name	Original Duration	Start	Finish		-									
F-1002	Punchlist		21-Aug-1	17-Sep-13	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	
F-1003	Building C Substantial Completion	0	217/091	05-Sep-13											
Building D		-	21-Sep-12	19-Dec-13		-	1				1		1	i 1	
			· · ·	19-Jul-13		-									
Exterior Con E-1001	Grade Building Pad			11-Oct-12			Crode	Duilding Do	J				, ,	+	- +
E-1001 E-1002	MEP Underground Utilities		21-Sep-12 12-Oct-1	15-Nov-12				Building Pat		und Utilities					
E-1002 E-1003	Foundation Excavation and Concrete Foote		12-0ct-1 19-0ct-1	13-Nov-12	_	,     			•	ndation Excav	ation and	Concrete For	tore		
E-1003 E-1004	Slab on Grade		19-001-1 14-Dec-1	13-Dec-12 24-Dec-12	_		-			Slab on Grac	1				
E-1004 E-1005	Geothermal Well		01-Feb-1	03-May-13	_				-					Geother	rmal V
E-1005 E-1006	Complete Rough Grading			19-Jul-13		, , ,	, , , , ,							Geother	
Core Constr				02-Aug-13		1 1 1									
Core Constr C-1001	Masonry CMU Walls			02-Aug-13					▼	Masor	ry CMU W				
C-1001 C-1002	Steel Core Framing		07-Jan-1	18-Jan-13		   					el Core Fr	1			
C-1002 C-1003	Storefront		31-Jan-1	20-Feb-13							1	Storefront			
C-1003	MEP Rough-ins		14-Feb-1	10-Apr-13										Rough-ins	
C-1004 C-1005	Drywall		11-Apr-1;	15-May-13	-	   						1			ywall
C-1005	Ceramic Tile		16-May-1	29-May-13											Ce
C-1000	Painting		16-May-1	05-Jun-13		1 1 1									
C-1007	Plumbing Fixtures		30-May-1	12-Jun-13	-	1 1 1									╤╛╵
C-1009	Ceiling Grid		06-Jun-1	12-Jun-13											
C-1010	Doors and Hardware		20-Jun-1	03-Jul-13		   									
C-1011	MEP Finishes			12-Jul-13									1		
C-1012	Ceiling Tile			19-Jul-13		, , ,							- - 		
C-1012	Flooring			02-Aug-13		   									
Modular Con				11-Sep-13						,					- +
Phase 3				21-Aug-13		     									
M-3001	Set Modular Units		01-Feb-1	26-Feb-13								Set Modula	r Units		
M-3002	MEP Rough-ins	43	27-Feb-1	26-Apr-13	-						-	,	1	MEP Roug	,h-ins
M-3003	Drywall	15	22-Apr-1	10-May-13		-   								Dryw	i i
M-3004	Painting	15	13-May-1	03-Jun-13		   	/						/   		F
M-3005	Ceiling Grid	15	03-Jun-1	21-Jun-13										[	+
M-3006	Lighting Fixtures	10	24-Jun-1	08-Jul-13		, , , ,							1		
M-3007	Flooring	10	09-Jul-13*	22-Jul-13											
M-3008	Doors and Hardware	10	23-Jul-13*	05-Aug-13									1		
M-3009	MEP Finishes	5	15-Aug-1	21-Aug-13		'     									
Phase 4		126	27-Feb-13	23-Aug-13			1					V	1	1	
M-4001	Set Modular Units	18	27-Feb-1	22-Mar-13	-						<b>له</b> ا	s s	et Modular I	1	-
M-4002	MEP Rough-ins		25-Mar-1	03-May-13	-	, 1 1							I <del>-</del>	🚊 MEP Ro	
M-4003	Drywall		03-May-1	23-May-13		   					   		<u> </u>		Drywa
M-4004	Painting	14	23-May-1	12-Jun-13										L <b>-</b>	_
M-4005	Ceiling Grid		12-Jun-1	02-Jul-13		   									L -
M-4006	Lighting Fixtures			17-Jul-13											-
M-4007	Flooring			31-Jul-13		1 1									
M-4008	Doors and Hardware		01-Aug-1	-		   					   		     	     	
M-4009	MEP Finishes			23-Aug-13			1			1					
Phase 5				11-Sep-13		   							1	1	
M-5001	Set Modular Units	15	25-Mar-1	12-Apr-13		1 1 1	1				1		Set N	Vodular Unit	S
Actual Work	Critical Remaining Work	-						Page 4	of 5				TASK fill	ter: All Activ	ities



