

Technical Assignment 2

Kevin Clouser Structural Option October 27, 2006 Faculty Consultant: Dr. Boothby

Executive Summary

This report analyzes alternate floor systems and compares them with the existing floor system. The intent of this report is to determine whether an alternate floor system is a viable alternative to what is currently installed.

Current Floor System

The floor system that is already installed in The Weinberg Center is a traditional composite action concrete slab on metal deck. This system is composed of 3.25" of concrete on 2" metal deck resting on various sized beams. Steel framing works very well in providing an open floor plan for tenants to arrange as they see fit. It also allows for the façade corner (the black glazing shown in the photo above) to be hung relatively easily off of cantilevered beams.

Alternate Floor Systems

Alternate floor systems that have been chosen to be analyzed were chosen for unique characteristics that they bring to the project. Some of these systems are easier to be constructed, some minimize the overall floor depth required, and others utilize their materials more efficiently than others. The alternate floor systems that I have chosen to analyze are as follows:

- Two-way Solid Flat Slab with Drop Panels
- Waffle Slab
- One-way Concrete Joist
- Hollow Core Plank on Steel Beams

Conclusion

Each of the alternative systems has its advantages over the existing composite slab. Most notably is the difference in floor system depths compared to the composite slab. All of the concrete systems reduced the floor depths compared to the composite slab, some more so than others. However concrete floor systems have an increased weight over the existing composite floor. This increased weight, while good at reducing vibrations, leads to larger foundation and seismic loads which increase the overall cost of materials and design. A flat slab is very easy to form and reduces the floor depth considerably compared to the composite slab. Waffle and one-way joist slabs utilize the concrete and steel material a better than the flat slab by increasing the depth of the slab in differing ways to effectively transfer load to the columns. These three concrete systems all have the same drawback of not being able to frame out the façade corner pictured above. This problem leads me to looking at a hollow core plank system using steel framing. Using a precast hollow core plank system leads to a very easy form of construction. This in turn lessens the construction time and reduces the construction costs. In the end a hollow core plank system is the best alternative to the current system because it allows for the strengths inherit in concrete construction, while enabling the corner façade to be framed out relatively easily.

Table of Contents

Existing Conditions 4
Existing Floor System 4
Alternate Floor Systems Alternate 1. Flat Plate with Drop Panels4 Alternate 2. Waffle Slab5 Alternate 3. One-way Concrete Joists6 Alternate 4. Hollow Core Plank on Steel Beams7
Comparison between the Different Systems 8
Conclusion and Choice of Best Alternate 8
Appendix
Floor Plan of Existing System A-1
Details of Flat Plate w/ Drop Panels A-2
Details of Waffle Slab A-3

Details of One-Way Concrete JoistsA-4Details of Hollow Core PlankA-5

Existing Conditions

The Weinberg Center is a 6 story medical office building located in downtown Baltimore, B=MD. This building was constructed in 2002 using the 1997 Baltimore City Building Code and 1996 BOCA. This code assigns a 100psf live load to the floors. The design engineer used a 10 psf superimposed dead load for mechanical, electrical, plumbing, and finishes loads. Concrete is designed using The American Concrete Institute (ACI 318). Steel is designed using the "Load and Resistance Factor Design Specification for Structural Steel Buildings, Third Edition"

Existing Floor System – Composite Action Slab on Steel Deck

See Appendix 1 for details of the existing floor system

The existing floor system is a composite action floor slab with simply supported beams and girders. This system is very good for this buildings construction for several reasons; however it does have its flaws.

The obvious advantage to this system is that it is relatively light and does not add much to foundation and seismic loading compared to a concrete system. This type of framing allows for a very open floor plan that can be arranged to the tenants liking. A not so obvious advantage to this system is that it makes framing out the glass/aluminum corner relatively easy by cantilevering beams out to the façade without much trouble. Also framing the curving drive through façade is easier in the same way because infill beams can be added as needed to the main framing members.

Disadvantages to this system include something that was probably done to reduce the depth of the floor system. The beams and girders are relatively small and have very large cambers, as much as 1-7/8", in order to meet deflection criteria during construction and service. Aside from the deflection criteria the beams would have to be shored in order to be constructed as many of the members I checked in Technical Assignment 1 failed deflection criteria under construction loads. Fire proofing has to be added to the steel shapes and metal deck in order to meet fire code, while a concrete system has an inherit fire rating. While fireproofing is not of a huge concern, it is an advantage that some of my alternate systems have over this existing one

Overall this system is very good for this building. Framing of the cantilevered corner is done relatively easily with steel shapes. Also steel framing allows for large clear spans without columns and room for more windows in the façade, both of which is a huge plus when a tenant is looking for space to work in.

Alternate System 1 - Two-Way Solid Flat Slab with Drop Panels

See Appendix 2 for details of Alternate System 1

Using the 2002 CRSI Design Handbook I obtained the following for the design of a flat plate with drop panel floor system:

10"
8"
10 ' -0"x10'-0"
18"x18"
125 psf

The flat slab with drop panel design is a decent alternate to the composite beam-slab system already installed. By slightly altering the column grid I was able to design a typical bay that is excellent for two-way slab design. While this layout is ideal for a two-way slab and has other advantages, I believe it is not a good alternative for this building for several reasons illustrated below. I did not include a design for a two-way flat slab without drop panels because to do so with the column layout I have chosen would mean using an initial column size of 47"x47". To me this column size is too high to justify not using the same system with drop panels that will require 18"x18" columns.

Advantages to the existing system include higher initial fire protection which would not require additional fire retardant material. This system is much shallower than the composite floor system and would make Mechanical, Electrical, and Plumbing design and installation much easier. The dead weight of this system is enough to dampen any vibration effects from equipment and live loads as compared to the existing composite system which used lightweight concrete. Column sizes are not dramatically large as compared to the same system with no drop panels.

Disadvantages of a flat-plate system include several things that relate directly to the added weight of a concrete system. Higher dead loads would lead to both higher foundation and seismic loads on the building. A higher foundation load may require the installation of caissons where there are spread footings. Also the existing caissons may have to be increased in size to handle the added load, more caissons per column may have to be added, or the caissons may have to be drilled to a deeper depth to reach the required bearing capacities. An increase in the seismic loads would require a beefier lateral force resisting system. Switching to a concrete system would also require a change in the lateral force resisting system. Concrete systems use shear walls to resist lateral loads. While this is workable, it would probably not go over well because the existing system allows for very open floor plans that the tenants may arrange as the please. Installing shear walls would segment floors or erase windows from what exists. Another disadvantage is the added complexity of supporting the corner façade. To do this a couple columns would have to be added in order to properly frame out any support for the corner.

Alternate System 2 – Waffle Flat Slab

See Appendix 3 for details of Alternate System 2

Using the 2002 CRSI Design Handbook I obtained the following for the design of a waffle slab system:

Total Depth	13"
Rib Depth	10"
Slab Depth	3"
Column Size	18"x18" with additional shear requirements
Voids	30"x30"
Ribs	6" @ 36" on center
Solid Head	12'-6" square
Floor Weight	93.6 psf

The waffle slab design is a better alternate to the flat plate with drop panels. One reason is that you get the same load carrying capacity with a slightly thicker, but much lighter floor system. This particular waffle slab system is 31.4 lb/ft^2 lighter than the previous flat plate construction, not including drop panels. This system naturally lends itself to larger spans and thus works well with 30'x30' sized bays. The need for additional shear capacity is not a problem as this can be solved by using larger columns, using shearheads or another type of reinforcement that will not affect the total slab depth around the columns.

This system has several advantages over the traditional flat plate with drop panel construction. A waffle slab system is lighter than a flat plate system and there for would not impact the foundation or seismic design as much. A waffle slab is friendlier towards the installation of mechanical, electrical, and plumbing systems in the building. Similar to the flat plate, vibrations are mitigated by the self weight of the waffle slab and column sizes are not too large to cause problems with architectural plans.

Disadvantages of a waffle slab as compared to the existing composite floor include many of the same that weigh against the flat plate system, but generally to a lesser degree. The lighter weight of the waffle slab, 93.6 psf, is not nearly as dramatic as the 125 psf weight of the flat plate. It is however heaver than the composite floor slab and would require some sort of investigation into the added weight on the foundations and seismic loadings as previously discussed. Again looking at the existing cantilevered façade corner, a waffle slab would not be an ideal system to frame this architectural feature with. The sloping façade corner of the drive through also would cause more problems with a waffle slab system since it is set up on a very rectilinear pattern. Additional fireproofing would be needed under the 3" slab in order to meet the 1-1/2 hour rating required.

Alternate System 3 – One-Way Concrete Joist

See Appendix 4 for details of Alternate System 3

Using the 2002 CRSI Design Handbook I obtained the following for the design of a one-way concrete joist floor system:

Rib	6" Wide x 14" Deep
	36" Center to Center
Slab	4.5" Top Slab
Total Depth	18.5"
Floor Weight	91.5 psf

A one-way concrete joist floor system is not a traditional floor system used in my building type. However I wanted to try something different and decided that this system could have some potential. In order for this system to work I divided up the column grid into a more practical and uniform layout. I kept the North-South spacing at 30'-0" and changed the East-West spacing to 24'-0". Doing this allows me to run the joists 30' which are supported on beams that will run in the 24' dimension. Overall this has the potential to be a decent choice for a floor system. The joist slab weighs 91.5 lb/ft², basically the same as a waffle slab system. I did not look at using a precast double-T floor system because the double-T systems typically come in much larger rib depths than what would be practical for this building floor system.

