October 16, 2013

Sunnyvale Plaza

Mid-Atlantic Region, United States

Nathan Braskey – Construction Management

Technical Assignment #2
FACULTY CONSULTANT: CRAIG DUBLER

Executive Summary

The conception of Sunnyvale Plaza took place in 1999 with the need for a convention headquarters in the Mid-Atlantic city. After many complications, on September 24, 2007 the proposal was accepted and design began. Ground was broken on November 10, 2010. A detailed schedule was developed to analyze the unique top-down construction method utilized on the project. This was most important for the lengthy excavation process that was necessary. A summary short interval production schedule was also developed to review the hotel room finishes phase.

A detailed structural estimate was established for the entire structural system. This was important to ensure accuracy during the takeoff due to the unique nature of the underground structural system. This yielded an estimate of \$47 million, which is approximately 29% less than the square foot structural estimate.

The assemblies MEP estimate also yielded a lower value than produced from the square foot estimate. Due to the large difference between each system cost within the square foot estimate, the costs were expected to be lower for some of the more inflated systems. An average system cost was determined to better understand the difference between the actual construction cost, the square foot estimate, and the assemblies estimate.

Project site layouts were developed for three different phases of construction. These phases included the excavation of the slurry wall and substructure, the superstructure installation, and the finishes phase. These three phases were crucial for site coordination due to the complexity of the below-grade construction and the limited site area. Another area of interest was the temporary closing of the east street during the concourse excavation and construction.

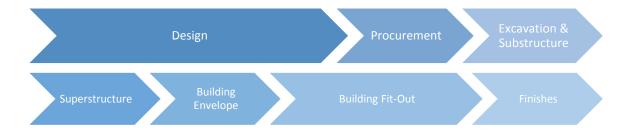
The general conditions estimate yielded a more expensive field personnel cost due to the complexity of the project and need for a more extensive project team. Other items that were evaluated include office trailer usage, temporary utility needs, and commissioning. This evaluation was important to assess the savings involved in any major schedule changes.

There were several constructability challenges during different construction phases. The most primary concerns included the unique top-down excavation process and the concourse excavation and construction. This construction phase needed extra attention concerning the east street and underground utilities in the area. The top-down excavation also prolonged the schedule extensively. Other concerns included existing buildings within the project site, lead time for the statue construction, and the limited space within the project site.

A LEED evaluation was produced for the sustainability strategies utilized on the project. Great care was taken in the selection of regional and recycled products as well as optimizing energy performance within the building. It was also fairly easy to acquire points for alternative transportation due to the location of the project. Other sustainability priorities included materials and resources, indoor environmental quality, and water efficiency.

TABLE OF CONTENTS

Executive Summary	
•	
Table of Contents	l
Project Schedule	1
Detailed Structural Estimate	4
Assemblies MEP Estimate	
Site Layout Planning	6
General Conditions Estimate	
Constructability Challenges	<u>c</u>
LEED Evaluation	11


Project Schedule - See Appendix A for detailed schedule

OVERVIEW

The concept for Sunnyvale Plaza came in 1999 with a proposal to construct a convention headquarters neighboring the city's convention center. Initial estimates proposed that the hotel would cost roughly \$200 million, which would need to be reduced by about \$30 million in order to be profitable. A proposal from a nearby hotel to expand into a convention headquarters was also vying for approval, but was later rejected due to a risk of poor revenue production. The September 11th attacks on the United States caused a substantial economic downturn that postponed the awarding of the proposal until late October of 2002. Economists alleged that the initial financing proposal was controversial in that it would lower sales tax revenue within the area. In April of 2004, the city council began debating on whether or not to consider building the headquarters on a different site. On December 3, 2004, the council voted in favor of continuing the plan to build on the original site. On August 22, 2005, the Plumbers Union Building was sold to the developer to obtain more of the property to develop. In June of 2006 the first financing package was approved by the council and in February of 2007 private financing came together to complete the proposal. On September 24, 2007, after several reconsiderations for the size of the hotel to reduce financing, the developer signed an agreement to jointly finance the hotel. Ground was finally broken on November 10, 2010 and construction began.

Phase	Start Date	End Date	Duration
Design	11/1/2008	3/27/2013	1149
Procurement	12/26/2012	8/16/2013	168
Excavation & Substructure	3/25/2013	7/15/2013	81
Superstructure	4/2/2013	7/15/2013	75
Building Envelope	2/22/2013	11/13/2013	189
Building Fit-Out	8/1/2012	3/12/2014	421
Finishes	2/4/2013	3/17/2014	291

Table 1: Project Schedule Summary

BUILDING CONSTRUCTION

Design & Preconstruction

The official Request For Proposal was released in April of 2001, for a 1,100-room convention headquarters hotel. The original design created 1,500 rooms. After various attempts to gather funding, the hotel design

was scaled back from the original design to 1,150 rooms. Sunnyvale released details of the design in October of 2008. The design was submitted to the National Capital Planning Commission late in 2008 and approved early in February of 2009.

Figure 1: Excavation of Level M1

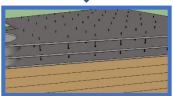
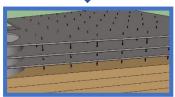



Figure 2: Level M1 Slab-On-Grade

Figure 3: Excavation of Level M2

Figure 4: Level M2 Slab-On-Grade

Excavation & Substructure

Ground was broken on November 10, 2010 for Sunnyvale Plaza. Due to the more complicated excavation process, construction was expected to be extended by an entire year. Each below-grade slab was poured on-grade, then excavated underneath. This process was done one level at a time down to the bottom level. Utilizing this unique method made it possible to excavate to such a large depth below the street. A slurry wall construction was also used to secure the subgrade levels. The perimeter of the building was excavated, reinforced, and poured first. This slurry wall created a suitable shoring method and a secure subgrade exterior support system.

Superstructure

The superstructure utilizes pre-cast columns and beams with a steel composite deck. Utilizing pre-cast assembly methods created a faster erection process for the above-grade structure. The entire above grade structure took about four months to complete. The structural frame was broken into two towers, North and South.

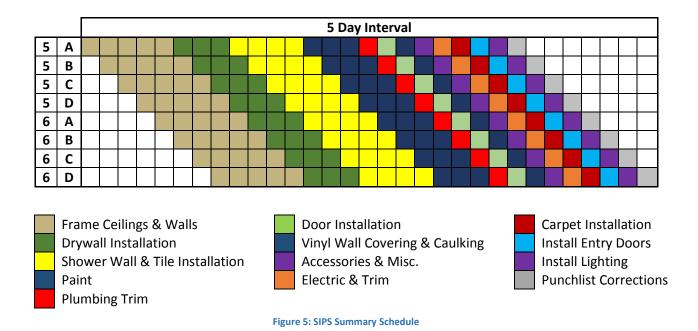
Building Envelope

The first phase of the building envelope began late in February of 2013. While this side of the curtain wall began early, the other sides did not begin until April. The first phase was the North Elevation, followed by the West Elevation, East Elevation, and South Elevation. The procedure for the envelope construction began with the installation of the exterior frame

and punch windows. Once the frame was secured, the primary curtain wall components were installed. These consisted of hundreds of metal panels and windows. Each elevation of the curtain wall consisted of a duration of about 100 - 150 workdays.

Building Fit-Out

The primary mechanical and electrical chases are located within the four corners of the building. Neighboring the elevator areas are telecom/data and mechanical/electrical rooms. These rooms are used to house Panelboards and vertical shafts for ducts and mass conduit runs.


Finishes

As a 4-star hotel, it was important to have a high standard of quality for the finishes of each hotel room. A short interval production schedule was utilized to maintain a consistent movement of finishing construction throughout each floor. It was beneficial to utilize SIPS due to the high amount of consistent process that were needed to finish each floor.

SHORT INTERVAL PRODUCTION SCHEDULE - SIPS

The use of a Short Interval Production Schedule was very important for this type of project. A SIPS is a detailed schedule that focuses on a day-to-day or weekly construction process. It is utilized for a process that is very repetitive and consistent throughout the entire progression. With over 1,000 hotel suites that are identical throughout the entire building, Sunnyvale Plaza is a prime situation to utilize this type of schedule. A separate SIPS was developed for the guestrooms and core corridors for all of the floors abovegrade. The SIPS utilized for the guestrooms incorporate all portions of the typical hotel suite on a five day interval per section of each tower. Each floor is separated into two phases, North Tower and South Tower, and within each tower there are four more detailed phases. Each phase makes up approximately 14 hotel suites. As each phase in a tower is completed, the contracting team moves to the next phase and continues to the next floor.

It is important to maintain consistent movement throughout the guestrooms on each floor. Due to the high capacity of the short interval production schedule, if one team falls behind, the entire schedule can be delayed. This can cause a great constructability challenge for the entire finishes phase of the project. By utilizing a short interval production schedule, completion of each phase can be more closely monitored to ensure that the schedule is on-time.

Detailed Structural Systems Estimate – See Appendix B for detailed takeoff

OVERVIEW

The structural system of Sunnyvale Plaza differs between the substructure and superstructure. The below-grade structure consists of steel columns and a slurry wall construction. The superstructure is made up of all concrete construction and steel deck. The substructure is unique in that it is also connected to the neighboring convention center. This created a complicated condition for working underneath an active street. The complete structural system was estimated to cost about \$47 million using a detailed structural estimate method. The total cost for the structural system using RS Means Square Foot Analysis was estimated at \$66 million. This detailed estimate is approximately 29% less than the square foot approximation. This can be due to and value engineering utilized to succeed on such a complicated project. Reed Construction Data RS Means Online was utilized to estimate the structural components. The following descriptions define the breakdown of each structural system.

Structural Item	Cost	Breakdown
Total Structural Cost	\$ 47,000,000.00	-
Steel Construction	\$ 8,400,000.00	18%
Atrium Construction	\$ 1,240,000.00	3%
Slurry Wall Construction	\$ 9,800,000.00	21%
Concrete Structural System	\$ 27,000,000.00	57%

Table 2: Structural Estimate Breakdown

SUBSTRUCTURE

The substructure began with a slurry wall construction around the entire perimeter. This acted as the exterior structural support and as shoring while the rest of the site was excavated. The slurry wall was composed of 4000 psi concrete with local aggregate, sand, and Portland cement. Column boring was then utilized to create shafts for the steel columns to be placed. The slurry wall construction accounted for approximately \$9.8 million. Once the columns were set, concrete was poured within the boreholes to encase the steel. The encasements were also reinforced with rebar. Natural formwork played a major role in the concrete pouring for all substructure components. The steel columns were composed of wide flange W14 columns that ranged from 90 to 398 lbs per linear foot. There are also two W14x665 columns located near the two primary elevator shafts. The complete steel substructure costs accounted for roughly \$8.4 million and about 18% of the entire structural cost.

The concourse also created a difficult structural process wherein the slurry walls and street needed to be temporarily secured while the openings were created. There were various underground utilities that needed to be relocated due to the concourse construction. These utilities were temporarily supported while the concourse area was excavated, then rerouted closer to the street.