Micha	el Mahoney - T	ech 2					Ν	lansfield	University	Building	C and D						
Activity I	ID	Activity Name	Original		Finish											20	013
			Duration			Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	T
	M-5002	MEP Rough-ins	20	15-Apr-1	10-May-13				•						MEP	Rough-ins	-
	M-5003	Drywall	14	13-May-1	31-May-13				1     				1     			Drywall	
	M-5004	Painting	15	03-Jun-1	21-Jun-13				 1 1	1	1		1 1 1		L		Paintir
	M-5005	Ceiling Grid	15	24-Jun-1	15-Jul-13											►	<u> </u>
	M-5006	Lighting Fixtures	10	16-Jul-13*	29-Jul-13				1					- - -			4
	M-5007	Flooring	10	30-Jul-13*	12-Aug-13	-											
	M-5008	Doors and Hardware	10	13-Aug-1	26-Aug-13	-			1 1 1								
	M-5009	MEP Finishes	5	05-Sep-1	11-Sep-13												
	Final		75	05-Sep-13	19-Dec-13												
	A1860	Commissioning	20	05-Sep-1	02-Oct-13												
	A1870	Punchlist	20	19-Sep-1	16-Oct-13												
	A1880	Building D Substaintial Completion	0		17-Oct-13												
	A1890	Close Out	29	08-Nov-1	19-Dec-13					 ! !			1 1 1	-,	- <del>-</del>	· · · · · · · · · · · · · · · · · · ·	

Actual Work Critical Remaining Work Summary	Page 5 of 5	TASK filter: All Activities
Remaining Work   Milestone		



© Oracle Corporation

### APPENDIX E

#### TAKE OFFS

### APPENDIX E

#### DEPTH 1: FLOORING SYSTEM ANALYSIS

Steel Bear	iteel Beams and Girders				Weight	Tons
W 8	х	18	116	LF	2088	1.04
W 10	х	22	868	LF	19096	9.55
W 10	х	68	225	LF	15300	7.65
W 14	х	22	18	LF	396	0.20
W 14	х	43	22	LF	946	0.47
W 14	х	53	34	LF	1802	0.90
W 14	х	74	27	LF	1998	1.00
W 14	х	132	62	LF	8184	4.09
W 14	х	145	31	LF	4495	2.25
W 14	х	193	28	LF	5404	2.70
						29.85

2x10 Wood Joists									
Board Ft Price/Ft Cost/flr Cost									
1329	\$	0.77	\$1,023.33	\$4,093.32					

Flooring		
3/4"OSB	2040	sqft
1/2" Cementitious Backer Board	2040	sqft
3/4" Floor Sheathing	2040	sqft
6" Batt Insulation	2040	sqft

Masonry Wall									
220 LF/floor	13 ft tall	2860	sq ft/floor						

	Columns										
Steel	Weight	Len	gth	Weight							
HSS6x6x3/8	27.4	1640	LF	44942							
HSS6x6x5/8	42.1	192.2	LF	8092							
W 10 x 68	68	389.7	LF	26500							
				79534							

Concrete		For 4 Floors	Total Concrete		
Flat Plate	2040 sqft	10 " thick	1700 ft^3	6800 ft^3	252 CY
Columns	(2) - 2' x 2'	13 ft tall	104 ft^3	416 ft^3	15 CY
Wall	220 LF	13 ft tall	2383 ft^2	9533.333 ft^3	353 CY

Formwork	Area	Amount	Total Area
2x2 Columns	104 SFCA/col	8 Columns	832 SFCA
Flat Plate	2040 SF/Floor	4 flrs	8160 SF
Walls	2383 SFCA/flr	4 flrs	9532 SFCA

Steel per F	loor	Sum (ft)	Weight
8 >	18	28.62	515.16
10 >	22	211.48	4652.56
10 >	10 x 68		6120
			11287.72