Advantages of using a one-way concrete joist floor are similar to that of a waffle slab, except that you have a slightly lower self weight of the system. While this self weight is lighter than that of the waffle slab, it would still be sufficient to dampen any vibration concerns. This system is also good for installing mechanical, electrical, and plumbing systems as there is adequate room between the ribs and below. The 4.5 inches of concrete is more than adequate to reach the required fire rating of 1.5 hours. The rearrangement of the columns keeps the building relatively open for tenants to arrange floor plans as needed.

Mainly this system is very labor intensive, as with any system that requires setting up formwork to pour the concrete. The higher weight compared to the existing composite floor will require checking foundation and seismic designs. Shear walls would be the best way to handle lateral loads and doing so would divide up the floor areas along column lines

or along the façade, taking space away from tenants. And again the issue of dealing with the existing cantilevered corner and sloping façade persists. This system would require lots of added detailing of these areas and probably the addition of several columns in order for the entrance to work correctly.

Alternate System 4 – Hollow Core Plank on Steel Beams

See Appendix 5 for details of Alternate System 4

Using design aids obtained from Nitterhouse Concrete Products, and the AISC LRFD Manual of Steel Construction, Third Ed., I obtained the following for a design of a hollow core plank sytem:

12"x4' Prestressed Concrete SpanDeck with 2" topping slab (meets U.L. J952)6 Prestressed Strand Pattern

Steel Support Beams W24x55 spans 21'-0" W24x131 spans 35'-0" W27x161 spans 40'-0" Floor Weight 109.5 psf

Using a prestressed concrete plank system in place of the original composite floor is a decent alternative. Some beams increase in size due to the added weight of the concrete plank, but overall it could save a lot of construction costs. A hollow core plank system allows for the existing column grids to remain. A main reason I looked at this system was to determine if it could be feasible to keep a steel frame construction because framing out the existing cantilevered corner will be easier if a steel system is kept.

Additional advantages of this system include things that border the advantages of the existing steel design and the concrete systems I have investigated so far. Using a concrete system increases the weight which reduces vibration of the floors. Since the hollow core planks rest on a steel frame the overall system still keeps its flexibility toward framing out the unusual features of this building, including the corner façade. A hollow core plank system is much quicker to construct over a cast-in-place concrete slab and could save costs on the project in this regard. Lateral loads can still be transferred to the ground in the same way that they are in the existing system because the steel frame is still present. Fire protection is adequate for the 1-1/2 hour rating required because the planks are built to specification.

Disadvantages to this system are similar to that of a flat plate system. The increase in weight leads to beefier foundation and seismic systems. The self weight of a hollow core plank system (102.5 psf) is not quite that of the flat plate, but it is more than a waffle slab or a one-way joist system.

Comparison between the systems

	Steel with Compost Slab	Flat Slab with Drop Panels	Waffle Slab	One-Way Joist	Hollow Core Plank on Steel
Weight (psf)	48	125	93.6	91.5	109.5
Depth (in)	5.25 + 18"	10 + 8.5 Drop	13	18.5	14
Vibration	Possible	No	No	No	No
Fire Rating (hr)	1 1/2	> 2	1 1/2*	> 2	> 2
Column Size	W14	18"x18"	18"x18" **	18"x18"	W14
Form Work Needed	No	Yes	Yes	Yes	No
Construction Difficulty	Medium	Medium/Hard	Hard	Hard	Easy
Acceptable Alternative		Yes	Maybe	No	Yes

* Additional Fireproofing will be required for 3" slab to meet displayed rating.

** Some form of additional punching shear reinforcement is required for this column size.

Conclusion

Each of the alternative systems has its advantages over the existing composite slab. Most notably is the difference in floor system depths compared to the composite slab. All of the concrete systems reduced the floor depths compared to the composite slab, some more so than others. The one-way joist system is a good system with a reduced weight compared to the flat slab. However a one-way joist system is a formwork intensive construction method and this leads to increased construction costs and could even lead to a longer construction period. Waffle slabs are very efficient systems because they provide the depth required for a concrete floor to effectively take advantage of steel reinforcing. However this waffle slab construction has some drawbacks because it would require additional fire protection and design for punching shear. There is enough capacity left in the waffle slab to add another layer of a topping concrete to provide the required fire rating and the design for punching shear would require more research. Hollow core plank is a viable alternative because it provides both a easy means of construction and the required fire protection. A flat plate floor with drop panels is also a good alternative because of the significant reduction is floor system depth. However a flat plat construction requires formwork and this could increase the construction period. With all of the concrete systems the problem of the corner facade that is cantilevered off of the existing framing persists. Framing this facade out with a concrete system would be more difficult that doing so with a steel system. In my opinion a hollow core plank system is the best alternative because it provides a shallower floor system, the required fire rating, and is a very easy construction method. But on top of these a hollow core plank system still utilizes a steel frame construction and would make framing out that corner facade relatively easy.

A. 2-4 Apendix 2-4 Corocte Systems Using the CRSI Design Hanbook No. 937 811E Engineer's Computation Pad Pesign Superimposed Loods: 100psf Live 10 psf MEP, etc. 1.2 (10)+1.6 (100) = 172 psf STAEDTLER® Altered Column Grid: 2-way systems (Flate plate w/ drops of watthe slab) 1. 30'0 30'0' 1 This system keeps the same overall building dimentions 32'-0" while providing a decent Z-way setup. 32'0" 32'-0" Altered Column Grid: 1-way Concrete Doist 30-0,30-0 7 24'0" "0.42 山 .24'-0" M 巾 24'-0"