SUPERSTRUCTURE

The superstructure utilizes concrete precast columns and beams with a composite deck. The columns were set on a typical grid throughout most of the above-grade structure. The large opening of the atrium was unique in that the amount of structural space was very small throughout each side. Within the upper levels, there was not actually much space aside from hotel rooms and corridors. This made it very difficult to fit some columns within intersections and elevator lobbies. The concrete columns range from 16x16 columns to a 44x48 column. The concrete beams range from 12x12 beams to two 50x66 beams. Typical reinforcing is located within each column and beam. The concrete structural system cost was roughly \$27 million which accounted for about 57% of the overall structural estimate.

The atrium skylight was a unique part of the superstructure. Several large triangular steel trusses span the atrium from the north corridor to the south corridor. These trusses are the structural support for the skylight frame. The steel trusses were a substantial part of the steel construction because the only other major steel utilized in the building was the below-grade structure.

Assemblies MEP Estimate – See Appendix C for detailed takeoff

OVERVIEW

The assemblies MEP estimate was assessed using Reed Construction RSMeans Data. The estimated cost for the mechanical, electrical, and plumbing system totaled \$78,200,105. This cost is translated to approximately \$104 per square foot. This is substantially lower than the RSMeans construction costs breakdown. Analysis of this cost breakdown yields several possibilities for error.

The construction cost breakdown for the plumbing system was extensively higher than the other building systems. This is believed to be inaccurate as it is roughly double the cost of any other system. Calculating an average building systems cost for the other systems yields a cost of roughly \$43 million per building system.

Another source of error originates from the lack of options available within RSMeans Data. This made it difficult to choose the exact components that make up the mechanical and electrical system. Components that were similar were chosen for any components that were not available. Certain components were substantially different and needed to be extrapolated to make up for the extensive size difference. This limited data can create various errors throughout the entire estimate that in-turn add up to a substantial difference for each building system.

Assemblies Item	Overall Cost	Percentage of Cost
Mechanical System	\$ 38,858,400.00	50%
Electrical System	\$ 13,685,365.00	18%
Plumbing System	\$ 16,932,960.00	22%
Total Assemblies Cost	\$ 78,200,105.00	
Cost / S.F.	\$ 103.99	

Table 3: MEP Estimate Breakdown

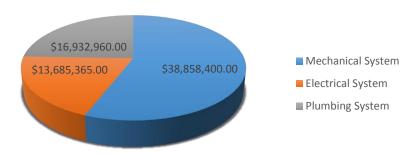


Figure 6: MEP Estimate Breakdown

Site Layout Planning - See Appendix D for detailed site plans

EXCAVATION - SLURRY WALL

One of the most difficult phases of construction was the slurry wall installation and excavation. Due to the high complicity for this phase, the construction was extended an entire year longer than initially intended. Before this phase, the site preparation and mobilization took place. The project trailers are located on a neighboring parking lot just north of the project site. The north gate will be utilized for entrance from the project trailers, and it is important to ensure a safe traverse across the active street. Due to the tight project site, the primary material laydown areas are located just north of the PEPCO Substation. At this point in the construction process, there are two existing buildings that are located within the project site. It is crucial to maintain a safe excavation process considering the load that is on the soil within close proximity of the excavation. The street east of the project site will also be excavated while the underground utilities are temporarily supported. Some utilities will also be moved due to the concourse construction.

Holes will be left in each slab as they are poured on-grade, then excavated underneath. A protection barrier is placed underneath each slab to tear down once the excavation is completed. This protects the bottom of the slab from any dirt or debris during excavation. Cranes and hoists located near each of the major slab openings are used to excavate through the openings. Once there is sufficient room, larger equipment is lowered into the sub-grade levels to excavate across the entire slab. This process will be continued through the same holes on each below-grade level.

SUPERSTRUCTURE

Once the substructure is completed and the primary substructure is in place, the slabs can be used to store material. The primary material laydown will still be located north of the PEPCO Substation and a secondary material laydown area will open on the east side of the project site. Both the north and south side of the project site will now be used for material delivery via trucks. The Plumbers Union Building will now be connected to the new structure, and considered a part of the building. Dumpsters are also located on the northeast corner of the project site. The east street will still be closed during this phase of construction for structural completion. A temporary platform will be placed so that the area can be utilized during this phase. A concrete placement area is also created near the north entrance of the project site.

FINISHES

As the finishing phase begins, site cleanup must begin. Landscaping and exterior construction will start to take place and the surrounding areas must be available. Material laydown will default to the area north of the PEPCO Substation. The fence on the east street can now be moved back to the sidewalk, which will open the street to more traffic. This also creates a situation in which materials can fall into the street. More caution needs to be taken while working on the east side to ensure that no materials or debris are dropped.

General Conditions Estimate – See Appendix E for detailed takeoff

OVERVIEW

The general conditions estimate was created utilizing a general project team format for the general contractor and conditions represented by the construction process. The general conditions estimate includes the field personnel on the project team, all temporary utilities utilized on the jobsite, insurance, scheduling, and other contingencies. Reed Construction Data RS Means Online was utilized to estimate the general conditions components.

MAJOR EXPENSES

Field Personnel

The general contractor utilizes a unique project team. This project team consists of two field engineers and three office engineers. There are also numerous levels of superintendents which include area superintendents, project superintendents, and general superintendents. The project also included project engineers, project managers, and executive project managers. Employing such an extensive project team

Technical Assignment #2

was necessary due to the complexity and size of the project. This produced a much larger field personnel

cost.

Field Personnel: \$8,750,000

Office Trailers

A minimal amount of trailers were utilized for the project team. The available area around the building

perimeter was very small, and did not allow any room for office trailers. Therefore, trailers were staged

on a neighboring parking lot and had minimal space to take advantage of. This produced a lower cost in

office trailer use.

Office Trailers: \$ 18,000

Temporary Utilities

The most extensive part of the temporary utilities was the power needed for the entire project and to

light the entire building. All 22 floors were being utilized at the same time and needed temporary lighting.

The temporary utilities included three tower cranes, one near each corner of the building. Other temporary utilities consist of restrooms, heating for two winters, fences, and waste management.

Temporary Utilities: \$ 1,006,911

Commissioning

Commissioning is a very important part of any complicated project today. Measurement and Verification

was a crucial portion of the final schedule and generated a substantial cost towards the general conditions

estimate.

Commissioning: \$ 1,250,000

Due to the high general conditions costs, any schedule delays can result in substantially more loss. Just

one week of extra work can cost up to \$30,000. Therefore it is inherent that the project schedule is

maintained and closely controlled to reflect the completion date.

SUNNYVALE PLAZA - NATHAN BRASKEY

8

Constructability Challenges

TOP - DOWN EXCAVATION

One of the most difficult phases of the construction process is the excavation and construction of the seven sub-grade levels. The project team determined that the only way to excavate the 100 feet below grade was to utilize a top-down construction method. This method consisted of pouring the top level as a slab-on-grade, with some sections of the slab missing. The level below that slab would then be excavated through the holes that were left. Once the entire level was excavated, a new slab-on-grade was poured. This process was continued for all seven below-grade levels.

Figure 7: Top-Down Excavation

The top-down excavation took an extensive amount of time. The excavation process used small machines and hoists to excavate through the holes, then larger machines were lowered into the ground to help excavate more. The mining of dirt under each slab was a difficult process and was a substantial part of the construction schedule. I look forward to utilizing this phase of the construction process as an in-depth analysis for a future report.

CONCOURSE CONSTRUCTION / EXCAVATION

As a major hotel within the city center, it was a priority to create a relationship with the neighboring convention center. An underground concourse was designed to connect the below-grade levels of the hotel, levels which consisted of grand ballrooms and junior ballrooms, to the parking deck of the convention center. This concourse created a substantial amount of construction due to the pair of slurry walls and underground utilities that ran between the two sites.

Both the new hotel and the neighboring convention center utilize a slurry wall construction method. Thus, the construction team needs to temporarily brace the slurry walls while demolition part of them to make room for the entrances. Once the openings are created, new slurry wall parts will be formed around new steel columns.

EXISTING BUILDINGS ON-SITE

There are two existing buildings within the site of the new hotel. The larger of the two is a PEPCO Substation that is independent of the construction process and will be closely monitored. There are strict separation requirements for the allowable openings between the PEPCO Substation and the new building. At the shortest interval, the new structure will only be five inches from the PEPCO Substation and will naturally look as if they are one complete building. Certainly, this makes for a very tight and difficult construction area and needs to be carefully monitored to ensure that neither building is damaged.

The smaller building is a Plumber's Union Building, which will be stripped and renovated to be incorporated into the new hotel. The Plumber's Union Building is an eleven story brick building that will be utilized to house roughly seven hotel suites on each floor and a fitness center.

Figure 8: Plumbers Union Building

STATUE LEAD TIME

Another schedule concern is the lead time for the unique sculpture being delivered. The sculpture was designed by Rodney Carroll of Baltimore who is nationally recognized for large-scale sculptures. The piece is a five story high steel sculpture that was reassembled nearby and lifted with a helicopter into the atrium of the hotel. The delivery of the sculpture created a restriction to finishing the atrium skylight. Since it needed to be flown into the hotel the skylight could not be finished, or even substantially started, to allow an opening for the entire sculpture piece. Lead time for the sculpture completion plays a very important role in maintaining the schedule for the rest of the project.

Figure 9: Statue Lift

VERY TIGHT PROJECT SITE

It is also very important to ensure that the surrounding buildings and community are safe from the construction process. The project site is located within a small city center block with major streets being utilized around it. It is important to ensure safety of pedestrian traffic that is around the perimeter of the building. During the finishing phases of the construction process, the East street fence can be moved back to allow more traffic flow. This creates more hazard from falling objects due to the hotel being so close to the street. It is important to ensure that appropriate safety measurements are taken to create a safe working environment.

