T.C. WILLIAMS HIGH SCHOOL

ALEXANDRIA, VA

CHRISTOPHER B. DEKER

STRUCTURAL OPTION

TECHNICAL REPORT #2

29 OCTOBER 2007

FACULTY CONSULTANT: PROF PARFITT

TABLE OF CONTENTS

EXECUTIVE SUMMARY	3
STRUCTURAL SYSTEM OVERVIEW	4
CODES	6
LOADS	7
SYSTEM ANALYSIS OVERVIEW	8
STEEL COMPOSITE SYSTEM	9
STEEL NON-COMPOSITE SYSTEM	11
K-SERIES STEEL JOIST SYSTEM	13
WAFFLE SLAB SYSTEM	15
TWO WAY FLAT PLATE SYSTEM	17
CALCULATION SPREADSHEET	19
APPENDENCES	20

EXECUTIVE SUMMARY

The purpose of technical report 2 is to analyze possible alternative structural systems in the T.C. Williams High School. Originally, the school was built using a steel composite system. There are 4 alternative systems being analyzed in this report are noncomposite steel beams, k-series steel joists, waffle slab, and a two way flat slab with drop panels.

All of the systems where analyzed under the same basic criteria. This criterion includes 70 PSF live loads for rooms, 80 PSF live loads for corridors, and 14 PSF superimposed dead loads. Deflection was assumed to be governed by beams and slabs themselves as opposed to masonry walls they support. This was done because the masonry walls are located in some bays but not others, and they are placed at differently locations in each bay. Therefore they will be ignored for this preliminary analysis and be accounted for in future reports. The steel members are set to a live load deflection of I / 360, and a total load deflection of I / 240, while the concrete was set to a total load deflection of I / 420.

All the structural systems where designed with LRFD. Steel beams were chosen on the basis of w = 1.2D + 1.6L, while the masonry was designed from tables which used w = 1.4D + 1.7L. K-series steel joists were taken out of a table which already accounted for factors of safety, so no factoring of loads was necessary.

In conclusion, it was determined that non-composite steel beams and the two-way flat slab can be ruled out as possible designs. They are both inferior to other alternatives, as they offer no advantages over the steel composite system and the waffle slab system respectively. Even though fireproofing is an issue, the k-series steel joists are a definite possibility given their extremely cheap cost compared to the other systems. However, the main issue with the steel joists would be vibration, and with a 3" slab this is expected to be a major issue. The original composite system seems to still be one of the best systems available. It easily accounts for fireproofing, long spans, heavy loads, and vibration, all while being a relatively light system. Waffle slabs on the other hand are a heavier system, which after a quick estimate seem to be a costly solution.

STRUCTURAL SYSTEM OVERVIEW

ROOF SYSTEM

Typical flat roof systems on T.C. Williams High School consists primarily of a Thermoplastic Polyolefin (TPO) Membrane system with rigid insulation on 1½" 22 gauge steel roof deck, supported by K-Series Steel Joists which are typically spaced 5' O.C. Typical sloped roofing systems are similar to the flat roofing systems except instead of the TPO Membrane system there is a standing seam metal roof.

Typical roofing systems over larger span areas such as the gymnasium and the auditorium consist of 3" 20 gauge steel roof deck, supported by DLH Steel Joists typically spaced 12' O.C.

FLOOR SYSTEM

Typical floor systems consist of a steel composite deck and beam system with a 3" concrete slab on 1½" 18 gauge steel composite deck, supported by Steel Beams typically spaced 8' O.C. The concrete slab is made of Normal Weight Concrete (145 PCF) and has a minimum 28 day compressive strength (F'c) of 4000 PSI. Most typical Steel Beams are W18x35 spanning a maximum of 34' with steel studs spaced at 12" O.C. The range of steel beams varies greatly depending on specific room requirements; generally ranging anywhere from a W16x26 to a W21x44. Steel studs creating the composite action are ¾" in diameter and 3½" long.

FOUNDATION

All main building foundations are constructed on subgrade soils improved by the installation of a 'Geopier Rammed Aggregate Pier Soil Reinforcement' system and are designed to bear on strata capable of sustaining a minimum bearing pressure of 6,000 PSF. The slab on grade consists of Normal Weight Concrete (145 PCF) and has a minimum 28 day compressive strength (F'c) of 3,500 PSI. Typical slabs are 4" thick and are reinforced with 6x6-W1.4xW1.4 WWF at mid depth. All spread and strip footings consist of Normal Weight Concrete (145 PCF) and have a minimum 28 day compressive strength (F'c) of 3,000 PSI.

LATERAL SYSTEM

T.C. Williams is separated into 6 different "buildings" through the use of 'Fire Walls'. Both classroom towers are laterally supported with ordinary steel concentrically braced frames in both the N-S and E-W directions. The 3 story area connecting the 2 three story classroom towers is laterally supported with ordinary steel moment frames in both the N-S and E-W directions. Gymnasium and auditorium areas are supported by intermediate reinforced masonry shear walls, in all directions. The rest of the building, which includes the area between the gymnasium and auditorium sections, is laterally supported by ordinary reinforced masonry shear walls, in all directions.

COLUMNS

Steel columns are the primary gravity load resisting members of the building. They consist of Grade 50 ASTM A992 wide flange shapes, grade 46 ASTM A500 rectangular HSS shapes, and grade 42 ASTM A500 round HSS shapes. The wide flange shapes generally range from a W10x49 to a W10x68, and are the primary support for most of the building. The Round HSS shapes found connecting the two classroom wings and under the green roof, and generally range from HSS12.750x.375 to HSS16x.500.

CODES

ORIGINAL DESIGN CODES:

Virginia State Building Code (VUSBC), 2000 Edition

International Building Code (IBC), 2000 Edition

American Society of Civil Engineers (ASCE-7), 1999 Edition

Building Code Requirements for Structural Concrete (ACI 318-95)

Standard Specifications for Structural Concrete (ACI 301-96)

AISC Code of Standard Practice for Steel Buildings, 2000 Edition

AISC Specification for Structural Steel Buildings, Allowable Stress Design and Plastic Design, 1989 Edition

THESIS DESIGN CODES:

International Building Code (IBC), 2006 Edition

American Society of Civil Engineers (ASCE-7), 2005 Edition

AISC Steel Construction Manual, LRFD, 13th Edition

THESIS DEFLECTION CRITERIA:

TOTAL = L/240

LIVE = L/360

CONSTRUCTION = L / 360

Structural Member Supporting Masonry Walls = L/600

LOADS

SUPERIMPOSED ROOF DEAD LOAD	THESIS DESIGN
TPO Membrane / S.S. metal Roof	3 psf
4"-6" Rigid Insulation	2.5 psf
Ceiling Finishes	5 psf
Mechanical / Electrical	6.5 psf
Sprinklers	2.5 psf
TOTAL	19.5 psf

SUPERIMPOSED FLOOR DEAD LOAD	THESIS DESIGN
Ceiling Finishes	5 psf
Mechanical / Electrical	6.5 psf
Sprinklers	2.5 psf
TOTAL	14 psf

TYPICAL ROOF LIVE LOAD	THESIS DESIGN	CODE REFERENCE
Minimum Roof LL	20 psf	ASCE 7-05 Section 4.9.1
Ground Snow Load (Pg)	25 psf	IBC Figure 1608.2
Importance Category III	Is = 1.10	IBC Section 1604.5
Exposure Factor	Ce = 1.0	IBC Table 1608.3.1
Thermal Factor	Ct = 1.0	IBC Table 1608.3.2
Flat Roof Snow Load	19.25 psf + Drift	IBC Section 1608.3
Drift	Varies	ASCE 7-05 Section 7.7

FLOOR LIVE LOADS	THESIS DESIGN	ORIGINAL DESIGN	ASCE 7-05 MIN VALUE
Classroom	50 psf	50 psf	40 psf
First Floor Corridor	100 psf	100 psf	100 psf
Above First Floor Corridor	80 psf	80 psf	80 psf
Offices	50 psf	50 psf	50 psf
Light' Storage	125 psf	125 psf	125 psf
Mechanical	150 psf	150 psf	n/a
Green Roof	100 psf	100 psf	n/a
Library Stacks	150 psf	150 psf	150 psf