A-2.2

	1	t ate	17	1				01 01 1				N.	1	
		Concre	sq. f	ANELS	0.884	0.896 0.912 0.947	0.884	0.912 0.912 0.947	0.898 0.898 0.912 0.947 0.947	0.912 0.912 0.912 0.912 0.912	0.912 0	0.912		
	(.W.)	Total	Steel (psf)	ROP P	2.63	3.10 3.63 4.26	2.40	3.31 4.17 4.65	2.37 2.92 3.56 4.35	2.42 3.02 3.85	2.58 3.27 4.34	2.77 3.57 4.56		
S ⁽²⁾	ARS (E	Strip	Bottom	VEEN C	9#2 9#2	10-#5 10-#6	10-#5 10-#5	11-#5 10-#6 16-#5	10-#5 10-#5 15-#5 18-#5	10+#5 10-#5 10-#6 12-#6	11-#5 13-#5 16-#5 10-#7	11-#5 10-#6 18#5		
Panel Panel	NG BA	Middle	Top	TH BET	9-#5 10-#5	12#5 10-#6 16-#5	10-#5 11-#5	13.#5 16.#5 10.#7	10-#5 12-#5 15-#5 10-#7 11-#7	10-#5 13-#5 12-#6 20-#5	12-#5 15-#5 10-#7 12-#7	13#5 12#6 11#7		
h Drop No B	FORCI	n Strip	Bottom	AB DEP	9-#5 12-#5	18#5 15#6	14 14 14 14 14 14 14 14 14 14 14 14 14 1	9#/ 11-#7 10-#8	12#5 11#6 19#5 10#8 11#8	13-#5 17-#5 22-#5 11-#8	15#5 19#5 10#8 12#8	12-#6 22-#5 11-#8	-	
Wit	REIN	Columr	Top	DTAL SL	13-#5 12-#6	15#6 13#7	15#5 17#5	14-#6 13-#7 27-#5	15#5 14#6 12#7 26#5 16#7	17#5 14#6 13#7 16#7	17-#5 16-#6 15-#7 13-#8	14-#6 18-#6 16-#7	-	
I	(3)	Square Column	Size (in.)	in: = TC	5 8 5	5 23 7	5 1 8 7	5237	24 24 24 24	21 24 24	21 21 26 26	21 21 21		
	Factored	posed	(psf)	h = 10	200 500	500 500	200 200	500 500	100 200 500 500	100 300 400	100 200 400	300 300 300	-	
	S	lat.	(lt-k)		350.3 461.2 571 8	684.6 795.3	395.3 522.3	774.7 890.9	445.4 587.4 728.9 865.8 987.1	498.1 654.8 814.1 961.5	556.5 730.3 900.1 1057.3	617.6 806.5 994.9		
6	OMENT	Bot.	(ft-k)		260.2 342.6 424.7	590.8 590.8	293.7 388.0 484.4	575.5 661.8	330.8 436.3 541.5 643.2 733.3	370.0 486.4 604.8 714.3	413.4 542.5 668.6 785.4	458.8 599.1 739.1		
Panels	Ň	Edge	(ft-k)		130.1 171.3 212.4	254.3 295.4	146.8 194.0	287.7 330.9	165.4 218.2 270.7 321.6 366.6	185.0 243.2 302.4 357.1	206.7 271.2 334.3 392.7	229.4 299.6 369.5		
Drop		Total	(bsf)	6	2.39 2.95 3.59	4.97	2.60 3.17 3.88	4.73 5.49	2.63 3.37 5.09 5.78	2.76 3.56 4.56 5.47	2.91 3.81 5.83 5.83	3.16 4.16 5.24		
With	(E. W.)	e Strip Ton	<u>1 5</u>	PANEL	9-#5 2,45 4,6 4,6 4,6	15-#5 10-#7	10-#5 12-#5	9#7 14-#6	10-#5 13-#5 19-#5 9-#8	11-#5 15-#5 10-#7 12-#7	12-#5 16-#5 20-#5 10-#8	10#6 10#7 12#7		
L Beams	BARS	Middle	Bottom	N DROP	9-#5 12-#5 15-#5	10-#7	10-#5 9-#7	11-#7 10-#8	12-#5 11-#6 19-#5 9-#9	13.#5 17.#5 12.#7 11.#8	15#5 19#5 10#8 12#8	16-#5 21-#5 11-#8		
PANE	RCING	(1) Ton	<u>1</u>	BTWEE	14-#5 13-#6 15-#6	12-#7 26-#5	16#5 14#6 15#6	18-#6	16#5 15#6 13#7 12#8 13#8	18-#5 15-#6 14-#7 13-#8	18-#5 13-#7 16-#7 14-#8	20-#5 14-#7 14-#8		
EDGE	EINFO	umn Strip	Bottom	DEPTH E	10-#6 13-#6 17-#6	15-#7 11-#9	146 146 148	13-#8 13-#9	18#5 17#6 16#7 12#9 17#8	14-#6 11-#8 11-#9 17-#8	22-#5 12-#8 20-#7 15-#9	10-#8 11-#9 17-#8		
UAHE	Œ	Top	Ext. +	L SLAB I	12-#5 2 12-#5 4 12-#5 1	12-#5 1 13-#5 3	12-#5 3 12-#5 1 12-#5 1	13-#5 3 15-#5 4	12#5 2 12#5 5 12#5 5 14#5 5 16#5 3	13-#5 2 13-#5 3 13-#5 5 16-#5 3	13-#5 2 13-#5 2 15-#5 4 17-#5 2	14-#5 2 14-#5 4 16-#5 3		
ר אל	() amile		Ϋ́r	= TOTA	0.776 0.809 0.664	0.632 0.744	0.810 0.704 0.633	0.745 0.745	0.746 0.804 0.674 0.756 0.682	0.784 0.714 0.757 0.692	0.737 0.758 0.718 0.639	0.774 0.744 0.675		
	Country 1	Size	(in.)	= 10 in.	15 18	19	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19 24	15 18 27 27 27	12 19 25 25	22 16 22 28	12 24 24		
y	e Drop	Width	(#)	4	8.33 8.33 8.33	8.33 10.00	8.67 8.67 8.67	8.67 10.40	9.00 9.00 9.00 10.80 10.80	9.33 9.33 9.33 11.20	9.67 9.67 9.67 11.60	10.00 10.00 10.00		
0 Bar	Square	Depth	(in.)		5.50 5.50 7.00	8.50 8.50	5.50 7.00 8.50	8.50 8.50	7.00 7.00 8.50 8.50 8.50	7.00 8.50 8.50 8.50	8.50 8.50 8.50 8.50	8.50 8.50 8.50		
ade 6	Factored Superim-	posed	(bsi)		300 300	400 500	100 200 300	400 500	100 200 500 500	100 200 400	100 200 300 400	100 300 300		
Cr	SPAN	$\ell_1 = \ell_2$	(E)		25 25	25	26 66 28 26 28	26 26	27 27 27 27 27	28 28 28 28 28 28 28	20 00 70 70 20 70 70	30.00		

CONCRETE REINFORCING STEEL INSTITUTE

A-3.1 Appendix 3. 30-6, 30-0 Naffle Sbb System 32-0 STAEDTLER[®] No. 937 811E Engineer's Computation Pad 32:-0" 32'-0" Solid Slakowns Spar Toil Tiel òd, Toots 10" PibRoba Voids Sold Slab around Columns 18×18" columns

