THE COMMONWEALTH MEDICAL COLLEGE (TCMC)

SENIOR THESIS 2013 ADVISOR: HEATHER SUSTERSIC

XIAO YE ZHENG | STRUCTURAL OPTION

o Bi	uilding Introduction	 Medical Co
\circ Ex	xisting Structural System	○ 185,000 SF
o Pr	oblem Statement	o 4 Story Bui
o Pr	coposed Solution	Pentho
o No	ew Lateral Loads	o Maximum l
o La	ateral Frame Designs	• Cost \$120 M
o Fa	açade Design Breadth	 May 2009 t
o A	cknowledgements	·
		 Design-Bid

• Seeking LEED Silver

BUILDING INTRODUCTION

SITE MAP

ollege

- ilding plus a buse Height at 102' Million
- to Oct 2011 I-Build EED Silver

Photos From TCMC

mage

from Google Map, edited by Xiao

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements

Structural/M Constructio Landscap

Interi

PROJECT TEAM

Owner]
Architects	I
I.E.P. Engineers	I
on Management	(
pe Architecture	ľ
ior Architecture	I

TCMC

Highland Associates & HOK

Highland Associates

Quandel Construction Group

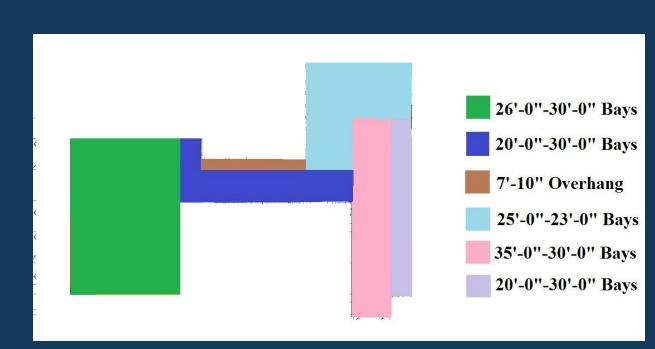
McLane Associates

Highland Associates & HOK

HIGHLAND

architecture engineering interiordesign

 Building Introduction 	 West Wing
 Existing Structural System 	Foundation
 Problem Statement 	4'-0" thick,
 Proposed Solution 	bearing pres
 New Lateral Loads 	• Floor- com
 Lateral Frame Designs 	deck, norma
 Façade Design Breadth 	concrete top
• Acknowledgements	thick


• Acknowledgements

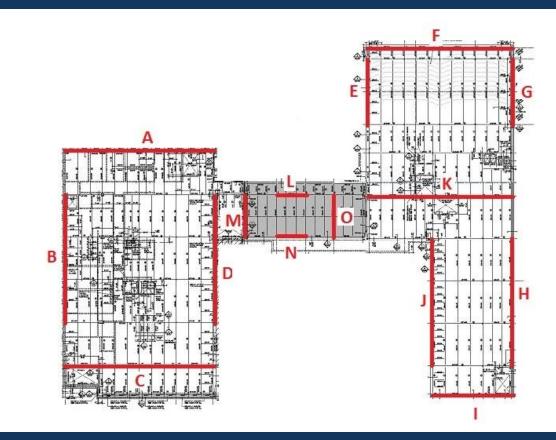
EXISTING STRUCTURAL SYSTEM

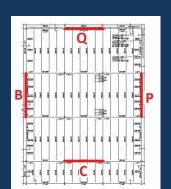
• East Wing

- mat slab, , 3000 psf ssure
- posite steel al weight pping, 7.5"

- Foundation-drilled caissons, 36" to 60" in diameters, carry loads to bedrock.
- Floor- composite steel deck, lightweight concrete topping, 5.25" thick

BAY SIZES


Image from Highland Associates, edited by Xiao


 Building Introduction 	
 Existing Structural System 	.
 Problem Statement 	o Framing
 Proposed Solution 	• Con
 New Lateral Loads 	• W83
 Lateral Frame Designs 	o Lateral
 Façade Design Breadth 	• 15 n
• Acknowledgements	• 13 I

EXISTING STRUCTURAL SYSTEM

MOMENT FRAMES

- ng System
- mposite steel frame
- 3x24 to W14x257, lightest to heaviest
- l System
- moment frames (not including penthouse)

