Nolan Amos Mechanical Option Dr. William Bahnfleth Phoenixville Early Learning Center Phoenixville, PA March 30th, 2016

Thesis Presentation Outline

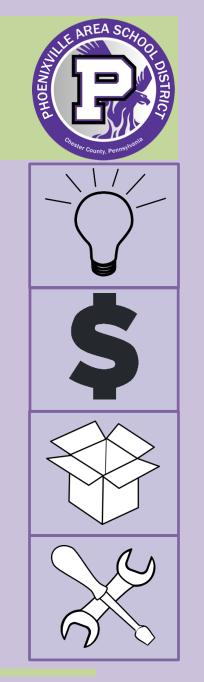
- 1. Overview (~1 Slide)
- 2. Existing Conditions (~3 Slides)
 - a. Site
 - i. Utilities
 - b. Architectural Features
- 3. Mechanical System Overview (~8 Slides)
 - a. Water-Source Heat Pumps
 - b. Boiler and Cooling Tower
 - c. Energy usage
 - i. Cooling and Heating Loads
 - d. Life Cycle Cost Analysis
 - e. Space Utilization
 - f. Maintenance
- 4. Mechanical Depth (~14 slides)
 - a. Objectives
 - i. Alternatives Considered
 - b. Ground-Coupled Heat Pump
 - i. Heating and Cooling Loads
 - ii. Cost
 - iii. Space Constraints
 - iv. Maintenance
 - v. Well Layout
 - 1. Orientation
 - a. Placement
 - 2. Piping Design
 - 3. Length
 - c. VRF
 - i. Loads
 - ii. Cost
 - iii. Space
 - iv. Maintenance
 - d. Centralized AHU
 - i. Loads
 - ii. Cost Space
 - iii. Maintenance
 - iv. Structural

- 5. Energy and Emissions (~ 2 Slides)
 - a. Graphs comparing energy output and emissions of all four systems
- 6. Life Cycle Cost Analysis (~4 Slides)
 - a. Graphs of payback of all four systems in comparison
 - b. Feasibility of systems
- 7. Breadth (~3 Slides)
 - a. Mention Electrical Breadth
 - b. Construction Breadth
 - i. Schedule impacts of Ground-Coupled system
 - ii. Life Cycle Cost Impacts
- 8. Conclusions (~8 Slides)
 - a. Acknowledgements
 - b. Appendices

Presentation will be approximately 45 slides.

Phoenixville Early Learning Center

Nolan Amos Mechanical Option Dr. William Bahnflet


Dr. William Bahnfleth, Faculty Consultant

Phoenixville Early Learning Center

Overview Existing Conditions Mechanical System Overview Mechanical Depth System Alternatives

Energy and Emissions Life Cycle Cost Analysis Breadth Construction

Conclusions

Mechanical Objectives

- Lower Costs
 - Maintenance
 - Upfront
 - Lifecycle

□ Space Utilization

Nolan Amos - Mechanical Option - Dr. William Bahnfleth, Faculty Consultant

- □ Increase Energy Efficiency

- □ Ease of Maintenance

Alternatives Considered

- Ground-Coupled Heat Pump
- Variable Refrigerant Flow System
- Centralized Air Handling Unit
- Water-Source Heat Pump Current System