ρ.	1 1 1 1	3	-)									
1		/	op	0 26		5-#5 5-#5 5-#5 5-#5 5-#5 5-#5	6-#5 6-#5 6-#5 6-#5 6-#5 6-#5	7-#5 7-#5 7-#5 7-#5 9-#5	8-#5 8-#5 8-#5 8-#5 #5	9-#5 9-#5 9-#5 10-#5	10-#5 10-#5 12-#5 10-#6	11-#5 12-#5 15-#5	
Bars		Strip		IS N	= 3 in.	#44 #44 #44 #44 #45	##4 ##4 #5 #6	##4 #5 #55 #6	#4 #4 #5 #6	#4 #4 #6 #6	#4 #5 #6	#4 #5	
60 E	ection	hiddle	tom	ars Ba	Depth	#4 #4 #4 #4	#4 #4 #5 #5	#4 #4 #5 #6	#4 #4 #5	#4 #5 #5	#4 #4 #5 #5	#4 #4 #5	
ade	ach Dir	2	Bot	Vo. Lo	al Slab			44444	ດດດວດ	<mark>ى</mark> <mark>م</mark> ى مى مى	0000	~~~	
PAN	3ars-E	• •	Top	No P	10	13-#5 13-#5 13-#5 13-#5 13-#5 13-#5	15-#5 15-#5 15-#5 15-#5 15-#5 17-#5	18-#5 18-#5 18-#5 18-#5 18-#5 21-#5 18-#6	20-#5 20-#5 20-#5 23-#5 23-#5 21-#6	22-#5 22-#5 26-#5 22-#6	25-#5 28-#5 25-#6 30-#6	28-#5 37-#5 33-#6	
INTERIOR	Reinforcing	Column Strip	Bottom	Bars per Rib) Depth = 10 in.	2-#4 2-#4 2-#4 2-#4 1-#5 and 1-#5 1-#5 and 1-#6	2-#4 2-#4 2-#4 1-#4 and 1-#5 2-#6 2-#6	2-#4 2-#4 2-#5 1-#5 and 1-#6 1-#6 and 1-#7 2-#7	2.#4 2.#5 1.#5 and 1.#6 1.#7 and 1.#7 1.#7 and 1.#8	1-#4 and 1-#5 2-#5 2-#6 7-#6 1-#6 and 1-#7	2-#5 2-#6 1-#6 and 1-#7 2-#7	1-#5 and 1-#6 1-#6 and 1-#7 1-#7 and 1-#8	
ARE				No. Ribs	Rib	~~~~~~	44444	44444	বৰৰ ব	<mark>ດ</mark> ດວວ	പവവവം .	ດດວ	
squ		Jare Column	No.	(2) Stirrups	3 in.	3 S 4 1 3 S 4 1	3541 3541	33541 3541 3541	3 S 4 1 3 S 4 2 3 S 4 2	3 S 4 1 3 S 4 1	3 S 4 1 3 S 4 2 3 S 4 2	3 S 4 1 3 S 4 2 3 S 4 2	
and a second	1	Sqi nterior		= c ₂ in.)	pth = 1	22222222	<u>866666</u>	662666 * *	4000 4000 4000 4000 4000 4000 4000 400	15 15 * *	116 * * * *	18 18 * 18 *	
	1	(1. Mar. 1. 1999) 1. C. 10	1 (teel ^{C1} (otal De	1.84 1.84 1.84 1.84 1.95 2.28	1.82 1.82 2.22 2.69	1.86 1.86 2.05 2.25 3.49 3.49	1.86 2.02 2.13 3.55 3.55	1.94 2.03 3.12 3.12	2.06 2.46 3.07 3.63	2.16 2.79 3.62	
<u>ن</u> ا		<u> </u>		-k) (I	E.	76 98 1121 144 1189 235	125 1162 309 383 383	186 242 253 353 353 565	264 343 422 502 647	367 475 584 686	485 629 768 892	623 808 976	
SOIL		lents		F)		56 77 132 132 236	93 1128 302 385	138 190 325 564	196 263 363 617 617	272 353 604 604	360 467 614 711	463 601 725	
		Моп	+ W	-k) (ft		28 37 45 70 87 87 287	47 60 115 142	69 90 111 172 210	98 1157 1157 240	136 177 217 255	180 234 235 331	231 300 362	
spi			Top	Vo Ed size (ft		5-#5 5-#5 5-#5 5-#5 5-#5 5-#5 5-#5	6-#5 6-#5 6-#5 6-#5 6-#5	7-#5 7-#5 7-#5 7-#5 9-#5	8-#5 8-#5 8-#5 8-#5 8-#5 8-#5	9-#5 9-#5 9-#5 11-#5	10-#5 10-#5 13-#5 15-#5	11-#5 13-#5 11-#6	
\$		Strip		ars		######################################	#4 #5 #5 #7	#4 #5 #7 #7	#4 #5 #6 #7	#5 #6 #7	#5 #6 #7	#5	
2	irection	Middle	ottom	ong Sl ars B		#4 #4 #4 #5 #5	#4 #44 #5 #75	##4 #5 #5 #7	#4 #5 #6	#4 #6 #6	#4 #6 #6	#5 #6	
<	Fach D		Bc	No. L Ribs		~~~~~~		444444	വവവവ	ممىمە	0000	アアア	
00	Rare		Top	No size		$\begin{array}{c} 13-\#5\\ 13-\#5\\ 13-\#5\\ 13-\#5\\ 13-\#5\\ 13-\#5\\ 13-\#5\end{array}$	15 - #5 15 - #5 15 - #5 15 - #5 15 - #5 18 - #5	18-#5 18-#5 18-#5 18-#5 16-#6 20-#6	20-#5 20-#5 20-#5 25-#5 23-#6 23-#6	22-#5 23-#5 28-#5 24-#6	25-#5 31-#5 27-#6 32-#6	31-#5 40-#5 35-#6	
ANELS	Reinforcinc	nn Strip	Bottom	Bars per Rib		2-#4 2-#4 1-#4 and 1-#5 2-#5 1-#6 and 1-#6 1-#6 and 1-#7	2-#4 2-#4 2-#5 2-#5 1-#6 and 1-#7 1-#6 and 1-#7	1-#4 and 1-#5 2-#5 2-#6 1-#6 and 1-#7 2-#9 2-#9	2-#5 2-#5 2-#8 2-#9	1-#5 and 1-#6 2-#6 2-#7 2-#8	2-#6 2-#7 2-#9 2-#9	2-#7 2-#8 2-#9	
n High		Colur		No. Ribs		0000000	44444	44444	44444	<mark>ى</mark> مىمى	ນູູູ່ນູ	ດ ດ ດ 	
SLA SE EDG		141 141	Top	Edge No : size +	th = 3 in.	$\begin{array}{c} 13-\#5+ \ 0\\ 13-\#5+ \ 0\\ 13-\#5+ \ 0\\ 13-\#5+ \ 0\\ 13-\#5+ \ 0\\ 13-\#5+ \ 0\\ 13-\#5+ \ 0\\ 13-\#5+ \ 0\\ 13-\#5+ \ 0\\ \end{array}$	15-#5+ 0 15-#5+ 0 15-#5+ 0 15-#5+ 0 15-#5+ 0 15-#5+ 0 15-#5+ 0	$\begin{array}{c} 18-\#5+ \ 0\\ 18-\#5+ \ 0\\ 18-\#5+ \ 0\\ 18-\#5+ \ 0\\ 18-\#5+ \ 0\\ 18-\#5+ \ 0\\ 18-\#5+ \ 0\\ 18-\#5+ \ 0\end{array}$	20-#5+ 0 20-#5+ 0 20-#5+ 0 20-#5+ 0 20-#5+ 1 20-#5+ 1	22-#5+ 0 22-#5+ 3 22-#5+ 6 22-#5+ 8 22-#5+ 3	25-#5+ 2 25-#5+ 6 25-#5+ 10 25-#5+ 3 25-#5+ 3	27-#5+ 3 27-#5+ 9 27-#5+ 5	
SOUAF		Imn		(2) Stirrups	al Slab Dep						3 \$ 4 1	3 \$ 4 1	
		e Edge Co		<u>ج</u>	Tote	0.664 0.687 0.711 0.735 0.735 0.735 0.735 0.735	0.735 0.763 0.763 0.791 0.818 0.874 0.634	0.801 0.831 0.862 0.892 0.634 0.628	0.824 0.860 0.896 0.632 0.626	0.829 0.887 0.933 0.626	0.867 0.922 0.931 0.621	0.875 0.926 0.620	
M		Squar		in.)	10 in.	2222222	5555555 * *	6222222 * * *	80000 * * * *	15 13 15 15 15 15 15 15 15 15 15 15	16 * * 25 * *	18 * 19 * 27 *	
			1)	teel C1 (13)	spth = 1	1.92 1.92 2.16 2.16	2.01 2.01 2.19 3.13 3.13	1.92 1.98 3.32 4.07	1.96 2.22 3.03 3.99 3.99	2.12 2.31 2.95 3.53 3.53	2.25 2.71 3.42 4.05	2.52 3.15 3.93	
			actored (Load S (r	Rib De	400 200 200 200 200 200 200 200 200 200	400 200 200 200 200 200 200 200 200 200	40000000000000000000000000000000000000	50 300 300 300	50 100 200	50 100 200	50 150	
			Span cc.	Columns $\ell_1 = \ell_2$ (ff)	Total Depth = 13 in.	18'-0" D= 6.500 RIB ON COLUMN LINE 0.597 CF/SF	21'- 0" D= 9.500 RIB NOT ON COLUMN LINE 0.637 CF/SF	24'- 0" D= 9.500 RIB NOT ON COLUMN LINE 0.613 CF/SF	27'- 0" D= 9.500 RIB NOT RIB NOT COLUMN LINE 0.597 CF/SF	30'- 0" B=15.00 RIB 0N COLUMN LINE	33- 0" D=12.500 RIB ON COLUMN LINE 0.609 CF/SF	36- 0" D=12.500 RIB ON COLUMN LINE 0.597 CF/SF	