lited by Xiao

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements

ROOF HEIGHTS

ROOF HEIGHTS PLAN

Image from Google Map

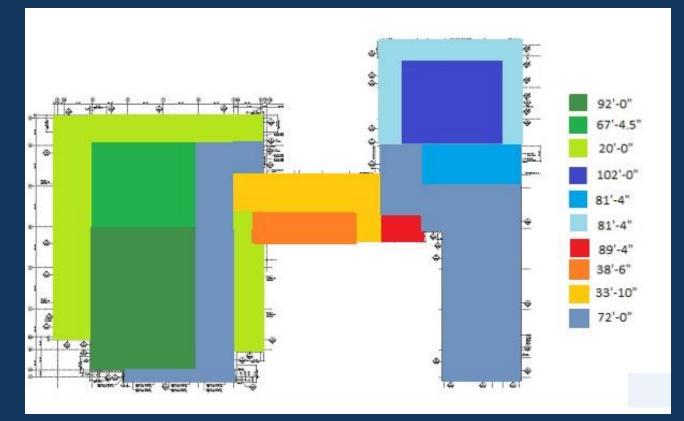
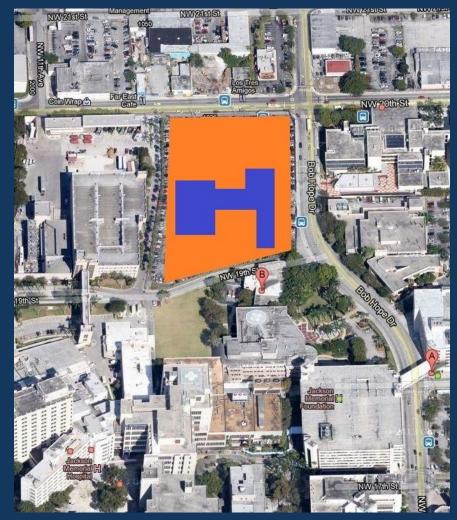



Image from Highland Associates, edited by Xiao

 Building Introduction 	o Interes
 Existing Structural System 	o Interes
 Problem Statement 	o Scenar
 Proposed Solution 	
 New Lateral Loads 	■ TC
 Lateral Frame Designs 	- Hu
 Façade Design Breadth 	mp
 Acknowledgements 	■ Gee
	Da

PROBLEM STATEMENT

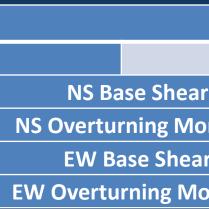
- t in Wind Design
- st in Steel Design
- rio Created for Thesis
- CMC is to be designed on a site in Miami, FL
- irricane Prone region, with wind speed up to 150 oh in building code.
- eotechnical report obtained from site in Miamiade County, Florida

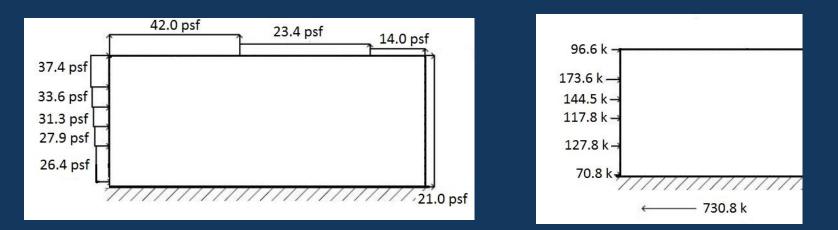
MIAMI, FL SITE

Image from Google Map, edited by Xiao

 Building Introduction 	
 Existing Structural System 	
 Problem Statement 	o Two L
 Proposed Solution 	• Cc
 New Lateral Loads 	• Cc
 Lateral Frame Designs 	o Found
 Façade Design Breadth 	
• Acknowledgements	• M.

PROPOSED SOLUTION


PROJECT GOALS


- Lateral Systems Proposed
- ode Minimum Steel Moment Frames
- ode Minimum Chevron Braced Frames
- lation
- AT Foundation

- Comparison Between Designs • Moment Frames to Braced Frames • New Systems to the Original System

- A Typical Braced Connection

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements

Wind Pressure and Wind Force acting on West Wing, EW Direction

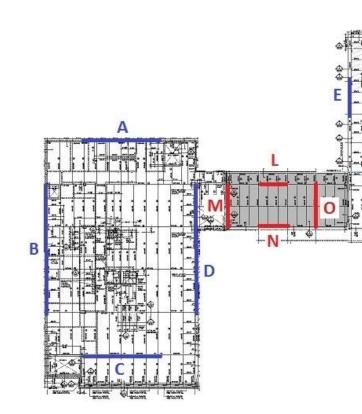
NEW LOADS

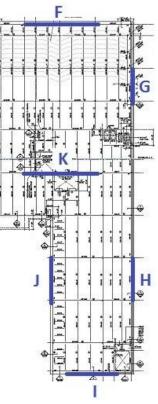
COMPARISON

Summary: Wind Loads on TCMC										
	West Wing	East Wing								
r	560.0	k	296	k						
oment	27,500.0	k-ft	14,500	k-ft						
r	731.0	k	960	k						
oment	35,800.0	k-ft	47,220	k-ft						