Leading Industry Practice Evaluation – See Appendix F for LEED Scorecard

LEED EVALUATION

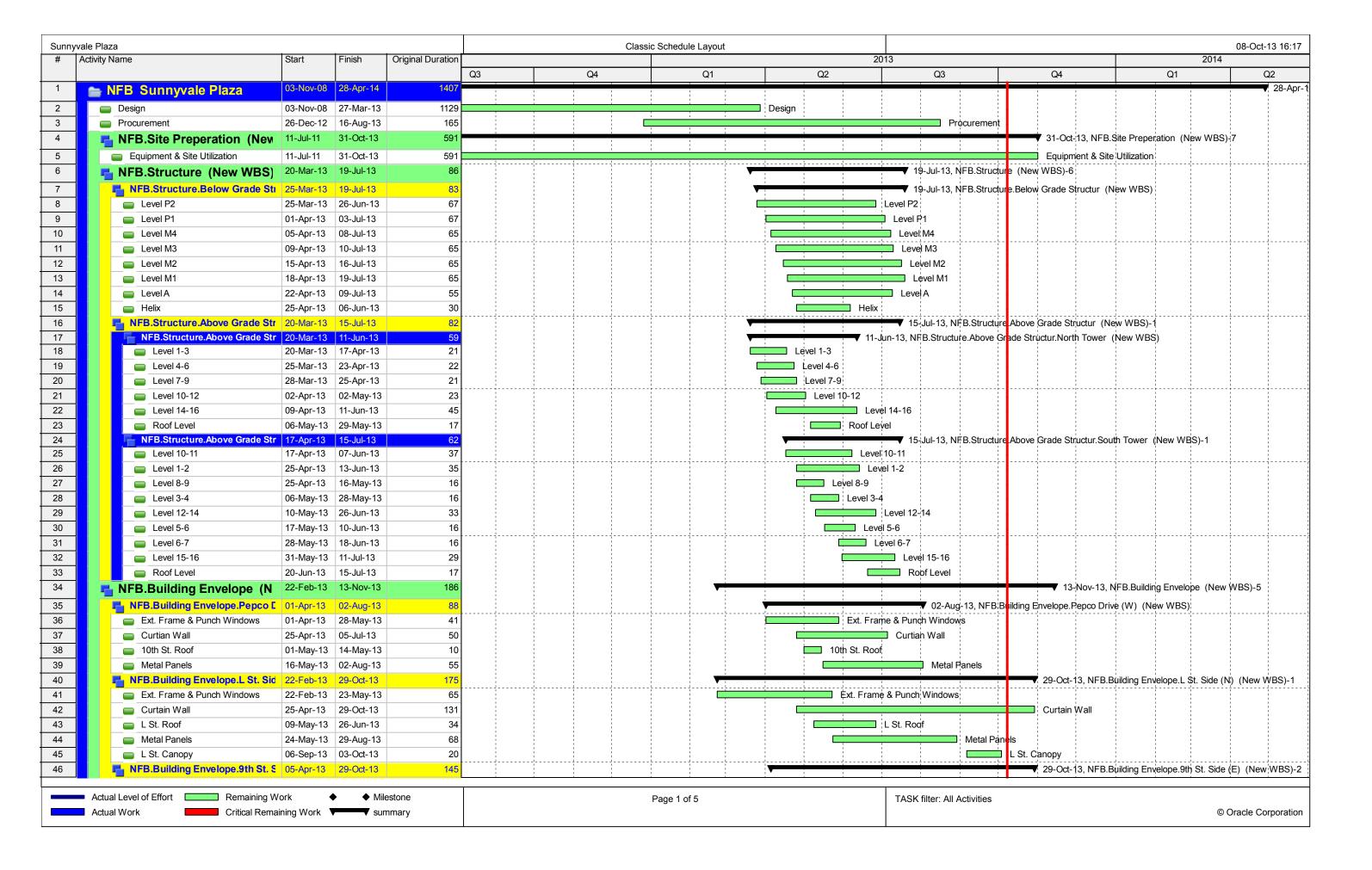
All project stakeholders were motivated to consider pursuing a LEED certification for Sunnyvale Plaza. The project team initially estimated to receive a total of 36 points towards a LEED certification. This will earn a LEED Silver certification. The project team also five other points as possibilities to be later defined. This is typically a strategy to ensure successful completion of the expected number of points. If the extra points are also earned, Sunnyvale Plaza will be LEED Gold certified. The most heavily grossed sections of the LEED point system were Sustainable Sites and Indoor Environmental Quality.

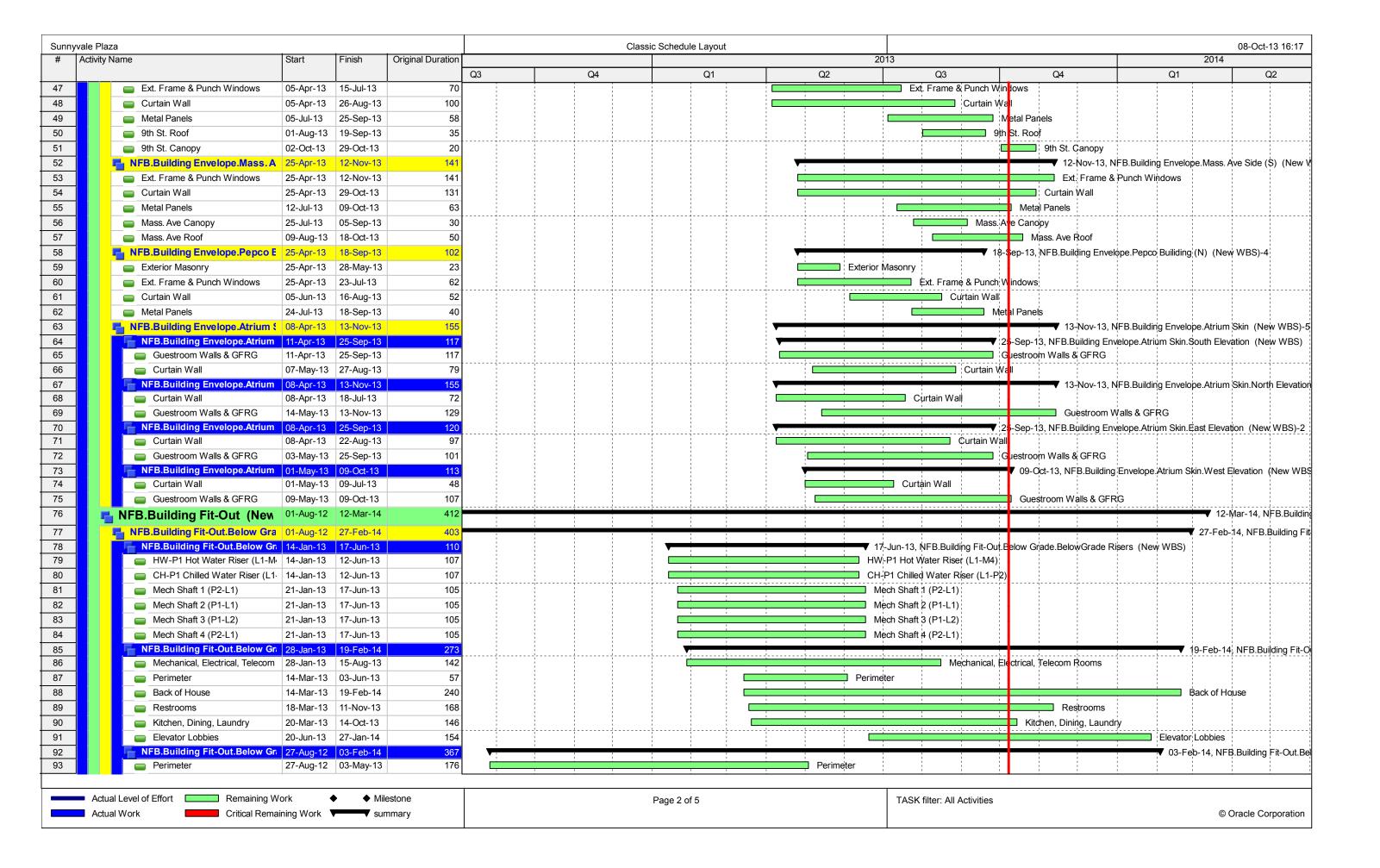
Sustainable sites requirements consisted primarily of alternative transportation. This was very easy to achieve due to the fact that the project site is located within a dense city center. Public transportation was already implemented within the area of the project site. Bicycle storage and changing rooms were also provided within the hotel to allow for non-vehicular transportation to and from the area. The parking garage design implemented a low-emitting, fuel-efficient, vehicle parking area. This rewarded environmentally friendly vehicle users with a more desirable parking space. The parking deck was also designed to provide sufficient parking capacity for the overall hotel capacity. The project team is also projecting to be awarded points for development density within a community. This is due to the project site being located within a dense city instead of being located on the edge of a city, thus creating expansion. The design of the roof for Sunnyvale Plaza is projected to earn several points towards sustainable sites. A vast majority of the roof consists of the atrium skylight, while a smaller portion of the rooftop terrace is covered with garden area. This earns points towards heat island effect for having no roof and a vegetated roof. Stormwater design also played a role in creating sustainable site.

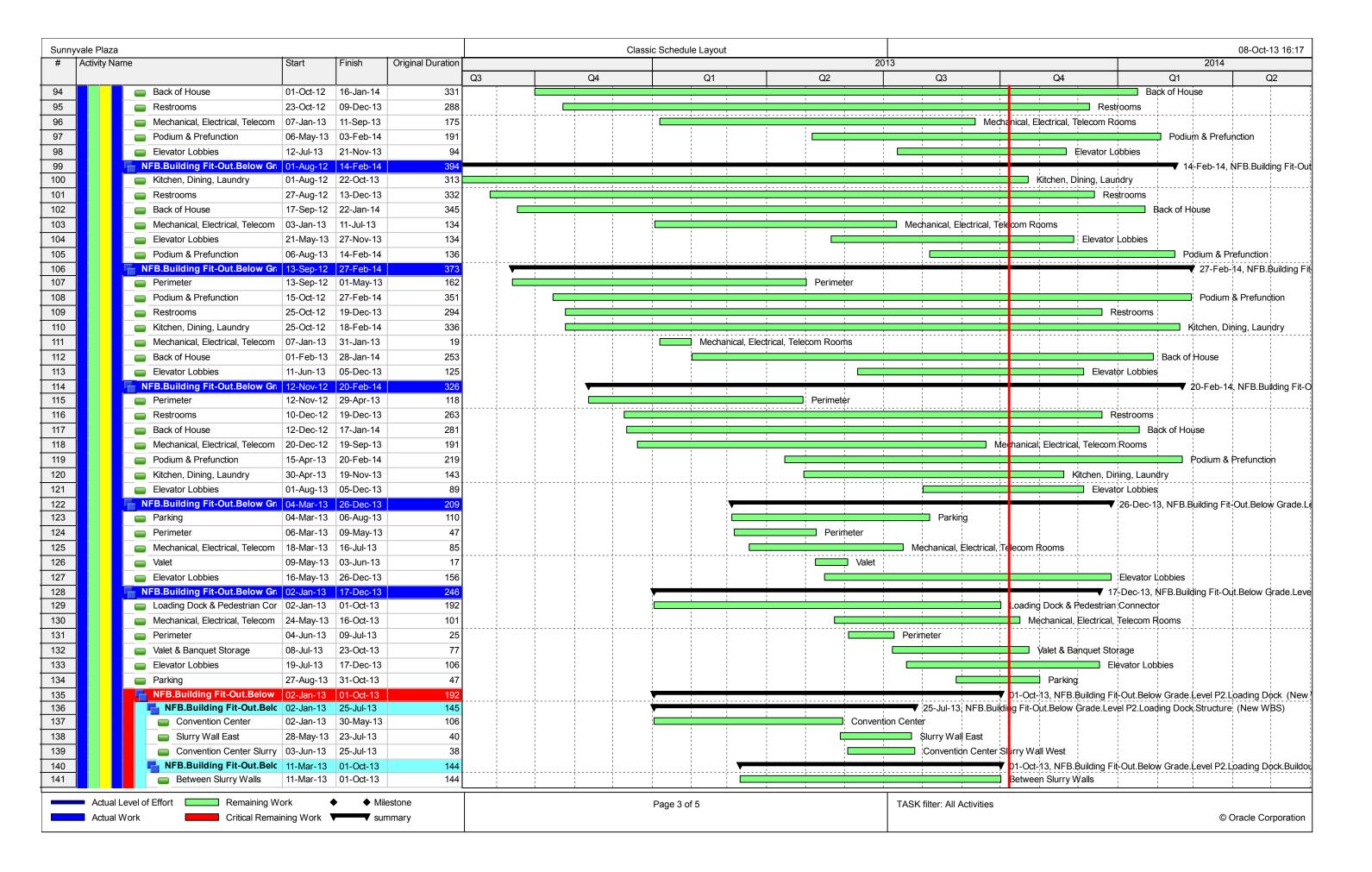
The project team expects to earn four points under the water efficiency category. Water efficient landscaping plays a major role in this category. The landscape watering needs are reduced by at least 50% due to the majority of the landscape being sidewalk. The landscape was also designed to survive without