Tell of		ţ	Span Defi.	(3) (3)		2.894	3.386	3.938	4.554	5,240	6.001	6.842	7.769	8.787	9.901	11.118	12.445	13.886	15.449	ns,									
		0 #	- 9 9	1.70	7	342*	320*	300*	282* 328	265*	249*	235*	221	200	181	0 4 c	148	133	119	nd spa				1.44	.689.	17.1	2 6	14	17.1
		9 #	۵ # #	1.42	R SPA	339*	317*	223	261 0	235	211 0	189	170	152	136	121	107	95 C	0 80 0	ends. 5 for e	/360.			1.24	58	17.2		120	17.1
(PSF)	Depth	#5	# 2 # 1	1.18	JTERIO	278	247	220	195	174	154	136	120	105	96	0 62	0 88 0	220	0 \$ 0	ed joist		3F) (4)		1.01	47	17.2	t 6	10	17.2
(a) OAD	5" Total I	4 4	0 # # 7 7	93	4	206	181	159	138 0	120	04 C	0.000	92	64	n eg o	⊃ ∯ c	5	-		l tapere ress ≥	eflectio	CF/S		8.08	37	17.3		80.	17.2
SED L	b = 18.	# 4	4 4	.75		136	110	0 8 0	0 8 0	890	222	640	5							specia (thicku	lastic d	TE .61		.65	<u>, </u> ,	17.3	3	06.	17.3
BIMPC	Top Sla	Pa	efi.	(3)		.703	502	398	400	516	.752	.119	.625	.278	.089	.067	.222	565	.105	ad is for onal line	ity at e	NCRE	<u> </u>						
o" hil	ib + 4.5	5 6		9	N	95* 4	24* 5	0	40 % 0	ω ω	6	11	12	14	10	18	35 35	33 22	0 25 0	cond loc /e horiz	+ Capac	N (CO		31	61	7.2	2	17	7.1
SABLE	Deep R	5 7 7	0 9 9 # #	24 1.	SPAN	52 26	0 10 0		5 6 6	0 21	Б Ц С С С		1000	- <u></u>	1	0.00	2 20 0	0 = 0	000	8-1. nds; ser ed abov	l ends.	DESIG		06 1.	202	1.2 1.	4 6	14	7.1 1.
30" Fe ED US	14	4 5	# # <u>6</u>	1.1	END S	8 26	53	50	8	1 16	14	12	1	ິດ	۵ ۵.00 (0.000	9	<u>س</u>	4	e Table joist ei t requir	taperec	FOR [<u> </u>	90 1.	42	1.3 1.		0 0	15 12
CTOR		4	0 10 10 # #	1.0		1 20	18	16	120	0 12	000	0,000	000		ίΩ.	4				ties, se square on is no	ts and y.	RTIES		22	34	7.3 2.1	3 8	10 4	82 1
FA		# #	- + + +	6		2 15	0 4 0	1	0 0 0 0 0	2 0 0 0		<u>ل</u> م	4	-						proper andard eflectic	spans) ing jols capacity	ROPE			28	11		- 80	11 12
ISTS ⁽¹		#	# #	0		5		9	<u></u>	4										section is for st ion of d	interior of bridg shear (1Z	('X *	3 6	11	5	2	2 4
AY JO PI F S		Siz	3) # #	6	SPAN	-0"	"O-	-0	"O-	"0"	"0"	"O-'	"0-"	-0	"0-"	-0"	-0"	-0"	-0	gross at load in mputat	21 for clusive o		MOME	A (SQ.I	IAPEREL	PTH, IN.	MOMEN	А (8Q. EL %	PTH, IN.
NE-W		DP SBC		eel (ps	CLEAF	25	26	27	28	29	30	31	32	33	34	35	36	37	38	32 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(4) Exc *Contre		EGATIVE	TELLARE		EFF. DE	OSITIVE	EEL AHE STE	EFF. DE +ICF
U		μ		5 U						4													ž	5 0	n		a a	n	
											1																1		
0 psi 0 psi		t	Defl.	(3)		2.814	3.292	3.828	4,428	5.095	5.835	6.652	7.553	8.543	9.626	10.809	12.099	13.500	15.020	jg,									
4,000 psi 60,000 psi		# 6 101	10 Int. #6 Span #6 Defl.	1.80 (3)	7	305* 2.814	398* 284* 3.292 267*	36/* 266* 3.828	249* 4,428 315*	233* 5.095 293*	219* 5.835 -	206* 6.652	200" 193* 7.553 236	182* 8.543	171* 9.626	162* 10.809	152* 12,099	144* 13.500	146 132 15.020 0	nd spans,				1.54	.79	17.1		.15	17.1 .281
$I_c = 4,000 \text{ psi}$ $f_y = 60,000 \text{ psi}$		#5 #6	#5 #6 Defl.	1.48 1.80 (3)	R SPAN	299* 305* 2.814	379 398* 279* 284* 3.292	261* 266* 3.828	245* 249* 4,428 278 315*	229* 233* 5.095 251 293*	215* 219* 5.835	203* 206* 6.652	204 230 184 193* 7.553 0 236	166 182* 8.543 0 215	149 171* 9.626	134 162* 10.809	120 152* 12.099	107 144* 13.500	0 146 95 132 15.020 0 0	ends. 5 for end spans,	/360.			1.28 1.54	.65 .79	17.2 17.1		.13 .15	17.1 17.1 .243 .281
(PSF) $I_c = 4,000 \text{ psi}$ $f_y = 60,000 \text{ psi}$	Depth	#4 #5 #6	/ 8.5 10 "II. #5 #5 #6 Span #5 #6 #6 Defl.	1.20 1.48 1.80 (3)	VTERIOR SPAN	293* 299* 305* 2.814	295 379 398* 263 279* 284* 3.292 269 240 267*	235 261* 266* 3.828	210 245* 249* 4.428 0 278 315*	188 229* 233* 5.095 0 251 293*	167 215* 219* 5.835 0 226 274*	149 203* 206* 6.652	132 184 193* 7.553 0 0 236	117 166 182* 8.543 0 0 215	103 149 171* 9.626	90 134 162* 10.809	79 120 152* 12.099	68 107 144* 13.500	0 0 146 58 95 132 15.020 0 0 0	ed Joist ends. 1./18.5 for end spans,	$n = \ell_n / 360.$	SF) (4)		1.00 1.28 1.54	.51 .65 .79	17.3 17.2 17.1	- LC: +12: CC	.10 .13 .15	17.2 17.1 17.1 .206 .243 .281
(2) $I_{i_{y}}^{(2)} = 4,000 \text{ pst}$ -OAD (PSF) $f_{y}^{(2)} = 60,000 \text{ pst}$	5″ Total Depth	#4 #4 #5 #6	#5 / 8.5 10 mu. #4 #5 #5 #6 Span #5 #6 #6 Defl.	.97 1.20 1.48 1.80 (3)	INTERIOR SPAN	221 293* 299* 305* 2.814	0 295 379 398* 195 263 279* 284* 3.292 269 269 269	172 235 261* 266* 3.828	152 210 245* 249* 4.428 0 0 278 315*	133 188 229* 233* 5.095 0 0 251 293*	116 167 215* 219* 5.835 -	101 149 203* 206* 6.652	87 132 184 193* 7.553 0 0 0 236	75 117 166 182* 8.543	63 103 149 171* 9.626	53 90 134 162* 10.809	43 79 120 152* 12.099	0 0 0 0 161 68 107 144* 13.500	0 0 146 58 95 132 15.020 0 0 0	I tapered joist ends. ness $\geq \ell_n/18.5$ for end spans,	eflection = $\ell_n/360$.	I CF/SF) ⁽⁴⁾		.82 1.00 1.28 1.54	.42 .51 .65 .79	17.3 17.3 17.2 17.1 200 231 274 311		.08 .10 .13 .15	17.2 17.2 17.1 17.1 .172 .206 .243 .281
$\int_{0}^{1} c_{c} \cdot c_{c} = 0$ SED LOAD (PSF) $f_{c} = 4,000$ psi $f_{y} = 60,000$ psi	tb = 18.5" Total Depth	#4 #4 #5 #6	11 8.5 / 8.5 10 " #4 #5 #5 #6 Defi #4 #5 #6 #6 Defi	.77 .97 1.20 1.48 1.80 (3)	INTERIOR SPAN	149 221 293* 299* 305* 2.814	0 0 295 379 398* 128 195 263 279* 284* 3.292 240 267	110 172 235 261* 266* 3.828	94 152 210 245* 249* 4.428 0 0 278 315*	79 133 188 229* 233* 5.095 0 0 0 251 293*	66 116 167 215* 219* 5.835 -	54 101 149 203* 206* 6.652	43 87 132 184 193* 7.553	75 117 166 182* 8.543	63 103 149 171* 9.626	53 90 134 162* 10.809	43 79 120 152* 12.099	68 107 144* 13.500	0 0 146 58 95 132 15.020 0 0 0	special tapered joist ends. s (thickness ≥ ℓ_1/18.5 for end spans,	fastic deflection = $\ell_n/360$.	TE .58 CF/SF) ⁽⁴⁾		.64 .82 1.00 1.28 1.54 8		17.3 17.3 17.3 17.3 17.2 17.1 163 200 231 27.4 311		.40 .51 .52 .73 .88 .07 .08 .10 .13 .15	17.3 17.2 17.2 17.1 17.1 .138 .172 .206 .243 .281
b ($\vec{0}$ 35 ^a c. c. ⁽²⁾ RIMPOSED LOAD (PSF) $f_y = 60,000$ psi	" Top Slab = 18.5" Total Depth	#4 #4 #5 #6 4 0 1 0 1	pan #4 #5 #5 #6 #6 Defl.	oeft	INTERIOR SPAN	.572 149 221 293* 299* 305* 2.814	.349 128 195 265 379* 388* .349 128 195 263 279* 384* 3.292	.221 110 172 235 261* 3.828 .221 235 251* 3.828	.195 94 152 210 245 249 4.428 0 0 225 238 315*	.279 79 133 188 229* 233* 5.095 0 0 251 293*	.481 66 116 167 215* 219* 5.835 -	.810 54 101 149 203* 206* 6.652	274 43 87 132 184 230 0 0 0 736 132 184 193* 7.553	.882 75 117 166 182* 8.543	.642 63 103 149 171* 9.626	.565 53 90 134 162* 10.809	.661 43 79 120 152* 12.099	.938 0 68 107 144* 13.500	.407 0 0 146 58 95 132 15.020 0 0 0	ad is for special tapered joist ends. onal line (thickness ≥ ℓ_n/18.5 for end spans,	city at elastic deflection = $\ell_n/360$.	NCRETE .58 CF/SF) ⁽⁴⁾		.64 .82 1.00 1.28 1.54 8	.32 .42 .51 .65 .79	17.3 17.3 17.3 17.2 17.1 163 200 231 27.4 211		.07 .08 .10 .13 .15	17.3 17.2 17.2 17.1 17.1 .138 .172 .206 .243 .281
5" Rlb ($\vec{0}$ 35" cc. ⁽²⁾ $I_c = 4,000$ psi SUPERIMPOSED LOAD (PSF) $f_y = 60,000$ psi	iib + 4.5" Top Slab = 18.5" Total Depth	5 #4 #4 #4 #5 #6	3 Lind 11 8.5 1 8.5 10 mil. 6 Span #4 #4 #5 #5 #6 Span 7 Defi. #4 #5 #5 #6 Defi.	52 (3) .77 .97 1.20 1.48 1.80 (3)	INTERIOR SPAN	54* 4.572 149 221 293* 299* 305* 2.814	14* 5.349 128 195 263 279 398* 3.292	26* 6.221 110 172 235 261* 266* 3.828	04 7.195 04 152 210 2458 240 10* 7.195 94 152 210 2458 2438 56 0 0 0 278 315* 4.428	306* 8.279 79 133 188 229* 233* 5.095 30 0 0 251 293*	32* 9.481 66 116 167 215* 219* 5.835 -	70* 10.810 54 101 149 203* 206* 6.652	50* 12.274 43 87 132 144 193* 7.553 00 0 0 7 246 132 155 132 155 1	tig* 13.882 75 117 166 182* 8.543	34 15.642 63 103 149 215 9.626	0 17.565 53 90 134 162* 10.809	7 19.661 43 79 120 152* 12.099	94 21.938 0 0 0 0 161 144* 13.500	0 0 146 33 24.407 58 95 132 15.020 0 0 0 0	cond load is for special tapered joist ends. We horizonal line (thickness $\geq \ell_n/18.5$ for end spans,	+Capacity at elastic deflection = $\ell_n/360$.	N (CONCRETE .58 CF/SF) ⁽⁴⁾		36	60 <th< td="" th<=""><td>7.2 17.3 17.3 17.3 17.2 17.1 87 500 531 574 311</td><td></td><td>.04</td><td>7.1 17.2 17.2 17.1 17.1 23 .138 .172 .206 .243 .281</td></th<>	7.2 17.3 17.3 17.3 17.2 17.1 87 500 531 574 311		.04	7.1 17.2 17.2 17.1 17.1 23 .138 .172 .206 .243 .281