SYSTEM ANALYSIS OVERVIEW

Analyzed Structural Systems

- Steel Composite System (Original)
- Steel Non-Composite System
- K-Series Steel Joist System
- Waffle Slab System
- Two Way Flat Slab System

All Structural Systems are going to be designed using the basic criteria:

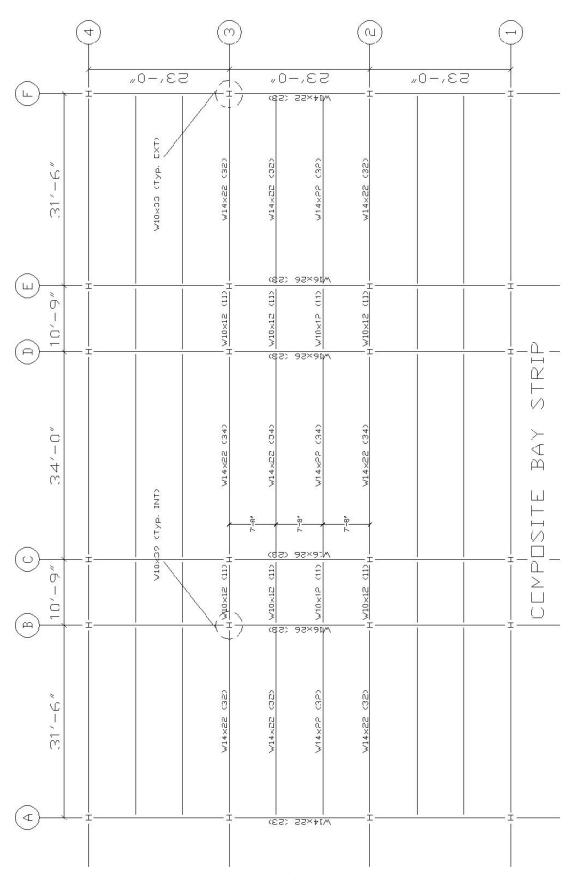
- Live Load
 - O Classrooms and Offices = 50 PSF + 20 PSF Partition Allowance
 - o Corridors = 80 PSF
- Dead Load
 - o Superimposed = 14 PSF
 - o Self Weight = Varies
- Deflection
 - o Steel
 - Total = L / 240
 - Live = L / 360
 - o Concrete
 - Total = L / 420
- Fire Rating = 2 Hours
- Analyzing a strip of bays through the building to gain a more accurate price between the different systems.

STEEL COMPOSITE SYSTEM

This system is the original system chosen for the building. In order to simplify the procedure of comparing the different structural systems, it is necessary to redesign the original system with the basic design criteria explained above. In addition to redesigning with these new criteria I have chosen to maintain equal spacing between beams.

Advantages:

- Good with Vibration
- Quick and Easy Construction
- Cost Effective
- Allows for Long Spans
- Lighter Weight Shapes


Disadvantages:

Requires Shear Studs

Using RAM Structural Systems, the system was redesigned. Equal beam spacing of 7 feet 8 inches where used. The 1%" 18 gauge composite decking and the 3" NWC thickness above the decking remained the same. Shear studs where 3%" x 3%", also the same as before. One notable change made was the assumption of a required deflection of L / 360 live load deflections instead of L / 600 used with masonry walls. This assumption was made due to limited knowledge of deflections with the waffle and two way slabs.

Summary:

The composite steel system is defiantly still worth considering, due to its light weight and moderately cheap cost. The total cost of the system came out to \$21.32 / SF, while the total system depth was 18.5". The constructability if relatively easy but the hardest part would be installing all the shear studs required. Spray on fireproofing will be used, and a 2 hour fire rating will be obtained. Another main advantage of the composite design is its ability to resist vibration. Changing of beam spacing should be a consideration used in a possible future redesign.

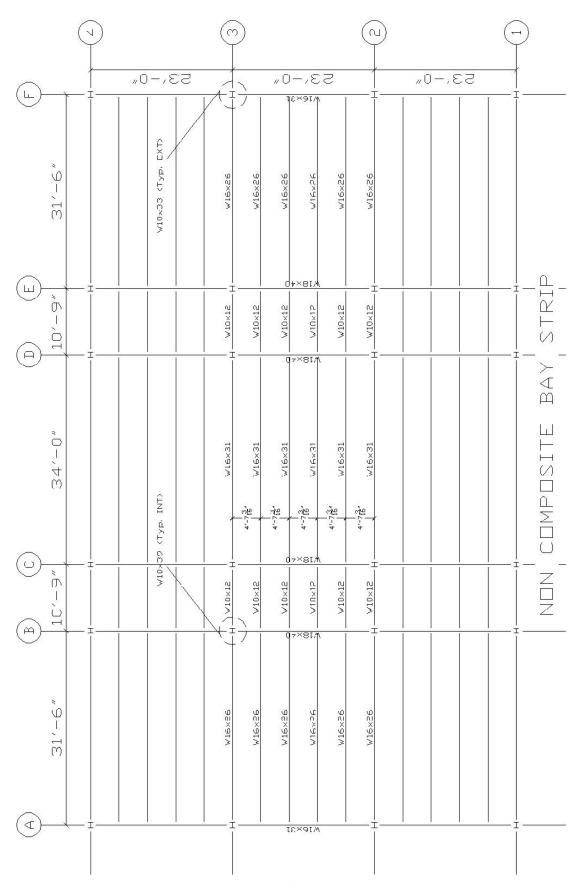
Deker - 10 of 36

STEEL NON-COMPOSITE SYSTEM

Non Composite is very similar to the composite system except composite action is not permitted. There will be savings on not having shear studs, but the beams will be required to be spaced closer together, and also end up being deeper.

Advantages:

- Good with Vibration
- Quick and Easy Construction
- Cost effective
- Allows for Long Spans
- Savings on no shear studs


Disadvantages:

- Heavier Steel Shapes
- Deeper Steel Shapes

Using RAM Structural System a typical bay strip was designed. An equal beam spacing of 4.6 feet was used. A 24 gauge 1" form deck, with 3" NWC above the deck was used, for a total slab thickness of 4".

Summary:

A non composite system is still a viable solution, and there isn't anything wrong with it, but it doesn't excel in anything. The total cost of the system is \$21.80 / SF. Compared to the composite system savings are made through the elimination of shear studs, but the overall system is much heavier than the composite, while deeper beams are also needed. The overall system depth equates to 20". Much like the composite system the non-composite system gains a two hour fire rating through spray on fireproofing. It also has a good resistance to vibration. However, overall this system is far inferior to the composite and shouldn't be a viable solution.

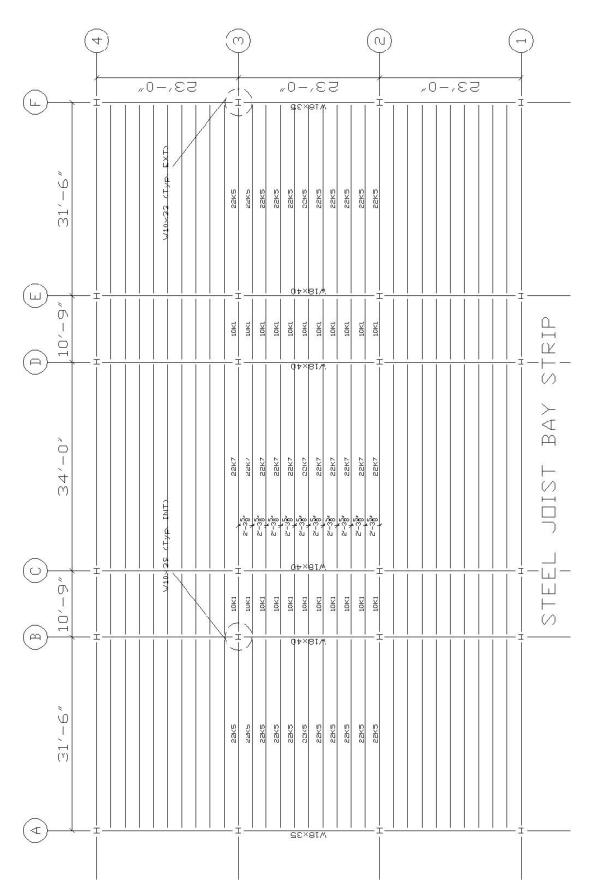
Deker - 12 of 36

K-SERIES STEEL JOIST SYSTEM

Steel Joist systems tend to be very cheap and light weight, and should always be in consideration when cost is an issue. The maximum spacing of floor joists is 2.5 feet, and fireproofing along with vibration issues will be a challenge.