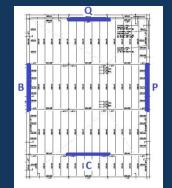
Comparison of Seismic and Wind Forces											
		West Wing		East Wing							
Miami, FL	Wind, N-S	Wind, E-W	Seismic	Wind, N-S	Wind, E-W	Seismic					
Base Shear (k)	560	730	136	300	970	126					
Overturning Moment (k-ft)	27,500	35,800	7,950	14,500	47,300	7,350					
Scranton, PA	Wind, N-S	Wind, E-W		Wind, N-S	Wind, E-W	Seismic					
Base Shear (k)	200	270	130	110	350	120					
Overturning Moment (k-ft)	10,000	12,900	7,600	5,230	17,100	7,000					

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements

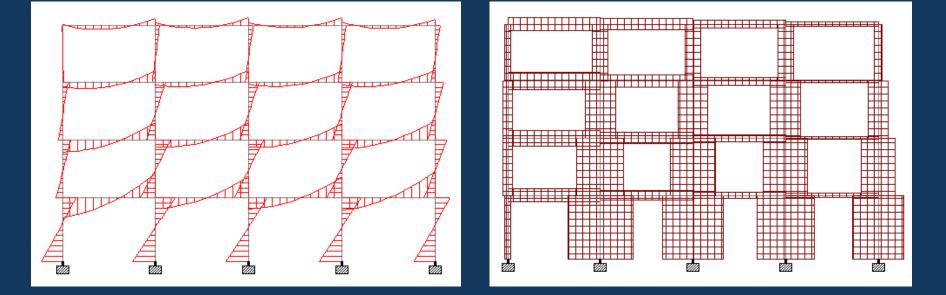


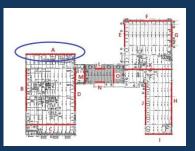

LATERAL FRAME LAYOUTS

Moment Frame Layout


	-	1997	j	1		C)	1	1	Ì	-	24 64	
		2 2	-	ŝ	-	-	-	940	2	1	1	1	N.I.
			ľ		7		_	- H	林	1	1		
B		1 1	-	1	2	2	-	540	2	-	2	2	1.1.1
A			ſ	e 11 ⁰ 0	7	-	1	+		1			-
-		1 1	1	1	1	1	-	-	-	2	-	1	111
	-		1	-	1	1	С		1	1	-	1	1

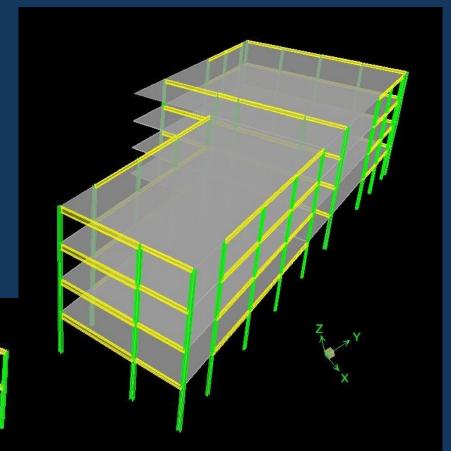
Braced Frame Layout




Moment Frame Braced Frame

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements

ETABS Model AE 530 Computer Modeling



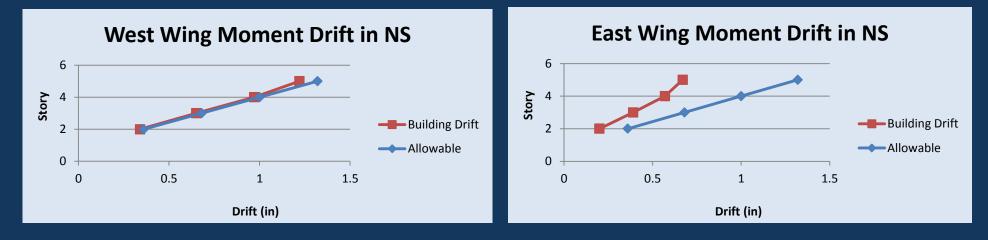
MOMENT FRAME DESIGN

STAAD Model for Frame A

1.2D + 1.6W + L + 0.5Lr

Etabs Models

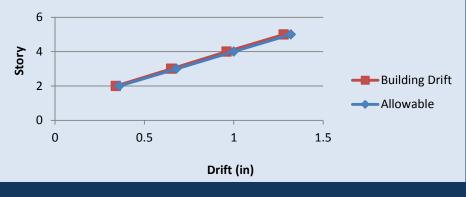
- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements

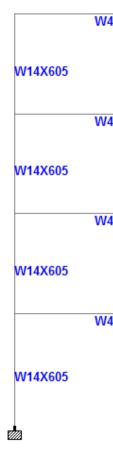


MOMENT FRAME DESIGN

Frame A Sizes

0X372		W40X372		W40X372		W40X372	
	W14X605		W14X605		W14X605		W14X605
0X372		W40X372		W40X372		W40X372	_
	W14X605		W14X605		W14X605		W14X605
0X372		W40X372		W40X372		W40X372	
	W14X605		W14X605		W14X605		W14X605
0X372		W40X372		W40X372		W40X372	
	W14X605		W14X605		W14X605		W14X605