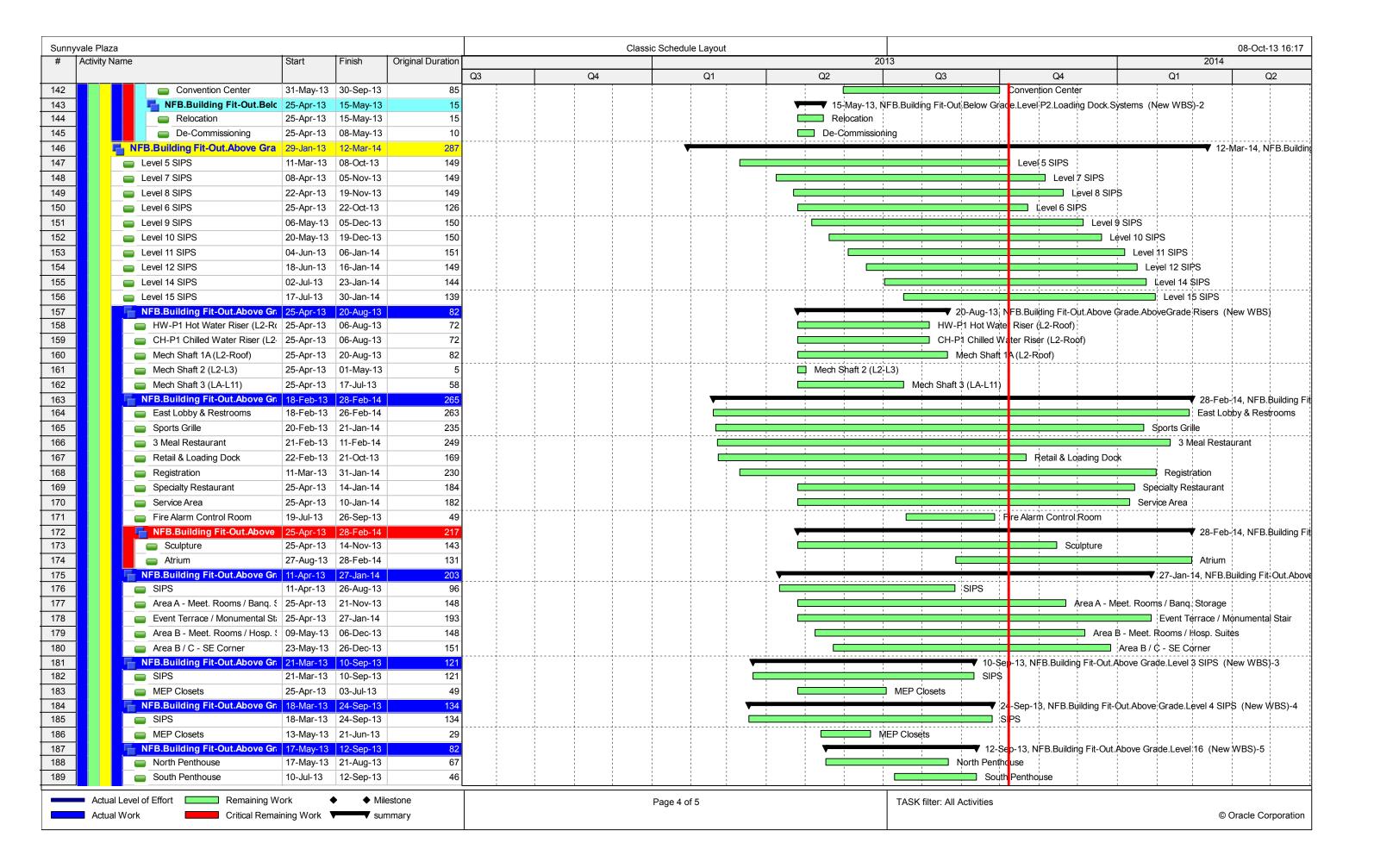
any artificial irrigation. The design will also reduce the water use by at least 30%, earning another water efficiency point.

Another seven points are expected within the Energy and Atmosphere category. These points are primarily earned through the optimizing energy performance requirement. Five of the seven points are earned by having at least 17.5% of the overall structure consist of an existing building renovation. The other two points are earned by utilizing enhanced commissioning. Measurement and verification of the buildings systems will also be completed towards the end of the construction phase. Green power was considered for Sunnyvale Plaza, and has been listed as a possible point.


The materials and resources category play an important role in the construction process. Several points are earned by monitoring construction waste, recycled content, and regional materials. At least 75% of the construction waste is diverted from standard disposal methods and at least 10% of construction waste is recycled. Construction waste management and recycled content is a difficult component for this specific project due to the small project site. There is very limited spaced surrounding the building perimeter, therefore it is difficult to maintain various dumpsters and recycling containers for all of the materials. Regional content is primarily earned through masonry construction within the hotel.


Indoor environmental quality is a crucial aspect of the hotel design. The primary goal of the hotel manager is to ensure the highest quality experience for every customer that stays at Sunnyvale Plaza. Warranting a high quality indoor environment will benefit in creating a more enjoyable atmosphere and experience for the costumer. Points are earned within the indoor air quality category by monitoring the outdoor air delivery and the thermal comfort of the hotel. The indoor air quality will also be monitored throughout the entire construction process to ensure that no harmful components are released within the building. The project team is also expecting to earn five points within the innovation and design process category, one of which is due to employing a LEED Accredited Professional as a major stakeholder on the project.


I believe that the choices made were fulfilling and efficient for the project. Pursuing other points within each category would have been more costly and disadvantageous. The most necessary factors were pursued to the fullest extent. Features comprising of alternative transportation and water efficiency will be most beneficial to the efficiency of the building and the satisfaction of the customer.


Appendix A:

Detailed Project Schedule

	a					Clas	sic Schedule Layout					08-Oct-13 16:1
Activity N		Start	Finish	Original Duration	l.				2013		2014	
					Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
)	NFB.Building Fit-Out.Above Gra						V				▼ 12-	Mar-14, NFB.Buil
	PUB Demo and Core & Shell (T			238				1 1 1	1 1 1	1 1 1	PUB Demo and Core & S	Shell (Top-Down)
			12-Mar-14	222							and the second s	B Fit-Out (Top-D
			23-Jan-14	15							General Building	
	NFB.Building Fit-Out.Site Work			164							The state of the s	NFB Building Fit-
-	Massachusetts Ave. Improvements			164					1 1			tts Ave. Improven
			21-Jan-14	87						!!!!!	L St. Improvements	1 1
-			10-Jan-14	79							9th Ave. Improverment	- 1
			22-Jan-14	28							10th St. Improvement	
-	NFB.Commissioning (New	25-Apr-13	28-Apr-14	258				V				▼ 28-A
	Commissioning	25-Apr-13	28-Mar-14	237						1 1 1		Commissioning
	Substantial Completion	28-Mar-14*	28-Mar-14	1	 		 					Substantial Co
	Hotel Open	28-Apr-14	28-Apr-14	1	-							I Hote

Appendix B:

Detailed Structural Estimate

Nathan Braskey

Witheld Witheld, Witheld Date: 01-Oct-13

Structural Estimate Year 2013 Quarter 3 Unit Detail Report

Prepared By: Nathan Braskey Penn State University

LineNumber	<i>∧</i>	Ø.	T	Description	Quantity	Unit	Total Incl.	Ext. Total Incl.
		LIP .		2 coci-provi	Quantity	Cint	O&P	O&P
Division 03 Con	crete							
032105750100	~			Splice rebar, standard, self-aligning	30,000.00	Ea.	\$17.11	\$513,300.00
022105750205			_	type, taper threaded, #4 bars	20,000,00	Ea.	\$67.64	\$2,020,200,00
032105750305				Splice rebar, standard, self-aligning type, taper threaded, #9 bars	30,000.00	Ea.	\$67.04	\$2,029,200.00
)33053401400				Structural concrete, in place, column	60.00	C.Y.	\$613.24	\$36,794.40
				(4000 psi), round, less than 2%				
				reinforcing, 24" diameter, includes				
				forms(4 uses), Grade 60 rebar,				
				concrete (Portland cement Type I),				
033053401900				placing and finishing Structural concrete, in place, elevated	13,000.00	C.Y.	\$698.68	\$9,082,840.00
,55055101700			_	slab (4000 psi), flat slab with drop	13,000.00	0.1.	φονο.σο	ψ,,002,010.00
				panels, 125 psf superimposed load,				
				20' span, includes forms(4 uses),				
				Grade 60 rebar, concrete (Portland				
				cement Type I), placing and finishing				
033105350300				Structural concrete, ready mix, normal	64,000.00	C.Y.	\$137.31	\$8,787,840.00
				weight, 4000 psi, includes local				
				aggregate, sand, Portland cement				
				(Type I) and water, delivered, excludes all additives and treatments				
033105350400				Structural concrete, ready mix, regular	13,000.00	C.Y.	\$145.89	\$1,896,570.00
			_	weight, 5000 psi, includes local	,			
				aggregate, sand, Portland cement				
				(Type I) and water, delivered,				
				excludes all additives and treatments				
033105350411				Structural concrete, ready mix, normal	22,000.00	C.Y.	\$165.51	\$3,641,220.00
				weight, 6000 PSI, includes local				
				aggregate, sand, Portland cement (Type I) and water, delivered,				
				excludes all additives and treatments				
033105350412				Structural concrete, ready mix, normal	18,000.00	C.Y.	\$270.95	\$4,877,100.00
			_	weight, 8000 PSI, includes local				
				aggregate, sand, Portland cement				
				(Type I) and water, delivered,				
			_	excludes all additives and treatments				
033105350412				Structural concrete, ready mix, normal	10,000.00	C.Y.	\$270.95	\$2,709,500.00
				weight, 8000 PSI, includes local				
				aggregate, sand, Portland cement (Type I) and water, delivered,				
				excludes all additives and treatments				
034105101400				Precast beam, rectangular, 30' span,	300.00	Ea.	\$5,662.79	\$1,698,837.00
			_	12" x 36", includes material only				
034105101450				Precast beam, rectangular, 30' span,	150.00	Ea.	\$6,798.52	\$1,019,778.00
			_	18" x 44", includes material only				
034105101500				Precast beam, rectangular, 30' span,	100.00	Ea.	\$8,225.37	\$822,537.00
Division 02 ~	. ~ -			24" x 52", includes material only				03 7 117 217 1 0
Division 03 Conc	erete Sub	ototal						\$37,115,516.40