orms + 5" Rib ($\textcircled{0}$ 35" cc. ⁽²⁾ SABLE SUPERIMPOSED LOAD (PSF) $f_y = 60,000$ psi	Deep Rib + 4.5" Top Slab = 18.5" Total Depth	5 # 5 # 4 # 4 # 6 # 6 0 0 0 1 0 1 0 1	0 8 Liv 11 8.5 / 8.5 10 mit. 6 #6 Span #4 #4 #5 #5 #6 Span 6 #7 Deft. #4 #5 #5 #6 Peft.	28 1.52 (3) .77 .97 1.20 1.48 1.80 (3)	SPAN INTERIOR SPAN	2* 264* 4.572 149 221 293* 299* 305* 2.814	22 348* 0 0 295 379 398* 3.292 14* 244* 5.349 128 195 263 2.79* 284* 3.292 2023 2.79* 244* 3.292	7* 226* 6.221 10 172 235 261* 266* 3.828	14 264 7.195 94 152 210 245* 249* 4.428 0 2510* 7.195 94 152 210 245* 249* 4.428 0 256 0 0 278 315*	8 196* 8.279 79 133 188 229* 233* 5.095 0 230 0 0 0 0 233* 5.095	8 182* 9.481 66 116 167 215* 219* 5.835 -	0 170* 10.810 54 101 149 203* 206* 6.652	4 159* 12.274 43 87 132 194 250* 151 159* 12.274 43 87 132 194 193* 7.553	0 149* 13.882 75 117 166 182* 8.543	6 134 15.642 63 103 149 2.526	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 107 19.661 43 79 120 152* 12.099	2 94 21.938 0 68 107 144* 13.500	0 0 0 146 3 83 24.407 58 95 132 15.020 0 0 0 0 0	8-1. ds: second load is for special tapered joist ends. ed above horizonal line (thickness $\geq \ell_n/18.5$ for end spans,	l ends. +Capacity at elastic deflection = $\ell_n/360$.	DESIGN (CONCRETE .58 CF/SF) ⁽⁴⁾		09 1.36 64 .82 1.00 1.28 1.54 8	55 .69 .32 .42 .51 .65 .79	7.2 17.2 17.3 17.3 17.3 17.2 17.1 44 287 168 200 231 27.1 211		88 1.04 .40 .51 .62 .73 .88 15 .17 .07 .08 .10 .15	7,1 17,1 17,2 17,2 17,2 17,1 17,1 17,1 17,1 18,1 32,3 138 .172 206 .243 281 281 281 281 201
30" Forms + 5" Rib @ 35" cc. ⁽²⁾ $f_c = 4,000$ psi ED USABLE SUPERIMPOSED LOAD (PSF) $f_y = 60,000$ psi	14" Deep Rib + 4.5" Top Slab = 18.5" Total Depth	5 #5 #5 #4 #4 #6 * 0 * 0 * 0	5 #6 #6 Span #4 #5 #5 #6 Deft. 6 #6 #7 Deft. #4 #5 #5 #6 Deft.	Delt Coeff. Coeff. <td>END SPAN INTERIOR SPAN</td> <td>3 252* 264* 4.572 149 221 293* 299* 305* 2.814</td> <td>0 282 348* 0 0 295 379 398* 3.292 7 234* 124* 5.349 128 195 263 279* 284* 3.292</td> <td>0 251 315 0 0 0 0 0 342 367 3 217* 226* 6.221 110 172 235 261* 266* 3.828 3 217* 226* 6.221 10 172 235 241* 266* 3.828</td> <td>0 224 264 7.195 94 152 210 245 243* 4.428 0 256 0 0 0 251 153 15*</td> <td>4 178 196* 8.279 79 133 188 229* 233* 5.095 0 0 0 0 0 0 233* 5.095</td> <td>7 158 182* 9.481 66 116 167 215* 219* 5.835 -</td> <td>2 140 170* 10.810 54 101 149 203* 203* 6.652</td> <td>0 0 150* 12.274 0 0 0 0 2 204 230 0 167 0 169* 12.274 0 0 0 0 0 236</td> <td>6 110 149* 13.882 75 117 166 182* 8.543</td> <td>4 96 134 15.642 63 103 149 171* 9.626</td> <td>0 0 0 17.565 53 90 134 162* 10.809</td> <td>4 72 107 19.661 43 79 120 152* 12.099</td> <td>0 0</td> <td>0 0 0 146 53 83 24.407 58 95 132 15.020 0 0 0 0 0 0 0 146</td> <td>a Table 8-1. Joist ends; second load is for special tapered joist ends. t required above horizonal line (thickness ≥ l_n/18.5 for end spans,</td> <td>tapered ends. +Capacity at elastic deflection = $\ell_n/360$.</td> <td>FOR DESIGN (CONCRETE .58 CF/SF) ⁽⁴⁾</td> <td></td> <td>99 1.09 1.36 .64 .82 1.00 1.28 1.54 1</td> <td>50 55 69 .32 .42 .51 .65 .79</td> <td>7.2 17.2 17.2 17.3 17.3 17.3 17.3 17.1 2 17.1 27.1 27.1 27.1 27.1 27.1 27</td> <td></td> <td>(5) .38 1.04 .40 .51 .52 .13 .17 .07 .08 .10 .15 .15</td> <td>1 17.1 17.1 17.3 17.2 17.2 17.1 17</td>	END SPAN INTERIOR SPAN	3 252* 264* 4.572 149 221 293* 299* 305* 2.814	0 282 348* 0 0 295 379 398* 3.292 7 234* 124* 5.349 128 195 263 279* 284* 3.292	0 251 315 0 0 0 0 0 342 367 3 217* 226* 6.221 110 172 235 261* 266* 3.828 3 217* 226* 6.221 10 172 235 241* 266* 3.828	0 224 264 7.195 94 152 210 245 243* 4.428 0 256 0 0 0 251 153 15*	4 178 196* 8.279 79 133 188 229* 233* 5.095 0 0 0 0 0 0 233* 5.095	7 158 182* 9.481 66 116 167 215* 219* 5.835 -	2 140 170* 10.810 54 101 149 203* 203* 6.652	0 0 150* 12.274 0 0 0 0 2 204 230 0 167 0 169* 12.274 0 0 0 0 0 236	6 110 149* 13.882 75 117 166 182* 8.543	4 96 134 15.642 63 103 149 171* 9.626	0 0 0 17.565 53 90 134 162* 10.809	4 72 107 19.661 43 79 120 152* 12.099	0 0	0 0 0 146 53 83 24.407 58 95 132 15.020 0 0 0 0 0 0 0 146	a Table 8-1. Joist ends; second load is for special tapered joist ends. t required above horizonal line (thickness ≥ l_n /18.5 for end spans,	tapered ends. +Capacity at elastic deflection = $\ell_n/360$.	FOR DESIGN (CONCRETE .58 CF/SF) ⁽⁴⁾		99 1.09 1.36 .64 .82 1.00 1.28 1.54 1	50 55 69 .32 .42 .51 .65 .79	7.2 17.2 17.2 17.3 17.3 17.3 17.3 17.1 2 17.1 27.1 27.1 27.1 27.1 27.1 27		(5) .38 1.04 .40 .51 .52 .13 .17 .07 .08 .10 .15 .15	1 17.1 17.1 17.3 17.2 17.2 17.1 17
30" Forms + 5" Rib @ 35" cc. ⁽²⁾ CTORED USABLE SUPERIMPOSED LOAD (PSF) $f_y = 60,000$ psi	14" Deep Rib + 4.5" Top Slab = 18.5" Total Depth	4 # 5 # 5 # 5 # 6 # 4 # 4 # 4 # 6 # 6 # 6	5 #5 #6 #6 Span #4 #4 #5 #5 #6 Deft. 5 #6 #6 #7 Deft. #4 #5 #5 #6 Deft.	8 1.09 1.28 1.52 (3) .77 .97 1.20 1.48 1.80 (3)	END SPAN INTERIOR SPAN	4 223 252* 264* 4.572 149 221 293* 299* 305* 2.814	0 0 282 348* 0 295 379 398* 3.292 3 197 234* 244* 5.349 198 195 263 279* 284* 3.292	0 0 251 316 6.221 10 0 0 342 367 4 173 2174 226* 6.221 10 172 235 261* 266* 3.828 2 236 261* 266* 3.828	0 1 224 264 7.195 94 152 210 245 243* 4.428 0 0 0 2510* 7.195 94 152 210 245* 249* 4.428	1 134 178 196* 8.279 79 133 188 229* 233* 5.095 0 0 0 0 0 0 233 5.095	7 117 158 182* 9.481 66 116 167 215* 219* 5.835 -	4 102 140 170* 10.810 54 101 149 203* 206* 6.652	0 0 0 150* 12.274 0 0 0 204 230* 7.553 0 0 167 0 0 0 7 36	2 76 110 149* 13.882 75 117 166 182* 8.543	64 96 134 15.642 63 103 149 171* 9.626	0 0 0 0 195 54 84 120 17.565 53 90 134 162* 10.809	44 72 107 19.661 43 79 120 152* 12.099	0 0 0 0 161 62 94 21.938 68 107 144* 13.500	0 0 0 146 53 83 24.407 58 95 132 15.020 0 0 0 0 0 0 0 146	ites, see Table 8-1. square joist ends; second load is for special tapered joist ends. In is not required above horizonal line (thickness $\geq \ell_n$ /18.5 for end spans,	ts and tapered ends. h +Capacity at elastic deflection = $\ell_n/360$.	RTIES FOR DESIGN (CONCRETE .58 CF/SF) ⁽⁴⁾		74 .99 1.09 1.36 .64 .82 1.00 1.28 1.54 1	37 50 55 69 32 42 51 65 79	3 17.2 17.2 17.2 17.3 17.3 17.3 17.3 17.4 17.1 17.1 23.1 17.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23		32 ./5 .88 1.04 .40 .51 .55 .88 10 .13 .15 .17 .07 .08 .10 .13 .15	.2 17.1 1