Advantages:

- Quick and Easy Construction
- Extremely Cost Effective
- May Allow for Long Spans
- Very Light System


Disadvantages:

- Very Deep System
- Poor with Vibration
- Issues with Fireproofing

Using RAM Structural System along with the original column grid a typical bay strip was designed. Max spacing was set to 2.5', which allowed a uniform spacing of 2.3'. A $^9/_{16}$ " form deck with a 3" slab was used.

Summary:

Steel joists are an excellent way to cut costs a great amount. The total system cost equates to \$16.96 / SF, and the total depth of the system is about 25.6". The depth may be an issue, and slightly more expensive joists may be used to reduce depth. The major problem to consider is the effect of vibration on the school. However, in this case the vibration allowed by the joists can be controlled. Most all of the heavy traversing in a school is caused in the corridors. In this case all the corridors are their own separate bays, and shouldn't affect the classrooms. As for the classrooms themselves, it may be assumed that students will not be running around the classroom, instead they will be sitting in their chairs and vibration won't be an issue at all. More on vibration analysis calculations will come in future reports. Fireproofing is also a major issue in joist design as they will require a chicken wire be wrapped around them before being sprayed with fireproofing. Even with the increase of cost to achieve a two hour fire rating, it is still the cheapest system available.

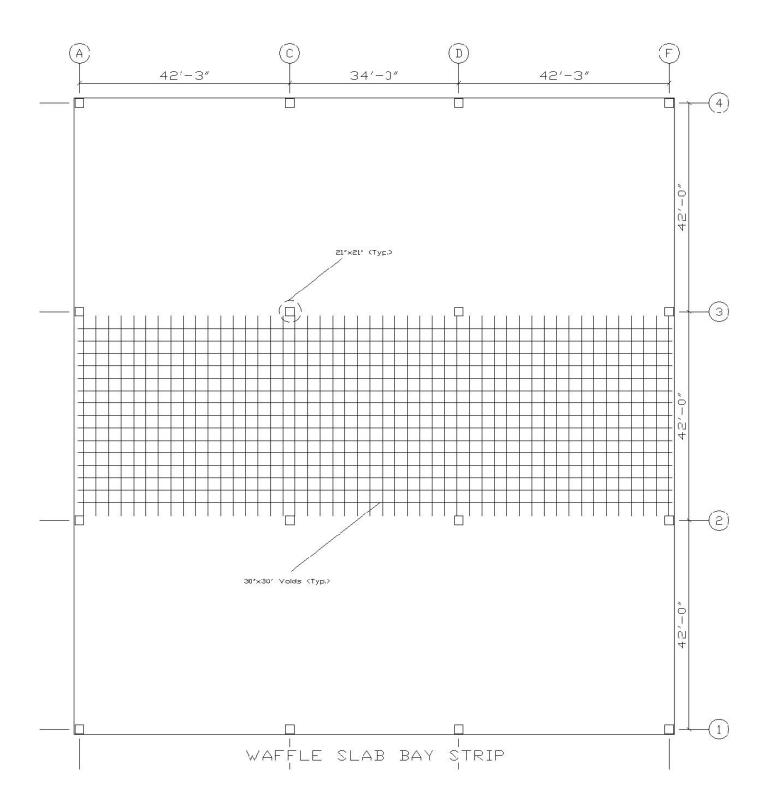
Deker - 14 of 36

WAFFLE SLAB SYSTEM

Waffle slab systems are ideal for spanning long distances, and supporting heavy loads. They also excel in fire protection, vibration, and durability. Square bays are optimal when using a waffle slab, so the current column grid would need to be changed.

Advantages:

- Efficient Over Long Spans
- Great Vibration Resistance
- No Extra Fireproofing Needed
- Easily Support Heavy Loads
- Very Durable


Disadvantages:

- Very Heavy System
- Very Complicated Construction
- Not Cost Efficient
- Very Large Columns

Using the CRSI handbook, along with a new column grid, a typical bay strip was designed. Spans were made as square as possible, ranging from 42'x42' to 34'x42'. This was the best option available to keep the columns from landing in the center of the classroom or corridor. The slab itself is 3" deep.

Summary:

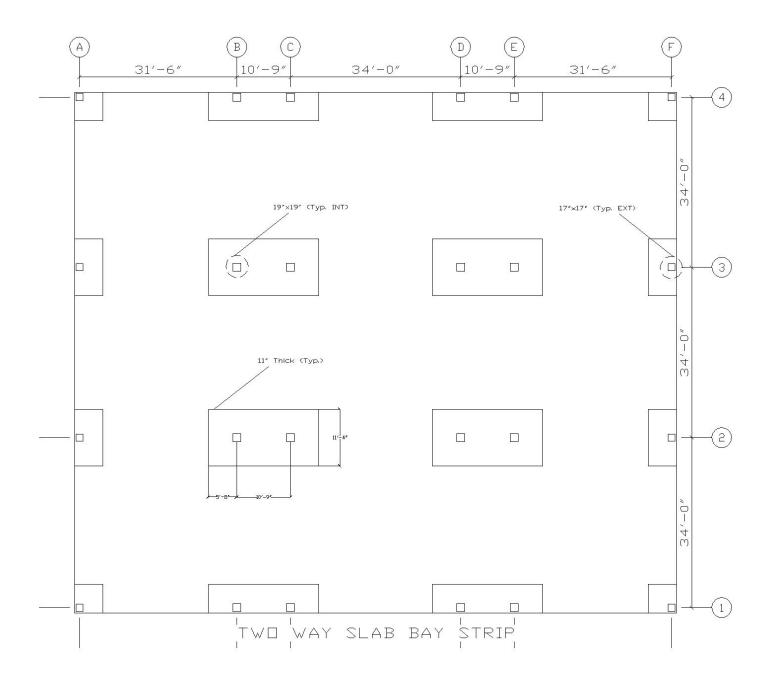
Waffle slab systems are an excellent choice for large spans, and are a very viable option. However the total cost of the system came out to \$32.46 / SF, and the depth equated to 23". The major problem with waffle slabs is the difficulty of construction. Complicated forms must be used, which takes a lot of time and money. One of the major advantages is that to achieve a two hour fire rating, no extra fireproofing is required. Also there will be absolutely no problem with vibration, as this is one of the best systems to resist it.

TWO WAY FLAT PLATE SYSTEM

Two Way Flat Plate Systems are usually economically ideal for spanning smaller spans. They are also very durable, have excellent vibration control, and do not require any additional fireproofing. Square bays are ideal when designing for the two way flat plate system so the column grid will need to be altered.

Advantages:

- Very Efficient Over Short Spans
- Great Vibration Resistance
- No Extra Fireproofing Needed
- Easy Construction
- Very Durable


Disadvantages:

- Very Heavy System
- Not Cost Efficient
- Large Columns

Using the CRSI handbook, along with a new column grid, a typical bay strip was designed. The new bay spans ranged from 32'-32' to 11'-32' to 32'-34'. This was the only possible solution for bay sizes. The slab itself is 12" thick.

Summary:

The two way flat plate system is not the best choice for longer spans. The total cost of the system equated to \$32.50 / SF, while the total depth of the system was found to be 23" when accounting for drop panels. One advantage of this system is that additional fireproofing is not needed to gain a two hour fire rating. Vibration will also not be a factor at all. However, due to the heavy weight, high cost, and inefficiency with long spans, the two way flat plate system is outperformed by the waffle slab system. The two way flat plate system is not a viable solution.