LineNumber	^	Ø.	T	Description	Quantity	Unit	Total Incl. O&P	Ext. Total Incl. O&P
Division 05 Metal	s							
051223177350	~			Column, structural, 2-tier, W14x74, A992 steel, incl shop primer, splice plates, bolts	1,280.00	L.F.	\$128.16	\$164,044.80
051223177400	•			Column, structural, 2-tier, W14x120, A992 steel, incl shop primer, splice plates, bolts	3,433.00	L.F.	\$204.62	\$702,460.46
051223177450	•			Column, structural, 2-tier, W14x176, A992 steel, incl shop primer, splice plates, bolts	2,234.00	L.F.	\$296.95	\$663,386.30
051223700200	*			Stressed skin steel roof & ceiling system, structural, double panel arched roof, spans to 300'	32,000.00	S.F.	\$38.78	\$1,240,960.00
052123508000	~			Trusses, WT chords, 40-ton job lots, shop fabricated, incl shop primer	0.00	Ton	\$6,966.55	\$0.00
053113505200	*			Metal floor decking, steel, non-cellular, composite, galvanized, 2" D, 22 gauge	1,900,000.00	S.F.	\$2.98	\$5,662,000.00
Division 05 Metals	Subto	tal						\$8,432,851.56
Division 1B								
1B		O		Precast beam, rectangular, 30' span, 36x50	10.00	Ea.	\$8,600.00	\$86,000.00
Division 1B Subto	otal							\$86,000.00
Division 1S								
1S		O		Structural Steel Column - W14x193, W14x211, W14x233, W14x257, W14x283	3,053.00	L.F.	\$308.00	\$940,324.00
Division 1S Subto	otal							\$940,324.00
Division 2B								
2B		Ø.		Precast beam, rectangular, 30' span, 48x48	5.00	Ea.	\$8,870.00	\$44,350.00
Division 2B Subto	otal							\$44,350.00
Division 2S								
28		O		Structural Steel Columns - W14x311, W14x342, W14x370, W14x398	633.00	L.F.	\$310.00	\$196,230.00
Division 2S Subto	otal							\$196,230.00
Division 3B								
BB		Ø.		Precast beam, rectangular, 30' span,	2.00	Ea.	\$9,250.00	\$18,500.00
Division 3B Subto	otal			50x66				\$18,500.00
Division 3S								
BS		O.		Structural Steel Columns - W14x665	159.00	L.F.	\$310.00	\$49,290.00
Division 3S Subto	otal							\$49,290.00

Steel Column Takeoff

Location	W14x109	W14x120	W14x132	W14x145	W14x159	W14x176	W14x193	W14x211	W14x233	W14x257	W14x283	W14x311	W14x342	W14x90	W14x99	Grand Total
B.1-10.7	58		25													83
B.9-1.4	58	25														83
B.9-10			58		25											83
B.9-2			58	25												83
B.9-3			58	25												83
B.9-4						58		25								83
B.9-5						58		25								83
B.9-6						58		25								83
B.9-7						58		25								83
B.9-8						58		25								83
B.9-9					58	25										83
B-1.5	25													58		83
B-10									25							25
B-2				58	25											83
B-3				58	25											83
B-4				58	25											83
B-5				58	25											83
B-6				58	25											83
B-7				58	25											83
B-8				58	25											83
B-9									58							58
C.4-10.2							58		25							83
C.5-8.8										58	25					83
C.7-1.4		57		35												92
C.7-1.9		57	35													92
C.7-5				57		25										82
C.7-6							55		25							80
C.7-7					57		25									82
C.7-8						57	25									82
C-11						58	25									83
D.3-1.4		59.5		35												94.5
D.3-7				57		25										82
D.3-8						57		25								82
D.5-10.2								57		25						82
D.5-8.9										57	25					82
D-11						56		25								81
E-11						57		25								82
F-11							57	25								82
G.5-11	25													52		77
G-11							60		25							85
H.2-10.1					55.5		35									90.5
H.2-11			52		25											77
MA-M10												49	25			74
MA-M11								49	25							74
MA-M12								49	25							74
MA-M13					49	25										74
MA-M9.1												49	25			74
MF-M18	34													95 -	58.5	92.5
MG.8-M16.7														90.5		90.5
MG.8-M8.2	2.													90.5	F.C	90.5
MG-M18	34														58.5	92.5
Grand Total	234	198.5	286	640	444.5	675	340	380	208	140	50	98	50	291	117	4152

Steel Column Takeoff

Location	W14x109	W14x120	W14x132	W14x145	W14x159	W14x176	W14x193	W14x211	W14x233	W14x257	W14x283	W14x342	W14x370	W14x90	W14x99	Grand Total
MA-M14							49	25								74
MA-M15								49		25						74
MA-M15.9												49	25			74
MA-M8.3														84.5		84.5
MB-M10														28		28
MB-M11														28		28
MB-M12.1	15													43.5		58.5
MB-M12.9														43		43
MB-M14														12.5		12.5
MB-M15														12.5		12.5
MB-M15.9		43														43
MB-M16.6						60			25							85
MB-M8.3			94.5													94.5
MB-M9.1		58.5														58.5
MC-M10														29		29
MC-M11														29		29
MC-M12.1														28.5	30	58.5
MC-M12.9														52.5		52.5
MC-M14														22		22
MC-M15														22		22
MC-M15.9		52.5														52.5
MC-M16.6					57.5		35									92.5
MC-M8.3						65.5			35							100.5
MC-M9.1		59.5														59.5
MD-M10														29		29
MD-M11														29		29
MD-M12.1														29.5	30	59.5
MD-M12.9														52.5		52.5
MD-M14														22		22
MD-M15														22		22
MD-M15.9		52.5														52.5
MD-M16.6						58.5			34							92.5
MD-M8.3				55.5			35									90.5
MD-M9.1		59.5														59.5
ME-M10														22		22
ME-M11														22		22
ME-M12.1														52.5		52.5
ME-M12.9														52.5		52.5
ME-M14														22		22
ME-M15														22		22
ME-M16.6									51.5		34					85.5
ME-M8.3							84.5									84.5
ME-M9.1		52.5														52.5
ME-ME15.9		52.5														52.5
MF-M17.5			58.5			34										92.5
Grand Total	15	430.5	153	55.5	57.5	218	203.5	74	145.5	25	34	49	25	812	60	2357.5