Moment Frame Drift

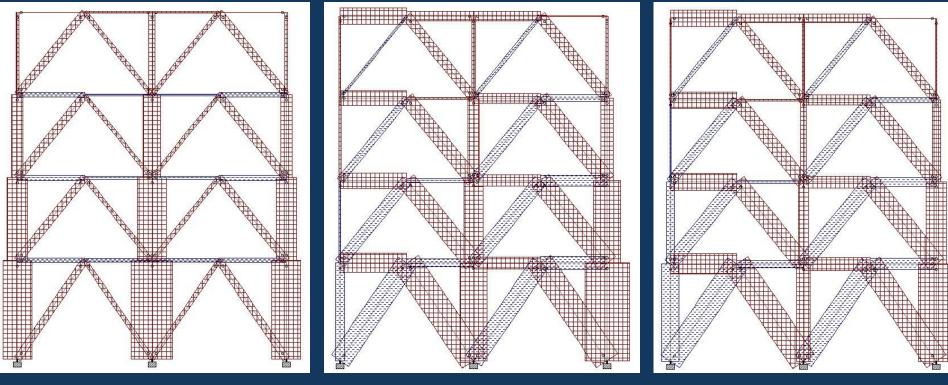

West Wing Moment Drift in EW

East Wing Moment Drift in EW

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements

MOMENT FRAME DESIGN

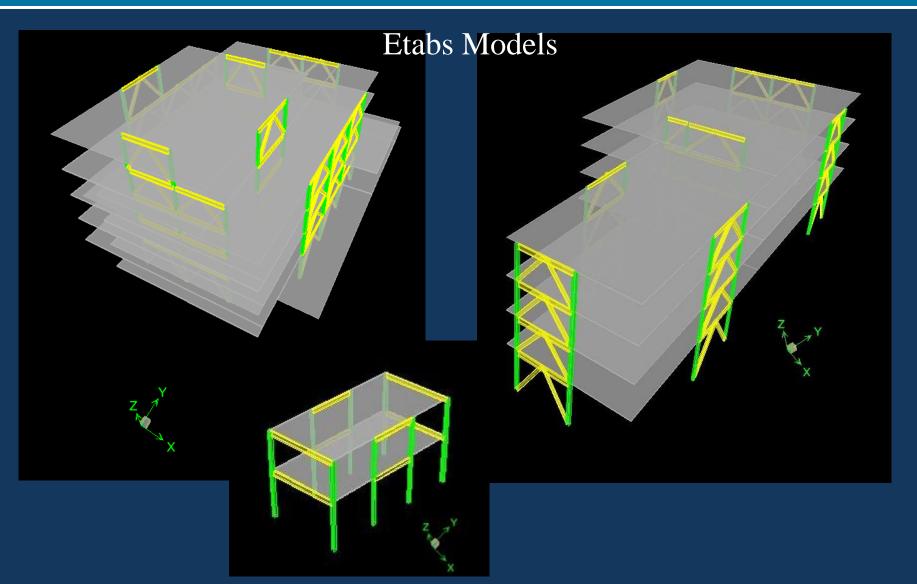
Frame A Sizes


40X372		W40X372		W40X372		W40X372	
	W14X605		W14X605		W14X605		W14X605
40X372		W40X372		W40X372		W40X372	
	W14X605		W14X605		W14X605		W14X605
40X372		W40X372		W40X372		W40X372	
	W14X605		W14X605		W14X605		W14X605
40X372		W40X372		W40X372		W40X372	
	W14X605		W14X605		W14X605		W14X605

Original Frame A Sizes

W30X99	W	30X99	W30X99	W30X99	
W14X257	W14X257	W14X257		W14X257	W14X257
W30X99	W	30X99	W30X99	W30X99	
W14X257	W14X257	W14X257		W14X257	W14X257
W30X99	W	30X99	W30X99	W30X99	
W14X257	W14X257	W14X257		W14X257	W14X257
W30X99	W	30X99	W30X99	W30X99	
W14X257	W14X257	W14X257		W14X257	W14X257
2			F		r an

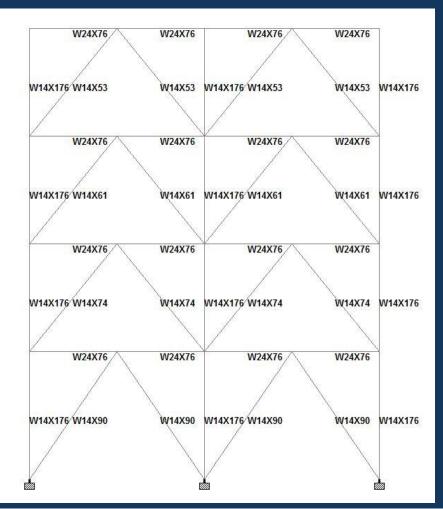
- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements


ETABS Model AE 530 Computer Modeling

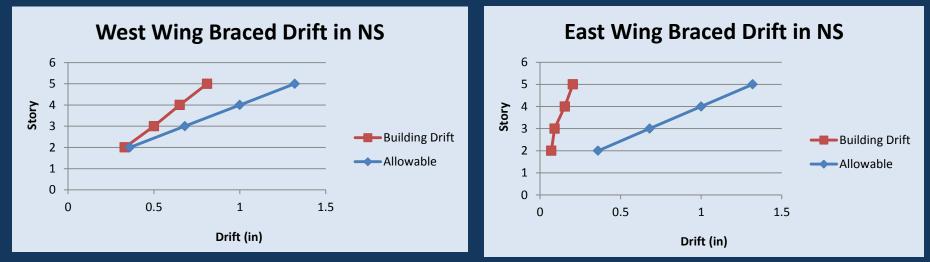
1.2D + 1.6L + 0.5 Lr 1.2D + 1.6W + L + 0.5Lr

BRACED FRAME DESIGN

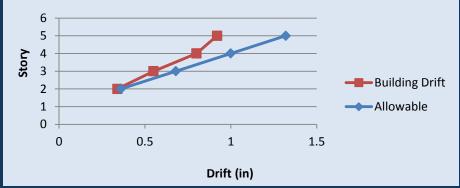
STAAD Model for Frame A

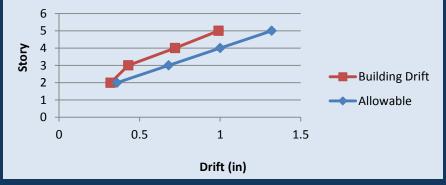


0.9D + 1.6W


- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements

BRACED FRAME DESIGN


Frame A Sizes


Braced Frame Drift

West Wing Braced Drift in EW

East Wing Braced Drift in EW

 Building Introduction 		
 Existing Structural System 		
 Problem Statement 	Cost	
 Proposed Solution 	Cost	
 New Lateral Loads 	Percent	
 Lateral Frame Designs 		
 Façade Design Breadth 		
 Acknowledgements 	B	Buildin
		Orig
	Height	9
	Difference	N

COMPARISONS

Estimated Cost Analysis For Frame A

Original	Moment	Braced
\$ 186,281.00	\$ 567,043.00	\$ 202,572.00
100%	304%	109%

ding Height Change					
Priginal	Moment	Braced			
93'	98'	92'			
N/A	5'	-1'			

 Building Introduction 		
 Existing Structural System 		
 Problem Statement 	Cost	
 Proposed Solution 	Cost	
 New Lateral Loads 	Percent	
 Lateral Frame Designs 		
 Façade Design Breadth 		
 Acknowledgements 	B	Buildin
		Orig
	Height	9
	Difference	N

COMPARISONS

Estimated Cost Analysis For Frame A					
Original	Moment	Braced			
\$ 186,281.00	\$ 567,043.00	\$ 202,572.00			
100%	304%	109%			

ling Height Change					
riginal	Moment	Braced			
93'	98'	92'			
N/A	5'	-1'			

	Typical Member Size between 1 st and 2 nd Floor on							
		Fra	am	ne A				
		Original		Momer	nt	Brace	d	
	Beam in NS	W24x68)	W36x25	6	W21x6	68	
	Beam in EW	W30x99)	W40x37	2	W24x7	76	
	Column	W14x257		W14x60	5 W14x1		.76	
	Bracing	N/A		N/A	W14x		90	
		Weight	Со	mparisor				
				Original	N	loment	Bra	ced
Lateral Resisting Members		330 k 12		1220 k	25	6 k		
Т	Total Building Weight		-	18400 k	1	9290 k	186	00 k
	Percentage	е		100%		105%	10	1%

 Building Introduction 		E
 Existing Structural System 		
 Problem Statement 	Cost	ć
 Proposed Solution 	Cost	\$
 New Lateral Loads 	Percent	
 Lateral Frame Designs 		
 Façade Design Breadth 		
 Acknowledgements 	B	Building H
		Origina
	Height	93'
	Difference	N/A

COMPARISONS

	Estimated Cost Analysis For Frame A					
	0	riginal	Mom	ent	Braced	
	\$ 18	36,281.00	\$ 567,043.00		\$ 202,572.00	
		100%		304%	109%	
dir	ng Heig	ht Change			Moment Frame	
	ginal 93'	Moment 98'	Braced 92'		have more Architectural Freedom	
Ν	N/A	5'	-1'			

