

MICA GATEWAY RESIDENCE

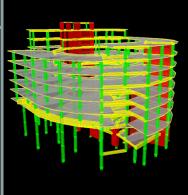
BALTIMORE, MARYLAND

SCOTT MOLONGOSKI SENIOR THESIS STRUCTURAL OPTION

> ADVISOR: PROFESSOR SUSTERSIC

BUILDING INTRODUCTION EXISTING STRUCTURE THESIS CHALLENGE PROPOSED SOLUTION GRAVITY SYSTEM DESIGN LATERAL SYSTEM DESIGN ARCHITECTURAL BREADTH

BUILDING INTRODUCTION EXISTING STRUCTURE THESIS CHALLENGE PROPOSED SOLUTION GRAVITY SYSTEM DESIGN LATERAL SYSTEM DESIGN ARCHITECTURAL BREADTH CONCLUSION


BUILDING INTRODUCTION

OWNER: MARYLAND INSTITUTE COLLEGE OF ARTS ARCHITECT AND ENGINEER: RTKL ASSOCIATES CIVIL ENGINEER: KCW ENGINEERING TECHNOLOGIES GENERAL CONTRACTOR: WHITING TURNER LANDSCAPE ARCHITECT: HIGGINS LAZARUS

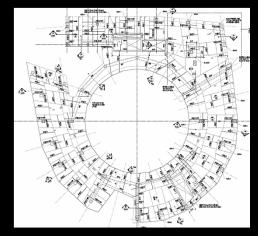
- ▶ 122' TALL
- > 9 STORIES PLUS MECHANICAL PENTHOUSE
- ▶ 108,000 SQFT
- ➢ 64 APARTMENTS
- MULTIPURPOSE "BLACK BOX" THEATER
- COURTYARD
- ➢ CAFÉ
- > STUDIOS

BUILDING INTRODUCTION EXISTING STRUCTURE THESIS CHALLENGE PROPOSED SOLUTION GRAVITY SYSTEM DESIGN LATERAL SYSTEM DESIGN ARCHITECTURAL BREADTH CONCLUSION

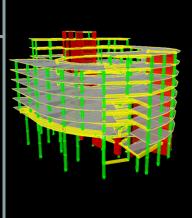
EXISTING STRUCTURE

SLABS:

> TWO WAY FLAT PLATE> 8" THICK

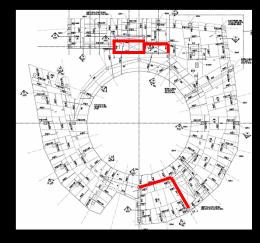

COLUMNS:

- > TWO CONCENTRIC RINGS
- ▶ 12"x12" 24"x24"
- ➢ CIRCULAR EXTERIOR
- ➢ 36" DIAMETER


UNIQUE CONDITIONS:

- BLACK BOX ROOF
- ➤ 41' SLENDER COLUMNS

BUILDING INTRODUCTION EXISTING STRUCTURE THESIS CHALLENGE PROPOSED SOLUTION GRAVITY SYSTEM DESIGN LATERAL SYSTEM DESIGN ARCHITECTURAL BREADTH CONCLUSION


EXISTING STRUCTURE

CONCRETE SHEAR WALLS

DRILLED CAISSONS

360° CURTAIN WALL FAÇADE

BUILDING INTRODUCTION EXISTING STRUCTURE THESIS CHALLENGE PROPOSED SOLUTION

GRAVITY SYSTEM DESIGN LATERAL SYSTEM DESIGN ARCHITECTURAL BREADTH CONCLUSION

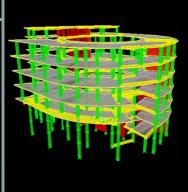
THESIS CHALLENGE

CHANGE USE TO MUSUEM

BENEFITS:

CIRCULAR FLOOR PLANARCHITECTURAL SIGNIFICANCE

➢ OTHER APPROPRIATE SPACES


DETRACTIONS:

LOW DESIGN LIVE LOADSLOW FLOOR TO FLOOR HEIGHT

POOR SUNLIGHT CONTROL

Ħ		1	 	 		+ 10 10 00000 10 0000 10 000 10 000 10 000
	۵.				<u></u>	3
						+ 100,000, }
4	4					**************************************
			<u>U_U_U_H</u>			
			<u>.11_1_11_11_11_1</u>			
						ina ma
						1000 mai
Ē					Π	1 of an

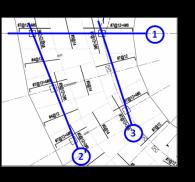
BUILDING INTRODUCTION EXISTING STRUCTURE THESIS CHALLENGE PROPOSED SOLUTION GRAVITY SYSTEM DESIGN LATERAL SYSTEM DESIGN ARCHITECTURAL BREADTH CONCLUSION

PROPOSED SOLUTION

INCREASE LIVE LOAD: ≻ 40 PSF – 100 PSF

INCREASE FLOOR TO FLOOR HEIGHT: > 10 FEET – 15 FEET > LEVEL 4 – LEVEL 7

► ELMINATE LEVELS 8, 9

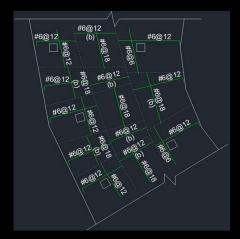

DECREASE SUNLIGHT EMITTED INTO BUILDING: > USE SOLID PANELS > USE REFLECTIVE/ABSORBANT GLASS

ARCHITECTURAL CHANGES: → FLOOR PLAN

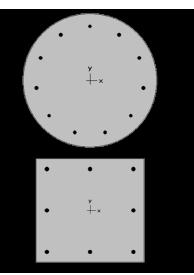
CIRCULATION

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Level 7+=
Level 6
Level 5 ^{4 minut}
Level 4
Level 2
Level 1

BUILDING INTRODUCTION EXISTING STRUCTURE THESIS CHALLENGE PROPOSED SOLUTION **GRAVITY SYSTEM DESIGN** LATERAL SYSTEM DESIGN ARCHITECTURAL BREADTH CONCLUSION


GRAVITY SYSTEM DESIGN

SLAB ANALYSIS:

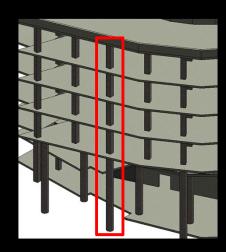

➢ EQUIVALENT FRAME METHOD

- FLEXURE
- PUNCHING SHEAR
- DEFLECTIONS

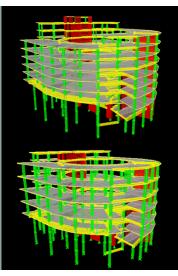
SLAB DESIGN: > 12" THICK > #6 USED FOR FLEXURE > #5 @ 12" BOTTOM MAT > #4 @ 3" FOR SHEAR

BUILDING INTRODUCTION EXISTING STRUCTURE THESIS CHALLENGE PROPOSED SOLUTION **GRAVITY SYSTEM DESIGN** LATERAL SYSTEM DESIGN ARCHITECTURAL BREADTH CONCLUSION

GRAVITY SYSTEM DESIGN


COLUMN ANALYSIS:

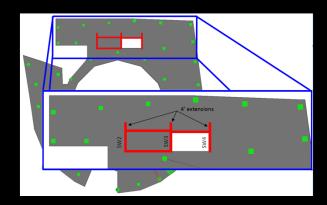
> 41' TALL SECTION
> STANDARD 15' TALL SECTION
> spCOLUMN
> Standard Standard


> SLENDERNESS CHECK

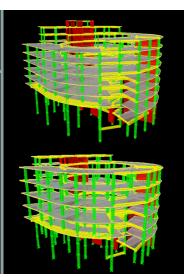
COLUMN DESIGN:

- ➤ 36" 42" DIAMETER EXTERIOR
- ≻ 11 #10's
- ➢ SLENDERNESS CHECK OKAY
- ➢ 24"x24" 30"x30" INTERIOR
- ≽ 8 #10's
- ➤ CONTINUOUS SIZE LEVEL 4 ROOF

BUILDING INTRODUCTION EXISTING STRUCTURE THESIS CHALLENGE PROPOSED SOLUTION GRAVITY SYSTEM DESIGN LATERAL SYSTEM DESIGN ARCHITECTURAL BREADTH CONCLUSION


LATERAL SYSTEM DESIGN

ETABS MODEL:


- > UPDATED SLABS AND COLUMNS
- ➤ UPDATED FLOOR TO FLOOR HEIGHT
- ➢ SHEAR WALLS MESHED SHELLS
- ➤ LATERAL AND GRAVITY

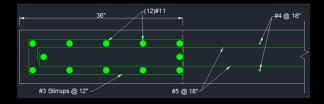
1ST ANALYSIS:

- ➢ SEISMIC IN Y DIRECTION CONTROLLED
- ➢ SHEAR WALLS INADEQUATE IN FLEXURE
- ➢ INCREASED LENGTH 4⁷

BUILDING INTRODUCTION EXISTING STRUCTURE THESIS CHALLENGE PROPOSED SOLUTION GRAVITY SYSTEM DESIGN LATERAL SYSTEM DESIGN ARCHITECTURAL BREADTH CONCLUSION

LATERAL SYSTEM DESIGN

2ND ANALYSIS:


- ➤ ACCEPTABLE DEFLECTIONS AND STORY DRIFT
- ➤ CHECKED OVERTURNING MOMENT

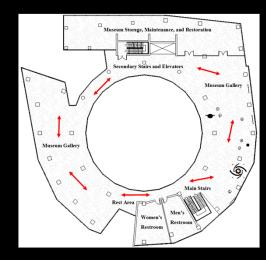
SHEAR WALL DESIGN:

- ➢ 36" BOUNDARY ELEMENT
- ▶ 12 #11's WITH #3 TIES @ 12"
- ▶ #4@18" VERTICAL SHEAR
- ▶ #5@18" HORIZONTAL SHEAR

FOUNDATION DESIGN:

- ➤ SHEAR WALL CAISSONS
- ≻ CRSI 2008 HANDBOOK
- ➤ ADEQUATE SHAFT AND BELL SIZES

BUILDING INTRODUCTION EXISTING STRUCTURE THESIS CHALLENGE PROPOSED SOLUTION GRAVITY SYSTEM DESIGN LATERAL SYSTEM DESIGN ARCHITECTURAL BREADTH CONCLUSION


ARCHITECTURAL BREADTH

DESIGN ASPECTS:

- LARGE VIEWING SPACES
- OPEN GALLERIES
- ➤ CIRCULATION
- SUNLIGHT CONTROL
- ➢ REST AREAS

DESIGN CHANGES:

- ➢ APARTMENT REMOVAL
- ➤ MUSEUM STORAGE AND MAINTENANCE
- ➢ RESTROOMS
- ➤ ART ALCOVES

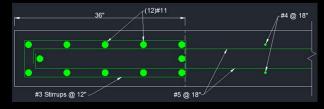
BUILDING INTRODUCTION EXISTING STRUCTURE THESIS CHALLENGE PROPOSED SOLUTION GRAVITY SYSTEM DESIGN LATERAL SYSTEM DESIGN ARCHITECTURAL BREADTH CONCLUSION

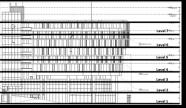
ARCHITECTURAL BREADTH

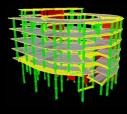
FAÇADE CHANGES:

- CONTROL SOUTH SIDE
- ➤ INCREASED USE OF SOLID PANELS
- ➤ REFLECTIVE AND ABSORBENT GLASS

BUILDING INTRODUCTION EXISTING STRUCTURE THESIS CHALLENGE PROPOSED SOLUTION GRAVITY SYSTEM DESIGN LATERAL SYSTEM DESIGN ARCHITECTURAL BREADTH CONCLUSION




CONCLUSION


COULD HAVE BEEN DESIGNED AS MUSEUM

SYSTEM TYPES FEASIBLE

SIGNIFICANT STRUCTURAL STRENGTHENING SIGNIFICANT ARCHITECTURAL CHANGES INCREASED MATERIAL AMOUNTS = HIGHER COST

BUILDING INTRODUCTION EXISTING STRUCTURE THESIS CHALLENGE PROPOSED SOLUTION GRAVITY SYSTEM DESIGN LATERAL SYSTEM DESIGN ARCHITECTURAL BREADTH CONCLUSION

ACKNOWLEDGEMENTS

MARYLAND INSTITUTE COLLEGE OF ARTS

RTKL ASSOCIATES > BOB KNIGHT > PETE MALMQUIST > DAVID DYMOND

ADAM REED

PENN STATE ARCHITECTURAL ENGINEERING:

PROFESSOR HEATHER SUSTERSIC
PROFESSOR KEVIN PARFITT

➢ PROFESSOR BOB HOLLAND

FRIENDS AND FAMILY

QUESTIONS

AND

COMMENTS

BUILDING INTRODUCTION EXISTING STRUCTURE THESIS CHALLENGE PROPOSED SOLUTION GRAVITY SYSTEM DESIGN LATERAL SYSTEM DESIGN ARCHITECTURAL BREADTH CONCLUSION

MATERIAL INCREASE: > SLAB CONCRETE: 27% > COL. CONCRETE: 26% > COL. STEEL: 21%

DEVELOPMENT LENGTH: > 6' BEYOND IN FRAME 1 > 5' BEYOND IN FRAME 2 > 7' BEYOND IN FRAME 3 > BOT. BARS CONT.

HOOKS: > 90° > 6" BOT. BARS

> 9.8" TOP BARS

<u>APPENDIX</u>

Story Drift and Displacement (Seismic in the Y Dir. With -X ecc.)							
Story	Story height (ft)	Displacement (in)	Story Drift (in)	Allowable Drift (in)			
Tower Roof	113	0.9814	0.0892	1.695			
Roof	103	0.8922	0.1363	1.545			
7	88	0.7559	0.142	1.32			
6	72	0.6139	0.1392	1.08			
5	56	0.4747	0.113	0.84			
4	41	0.3617	0.1255	0.615			
3	27	0.2362	0.0968	0.405			
2	14	0.1394	0.1394	0.21			

Overturning Moment					
Story	Height (ft)	Story Force (k)	Moment (k-ft)		
Tower Roof	113	40.9	4622		
Roof	103	207.2	21342		
7	88	193	16984		
6	72	156.9	11297		
5	56	119.2	6675		
4	41	90.7	3719		
3	27	80.3	2168		
2	14	27.2	381		
		Total=	67187		

	Caisson Design							
	M _{over} (k-ft)	P _{axial} (k)	Total Load (k)	Shaft Dia. (ft)	Bell Dia. (ft)	Vertical Reinf.	Ties	
SW 1	34424	504	1399	13.5	4.5	9- #10	#4@ 18"	
SW 2	11467	246	942	11	4	7- #10	#4@ 18"	
SW 3	11467	246	942	11	4	7- #10	#4@ 18"	
SW 4	9829	246	825	10.5	3.5	7- #9	#3@ 18"	
SW 5	20697	390	1095	12	4	7- #10	#4@ 18"	
SW 6	20697	390	1095	12	4	7- #10	#4@ 18"	
SW 7	16093	390	927	11	4	7- #10	#4@ 18"	
SW 8	9700	270	523	8.5	3	7- #8	#3@ 16"	