MF-M7 MF-M7.8 MG-M10 MG-M11 MG-M12 MG-M13 MG-M14 MG-M15 MG-M15.9 MG-M16.6 MG-M7 MG-M7.8 MG-M7 MG-M7.8 MG-M9.1 MH-M10 MH-M11 MH-M12 MH-M12 MH-M13 MH-M14 MH-M15 MH-M16 MH-M17.3 MH-M16 MH-M17.3 MH-M18 MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M12 MJ-M11 MJ-M12 MJ-M11	61	56.5	34	34 34 56.5 56.5 56.5	95		34 34 34 34	34	34 77 35		46 47 46 75.5	79.5 34 34	34 34 34	46	79.5	95 95 79.5 80 80 81 81 80 79.5 79.5 90.5 92 93 77 79.5 90.5
MG-M10 MG-M11 MG-M12 MG-M13 MG-M14 MG-M15 MG-M15 MG-M15.9 MG-M16.6 MG-M17.5 MG-M7 MG-M7 MG-M7 MG-M8.3 MG-M9.1 MH-M10 MH-M11 MH-M12 MH-M12 MH-M13 MH-M14 MH-M15 MH-M16 MH-M17.3 MH-M18 MH-M18 MH-M18 MH-M9 MJ-M10 MJ-M11 MJ-M11 MJ-M11	61		34	56.5 56.5 56.5			34		77		46	34	34			79.5 80 80 81 81 80 79.5 79.5 90.5 92 93 77 79.5 90.5 110.5
MG-M10 MG-M11 MG-M12 MG-M13 MG-M14 MG-M15 MG-M15.9 MG-M16.6 MG-M17.5 MG-M7 MG-M7 MG-M7.8 MG-M8.3 MG-M9.1 MH-M10 MH-M11 MH-M12 MH-M13 MH-M14 MH-M15 MH-M15 MH-M16 MH-M17.3 MH-M18 MH-M18 MH-M9 MJ-M10 MJ-M11 MJ-M11 MJ-M11				56.5 56.5 56.5			34		77		46	34	34			80 80 81 81 80 79.5 79.5 90.5 92 93 77 79.5 90.5
MG-M12 MG-M13 MG-M14 MG-M15 MG-M15.9 MG-M16.6 MG-M17.5 MG-M7 MG-M7.8 MG-M8.3 MG-M9.1 MH-M10 MH-M11 MH-M12 MH-M13 MH-M14 MH-M15 MH-M15 MH-M16 MH-M17.3 MH-M18 MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M11 MJ-M12				56.5 56.5 56.5			34		77		46		34			80 81 81 80 79.5 79.5 90.5 92 93 77 79.5 90.5
MG-M13 MG-M14 MG-M15 MG-M15.9 MG-M16.6 MG-M17.5 MG-M7 MG-M7.8 MG-M8.3 MG-M9.1 MH-M10 MH-M11 MH-M12 MH-M13 MH-M14 MH-M15 MH-M15 MH-M16 MH-M17.3 MH-M18 MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M12				56.5 56.5 56.5			34		77		46			47		81 80 79.5 79.5 90.5 92 93 77 79.5 90.5
MG-M13 MG-M14 MG-M15 MG-M15.9 MG-M16.6 MG-M17.5 MG-M7 MG-M7.8 MG-M8.3 MG-M9.1 MH-M10 MH-M11 MH-M12 MH-M13 MH-M14 MH-M15 MH-M15 MH-M16 MH-M17.3 MH-M18 MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M12				56.5 56.5 56.5			34		77		46		34	47		81 80 79.5 79.5 90.5 92 93 77 79.5 90.5
MG-M15 MG-M15.9 MG-M16.6 MG-M17.5 MG-M7 MG-M7.8 MG-M8.3 MG-M9.1 MH-M10 MH-M11 MH-M12 MH-M13 MH-M14 MH-M15 MH-M16 MH-M17.3 MH-M18 MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M11 MJ-M12				56.5 56.5 56.5			34		77			34	34	47		80 79.5 79.5 90.5 92 93 77 79.5 90.5
MG-M15 MG-M15.9 MG-M16.6 MG-M17.5 MG-M7 MG-M7.8 MG-M8.3 MG-M9.1 MH-M10 MH-M11 MH-M12 MH-M13 MH-M14 MH-M15 MH-M16 MH-M17.3 MH-M18 MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M12				56.5 56.5 56.5			34		77			34				80 79.5 79.5 90.5 92 93 77 79.5 90.5
MG-M16.6 MG-M17.5 MG-M7 MG-M7.8 MG-M8.3 MG-M9.1 MH-M10 MH-M11 MH-M12 MH-M13 MH-M14 MH-M15 MH-M16 MH-M17.3 MH-M18 MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M12				56.5 56.5 56.5			34		77		75.5					79.5 90.5 92 93 77 79.5 90.5
MG-M16.6 MG-M17.5 MG-M7 MG-M7.8 MG-M8.3 MG-M9.1 MH-M10 MH-M11 MH-M12 MH-M13 MH-M14 MH-M15 MH-M16 MH-M17.3 MH-M18 MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M12				56.5 56.5 56.5			34		77		75.5				79.5	79.5 90.5 92 93 77 79.5 90.5
MG-M17.5 MG-M7 MG-M7.8 MG-M8.3 MG-M9.1 MH-M10 MH-M11 MH-M12 MH-M13 MH-M14 MH-M15 MH-M16 MH-M17.3 MH-M18 MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M12				56.5 56.5 56.5			34		77		75.5				79.5	90.5 92 93 77 79.5 90.5 110.5
MG-M7 MG-M7.8 MG-M8.3 MG-M9.1 MH-M10 MH-M11 MH-M12 MH-M13 MH-M14 MH-M15 MH-M16 MH-M17.3 MH-M16 MH-M17.3 MH-M18 MH-M9 MJ-M10 MJ-M11 MJ-M11				56.5 56.5 56.5			34	58	77		75.5				79.5	92 93 77 79.5 90.5 110.5
MG-M7.8 MG-M8.3 MG-M9.1 MH-M10 MH-M11 MH-M12 MH-M13 MH-M14 MH-M15 MH-M16 MH-M17.3 MH-M16 MH-M17.3 MH-M18 MH-M10 MJ-M10 MJ-M11 MJ-M11		59		56.5 56.5 56.5			34		77		75.5				79.5	93 77 79.5 90.5 110.5
MG-M8.3 MG-M9.1 MH-M10 MH-M11 MH-M12 MH-M13 MH-M14 MH-M15 MH-M16 MH-M17.3 MH-M16 MH-M17.3 MH-M18 MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M11				56.5 56.5 56.5			34				75.5				79.5	77 79.5 90.5 110.5
MG-M9.1 MH-M10 MH-M11 MH-M12 MH-M13 MH-M14 MH-M15 MH-M16 MH-M17.3 MH-M18 MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M11				56.5 56.5			34				75.5				79.5	79.5 90.5 110.5
MH-M10 MH-M11 MH-M12 MH-M13 MH-M14 MH-M15 MH-M16 MH-M17.3 MH-M17.3 MH-M18 MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M12				56.5 56.5			34		35		75.5					90.5 110.5
MH-M11 MH-M12 MH-M13 MH-M14 MH-M15 MH-M16 MH-M17.3 MH-M18 MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M12				56.5 56.5			34		35		75.5					110.5
MH-M12 MH-M13 MH-M14 MH-M15 MH-M16 MH-M17.3 MH-M18 MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M12				56.5												
MH-M13 MH-M14 MH-M15 MH-M16 MH-M17.3 MH-M18 MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M12				56.5												90.5
MH-M14 MH-M15 MH-M16 MH-M17.3 MH-M18 MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M12																90.5
MH-M15 MH-M16 MH-M17.3 MH-M18 MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M12						I			35		75.5					110.5
MH-M16 MH-M17.3 MH-M18 MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M12				57.5			34				7.5.5					91.5
MH-M17.3 MH-M18 MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M11									56.5		34					90.5
MH-M18 MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M12					56.5			34								90.5
MH-M7.6 MH-M9 MJ-M10 MJ-M11 MJ-M12			57.5	34												91.5
MH-M9 MJ-M10 MJ-M11 MJ-M12			57.15			58	34									92
MJ-M10 MJ-M11 MJ-M12								62		34						96
MJ-M11 MJ-M12						51				<u> </u>	34					85
MJ-M12						50				34	3.					84
						50				34						84
						50				<u> </u>	34					84
MJ-M14						50				34	31					84
MJ-M15						50				J .	34					84
MJ-M16						30			51		J.		34			85
MJ-M17.3					56.5				<u> </u>	34			J.			90.5
MJ-M18			56.5		55.5	34				37						90.5
MJ-M7.6			30.3			58				34						92
MJ-M9						30		55.5		J-		34				89.5
RE-R3						57		25				34				82
RE-R4					57	57	25	2.3								82
RG-R4					37	49	23	25								74
Grand Total					265	557	240.5	293.5	288.5	204	426	181.5	136	93	159	3497.5

01B01 01B02 01B03 01B04			16	18	30	18	81	16 24	18 24	42	20 18	32	23 46	24 24	30	36	40	46	51	36 30	48	Grand Total
01B03										70												70
										70												70
01004																		102				102
UIDU4																		102				102
01B05															67							67
01B06													98									98
01B07																		102				102
01B08														53								53
01B09														53								53
01B10														53								53
01B11														53								53
01B12														53								53
01B13														53								53
01B14														53								53
01B17									40					33								40
01B15 01B16									40													40
01B10 01B17									40						67							67
01B17 01B18														E 2	07							53
01B19														53								53
														53								
01B20														53	6							53
01B21															67							67
01B22																			113			113
01B23																			113			113
01B24														53								53
01B25							105															105
01B26							105															105
01B27																					213	213
01B28																					213	213
01B29																					213	213
01B30																				100		100
01B31																	89					89
02B1				20																		20
02B10								36														36
02B11								36														36
02B12								36														36
02B13								36														36
02B14								36														36
02B15			36																			36
02B16								36														36
02B17								50								80						80
02B18		16														00						16
02B19		10		20																		20
02B2			18	20																		18
02B2 02B20			10			23																23
02B21						23		36														23
02B22				20				36														36
02B23				20																		20
02B24			18																			18
02B25			18																			18
02B26				20																		20
02B27			18																			18
02B28		16																				16
02B29		16																				16
02B3		16																				16
02B30		16																				16
02B31		16																				16
02B32				20																		20
02B33												59										59
02B34												59										59
02B35											33											33
02B36					33																	33
02B37		16																				16
02B38		10			33																	33
02B39	13				33																	13
Grand Total	13	109	107	100	67	47	210	249	80	140	33	119	98	587	200	80	89	307	227	100	640	3600

	12						14		16		18		20	24	Grand Total
Row Labels	14	16	18	20	24	30	18	24	18	24	18	24	24	24	
02B4		18													18
02B40					27										27
02B41		18													18
02B42					27										27
02B43			20												20
02B44													44		44
02B45													44		44
02B46													44		44
02B5														53	53
02B50										36					36
02B51										36					36
02B52										36					36
02B53										36					36
02B54					27										27
02B55					27										27
02B56								31							31
02B57								31							31
02B58			20												20
02B59			20												20
02B6			20					24							20
02B7								31							31
02B8													44		44
02B9					27						20				27
03B1		40									30				30
03B10		18													18
03B11		18													18
03B12		18													18
03B13		18													18
03B14		18	20												18
03B16			20				22								20
03B17					27		23								23
03B18	1.0				27										27
03B19	16										20				16
03B2			20								30				30
03B20 03B21			20		27										20 27
03B3					21						30				30
03B3 03B4											30				30
03B4 03B5		18									30				
03B5 03B6		18							27						18 27
			20						21						
03B7			20					21							20
03B8 03B9		10						31							31 18
		18				22									
04B1 09B1			20			33									33 20
10B1			20 20												20
10B1 10B2		18	20												18
		19										40			40
10B3 10B4												40			40
10B4 10B5							23					40			23
1085 11B1			20				23								23
11B1 11B2			20												20
11B2 11B3			20												20
11B3 11B4			20												20
11B4 12B1			20												20
12B1 12B2		18	20												18
12B2 14B1		18													18
14B1 14B2		18													18
14B2 14B3		18													18
14B3 14B4		18													18
14B4 14B5		18													18
14B5 14B7		10		22											22
14B7 14B8				22											22
1488 15B1		18		22											18
Grand Total	16	302	280	44	187	33	47	124	27	142	120	80	178	53	1633
Grand Total	10	302	200		107	,,,	٦/	144		172	120	00	1/0	- 53	1033

Row Labels	8 16	12 14	16	18	21	30	37	47	14 12	18	24	30	47	63	16 63	18 40	45	21 47	24 18	24	25	37	47	36 24	Grand Total
15B2			18																						18
15B3			18																						18
15B4			18																						18
15B5			18																						18
15B6			18																						18
16B10													61												61
16B11													61												61
16B12													61												61
16B13													61												61
16B17											31														31
16B18			18																						18
16B19					23																				23
16B2			18																						18
16B20																					56				56
16B21											31										30				31
16B22			18								31														18
16B23			10																				104		104
16B23 16B24																		91					104		91
														00				91							
16B25														82											82
16B25A														82											82
16B26														82											82
16B27														82											82
16B27A														82											82
16B28															93										93
16B29														82											82
16B3			18																						18
16B30														82											82
16B31														82											82
16B32							41																		41
16B33							41																		41
16B34							41																		41
16B35								52																	52
16B36								52																	52
16B37																		91							91
16B38										23															23
16B39		16																							16
16B40					23																				23
16B41				20	23																				20
16B42	12			20																					12
16B43	12								16																16
									10										40						
16B44												20							40						40
16B45												39				67									39
16B46		4.0														67									67
16B5		16																							16
16B6				20																					20
16B7					23																				23
16B9													61												61
MB1						33																			33
MB2						33																			33
MB3						33																			33
MB4						33																			33
PHB1																								80	80
PHB12											31														31
PHB13											31														31
PHB14											31														31
PHB2																								80	80
PHB22																	75								75
PHB23																	, 3			53					53
PHB24																				53					53
PHB24 PHB25																									53
																				53					
PHB26																				53		0.2			53
PHB27																						82		00	82
PHB3																								80	80
PHB31																				53					53
Grand Total	12	31	160	40	70	133	123	104	16	23	156	39	305	653	93	67	75	183	40	267	56	82	104	240	3072