Phoenixville Early Learning Center

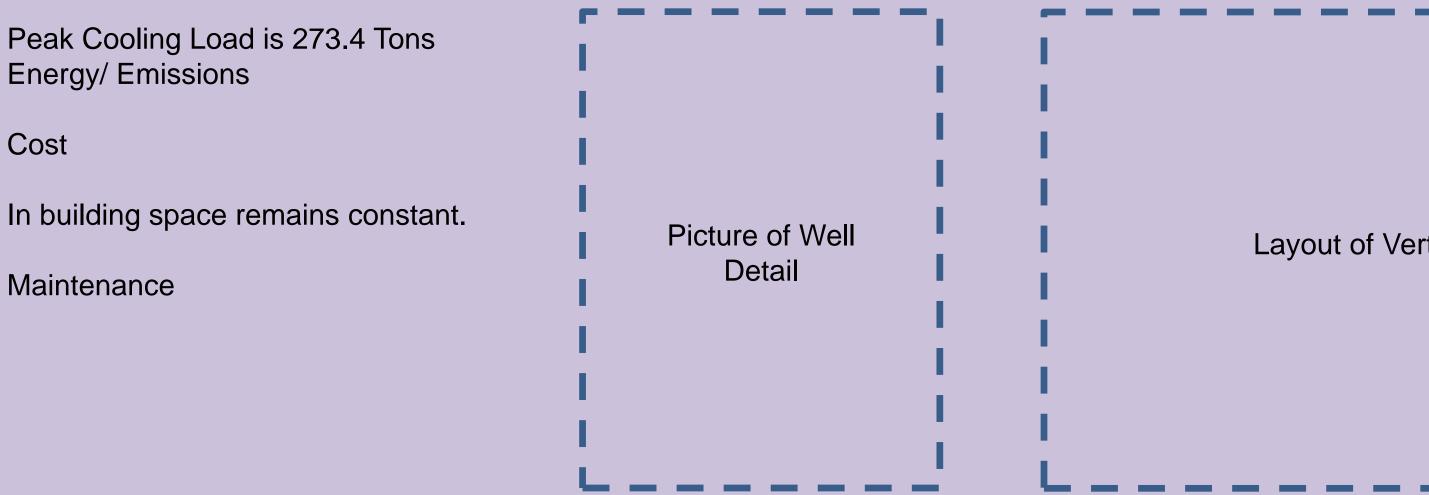
Overview Existing Conditions Mechanical System Overview Mechanical Depth

System Alternatives

Energy and Emissions Life Cycle Cost Analysis Breadth

Construction

Conclusions


Peak Cooling Load is 273.4 Tons Energy/ Emissions

Cost

Maintenance

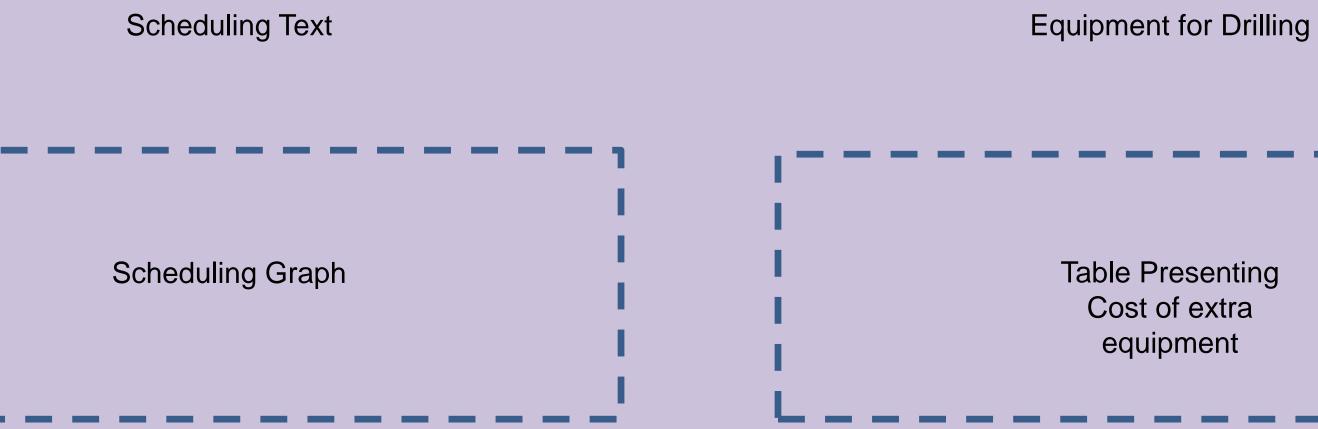
Nolan Amos - Mechanical Option - Dr. William Bahnfleth, Faculty Consultant

Ground-Coupled Heat Pump

Layout of Vertical Boreholes

Phoenixville Early Learning Center

Overview Existing Conditions Mechanical System Overview Mechanical Depth System Alternatives Energy and Emissions Life Cycle Cost Analysis Breadth Construction


Conclusions

Scheduling and Cost Impacts

A Comparison of Water Source Heat Pumps and Ground Source Heat Pumps

Nolan Amos - Mechanical Option - Dr. William Bahnfleth, Faculty Consultant