, 30" Forms + 5" Rib ($@$ 35" c. c. ($"$) FACTORED USABLE SUPERIMPOSED LOAD (PSF) $f_y = 60,000$ psi	1 14" Deep Rib + 4.5" Top Slab = 18.5" Total Depth	4 #4 #5 #5 #5 #45 #44 #4 #4 #6 #6	9.5 11 10 8 Lind 11 8.5 10 Nill 4 #5 #5 #6 #6 Span #4 #5 #5 #6 Span 5 #5 #6 #7 Deli, #4 #5 #5 #6 Deli,	2	END SPAN INTERIOR SPAN	4 164 223 252* 264* 4.572 149 221 293* 299* 305* 2.814	0 0 0 295 348* 0 295 348 5.349 128 195 263 279* 294* 3.292	0 124 173 217* 226* 6.221 10 172 235 261* 266* 3.828	0 10 153 200 210* 7.195 94 152 210 245* 249* 4.428 0 0 0 0 20 250 210* 7.195 94 152 210 245* 249* 4.428	3 91 134 178 196* 8.279 79 133 188 229* 233* 5.095 0 0 0 0 230 0 230 0 231 293*	2 77 117 158 182* 9.481 66 116 167 215* 219* 5.835 -	64 102 140 170* 10.810 54 101 149 203* 206* 6.652	53 88 12 150* 12.274 43 87 132 184 193* 7.553 0 0 167 10 17 132 184 193* 7.553	42 76 110 149* 13.882 75 117 166 182* 8.543	64 96 134 15.642 63 103 149 171* 9.626	0 1 0 1 0	44 72 107 19.661 43 79 120 152* 12.099	62 94 21.938 0 68 107 144* 13.500	0 0 0 146 53 83 24.407 58 95 132 15.020 0 0 0 0 0 0 0 146	properties, see Table 8-1. andard square joist ends; second load is for special tapered joist ends. effection is not required above horizonal line (thickness $\geq l_0/18.5$ for end spans,	spans). ing joists and tapered ends. apacity. +Capacity at elastic deflection = $\ell_n/360$.	ROPERTIES FOR DESIGN (CONCRETE .58 CF/SF) ⁽⁴⁾		34 .74 .99 1.09 1.36 .64 .82 1.00 1.54 1	22	3 17.3 17.2 17.2 17.2 17.3 17.3 17.3 17.3 17.4 17.1 17.1 23 17.4 17.1 23 17.4 17.1 24 25 25 25 25 25 25 25 25 25 25 25 25 25		21 . 52 . 75 . 38 1.04 . 40 .51 .52 .75 .88 28 .10 .13 .15 .17 .07 .08 .10 .13 .15	2 17.2 17.1 17.1 17.1 17.1 17.1 17.1 72 .206 .243 .281 .323 .138 .172 .206 .243 .281
ID 30" Forms + 5" RIb ($@$ 35" c. c. ($"$) $I_c = 4,000$ psi ISTS ($"$) FACTORED USABLE SUPERIMPOSED LOAD (PSF) $I_y = 60,000$ psi PANS	14" Deep Rib + 4.5" Top Slab = 18.5" Total Depth	e #4 #4 #5 #5 #5 #5 #4 #4 #4 #5 #6	11 9.5 11 10 8 Lind 11 8.5 10 mil. #4 #5 #5 #6 #6 Span #4 #5 #5 #6 Span #5 #5 #6 #7 Defl. #4 #5 #5 #6 Defl.	72 .88 1.09 1.28 1.52 (3) .77 .97 1.20 1.48 1.80 (3)	END SPAN INTERIOR SPAN	114 164 223 252* 264* 4.572 149 221 293* 299* 305* 2.814	0 0 0 295 348* 5.349 128 195 263 279 294* 3.292 96 143 197 234* 244* 5.349 128 195 263 279* 284* 3.292	80 124 173 2174 226* 6.221 10 172 235 261* 266* 3.828	66 106 153 200 210* 7.195 94 152 210 245* 249* 4.428 0 0 0 0 0 20 250* 7.195 94 152 210 245* 249* 4.428	53 91 134 178 196* 8.279 79 133 188 229* 5.095 0 0 0 0 230 0 0 0 251 293*	42 77 117 158 182* 9.481 66 116 167 215* 219* 5.835 -	64 102 140 170* 10.810 54 101 149 203* 206* 6.652	53 88 124 159* 12.274 43 87 132 184 193* 7.553 0 0 0 157 4 3 87 132 184 193* 7.553	42 76 110 149* 13.882 75 117 166 182* 8.543	64 96 134 15.642 63 103 149 171* 9.626	0 1 0 0 0 1 0 1 0 0 1	44 72 107 19.661 43 79 120 152* 12.099	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 146 53 83 24.407 58 95 132 15.020 0 0 0 0 0 0 0 146	section properties, see Table 8-1. s for standard square joist ends; second load is for special tapered joist ends. on of deflection is not required above horizonal line (thickness $\geq \ell_n / 18.5$ for end spans,	interior spans). of bridging joists and tapered ends. shear capacity. $+Capacity$ at elastic deflection = $\ell_n/360$.	PROPERTIES FOR DESIGN (CONCRETE .58 CF/SF) ⁽⁴⁾		NJ .64 .74 .99 1.09 1.36 .64 .64 .82 1.00 1.28 1.54 1	w isit is	17.3 17.3 17.2 17.2 17.2 17.2 17.3 17.3 17.3 17.3 17.1 17.1 17.1 17.1			17.2 17.2 17.1 17.1 17.1 17.1 17.1 17.1 172 .206 .243 .281 .323 .138 .172 .206 .243 .281
WUDARD 30" Forms + 5" RIb @ 35" c. c. ⁽³⁾ $I_c = 4,000$ psi ay JOISTS ⁽¹⁾ FACTORED USABLE SUPERIMPOSED LOAD (PSF) $f_y = 60,000$ psi pl F SPANS	14" Deep Rib + 4.5" Top Slab = 18.5" Total Depth	Size #4 #5 #5 #5 #6 #4 #4 #6 #6 © ** 0 ** 0 ** 0 10	Wey 11 U/S 11 10 8 Lind 11 8/S 10 million # #4 #5 #5 #6 #6 Span #4 #5 #5 #6 Span # #5 #5 #6 #7 Defi. #4 #5 #5 #6 Defi.	72 38 1.09 1.22 1.31 77 37 1.20 1.48 1.80 (3)	SPAN END SPAN INTERIOR SPAN	-0" 114 164 223 252* 264* 4.572 149 221 293* 299* 305* 2.814	-0" 0 0 0 295 348" 0 0 295 379 398" -0" 96 143 197 234" 244" 5.349 128 195 263 279" 284" 3.292	-0" 80 124 173 217* 226* 6.221 10 172 235 261* 266* 3.828	-0" 66 106 153 200 210* 7.195 94 152 210 245* 249* 4.428 0 0 0 0 2 0 256 0 0 210* 7.195 1323 245 249* 4.428	-0" 53 91 134 178 196* 8.279 79 133 188 229* 233* 5.095 0 0 0 251 293*	-0" 42 77 117 158 182* 9.481 66 116 167 215* 219* 5.835 -	-0" 64 102 140 170* 10.810 54 101 149 203* 206* 6.652	-0" 53 88 124 159* 12.274 43 87 132 184 193* 7.553	-0" -0" -0" -0" -0" -0" -0" -0" -0" -0"	-0" 64 96 134 15.642 63 103 149 171* 9.626	-0" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0" -0" -0" -0" -0" -0" -0" -0" -0" -0"	-0" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0" 0 0 0 146 53 83 24.407 58 95 132 15.020 0 0 0 0 0	gross section properties, see Table 8-1. It load is for standard square joist ends; second load is for special tapered joist ends. mutation of deflection is not required above horizonal line (thickness $\geq \ell_0 / 18.5$ for end spans,	21 for interior spans). Jusive of bridging joists and tapered ends. Hed by shear capacity. $+Capacity at elastic deflection = \ell_n/360$.	PROPERTIES FOR DESIGN (CONCRETE .58 CF/SF) ⁽⁴⁾	MOMENT	A (SQ.IN) .64 .74 .99 1.09 1.36 .64 .64 .74 .99 1.09 1.36 .64 .64 .64 .74 .74 .99 1.00 1.28 1.54	ичитотими	HTC 17.3 17.3 17.2 17.2 17.2 17.2 17.3 17.3 17.3 17.3 17.1 17.1 17.1 17.1	MUNENT	A 130. [N] .51 .52 .75 .88 1.04 .40 .51 .52 .75 .88 .1.04 .51 .51 .52 .75 .88 .1.0 .13 .15 .17 .07 .08 .10 .13 .15	PTH, IN. 17.2 17.2 17.1 17.1 17.1 17.1 17.3 17.2 17.2 17.1 17.1 17.1 17.1 17.1 17.1
STANDARD 30" Forms + 5" Rib ($\overline{0}$ 35" cc. ($\overline{0}$) $I_c = 4,000$ psi interway JOISTS ($\overline{1}$) FACTORED USABLE SUPERIMPOSED LOAD (PSF) $f_y = 60,000$ psi	14" Deep Rlb + 4,5" Top Slab = 18,5" Total Depth	D Size #4 #5 #5 #5 #6	And @ 11 9.5 11 10 8 Lind 11 8.5 10 mill DTTOM # # 4 5 # 5 # 5 # 5 # 5 # 5 # 5 # 5 # 5 # 5 # 5 # 5 # 5 # 5 # 5 # 5 # 5 # 5 # # 5 # 10 10.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	eel (psf) 72 .88 1.09 1.28 1.52 (3) .77 .97 1.20 1.48 1.80 (3)	CLEAR SPAN END SPAN INTERIOR SPAN	25-0" 114 164 223 252* 264* 4.572 149 221 293* 299* 305* 2.814	26-0" 96 143 197 234* 244* 5:349 128 195 263 279* 294* 3.292	27'-0" 80 124 173 217* 226* 6.221 10 172 235 261* 266* 3.828	28-0" 66 106 153 200 210* 7.195 94 152 210 245* 249* 4.428 0 0 0 0 210* 7.195 94 152 210 245* 249* 4.428	29-0" 53 91 134 178 196* 8.279 79 133 188 229* 233* 5.095 0 0 0 231 233* 5.095	30-0" 42 77 117 158 182* 9.481 66 116 167 215* 219* 5.835 -	31-0" 64 102 140 170* 10.810 54 101 149 203* 206* 6.652	32'-0" 53 88 124 159* 12.274 43 87 132 144 129* 7.553	33'.0" 42 76 110 149* 13.882 75 117 166 182* 8.543	34-0" 34-10" 54 96 134 15.642 53 103 149 171* 9.626	35-0" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	36-0" 44 72 107 19.661 43 79 120 152* 12.099	37'-0" 52 94 21.938 0 58 107 144* 13.500	38°.0" 0 0 0 146 53 83 24.407 58 95 132 15.020 0 0 0 0	(1) For gross section properties, see Table 8-1. (2) First load is for standard square joist ends: second load is for special tapered joist ends. (3) Computation of deflection is not required above horizonal line (thickness $\geq \ell_n/18.5$ for end spans,	$\ell_{n}/21$ for interior spans). (4) Exclusive of bridging joists and tapered ends. *Controlled by shear capacity.	PROPERTIES FOR DESIGN (CONCRETE .58 CF/SF) ⁽⁴⁾	GATIVE MOMENT	EELAREA (SQ. IN.) 64 74 .99 1.09 1.36 64 .64 .74 99 1.09 1.36 64 .64 .64 .64 .64 .64 .64 .64 .64 .64	исель «Очитичииии сора», сора сора сора сора сора сора сора сора	EFE DEPTH, IN. 17.3 17.2 17.2 17.2 17.2 17.3 17.3 17.3 17.3 17.1 17.1 17.1 International and 201 201 201 201 201 201 201 201 201 201		EELAMEA (SQ. IN.) .31 .02 .75 .88 1.04 .40 .51 .02 .75 .88 EELAMEA (SQ. IN) .31 .02 .75 .88 STEEL% .08 .10 .13 .15 .17 .07 .08 .10 .13 .15	EFE DEPTH, IN. 17.2 17.2 17.1 17.1 17.1 17.1 17.1 17.