	Typical Member Size between 1 st and 2 nd Floor on						
		Fra	me A				
		Original	Mome	nt	Brace	d	
	Beam in NS	W24x68	W36x2	56	W21x(68	
	Beam in EW	W30x99	W40x3	72	W24x	76	
	Column	W14x257	W14x257 W14x605		W14x176		
	Bracing	N/A	N/A		W14x90		
		Weight (Compariso	n			
			Original	N	loment	Bra	ced
Lateral Resisting Members		/lembers	330 k	-	1220 k	25	6 k
Total Building Weight		Veight	18400 k	1	9290 k	186	00 k
Percentage		e	100%		105%	10	1%

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements

MAT Foundation Design

- Great for Soil with Low Bearing Capacity
- Great for Large Column Loads
- Soil Bearing Capacity of 2500 psf
- Design is Very Complex

FOUNDATION DESIGN

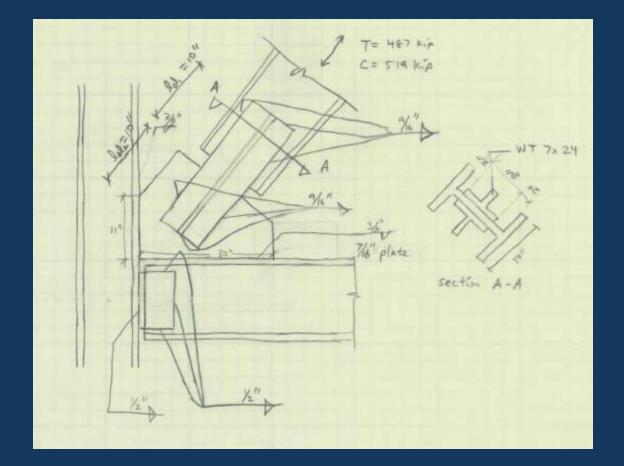
Foundation Summary						
Original Moment Braced						
F.S. Bearing	N/A	2.8	2.8			
F.S. Uplift	N/A	Not an issue	4.4			
F.S. Strength	N/A	2.5	2.5			
Depth into Earth	8'-8"	10'	11'-6"			
Thickness of MAT	4'	6'	7'-6"			

 Building Introduction 	ETABS Model
 Existing Structural System 	• AE 530, Co
 Problem Statement 	
 Proposed Solution 	Trutical Ond Ela
 New Lateral Loads 	Typical 2 nd Flo
 Lateral Frame Designs 	• AE 534, Ste
 Façade Design Breadth 	
 Acknowledgements 	Façade Breadtl
	• AE 542 Bu

MAE REQUIREMENT

CONNECTIONS

1


omputer Modeling

oor Brace Connection

eel Connections

h

uilding Enclosures

 Building Introduction 	Rain Scre
 Existing Structural System 	• Ter
 Problem Statement 	Val
 Proposed Solution 	•
 New Lateral Loads 	
 Lateral Frame Designs 	•
 Façade Design Breadth 	•
 Acknowledgements 	•

FAÇADE DESIGN

een Wall Cladding System

- rraClad Rain Screen manufactured by Boston lley Terra Cotta
- Simple to Install
- Shield from wind driven rain
- LEED credit opportunities
- Abundant colors and sizes, match original
- 6" additional thickness to exterior wall

TerraClad RAIN SCREEN

Florida Building Code - High Velocity Hurricane Zone Testing, Miami-Dade County NOA08-1014.03

TAS 201-94

Impact Test Procedures - Large Missile Impact

TAS 202-94

Criteria for Testing Products Subject to Cyclic Wind Pressure Loading

TAS 203-94

Criteria for Testing Impact & Non Impact Resistant Building Envelope Components Using Uniform Static Air Pressure

http://www.bostonvalley.com/terraclad/product-testing.html

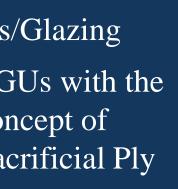
 Building Introduction 	Rain Scre
 Existing Structural System 	• Ter
 Problem Statement 	Val
 Proposed Solution 	•
 New Lateral Loads 	
 Lateral Frame Designs 	•
 Façade Design Breadth 	•
 Acknowledgements 	•

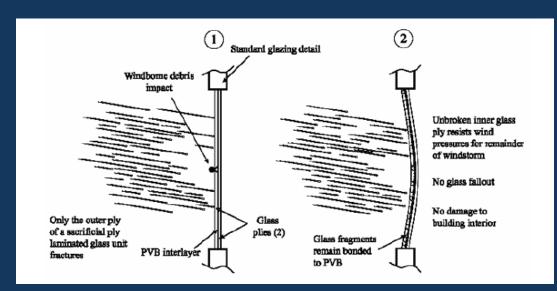
FAÇADE DESIGN

TerraClad RAIN SCREEN

- een Wall Cladding System
- rraClad Rain Screen manufactured by Boston lley Terra Cotta
- Simple to Install
- Shield from wind driven rain
- LEED credit opportunities
- Abundant colors and sizes, match original
- 6" additional thickness to exterior wall