	8	12								18		20	24				36		50	Grand Total
Row Labels	24	14	16	18	24	42	79	83	97	24	45	24	24	37	45	53	60	72	66	
PHB32											75									75
PHB33											75									75
PHB34											75									75
PHB35											75									75
PHB36											75									75
PHB37											75									75
PHB38													53							53
PHB40					27															27
PHB42												44								44
PHB43						47														47
PHB44														82						82
PHB45							88													88
PHB46						47														47
PHB49															100					100
PHB50																118				118
PHB51			18																	18
PHB52					27															27
PHB53		16																		16
PHB54		10		20																20
PHB55				20					108											108
PHB56								92	100											92
TB1				20				32												20
TB10			18	20																18
TB10			18	20																20
				20																
TB12				20																20
TB13				20																20
TB14				20																20
TB15				20																20
TB16				20																20
TB17				20																20
TB18	18																			18
TB19		16																		16
TB2				20																20
TB20				20																20
TB21		16																		16
TB22		16																		16
TB23			18																	18
TB24			18																	18
TB25		16																		16
TB26		16																		16
TB27				20																20
TB28		16																		16
TB29				20																20
TB3				20																20
TB30		16																		16
TB31		16																		16
TB32		16																		16
TB33				20																20
TB34				20																20
TB35				20																20
TB36				20																20
TB37										40										40
TB38		16																		16
TB4		16																		16
TB5		16																		16
TB6		16																		16
TB7		16																		16
TB8		16																		16
TB9		10	18																	18
			18																200	
TG101																		240	306	306
TG102																	200	240		240
TG104																	200			200
TG105																			306	306
TG106																		240		240
Grand Total	18	249	89	360	53	93	88	92	108	40	450	44	53	82	100	118	200	480	611	3329

		18		20		28		30	44	Grand Total
Row Labels	16 16	18	20	18	28	20	30	28	40	
1-RA		41								41
1-RB		41								41
B.1-10.8					220					220
B.1-11.9					220					220
B.9-1					254			26		280
B.9-1.4					289					289
B.9-10					289					289
B.9-10.7	8									8
B.9-2					289					289
B.9-3					289					289
B.9-4					289					289
B.9-5					289					289
B.9-6					289					289
B.9-7					289					289
B.9-8					289					289
B.9-9					289					289
B-1				22	225			26		273
B-1.5				22	237			20		259
B-10				22	237					259
B-2				22	237					259
B-3				22						259
B-4					237					259
				22	237					
B-5				22	237					259
B-6				22	237					259
B-7				22	237					259
B-8				22	237					259
B-9				22	237					259
C.7-1					271					271
C.7-1.4					289					289
C.7-2 / C.7-1.9					289					289
C.7-3					271					271
C.7-4					271					271
C.7-5					289					289
C.7-6					289					289
C.7-7					289					289
C.7-8					289					289
C-11						271				271
C-12			174							174
D.3-1					271					271
D.3-1.4					289					289
D.3-2					289					289
D.3-3					289					289
D.3-4					289					289
D.3-5					289					289
D.3-6					289					289
D.3-7					289					289
D.3-8					52	237				289
D-11						271				271
D-12			174							174
E-11			152			35				187
E-12			22			237				259
F-11			152			35				187
F-12			22			237				259
G-11			152			35				187
G-12			22			237				259
H.2-10.1						271				271
H-11						271				271
H-12			174			_,_				174
J-11			1,7			35	355			390
J-11 J-12						220	333		54	274
Grand Total	8	82	1047	244	11062	2390	355	52	54	15294

	20				28	Grand Total
Row Labels	14	18	20	28	20	Grand rotal
J-9.9		10			271	271
M10-MF				289	2/1	289
M10-MG	9			271		280
M10-MG.7	, ,			35		35
M10-MH				237		237
M10-MJ				220		220
M11-MF	0			289		289
M11-MG	9			271		280
M11-MG.7				17		17
M11-MH				220		220
M11-MJ				220		220
M12-MF				289		289
M12-MG	9			271		280
M12-MG.7				17		17
M12-MH				220		220
M12-MJ				220		220
M13-MF				289		289
M13-MG	9			271		280
M13-MG.7				17		17
M13-MH				220		220
M13-MJ				220		220
M14-MF				289		289
M14-MG	9			271		280
M14-MG.7				17		17
M14-MH				220		220
M14-MJ				220		220
M15-MF				289		289
M15-MG	9			271		280
M15-MG.7	Ĭ			17		17
M15-MH				237		237
M15-MJ				220		220
M16.7-MF				289		289
M16.7-MG	9			271		280
M16-MF	9			289		289
M16-MG	9			271		280
	9					
M16-MG.7				35		35
M16-MH				237		237
M16-MJ				220		220
M17.5-MF		174		17		192
M17.5-MG	9			271		280
M17-MG.7				237		237
M17-MH				237		237
M17-MJ				185		185
M18-MF		174				174
M18-MG				271		271
M18-MG.7				237		237
M18-MH				237		237
M18-MJ				185		185
M19-MF		56				56
M19-MG				271		271
M19-MG.7				52		52
M19-MH				237		237
M19-MJ				185		185
M3-E.9				237		237
M3-MJ				220		220
M4-E.9				237		237
M4-MH				237		237
M4-MJ				220		220
M5-MG.3			169	220		169
M5-MH			103	237		237
Grand Total	78	404	169	11769	271	12691
Granu rotal	70	404	103	11/02	2/1	12031

	12		16	18	20					28	Grand Total
Row Labels	12	25	16	18	14	18	28	36	48	20	Grana rotar
M5-MJ							220				220
M6-MF						174					174
M6-MG							271				271
M6-MH							237				237
M6-MJ							220				220
M7.1-E.8				41			220				41
M7.3-MF				71		174					174
M7.3-MG						1/4	271				271
M7.6-MH							2/1		121		121
M7.6-MJ							71		121		71
				41			/1				41
M7.8-E.8											
M7.8-ME				41				04			41
M7.8-MF								91			91
M7-MF						174					174
M7-MG							271				271
M7-MG.7							237				237
M7-MH							237				237
M7-MJ							220				220
M8.2-MF							289				289
M8.2-MG							289				289
M8-MG.7							237				237
M8-MH							237				237
M9-MF							289				289
M9-MG					9		271				280
M9-MG.7							35				35
M9-MH							237				237
M9-MJ							220				220
ME-9.9			92				220				92
R.4-9.9			8								8
			0							271	
R1-ME										271	271
R1-RA		9								271	281
R1-RB		9								271	281
R1-RC		9								271	281
R1-RD		9								271	281
R2-ME										271	271
R2-RA										271	271
R2-RB										271	271
R2-RC										271	271
R2-RD										271	271
R3-ME										271	271
R3-RE										271	271
R3-RG										271	271
R3-RJ										271	271
R3-RL										271	271
R3-RN										271	271
R4-ME		9								271	281
R4-RE		9								271	281
R4-RF		9									9
R4-RG		9					237			35	281
R4-RH		9					237			33	9
R4-RJ		9					237			35	281
R4-RK		9					237			33	
R4-RL		9					227			25	9 281
							237			35	
R4-RM		9								2=4	9
R4-RN		9								271	281
R4-RP		9								271	281
RP.3-9.9			8								8
S12LP	18										18
Grand Total	18	139	108	123	9	523	5066	91	121	5531	11730

	23	24		26	Grand Total
Row Labels	23	24	28	26	
B.1-10.7			149		149
B.9-1.4			149		149
B.9-10			149		149
B.9-2			149		149
B.9-3			149		149
B.9-4			149		149
B.9-5			149		149
B.9-6			149		149
B.9-7			149		149
B.9-8			149		149
B.9-9			149		149
B-1.5	118				118
B-10			149		149
B-2			149		149
B-3			149		149
B-4			149		149
B-5			149		149
B-6			149		149
B-7			149		149
B-8			149		149
B-9			149		149
C.4-10.2			_	150	150
C.5-8.8				150	150
C.7-1.4			174		174
C7-1.9			174		174
C.7-5			149		149
C.7-6			149		149
C.7-7			149		149
C.7-8			149		149
C-11			149		149
D.3-1.4			174		174
D.3-7			149		149
D.3-8			149		149
D.5-10.2				150	150
D.5-8.9				150	150
D-11			149		149
E-11			149		149
F-11			149		149
G.5-11		128			128
G-11			149		149
H.2-10.1			174		174
Grand Total	118	128	5326	601	6173

	24		26	28	Grand Total
Row Labels	24	28	26	28	
H.2-11	128				128
MA-M10				145	145
MA-M11				145	145
MA-M12				145	145
MA-M13				145	145
MA-M14				145	145
MA-M15				145	145
MA-M15.9				145	145
MA-M8.3				174	174
MA-M9.1				145	145
MB-M10	21				21
MB-M11	21				21
MB-M12.1	64				64
MB-M12.9	64				64
MB-M14	21				21
MB-M15	21				21
MB-M15.9	64				64
MB-M16.6			150		150
MB-M8.3	149				149
MB-M9.1	64				64
MC-M10	43				43
MC-M11	43				43
MC-M12.1	85				85
MC-M12.9	85				85
MC-M14	43				43
MC-M15	43				43
MC-M15.9	85				85
MC-M16.6			175		175
MC-M8.3			175		175
MC-M9.1	85				85
MD-M10	43				43
MD-M11	43				43
MD-M12.1	85				85
MD-M12.9	85				85
MD-M14	43				43
MD-M15	43				43
MD-M8.3			175		175
MD-M9.1	85				85
RE-R3		149			149
RE-R4		149			149
RG-R4				174	174
Grand Total	1557	299	676	1510	4042

Slurry Wall Steel Deck Takeoff

Slurry Wall Volume		
Perimeter	167	Feet
Perimeter	1667	Feet
Total Perimeter	1833	Feet
Width	8	Feet
Area	13750	Sq. Ft.
Depth	124	Feet
Volume		
	1705000	Feet
	63148	Yards

Steel Deck Area	
Level	Area
P2	95000
P1	95000
M4	95000
M3	95000
M2	95000
M1	95000
Α	95000
1	83,000
2	75000
3	75000
4	75000
5	75000
6	75000
7	75000
8	75000
9	75000
10	75000
11	75000
12	75000
13	75000
14	75000
15	75000
16	75000
Total:	1873000
Cubic Feet	312166.6667
Cubic Yards	11561.73