	Wood	Concrete
125	31	45
160	34	48
200	37	51
250	40	54
315	43	57
400	46	60
500	47	61
530	48	62
800	49	63
1000	50	64
1250	51	65
1600	51	65
2000	51	65
2500	51	65
3150	51	65
4000	51	65

### DEPTH 3: PANELIZED FAÇADE ANALYSIS

		Bri	ick				
		Build	ing D				
Total A	rea	Small Windows	Large Windows	Area of Brick			
		North	Wing				
West Face							
3631	Sq Ft	34	5	2965 Sq Ft			
North Fac	е						
294	Sq Ft	0	0	294 Sq Ft			
292	Sq Ft	0	0	292 Sq Ft			
East Face							
3674	Sq Ft	34	6	2987 Sq Ft			
				6538 Sq Ft			
Center Wing							
West Face							
2869	Sq Ft	34	0	2308 Sq Ft			
South Fac	е						
540	Sq Ft	6	0	441 Sq Ft			
307	Sq Ft	0	0	307 Sq Ft			
East Face							
3606	Sq Ft	34	6	2919 Sq Ft			
				5975 Sq Ft			
		South	Wing				
North Fac	е						
760	Sq Ft	8	0	628 Sq Ft			
480	Sq Ft	0	0	480 Sq Ft			
West Face							
5550	Sq Ft	48	8	4590 Sq Ft			
South Fac							
	Sq Ft	0	0	454 Sq Ft			
	Sq Ft	0	0	294 Sq Ft			
East Face							
3238	Sq Ft	26	5	2704 Sq Ft			
				9150 Sq Ft			

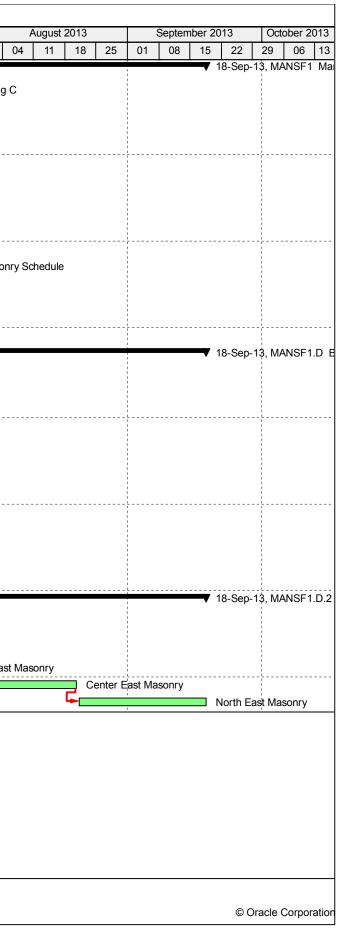
	Stone							
	Building D							
Total Area	Small Windows	Large Windows	Doors	Area of Stone				
	No	orth Wing						
West Face								
2283 Sq	Ft 20	1	3	1860 Sq Ft				
North Face								
218 Sq	Ft C	0 0	0	218 Sq Ft				
210 Sq	Ft C	0 0	0	210 Sq Ft				
East Face								
1650 Sq	Ft 16	5 2	0	1344 Sq Ft				
				3632 Sq Ft				
	Ce	nter Wing						
West Face								
2902 Sq	Ft (	0 0	0	2902 Sq Ft				
South Face				100 0 5				
202 Sq			0	169 Sq Ft				
206 Sq	Ft C	0 0	0	206 Sq Ft				
East Face	Ft 15	·	1	1252 E Sa Et				
1666 Sq	FL 15	2	1	1352.5 Sq Ft 4629.5 Sq Ft				
		outh Wing		4029.5 SY FL				
North Face								
180 Sq	Ft C	0	0	180 Sq Ft				
230 Sq			0	197 Sq Ft				
West Face	· · · · · ·			207 0911				
2190 Sq	Ft 16	<u>i</u> 1	1	1881 Sq Ft				
South Face								
810 Sq	Ft C	0 0	0	810 Sq Ft				
East Face								
1824 Sq	Ft 12	. 1	2	1557 Sq Ft				
				4625 Sq Ft				