The Bechtler Museum of Modern Arts



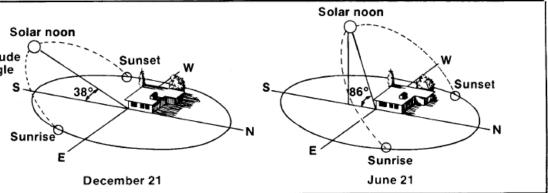

The Colburn School of Performing Arts

 Building Introduction 	Windows
 Existing Structural System 	• LC
 Problem Statement 	COI
 Proposed Solution 	Sa
 New Lateral Loads 	
 Lateral Frame Designs 	
 Façade Design Breadth 	
 Acknowledgements 	
 Acknowledgements 	

FAÇADE DESIGN

Typical Window Design						
	Width	Height	Outer Ply Thickness	Inner Ply Thickness		
2'x4'	2'	4'	1/8"	3/16"		
5'x10'	6'	10'	1/8"	5/8"		

- Heather Sustersic
- Highland Associates
 - Eric McAndrew
- o TCMC • Family and Friends

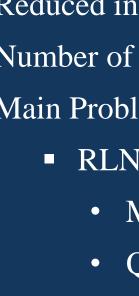

ACKNOWLEDGEMENTS

• Penn State Architectural Engineering Faculty

Appendix

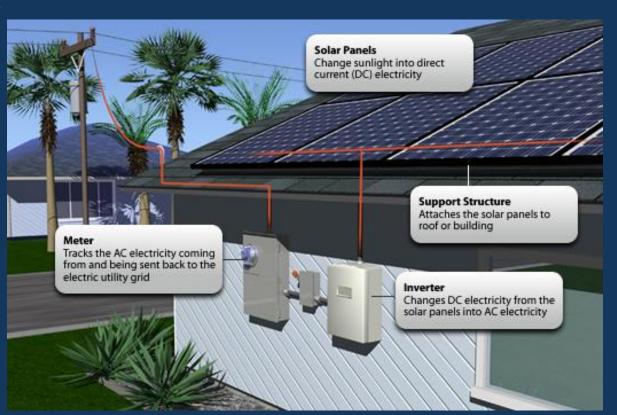
SOLAR PANEL DESIGN

http://www.kahnsolar.com/images/how_solar_works_pic.jpg


- HIT Power 220A Photovoltaic Module, by Panasonic
 - Withstand 60 psf
 - Top Energy Producer
 - Highest Output on Cloudy Days

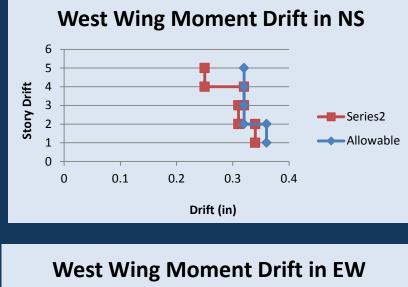
Estimated Life-Cycle Cost for 20 years= \$ 279,086 Estimated Total Savings = \$ 10,000 Estimated Payback Period = 27 years

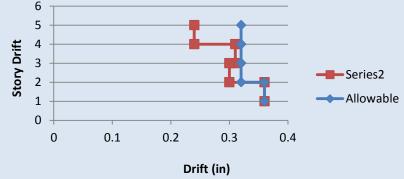
The Bechtler Museum of Modern Arts


MECHANICAL AND ELECTRICAL

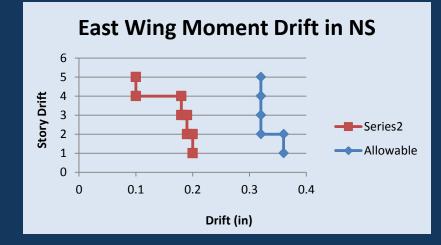
Reduced in Number of Steam Boilers

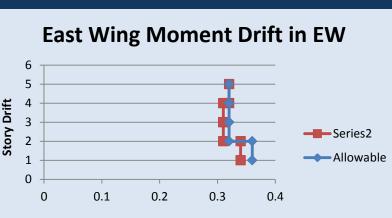
- Number of McQuay Chillers for Cooling stayed the same
- Main Problem High Humidity
 - RLNL-G Dehumidifier by Rheem
 - Money Saving Efficiency
 - Quiet Operation
 - Quality
 - Remote Monitoring and Control