COMPARISON SPREADSHEET

CRITERIA	COMPOSITE	NON-COMPOSITE	JOISTS	WAFFLE SLAB	TWO WAY FLAT PLATE
COST / SF	\$21.12	\$21.64	\$15.59	\$32.45	\$32.11
SLAB DEPTH	3"	3"	3"	3"	12"
SYSTEM DEPTH	18.5"*	20"	25.6"	23"	23"
CONSTRUCTABILITY	MEDIUM	EASY	EASY	HARD	EASY
FIREPROOFING	SPRAY ON	SPRAY ON	SPRAY ON / SPECIAL DETAIL	NO EXTRA REQD	NO EXTRA REQD
VIBRATION RESISTANCE	GOOD	GOOD	POOR	GREAT	GREAT
DEFLECTION ISSUES	NONE	NONE	NONE	NONE	NONE
WEIGHT OF SYSTEM	MEDIUM	MEDIUM / HEAVY	LIGHT	HEAVY	VERY HEAVY
DURABILITY ISSUES	STEEL FATIGUE	STEEL FATIGUE	STEEL FATIGUE	CONCRETE SPALLING	CONCRETE SPALLING
COLUMN GRID CHANGES	NONE	NONE	NONE	YES	YES
LATERAL SYSTEM EFFECTS	NONE	NONE	NONE	YES	YES
VIABLE SOLUTION	YES	NO	YES	YES	NO

^{*}The original system was designed for a depth of 22.5"

APPENDENCES

- Calculations of Cost / SF
- ***(RS MEANS 2008 Building Cost Data)***
- o Composite
- o Non-Composite
- o Joists
- o Waffle
- o Flat Plate
- Beam Summaries
 - o Composite
 - o Non-Composite
 - o Joists
- CRSI Tables
 - o Waffle
 - o Flat Plate

STEEL COMPOSITE COST DATA

STEEL COST DATA								
Size	Length (ft)	Units	Quantity	Total (LF)	Cost / Unit (\$ / LF)	Total Cost (\$)	Square Feet	Cost / SF
W14x22 (BM)	34	LF	4	136	\$36.00	\$4,896	2,725.50	\$1.80
W14x22 (BM)	31.5	LF	8	252	\$36.00	\$9,072	2,725.50	\$3.33
W10x12 (BM)	10.75	LF	8	86	\$25.50	\$2,193	2,725.50	\$0.80
W16x26 (BM)	23	LF	4	92	\$40.50	\$3,726	2,725.50	\$1.37
W14x22 (BM)	23	LF	2	46	\$36.00	\$1,656	2,725.50	\$0.61
Shear Studs	-	-	618	-	\$15 / Stud	\$9,270	2,725.50	\$3.40
W10x33 (COL)	15	LF	4	60	\$49.65	\$2,979	2,725.50	\$1.09
W10x39 (COL)	15	LF	8	120	\$57.57	\$6,908	2,725.50	\$2.53
				TOTAL				\$14.93

			CONCRETE COST DATA			
Name	Qty (CF)	Qty (CY)	Cost / Unit (\$ / CY)	Total Cost (\$)	Square Feet	Cost / SF
Concrete Slab	681.375	25.23611	\$291	\$7,344	2,725.50	\$2.69
			TOTAL			\$2.69

	STEEL DECK COST DATA							
Name	Qty (SF)	Cost / Unit (\$ / SF)	Total Cost (\$)	Square Feet	Cost / SF			
Form Deck	2725.5	\$3.70	\$10,084	2725.50	\$3.70			
		TOTAL			\$3.70			

TOTAL COST / SF = \$21.32

STEEL NON-COMPOSITE COST DATA

STEEL COST DATA								
Size	Length (ft)	Units	Quantity	Total (LF)	Cost / Unit (\$ / LF)	Total Cost (\$)	Square Feet	Cost / SF
W16x31 (BM)	34	LF	6	204	\$48.00	\$9,792	2,725.50	\$3.59
W16x26 (BM)	31.5	LF	12	378	\$40.50	\$15,309	2,725.50	\$5.62
W10x12 (BM)	10.75	LF	12	129	\$25.50	\$3,290	2,725.50	\$1.21
W18x40 (BM)	23	LF	4	92	\$61.00	\$5,612	2,725.50	\$2.06
W16x31 (BM)	23	LF	2	46	\$48.00	\$2,208	2,725.50	\$0.81
W10x33 (COL)	15	LF	4	60	\$49.65	\$2,979	2,725.50	\$1.09
W10x39 (COL)	15	LF	8	120	\$57.57	\$6,908	2,725.50	\$2.53
				TOTAL				\$16.91

			CONCRETE COST DATA			
Name	Qty (CF)	Qty (CY)	Cost / Unit (\$ / CY)	Total Cost (\$)	Square Feet	Cost / SF
Concrete Slab	681.375	25.23611	\$291	\$7,344	2,725.50	\$2.69
			TOTAL			\$2.69

	STEEL DECK COST DATA								
Name	Qty (SF)	Cost / Unit (\$ / SF)	Total Cost (\$)	Square Feet	Cost / SF				
Form Deck	2725.5	\$2.20	\$5,996	2725.50	\$2.20				
		TOTAL			\$2.20				

TOTAL COST / SF = \$21.80

STEEL JOIST COST DATA

	STEEL COST DATA										
Size	Length (ft)	Units	Quantity	Total (LF)	Cost / Unit (\$ / LF)	Total Cost (\$)	Square Feet	Cost / SF			
22K7 (jst)	34	LF	11	374	\$12.20	\$4,563	2,725.50	\$1.67			
22K5 (jst)	31.5	LF	22	693	\$11.20	\$7,762	2,725.50	\$2.85			
10K1 (jst)	10.75	LF	22	236.5	\$10.80	\$2,554	2,725.50	\$0.94			
W18x40 (BM)	23	LF	4	92	\$61.00	\$5,612	2,725.50	\$2.06			
W18x35 (BM)	23	LF	2	46	\$54.50	\$2,507	2,725.50	\$0.92			
W10x33 (COL)	15	LF	4	60	\$49.65	\$2,979	2,725.50	\$1.09			
W10x39 (COL)	15	LF	8	120	\$57.57	\$6,908	2,725.50	\$2.53			
				TOTAL				\$12.07			

	CONCRETE COST DATA									
Name	Qty (CF)	Qty (CY)	Cost / Unit (\$ / CY)	Total Cost (\$)	Square Feet	Cost / SF				
Concrete Slab	681.375	25.23611	\$291	\$7,344	2,725.50	\$2.69				
TOTAL										

	STEEL DECK COST DATA									
Name	Qty (SF)	Cost / Unit (\$ / SF)	Total Cost (\$)	Square Feet	Cost / SF					
Form Deck	2725.5	\$2.20	\$5,996	2725.50	\$2.20					
		TOTAL			\$2.20					

TOTAL COST / SF = \$16.96

WAFFLE SLAB COST DATA

	WAFFLE SLAB COST DATA										
Name	Qty (CF)	Qty	Qty (CY)	Cost / Unit (\$ / CY)*	Total Cost (\$)	Square Feet	Cost / SF				
Waffle Slab	5030.34	1	186.31	\$665	\$123,895	4,596	\$26.96				
	TOTAL										

	COLUMN COST DATA									
Size	Height	Qty	Qty (CY)	Cost / Unit (\$ / CY)	Total Cost (\$)	Square Feet	Cost / SF			
21"x21"	15'	8	13.61	\$1,306	\$17,775	4,596	\$3.87			
				TOTAL			\$3.87			

	COLUMN FORMWORK COST DATA									
Size	Height	Qty	Qty (SFCA)	Cost / Unit (\$ / SFCA)	Total Cost (\$)	Square Feet	Cost / SF			
21"x21"	15'	8	840	\$8.91	\$7,484	4,596	\$1.63			
				TOTAL			\$1.63			

TOTAL COST / SF = \$32.46

TWO WAY FLAT SLAB COST DATA

	TWO WAY FLAT PLATE COST DATA										
Name	Qty (CF)	Qty (CY)	Cost / Unit (\$ / CY)*	Total Cost (\$)	Square Feet	Cost / SF					
Large Bays	3332	123.41	\$560	\$69,108	4,064	\$17.00					
Small Bays	731	27.07	\$635	\$17,192	4,064	\$4.23					
Drop Panels	588.35	21.79	\$635	\$13,837	4,064	\$3.40					
TOTAL											