Brick								
		Build	ling C					
Total A	rea	Small Windows	Large Windows	Area of Brick				
		North	Wing					
West Face	2							
3631	Sq Ft	34	5	2965 Sq Ft				
North Fac	е							
294	Sq Ft	0	0	294 Sq Ft				
292	Sq Ft	0	0	292 Sq Ft				
East Face								
3674	Sq Ft	34	6	2987 Sq Ft				
				6538 Sq Ft				
		South	Wing					
West Face	2							
2869	Sq Ft	34	0	2308 Sq Ft				
South Fac	е							
540	Sq Ft	6	0	441 Sq Ft				
307	Sq Ft	0	0	307 Sq Ft				
East Face								
3606	Sq Ft	34	6	2919 Sq Ft				
				5975 Sq Ft				

Stone											
	В	Building C									
Small Large											
Total Area	Windows	Windows	Doors	Area of Stone							
	N	orth Wing									
West Face											
2283 Sq F1	20	1	3	1860 Sq Ft							
North Face											
218 Sq F1				218 Sq Ft							
210 Sq F1				210 Sq Ft							
East Face	East Face										
1650 Sq F1	16	2		1344 Sq Ft							
				3632 Sq Ft							
	Sc	outh Wing									
West Face											
2902 Sq F1				2902 Sq Ft							
South Face											
202 Sq F1	2			169 Sq Ft							
206 Sq F1	:			206 Sq Ft							
East Face											
1666 Sq Ft	15	2	1	1352.5 Sq Ft							
				4629.5 Sq Ft							

Panel Type	Size (SF)	Total Number	Total Area (SF)	
Thin Brick			`, <i>`</i> ,	
А	165	111	18,315	
В	148	16	2,368	
С	250	40	10,000	
D	162	20	3,240	
E	280	10	2,800	
			36,723	
Precast				
Z	380	24	9,120	
Y	270	36	9,720	
Х	170	16	2,720	
W	215	40	8,600	
			30,160	

			Building C						
					Wing and E	levation			
Panel Types	Size (SF)	North - N	North - W	South - W	South - S	South - E	North - E	Total	Area
Thin Brick									
A	165	0	10	8	0	8	10	36	5940
В	148	0	2	2	0	2	2	8	1184
С	250	0	6	2	0	2	6	16	4000
D	162	0	2	1	1	1	2	7	1134
E	280	2	0	0	1	0	0	3	840
Precast Conc	rete								13098
Z	380	0	6	8	0	2	0	16	6080
Y	270	0	6	2	0	2	6	16	4320
Х	170	3	0	1	5	0	0	9	1530
W	215	0	0	0	0	3	5	8	1720
									13650


		Area		12375	1184	6000	2106	1960	23625	3040	5400	1190	6880	16510
		Total		75	8	24	13	7		8	20	7	32	
		North - E		10	2	5	1	0		0	5	0	5	
		Center - E		10	2	3	1	0		0	5	0	5	
		enter - S		2	0	0	1	1		0	0	1	1	
g D	evation	outh - E C		13	2	2	0	0		0	2	0	7	
Building D	Wing and Elevation	south - S S		0	0	0	0	2.5		0	0	3	0	
	M	outh - W S		16	0	4	8	0		0	2	0	8	
		outh - N S		4	0	0	0	1.5		2	0	1	0	
		Center - W South - N South - W South - S South - E Center - S Center - E North - E		10	0	5	1	0		5	3	0	0	
				10	2	5	1	0		1	3	0	9	
		North - N North - W		0	0	0	0	2		0	0	2	0	
				165	148	250	162	280	ete	380	270	170	215	
		Panel Types Size (SF)	Thin Brick	A	В	C	D	Ш	Precast Concrete	Z	۲	×	M	