Grid-Tied System


• Net-metering

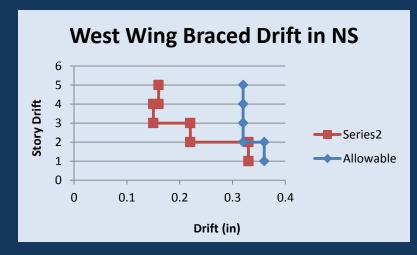
GRID-TIED CONNECTION

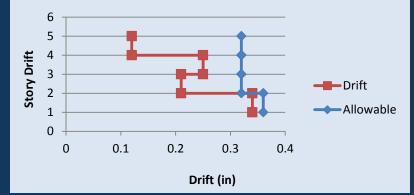

Image from Kahn Solar

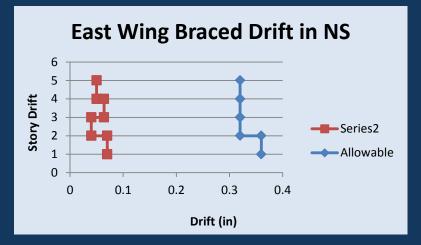


BUILDING DRIFT

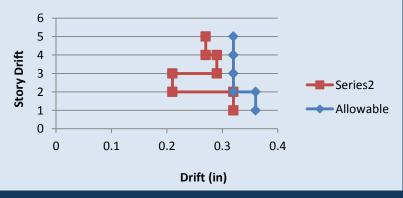
Moment Frame Drift





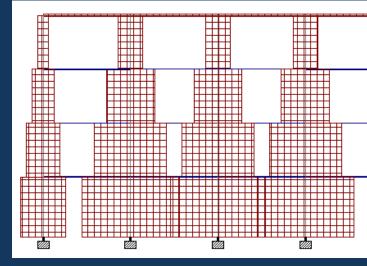

Drift (in)

Braced Frame Drift



West Wing Braced Drift in EW

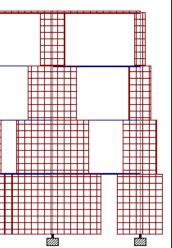
East Wing Braced Drift in EW

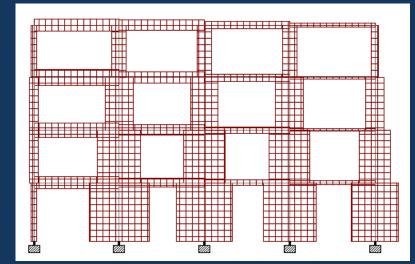


The High-Velocity Hurricane Zones (HVHZ) are specifically defined as Miami-Dade and Broward Counties. As in previous editions of the FBCB, a single wind speed is used for the HVHZ for each Risk Category Map. The design wind speeds in the HVHZ are as follows:

Miami-Dade County Risk Category I Buildings and Structures: 165 mph Risk Category II Buildings and Structures: 175 mph Risk Category III and IV Buildings & Structures: 185 mph

ASCE 7-10 CODE DIFFERENCE

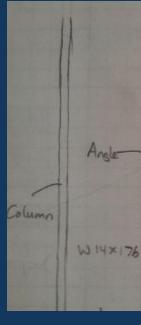

High-Velocity Hurricane Zones

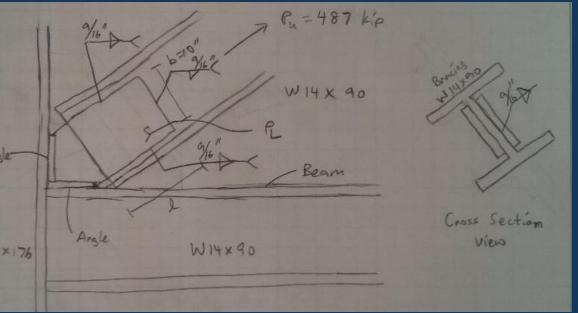


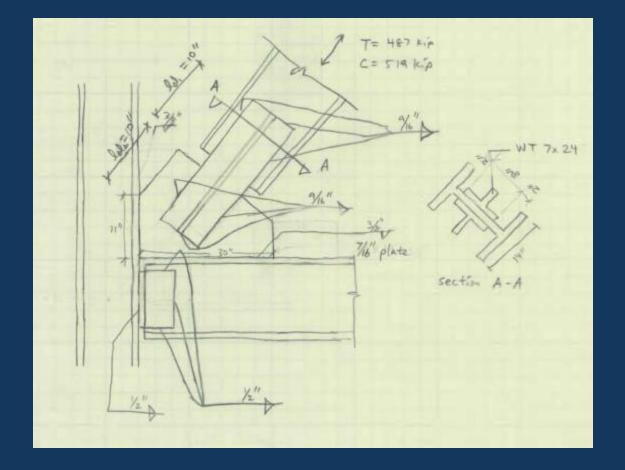
1.2D + 1.6L + 0.5 Lr

MOMENT FRAMES AXIAL

Frame A




1.2D + 1.6W + L + 0.5Lr


0.9D + 1.6W

CONNECTIONS

Did not check for Compression Force