	COLUMN COST DATA										
Size	Height	Qty	Qty (CY)	Cost / Unit (\$ / CY)	Total Cost (\$)	Square Feet	Cost / SF				
17"x17"	15'	4	4.46	\$1,481	\$6,605	4,064	\$1.63				
19"x19"	15'	8	11.14	\$1,394	\$15,529	4,064	\$3.82				
	TOTAL										

	COLUMN FORMWORK COST DATA										
Size	Height	Qty	Qty (SFCA)	Cost / Unit (\$ / SFCA)	Total Cost (\$)	Square Feet	Cost / SF				
17"x17"	15'	4	340	\$8.91	\$3,029	4,064	\$0.75				
19"x19"	15'	8	760	\$8.91	\$6,772	4,064	\$1.67				
	TOTAL										

TOTAL COST / SF = \$32.50

Steel Composite Beams (1 of 3)

Net Total load (in)

Gravity Beam Design

RAM Steel v11.0 Typical Strip Bay DataBase: TypBayStripComp

10/24/07 10:47:29 RFD

INTERNATIONAL	Building Co	de: IBC					S	Steel Coc	le: AISC LR
Floor Ty	pe: Typ Floo	r	Beam	Number = 4	160				
	FORMATIC			00,15.33)	J-End (31	1.50,15.33)			
	mum Depth s						W2-01	STATE PARTY OF	
	n Size (User S			W14X22			Fy =	50.0 ksi	
1 otal	Beam Lengt	h (π)	=	31.50					
COMPO	SITE PROP	ERTIES (N	ot Sho	red):					
					Left		Right		
	rete thickness	C. C. STONES			3.00		3.00		
	Unit weight concrete (pcf)				115.00		115.00		
fc (k					4.00		4.00		
	ing Orientatio	on			ndicular	(C)	rpendicular		
	ing type		02.00	VULCRAF		VULCKI	AFT 1.5VL		
beff (ш <i>)</i> (kip-ft)		92.00 92.90	Y bar		=	14.64 274.44		
C (ki			63.29	Mn (k PNA (*	=	13.58		
			63.94	Itr (in	9,,553	=	715.16		
	Ieff (in4) = Stud length (in) =		3.50		iam (in)	=	0.75		
	Capacity (kip			bud	aum (m)		0.75		
# of s			Partial	= 32 A	etual = 32				
	ber of Stud R			of Full Con		tion = 81.13			
LINELO	ADC (1/fe).				1				
Load	DADS (k/ft): Dist	DL	CDL	LL	Red%	Type	CLL		
1	0.000	0.460	0.000	0.537	Keu/0	NonR	0.000		
1	31.500	A.M. Wedley	0.000	0.537		TVOILE	0.000		
SHEAR	(Ultimate): I				2 kine A	00Vn - 85			
	76 Si	72	DD I	.ULL) - 22.2	Z Kips 0	. 70 Y II — 05.	оо кірз		
	TS (Ultimat	200		1.0	0	T 1	C1	TM.	D1 '43 f
Span	Cond	LoadCo	ombo	Mu	@	Lb	Cb	Phi	Phi*Mn
Conton	Init DI	1.4DL		kip-ft 0.0	ft 0.0	ft.			kip-ft
Center	Init DL Max +	1.4DL 1.2DL+	1611		15.8			0.85	233.27
Controllir		1.2DL+			15.8			0.85	233.27
		1.200	1.000	175.0	15.0			0.05	233.21
REACTI	ONS (kips):			T					
Taridi a	1			Left	Right				
Initial reaction		0.00	0.00						
DL reaction Max +LL reaction		7.24 8.45	7.24 8.45						
Max +total reaction (factored)		22.22	22.22						
		ii (iaciorcu)		LL.LL	LL.LL				
DEFLEC			00000	15.55.0		0.000			
	1 load (in)		at	15.75 ft		0.000	T (D	610	
	load (in)		at	15.75 ft		-0.617	L/D =	612	
	Comp load (ii	n <i>)</i>	at	15.75 ft		-1.147	L/D =	330	

15.75 ft =

at

-1.147

L/D =

330

Steel Composite Beams (2 of 3)

Gravity Beam Design

RAM Steel v11.0 Typical Strip Bay

DataBase: TypBayStripComp

Building Code: IBC Steel Code: AISC LRFD

10/24/07 10:47:29

Floor Type:	Tyn	Floor	Beam Number = 466
TIOUT TO DE.	7	IIVVI	Dettili i tullipei 100

SPAN INFORMATION (ft): I-End (31.50,15.33) J-End (42.25,15.33)

Minimum Depth specified = 9.85 in

Beam Size (Optimum) = W10X12 Total Beam Length (ft) = 10.75 Fy = 50.0 ksi

Total Beam Length (ft) = 10.75

COMPOSITE PROPERTIES (Not Shored):

			Leπ		Kight
Concrete thickness	ss (in)		3.00		3.00
Unit weight conc	rete (pcf)		115.00		115.00
fc (ksi)			4.00		4.00
Decking Orientat	ion		perpendicular	per	rpendicular
Decking type			VULCRAFT 1.5VL	VULCR4	AFT 1.5VL
beff (in)		32.25	Y bar(in)	=	10.55
Mnf (kip-ft)		127.26	Mn (kip-ft)	=	100.06
C (kips)	=	82.28	PNA (in)	=	9.27
Ieff (in4)	=	165.80	Itr (in4)	=	218.07
Stud length (in)	=	3.50	Stud diam (in)	=	0.75
Stud Capacity (ki	ns) On =	16.5			

Stud Capacity (kips) Qn = 16.5 # of studs: Max = 21 Partial = 11 Actual = 11

Number of Stud Rows = 1 Percent of Full Composite Action = 46.48

LINE LOADS (k/ft):

Load	Dist	DL	CDL	LL	Red%	Type	CLL
1	0.000	0.460	0.000	0.613	7.000	NonR	0.000
	10.750	0.460	0.000	0.613			0.000

SHEAR (Ultimate): Max Vu (1.2DL+1.6LL) = 8.24 kips 0.90Vn = 50.63 kips

MOMENTS (Ultimate):

Span	Cond	LoadCombo	Mu	@	Lb	Cb	Phi	Phi*Mn
			kip-ft	ft	ft			kip-ft
Center	Init DL	1.4DL	0.0	0.0				
	Max +	1.2DL+1.6LL	22.1	5.4			0.85	85.05
Controlling		1.2DL+1.6LL	22.1	5.4	(000)	277	0.85	85.05

REACTIONS (kips):

	Left	Kight
Initial reaction	0.00	0.00
DL reaction	2.47	2.47
Max +LL reaction	3.30	3.30
Max +total reaction (factored)	8.24	8.24

Initial load (in)	at	5.38 ft =	0.000		
Live load (in)	at	5.38 ft =	-0.038	L/D =	3366
Post Comp load (in)	at	5.38 ft =	-0.067	L/D =	1923
Net Total load (in)	at	5.38 ft =	-0.067	L/D =	1923

Steel Composite Beams (3 of 3)

Gravity Beam Design

RAM Steel v11.0 Typical Strip Bay

DataBase: TypBayStripComp

Building Code: IBC Steel Code: AISC LRFD

10/24/07 10:47:29

Floor Type: Typ Floor	Beam Number = 472
-----------------------	-------------------

SPAN INFORMATION (ft): I-End (42.25,15.33) J-End (76.25,15.33)

Minimum Depth specified = 9.85 in

= W14X22Beam Size (Optimum) Fy = 50.0 ksi

Total Beam Length (ft) = 34.00

COMPOSITE PROPERTIES (Not Shored):

			Leπ		Kignt
Concrete thickness	ss (in)		3.00		3.00
Unit weight conc	Unit weight concrete (pcf)		115.00	115.00	
fc (ksi)			4.00		4.00
Decking Orientation			perpendicular	perpendicula	
Decking type			VULCRAFT 1.5VL	VULCRA	AFT 1.5VL
beff (in)		92.00	Y bar(in)		14.64
Mnf (kip-ft)	=	292.90	Mn (kip-ft)		279.56
C (kips)	=	279.74	PNA (in)	=	13.61
Ieff (in4)		678.25	Itr (in4)	i=1	715.16
Stud length (in)	=	3.50	Stud diam (in)	=	0.75
Stud Capacity (ki	ips) Qn =	= 16.5			

of studs: Full = 40 Partial = 34 Actual = 34

Number of Stud Rows = 1 Percent of Full Composite Action = 86.20

LINE LOADS (k/ft):