### APPENDIX F

### PANELIZED VS MASONRY FAÇADE SCHEDULE

-	У	·					xterio	or Facade Sch	edule						
ctivity ID	Activity Name	Original Start Duration	Finish		March 2013	April 2013		May 2013		June			July 2013	01 0	<u> </u>
	Mansfield Facade S	136 08-Mar-13	18-Sep-13	03	10 17 24	31 07 14 21	28	05 12 19	26 0	02 09	16 23	30 0	7 14	21 28	
			01-Jul-13						1			01 101	-13, MANSF		, dina (
	1.C Building C											V 01-Jui-	- 13, IVIANSE		ung c
	F1.C.1 Panelized Schedule		05-Apr-13			▼ 05-Apr-13, MANS	F1.C.1	Panelized Schedule	-						
🔲 A100			14-Mar-13			Precast Concrete									i i
A101			21-Mar-13			West Thin Brick Panels									;
A102			21-Mar-13			West Precast Concrete									1
🔲 A103			26-Mar-13			outh West Thin Brick Pane	:								
A104			26-Mar-13			outh East Precast Concret	1								
🔲 A105			29-Mar-13			South East Thin Brick Pa									
A106			29-Mar-13		·····	North East Precast Conc									;
📄 A107		·	05-Apr-13		4	North East Thin B	rick Pai	nels							1
	F1.C.2 Masonry Schedule		01-Jul-13				1					01-Jul-	-13, MANSF	1.C.2 M	ason
A108	-		05-Apr-13	-		North West Maso	nry								1
A109	5	· · · ·	03-May-13					South West Mason	- i						i
		20 06-May-13						►		South Eas	st Masonry				¦
📄 📄 A111	-		01-Jul-13									North	East Mason	ry	
💾 MANSF	1.D Building D	120 01-Apr-13	18-Sep-13												
MANS	F1.D.1 Panelized Schedule	31 01-Apr-13	13-May-13			¥	1	▼ 13-May-1	13, MANSF	1.D.1 Par	nelized Schee	dule			:
🔲 🔲 A112	20 North West Precast Concre	4 01-Apr-13*	04-Apr-13			North West Precas	t Conci	rete							:
🔲 🔲 A113	North West Thin Brick Pan	5 05-Apr-13	11-Apr-13			North West	ThinB	rick Panels							
🔲 🔲 A114	10 Center West Precast Conc	3 05-Apr-13	09-Apr-13			Center West	Precast	t Concrete							:
🔲 🔲 A115	50 Center West Thin Brick Pa	3 12-Apr-13	16-Apr-13			Center	West 1	Thin Brick Panels							
🔲 🔲 A116	60 South West Precast Concre	4 10-Apr-13	15-Apr-13			South W	∕est ∳re	ecast Concrete							i
🔲 🔲 A117	70 South West Thin Brick Pan	7 17-Apr-13	25-Apr-13				South	n West Thin Brick Pan	els						
🔲 🔲 A118	30 South East Precast Concre	3 16-Apr-13	18-Apr-13			► Sout	n East F	Precast Concrete							
🔲 🔲 A119	90 South East Thin Brick Pane	4 26-Apr-13	01-May-13			-		South East Thin Brick	k Panels						:
🔲 🔲 A120	00 Center East Precast Concr	4 19-Apr-13	24-Apr-13				Center	r East Precast Concre	ete						
🔲 🔲 A121	10 Center East Thin Brick Pan	4 02-May-13	07-May-13			Γ	╘┿∎	Center East Th	nin Brick Pa	nels					1
🔲 🔲 A122	20 North East Precast Concre	3 25-Apr-13	29-Apr-13			L <b>►</b> [	<b>—</b> N	lorth East Precast Co	ncrete						
🔲 🔲 A123	30 North East Thin Brick Pane	4 08-May-13	13-May-13					└ <b>►</b> North Ea	st Thin Brid	k Panels					
	F1.D.2 Masonry Schedule	120 01-Apr-13	18-Sep-13			<b>X</b>									
A124	40 North West Masonry	20 01-Apr-13*	26-Apr-13				Nort	th West Masonry							1
🔲 🔲 A125	50 Center West Masonry	20 29-Apr-13	24-May-13						Center W	/est Masor	nry				:
- 1100	50 South West Masonry	20 28-May-13	24-Jun-13					-	┕───		S	outh West N	/lasonry		
🔲 🔲 A126	70 South East Masonry	20 25-Jun-13	23-Jul-13											South	East
A126		00 04 1 40	20-Aug-13										<b>C</b>		
	30 Center East Masonry	20 24-Jul-13	20-Aug-13												

Actual Level of Effort Remaining Work    Milestone	Page 1 of 1	TASK filter: All Activities
Actual Work Critical Remaining Work summary		