A-4.2

CONCRETE REINFORCING STEEL INSTITUTE

8-29

A-5.1 Appendix 5 Precast Plank on Steel Beans System 30'0" X SSXN2M STAEDTLER® No. 937 811E Engineer's Computation Pad WZ4 -0 " 21 19142M W27×161 10'-0" T W24×131 W24×131 11 -WIY Cols. 2"TOPPing slab W-shape low GR lant Z''ded?

A-5.2

Prestressed Concrete 12" x 4' SpanDeck – U.L. – J952

(2" C.I.P. TOPPING)

PHYSICA	L PROPERTIES	
Co	omposite	
A' = 312 in. ²	S' _b =	826 in. ³
l' = 6542 in. ⁴	S't =	1602 in. ³ (At Top of SpanDeck)
$Y_{b'} = 7.92$ in.	S'tt =	1076 in. ³ (At Top of Topping)
Yt' = 4.08 in. (To Top of SpanDeck)	Wt.'=	410 PLF
Y _{tt} ' = 6.08 in. (To Top of Topping)	Wt.'=	102.5 PSF

- 4 1/2"ø, 270K = 139.7'K
- 6 1/2"ø, 270K = 198.7'K
- 9. Maximum bottom tensile stress is $6\sqrt{f'c} = 424$ PSI.
- 10. All superimposed load is treated as live load in the strength analysis of flexure and shear.
- 11. Flexural strength capacity is based on stress/strain strand relationships.
- 12. Shear values are the maximum allowable before shear reinforcement is required.
- 13. Deflection limits were not considered when determining allowable loads in this table.
- 14. All values in this table are based on ultimate strength and are not governed by service stress.
- 15. All loads shown refer to allowable loads applied after topping has hardened.

			12" SP	ANDE	CK	N/2"	тор	PING	1				ALLOWABLE SUPERIMPOSED LOAD (PSF)													
STRAN	ם חו	ΔΤΤ	EDN		SPAN (FEET)																					
JINAN	DF	A11		18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Flexure	4	-	1/2"ø	422	370	326	288	255	226	200	179	159	140	125	111	98	86	76	66	60	/	/	/		/	
Shear	4		1/2"ø	409	381	357	335	315	294	266	242	221	201	184	171	162	152	139	127	115		-			/	
Flexure	6	-	1/2"ø	636	562	499	445	398	357	321	289	261	236	213	193	175	158	144	130	117	106	95	86	77	69	61
Shear	6	-	1/2"ø	423	395	370	348	327	308	292	276	261	248	236	221	202	186	172	158	146	134	124	115	110	105	98

2655 Molly Pitcher Hwy. South, Box N Chambersburg, PA 17201-0813 717-267-4505 • FAX: 717-267-4518

This table is for simple spans and uniform loads. Design data for any of these span-load conditions is available on request. Individual designs may be furnished to satisfy unusual conditions of heavy loads, concentrated loads, cantilevers, flange or stem openings and narrow widths.

A-5.3 Precast Plank System Pesign - Can Keep Same Column Cayout - run Steel Girders only Hollow Ge Plank spans 30' direction Nitterhouse Concrete Products, Inc. Prestressed Concrete 12"x4' Span Jeck - U.L. - J952 w/2" CIP Topping 12"x4 spandeck -16 strand pattern -spanning 30'-0" can support 175psf weightof SponDeck: 102.5psf. Steel Beam Design: Live Load: 100psf Dead Coad: 102,05psf & spandeck 8. 8 psf & Mise (MEP, Finisher, etc.) W.= 1.6 (100) + 1.2 (1105) = 293 psf. wu=2975(30)=87787F=8.78EF 3 beams: 35'0", 40'-0", 21-0" ZI'O" L= Continuously kraced -M= 8.78(2)² - 484'k plank & Topping slab can brace B - 484'k plank & Topping slab can brace WRI455 -> 596 K T5.54FP $\Delta max = \frac{5wl^4}{384} = \frac{5(34172)(2172)}{384(2900000)(1360)} = .33$ $U_{2}(12) = .33$

STAEDTLER® No. 937 811E Engineer's Computation Pad

1

A-6.4 8.78 LF 35-0" Mu= 8.78 (35)2 = 1344.441/k No. 937 811E Engineer's Computation Pad W30×116 WZ4×137 => 13881k - 0k Save depth, sin wt. $\Delta niex = \frac{5(83)(35)^{4}(1728)}{384(2900)(4020)} = 0.87''$ **STAEDTLER®** 35(2) = 482.7360-0K-0.87 USe W24×131 40'-0" Mu= 8.78 (40)2 = 1756 K 0 W27×161=71928/k ok Amax = 5(3)(40) (1728) = .94" 40 x12 = 510 7360 384 (2900) (0310) = .94" .94 -04 -04 USE: W24+55 For 21' span W24×131 For 35' span W27×181 For 40'span & very heavy & deep beam Hollow Core planks cannot develope strength if try to span Planks in Long direction. 8" Plank does not have adequate strength to span 30'-6"