Load	Dist	DL	CDL	LL	Red%	Type	CLL
1	0.000	0.460	0.000	0.537	7.000	NonR	0.000
	34.000	0.460	0.000	0.537			0.000

SHEAR (Ultimate): Max Vu (1.2DL+1.6LL) = 23.98 kips 0.90Vn = 85.08 kips

MOMENTS (Ultimate):

Span	Cond	LoadCombo	Mu	@	Lb	Cb	Phi	Phi*Mn
			kip-ft	ft	ft			kip-ft
Center	Init DL	1.4DL	0.0	0.0				
	Max +	1.2DL+1.6LL	203.8	17.0			0.85	237.62
Controlling		1.2DL+1.6LL	203.8	17.0	(222)	277	0.85	237.62

REACTIONS (kips):

.00	0.00
	0.00
.82	7.82
.12	9.12
.98	23.98
	.82 .12 .98

Initial load (in)	at	17.00 ft =	0.000		
Live load (in)	at	17.00 ft =	-0.820	L/D =	497
Post Comp load (in)	at	17.00 ft =	-1.524	L/D =	268
Net Total load (in)	at	17.00 ft =	-1.524	L/D =	268

Steel Non-Composite Beams (1 of 3)

Gravity Beam Design

RAM Steel v11.0 DataBase: TypBayStrip Building Code: IBC

Steel Code: AISC LRFD

10/24/07 10:54:20

Floor Type: Typ Floor	Beam Number = 35

SPAN INFORMATION (ft): I-End (0.00,13.80) J-End (31.50,13.80)

Minimum Depth specified = 9.85 in

Beam Size (Optimum) = W16X26
Total Poom Langth (ft) = 31.50 Fy = 50.0 ksi

Total Beam Length (ft) = 31.50

Mp (kip-ft) =184.17

LINE LOADS (k/ft):

Load Dist DL LLRed% Туре 0.000 0.276 0.322 1 NonR

31.500 0.276 0.322

SHEAR (Ultimate): Max Vu (1.2DL+1.6LL) = 13.33 kips 0.90Vn = 104.15 kips

MOMENTS (Ultimate):

Span	Cond	LoadCombo	Mu	(a)	Lb	Cb	Phi	Phi*Mn
-			kip-ft	ft	ft			kip-ft
Center	Max +	1.2DL+1.6LL	105.0	15.8	0.0	1.00	0.90	165.75
Controlling		1.2DL+1.6LL	105.0	15.8	0.0	1.00	0.90	165.75

REACTIONS (kips):

	Lett	Kignt
DL reaction	4.35	4.35
Max +LL reaction	5.07	5.07
Max +total reaction (factored)	13.33	13 33

Dead load (in)	at	15.75 ft =	-0.700	L/D =	540
Live load (in)	at	15.75 ft =	-0.817	L/D =	463
Net Total load (in)	at	15.75 ft =	-1.518	L/D =	249

Steel Non-Composite Beams (2 of 3)

Gravity Beam Design

RAM Steel v11.0 DataBase: TypBayStrip Building Code: IBC

10/24/07 10:54:20 Steel Code: AISC LRFD

Floor Type: Typ Floor	Beam Number = 39

SPAN INFORMATION (ft): I-End (31.50,13.80) J-End (42.25,13.80)

Minimum Depth specified = 9.85 in

Beam Size (Optimum) = W10X12 Total Beam Length (ft) = 10.75 Fy = 50.0 ksi

Mp (kip-ft) = 52.50

LINE LOADS (k/ft):

Type	Red%	LL	DL	Dist	Load
NonR		0.368	0.276	0.000	1
		0.368	0.276	10.750	

SHEAR (Ultimate): Max Vu (1.2DL+1.6LL) = 4.94 kips 0.90Vn = 50.63 kips

MOMENTS (Ultimate):

Span	Cond	LoadCombo	Mu	@	Lb	Cb	Phi	Phi*Mn
			kip-ft	ft	ft			kip-ft
Center	Max +	1.2DL+1.6LL	13.3	5.4	0.0	1.00	0.90	46.94
Controlling		1.2DL+1.6LL	13.3	5.4	0.0	1.00	0.90	46.94

REACTIONS (kips):

	Lett	Kight
DL reaction	1.48	1.48
Max +LL reaction	1.98	1.98
Max +total reaction (factored)	4.94	4.94

Dead load (in)	at	5.38 ft =	-0.053	L/D =	2427
Live load (in)	at	5.38 ft =	-0.071	L/D =	1820
Net Total load (in)	at	5.38 ft =	-0.124	L/D =	1040

Steel Non-Composite Beams (3 of 3)

Gravity Beam Design

RAM Steel v11.0 DataBase: TypBayStrip Building Code: IBC

10/24/07 10:54:20 Steel Code: AISC LRFD

Floor Type: Typ Floor	Beam Number = 23

SPAN INFORMATION (ft): I-End (42.25,13.80) J-End (76.25,13.80)

Minimum Depth specified = 9.85 in

Beam Size (Optimum) = W16X31
Total Beam Length (ft) = 34 00 Fy = 50.0 ksi

Total Beam Length (ft) = 34.00

Mp (kip-ft) =225.00

LINE LOADS (k/ft):

Load Dist DL LLRed% Туре 0.000 1 0.276 0.322 ---NonR

34.000 0.276 0.322

SHEAR (Ultimate): Max Vu (1.2DL+1.6LL) = 14.39 kips 0.90Vn = 118.06 kips

MOMENTS (Ultimate):

Span	Cond	LoadCombo	Mu	(a)	Lb	Cb	Phi	Phi*Mn
			kip-ft	ft	ft			kip-ft
Center	Max +	1.2DL+1.6LL	122.3	17.0	0.0	1.00	0.90	202.50
Controlling		1.2DL+1.6LL	122.3	17.0	0.0	1.00	0.90	202.50

REACTIONS (kips):

	Leit	Kignt
DL reaction	4.69	4.69
Max +LL reaction	5.47	5.47
Max +total reaction (factored)	14.39	14.39

Dead load (in)	at	17.00 ft =	-0.763	L/D =	535
Live load (in)	at	17.00 ft =	-0.890	L/D =	458
Net Total load (in)	at	17.00 ft =	-1.653	L/D =	247

K-Series Steel Joists (1 of 3)

Standard Joist Selection

RAM Steel v11.0 Typical Strip Bay

DataBase: TypBayStripJoists 10/24/07 10:24:11

Building Code: IBC

Floor Type: Typ Floor Beam Number = 288

SPAN INFORMATION (ft): I-End (0.00,13.80) J-End (31.50,13.80)

Maximum Depth Limitation specified = 22.01 in Joist Size (Optimum) = 22K5 Total Beam Length (ft) = 31.50

LINE LOADS (k/ft):

Load Dist DL LL Red% Type
1 0.000 0.138 0.161 --- NonR
31.500 0.138 0.161

Maximum Total Unif. Load at any location (lbs/ft): 299.0

Allowable Stress Ratio: 1.00

 Design Loads
 Allowable Loads (lbs/ft)

 Dead:
 138.0

 Live:
 161.0
 211.5

 Total:
 299.0
 309.0

MOMENTS:

Span Cond Moment @ kip-ft ft
Center Max + 37.1 15.8

REACTIONS (kips):

 Left
 Right

 DL reaction
 2.17
 2.17

 Max +LL reaction
 2.54
 2.54

 Max +total reaction
 4.71
 4.71

DEFLECTIONS:

K-Series Steel Joists (2 of 3)

Standard Joist Selection

RAM Steel v11.0 Typical Strip Bay

DataBase: TypBayStripJoists

Building Code: IBC

10/24/07 10:24:11

Floor Type: Typ Floor Beam Number = 317

SPAN INFORMATION (ft): I-End (31.50,11.50) J-End (42.25,11.50)

Maximum Depth Limitation specified = 22.01 in Joist Size (Optimum) = 10K1Total Beam Length (ft) = 10.75

LINE LOADS (k/ft):

Red% Load Dist DL LLType 0.000 1 0.138 0.184 NonR 10.750 0.138 0.184

Maximum Total Unif. Load at any location (lbs/ft): 322.0

Allowable Stress Ratio: 1.00

Design Loads Allowable Loads (lbs/ft) Dead: 138.0 Live: 184.0 544.0 Total: 322.0 550.0

MOMENTS:

Moment Span Cond (a) kip-ft ft Center Max+ 4.7 5.4

REACTIONS (kips):

Left Right 0.74 0.74 DL reaction 0.99 0.99 Max +LL reaction Max +total reaction 1.73 1.73

DEFLECTIONS:

Dead load (in) 0.091 L/D = 1419Live load (in) 0.121 L/D =1064 Total load (in) 0.212 L/D =608

K-Series Steel Joists (3 of 3)

Standard Joist Selection

RAM Steel v11.0 Typical Strip Bay

DataBase: TypBayStripJoists Building Code: IBC 10/24/07 10:24:11

Floor Type: Typ Floor Beam Number = 347

SPAN INFORMATION (ft): I-End (42.25,13.80) J-End (76.25,13.80)

Maximum Depth Limitation specified = 22.01 in Joist Size (Optimum) = 22K7 Total Beam Length (ft) = 34.00

LINE LOADS (k/ft):

Load Dist DL LL Red% Type
1 0.000 0.138 0.161 --- NonR
34.000 0.138 0.161

Maximum Total Unif. Load at any location (lbs/ft): 299.0

Allowable Stress Ratio: 1.00

 Design Loads
 Allowable Loads (lbs/ft)

 Dead:
 138.0

 Live:
 161.0
 202.0

 Total:
 299.0
 303.0

MOMENTS:

 Span
 Cond
 Moment kip-ft
 @

 Center
 Max +
 43.2
 17.0

REACTIONS (kips):

 DL reaction
 2.35
 2.35

 Max +LL reaction
 2.74
 2.74

 Max +total reaction
 5.08
 5.08

DEFLECTIONS:

CRSI Waffle Slab Table

			Columns	(ft)	Total Depth = 23	30'- 0" D=12.500 RIB ON COLUMN LINE 1,048 CF/SF	33 0" D=12.500 RIB ON COLUMN LINE 1,02 CF/SF	360" D=12.500 RIB ON COLUMN LINE 0.998 CF/SF	39'- 0" D=15,500 RIB NOT ON COLUMN LIME 1.036 CF/SF	42'-0" D=15,500 RIB NOT ON COLUMN LINE 1,015 CF/SF	(Continu
					23 in.			a Nik	NIC ST	ON. VSF	(Continued on next page) (Continued on next page) NOTES See the notes on Page 11-19 regarding the
	-		n . T	(bsd) (sd)	Rib D	50 100 200 300 400 500	200 200 300 400	3000000	300 300	2002	page)
	-			Steel C (pst)	Rib Depth = 20	2.27 2.27 2.34 2.48 3.02 4.33	2.37 2.43 2.56 2.50 3.60 4.46	242 282 3.18 4.21	2.49 3.11 3.80 4.91	3.20 3.20 3.64 4.26	11-19-8
WAF	-	Square Edi		(in.)	20 in.	2222222	9999	55555 1	0 0 0 0 0 0 	21 21 21 21 2	guibregs
	1	200		¥		0.641 0.641 0.641 0.735 0.817 0.642	0.661 0.661 0.733 0.804 0.641	0.637 0.676 0.717 0.758 0.868	0.670 0.715 0.789 0.848 0.537	0.680 0.748 0.822 0.880	fie fo
SOI	30	Column	(2)	Stirru	Total Slab						Column
SOLIABE	JARE		Top		Depth = 3	22222222	****	22.22.22	*****	3888) pus ezis
FDGF	EDG			+	. 3 in.	55550 540 550 540 540 540 540 540 540 54	25-45+0 25-45+0 25-45+0 25-45+0 25-45+0 25-45+0	27-#5+ 0 27-#5+ 0 27-#5+ 0 27-#5+ 6	\$4545 0 4 8 8	31-#5+0 31-#5+2 31-#5+7 31-#5+12	1) for ave
	7 7	Colum	To be the same	Ribs E		naaaaaa	מטטטטט	200000	99999	9999	arage re
PANFLS	AINELS	Column Strip	Bottom	Bars per Rib		2-#5 2-#5 -#5 and 1-#6 -#6 and 1-#7 -#8 and 1-#9 2-#9	1-#5 and 1-#6 2-#6 1-#6 and 1-#7 1-#7 and 1-#8 1-#8 and 1-#10 1-#9 and 1-#10	2.#6 1-#5 and 1-#7 1-#7 and 1-#8 2-#8 1-#9 and 1-#10	1-#6 and 1-#7 2-#7 1-#7 and 1-#8 1-#8 and 1-#9 2-#10	2-#7 2-#8 1-#8 and 1-#9 1-#9 and 1-#10	for column size and (1) for average reinforcing steel weight
3	Base	pdfS	Top	No size		22-85 22-85 22-85 27-85 23-86 27-86	25-45 23-45 23-45 31-45 31-45	27-#5 28-#5 33-#6 34-#6	30.75 36.75 30.76 34.46 44.46	37-45 32-45 43-46	weight.
	Cash	COLI	12	Ribs.		2000000	999999	NNNN	rrrr	00 00 00 00	
3	Cook Dissellon	Middle	Bottom	Bars		# # # # # # # # # # # # # # # # # # #	555555	花花花花岩	#5 #4 #7	花花岩岩	
		Middle Strip		Bars		22222E	4438333	55557	#8 #4 #8	12887	
200		1 A	-	No size	1	9-45 9-45 1-45 1-45 1-45 1-45	10-45 10-45 10-45 10-46	12111	2722 2722 288 888	13.45 15.45 12.46 14.46	
		Σ	Edop -	(#-K)		280 280 280 280 280 280 280 280 280 280	263 317 370 424 532 639	337 476 546 685	437 528 614 703 880	539 650 760 87.1	
	1	Moments	M + M	(H-K)		232 732 732 1248 1496	526 633 774 961 1310 1647	674 966 1210 1660	874 1051 1230 1544 2117	1300 1521 1621	
			¥ ±	(ff-k)		537 646 754 1080 1297 1514	708 852 997 1142 1432 1721	908 1095 1283 1470 1845	1176 1415 1654 1893 2371	1452 1750 2047 2345	
3			(E) (C)		Total Depth	225 225 225 326 336 338	228 228 240 257 3.10 3.99	223 2257 2257 2257 377	228 228 328 431 431	2.55 2.91 3.31 3.82	
		S	2 11 2	(ii.)	11	2222222 2022222 2022222 202222 202222 202222 2022 2022	888888	数数数数数	<u> </u>	22.22	
SOUARE	2	Square Interior Column	(2)		23 in.	++	++	E desire desire desire		***	
1RE	1		-	Ribs	PB.	20000000	wwwww.	មានមាន	00000	2000	
INTERIOR	Rainforcino	Column Strip	1	Bars per Rib	Depth = 20 in.	2-#5 2-#5 2-#5 2-#5 2-#6 2-#6 2-#7 and 1-#8	2-#5 2-#5 2-#5 2-#6 2-#7 2-#8	2.45 1-45 and 1-46 2.46 1-46 and 1-47 2-48	2-#5 1-#5 and 1-#6 2-#6 2-#7 2-#8	2-#6 1-#6 and 1-#7 2-#7 1-#7 and 1-#8	ued on next page) See the notes on Page 11-19 regarding the * for column size and (1) for average reinforcing steel weight.
- 0	- Sic	2	Top	Size	-	22222222 55555555	25-55 27-55	27-85 30-85 31-85 31-85	23-45 33-45 32-46 32-46 40-46	32-35 35-35 46-85	
Grade 60 Bars PANELS	Fach Direction		N.	Ribs	Total Stab Depth = 3	vavvvva	000000	1-1-1-1-1-	reterete	00 00 00 00	
9 80	irection	Middle Strip	Bottom	Bars	th Dept	222222	255555	55555	表表表表	20 40 40 40	
Bars	1.	Strip	Short	-	h = 3 in.	存品表表表表表	品花花花花花	£ £ £ £ £ £	55555	2555	
	1		Top Interior	size	2	2-55 5-55 5-55 5-55 5-55 5-55 5-55 5-55	1000 1000 1000 1000 1000 1000 1000 100	######################################	12-#5 12-#5 13-#5 13-#6	3,45	

		Concrete cu. ft)		ANELS	1.065 1.083 1.102 1.147	1.083 1.102 1.102 1.147	1.083 1.102 1.147 1.147	1.102 1.102 1.147 1.147	1.102	1.102	1.102 1.102 1.102 1.147	1.102
Ę	(W		Total Steel (psf)		2.82 3.16 4.02 4.59 5.31	2.78 3.41 4.10 4.98 5.93	2.90 3.57 4.43 5.37 6.12	2.97 3.82 4.71 5.74 6.52	3.16	5.13	3.32 4.31 5.43 6.42	3.58 4.71 5.68 6.84
R PAN	BARS (F	Strip	Bottom	WEEN D	13#5 13#5 15#5 18#5	13#5 12#6 14#6 13#7	14#5 15#5 13#6 12#7 18#6	14.#5 12.#6 11.#7 13.#7	15-#5	12-#7	16-45 20-45 13-47 12-48	17-#5 12-#7 14-#7 22-#6
RIOF Pane	NG BA	Middle Strip	Top	TH BET	13.45 10.45 10.45 10.48	13-45 14-46 13-47 11-48	14-#5 13-#6 12-#7 11-#8 12-#8	12-48 13-48 13-48	12-#6	14#7	13-#6 13-#7 12-#8 14-#8	20-#5 14-#7 22-#6 12-#9
RE INTERIOR F With Drop Panel ⁽²⁾ No Beams	REINFORCING	Strio	Bottom	AB DEP	15#5 19#5 17#6 11#8 13#8	12-#6 11-#7 18-#6 16-#7 12-#9	18-#5 17-#6 15-#7 11-#9 13-#9	14-#6 22-#6 12-#9 11-#1	22.#5	14-49	17.#6 22.#6 20.#7 18.#8	14-#7 14-#8 17-#8 13-#10
SQUARE INTERIOR PANEL With Drop Panel ⁽²⁾ No Beams	REIN	Column Strip	Top	in. = TOT	15-#6 23.#5 15-#7 16-#7 14-#8	20-#5 26-#5 15-#7 14-#8 16-#8	16-#6 22-#6 15-#8 17-#8	16.#6 15.#7 17.#8 15.#9	18-#6	84-81 18-48	19-#6 18-#7 17-#8 16-#9	16.47 37.45 18.48 17.49
SQL	(3)	Square	Size (in.)		252242	23 25 27	3883342	23 28 33	12	23 23	15 23 32 32	34 25 34 34
	Factored	Factored Superim- posed Load (psf)		h = 12	200 300 400 500	100 300 400 500	100 300 400 500 500	200 300 500 500 500	100	889	9889	200 300 400 400
		Int.	(#T)		693.0 886.8 1081.0 1273.9 1467.9	769.2 981.8 1196.4 1407.8 1613.4	847.9 1086.1 1321.0 1549.0 1752.9	935.1 1194.7 1446.0 1692.2 1900.3	1306.9	1833.9	1119.8 1422.1 1714.8 1978.1	1214.6 1544.0 1849.1 2135.1
	MOMENTS	Bot.	(#±x)		514.8 658.8 803.1 946.3	571.4 729.3 888.7 1045.8 1198.5	629.9 806.8 981.3 1150.7	694.7 887.5 1074.2 1257.0 1411.6	761.2	1362.3	831.9 1056.4 1273.8 1469.4	902.3 1147.0 1373.6 1586.1
Vith Drop Panels	M	Edge	(¥)		257.4 329.4 401.5 473.2 545.2	285.7 364.7 444.4 522.9 599.3	314.9 403.4 490.7 575.3 651.1	347.3 443.7 537.1 628.5 705.8	380.6	584.8	415.9 528.2 636.9 734.7	451.1 573.5 686.8 793.0
// Drop (Tolal	(jsd)		3.10 3.65 4.62 5.27 6.20	3.12 3.96 4.76 5.68 6.78	3.33 4.27 5.16 6.21 7.14	3.44 4.45 5.55 6.55 7.47	3.74	7.00	3.95 4.98 6.24 7.34	5.45 6.66 7.67
SYSTEM With D	E. W.)	Strip	I to	PANELS	13.#5 11.#6 12.#7 11.#8	14.#5 13.#6 15.#6 12.#8	15.#5 19.#5 13.#7 13.#8	12.46 15.46 11.48 16.47 14.48	13-#6	14-#8	14-#6 18-#6 22-#6 12-#9	12.#7 12.#8 14.#8 13.#9
ea n	BARS	Middle Strip	Bottom	BETWEEN DROP PANELS	15-#5 10-#7 12-#7 11-#8 13-#8	16-#5 11-#7 18-#6 16-#7 12-#9	13-#6 13-#7 12-#8 11-#9 13-#9	14#6 18#6 22#6 12#9 11#10	12-#7	13-#9	13-#7 16-#7 12-#9 14-#9	14-#7 14-#8 13-#9 19-#8
PANEL No B	CING		op 1:	ETWEEN	16-#6 18-#6 22-#6 14-#8 16-#8	16-#6 15-#7 16-#7 15-#8 14-#9	17-#6 15-#7 18-#7 16-#8 15-#9	17-#6 16-#7 15-#8 18-#8 16-#9	19-#6	19-#8	16-#7 16-#8 18-#8 17-#9	22.#6 16.#8 16.#9 18.#9
FLAI SLA EDGE PANEI No I	REINFORCING BARS (E. W.)	Column Strip (1)	Bottom	SLAB DEPTH	12-#7 15-#7 12-#9 17-#8 13-#10	13.#7 13.#8 19.#8 18.#9	11-#8 12-#9 18-#8 14-#10 16-#10	16-#7 13-#9 13-#10 15-#10	14-#8	17-#9	12-#9 19-#8 15-#10 18-#10	13#9 17#9 17#10 19#10
SQUARE F	R	Colu	Top Ext. +		14-45 3 15-45 5 16-45 3 16-45 6	14-85 2 14-85 5 15-85 4 15-85 6 15-86 4	15-#5 5 16-#5 2 17-#5 6 20-#5 5 16-#6 4	15-#5 1 15-#5 5 19-#5 5 22-#5 6 17-#6 3	16-#5 4	44.00	16-#5 6 18-#5 6 22-#5 6 18-#6 5	16-#5 6 20-#5 7 17-#6 5 27-#5 5
SQL		olumn	1/2	= TOTAL	0.808 0.707 0.763 0.661 0.766	0.729 0.766 0.683 0.749 0.755	0.794 0.640 0.757 0.718	0.678 0.743 0.747 0.721 0.680	0.752		0.795 0.752 0.715 0.706	0.767 0.760 0.704 0.660
	(3)	Square Column	Size (in.)	<u>.</u> ;	15 19 24 24	27 27 27	325442	24 28 33	12	30	15 26 33	74 29 36 36
.		g 75	Width (ft)	ų:	10.00 10.00 10.00 12.00	10.33 10.33 10.33 12.40	10.67 10.67 12.80 12.80	13.20	133	13.60	11.67 11.67 11.67 14.00	12.00 12.00 14.40
4,000 psi 60 Bars	1	2 5	Depth (in.)		7.00 9.00 9.00 11.00	9 00 11 10 100 100 100 100	0000000	88888	11.00	11.00	11.00	9888
a	actored	SPAN Superim- cc. posed (f) (psf)			200 200 500 500 500	5000000 5000000	200 200 200 500 500	200 200 300 500 500	100	300	100 300 400	200 300 400 400
Grad					88888	33333	22222	22222	젊종	3.23	38888	8888