Appendix C: Assemblies MEP Estimate

Nathan Braskey

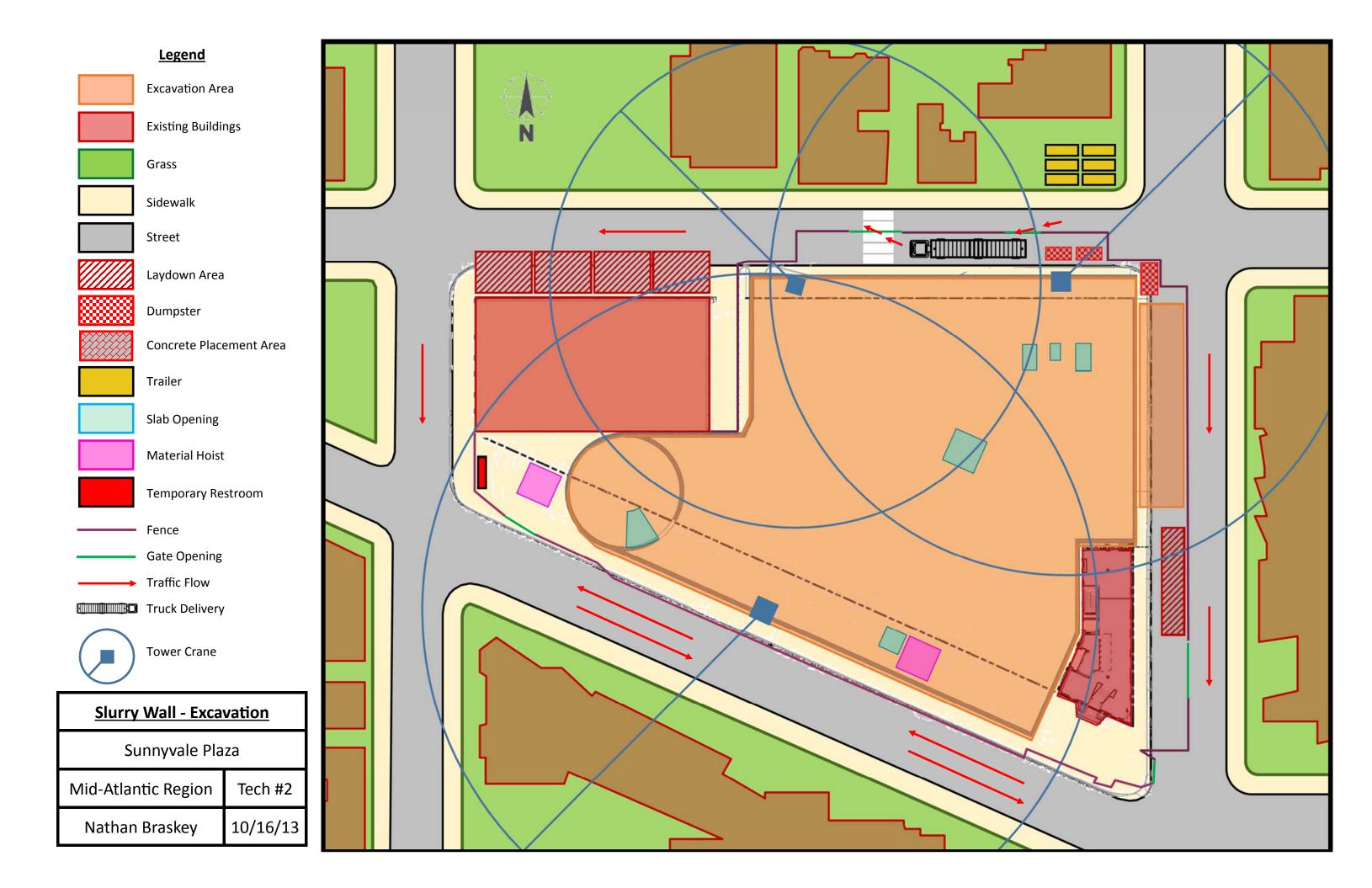
Date: 07-Oct-13

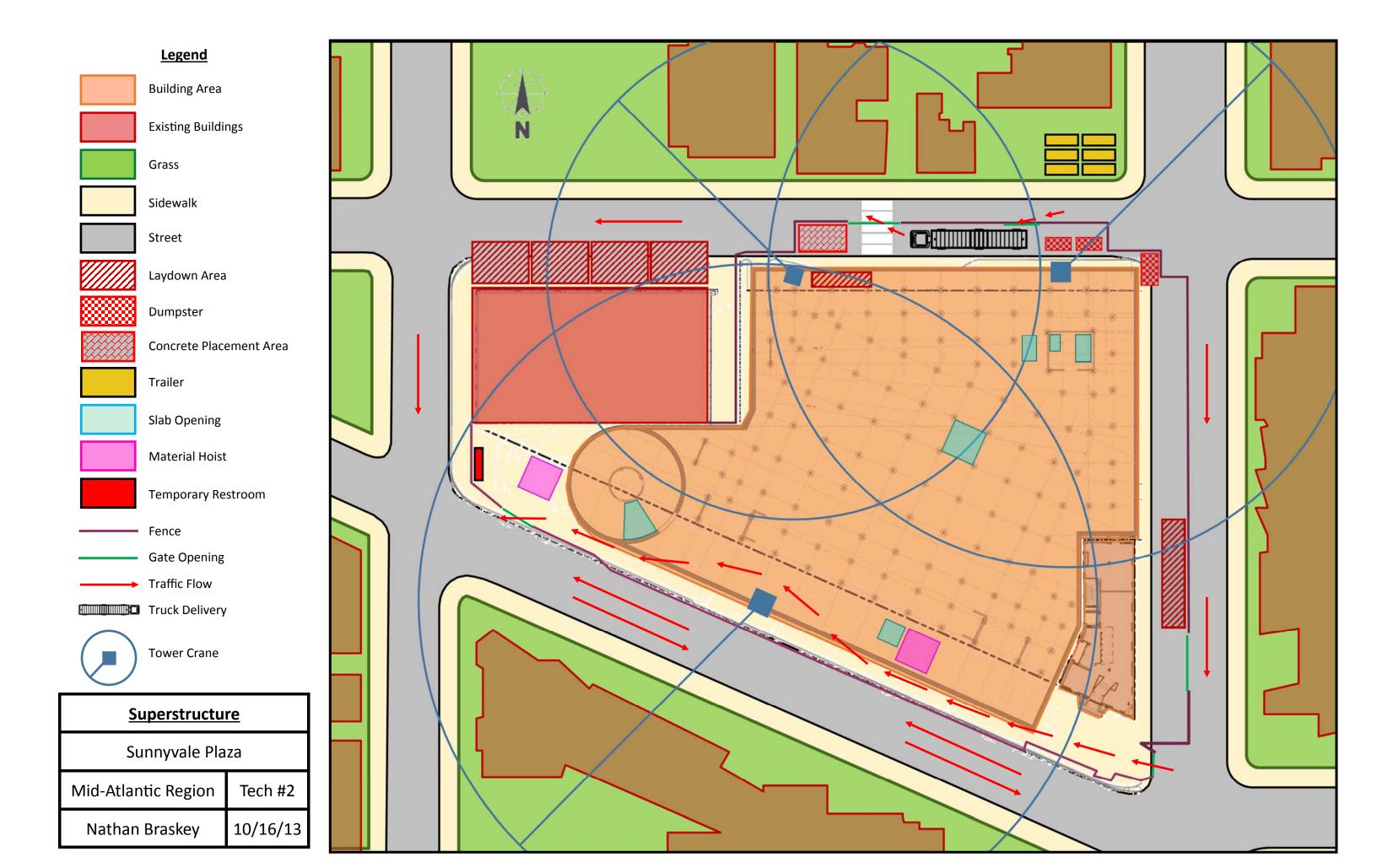
Assemblies MEP Estimate Year 2013 Quarter 3 Assembly Detail Report Prepared By: John Smith PSU

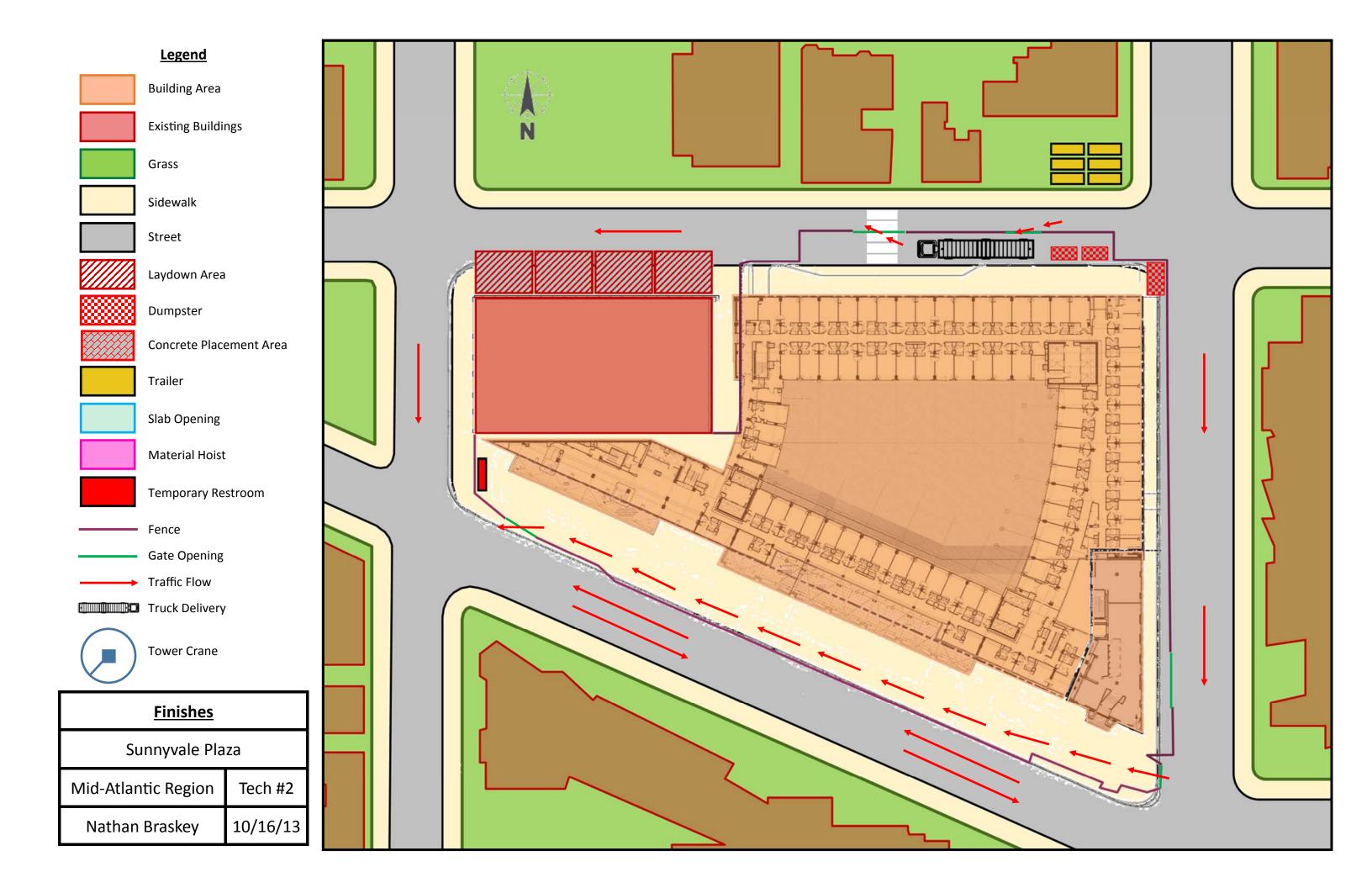
Assembly Number	ØT	Description	Quantity	Unit	Total Incl. O&P	Ext. Total Incl. O&P
A Substructure						
A10000000000		Strip footings	8.00	S.F.	\$0.00	\$0.00
A Substructure Sul	btotal					\$0.00
D Services						
D20202502260		Gas fired water heater, commercial, 100< F rise, 600 MBH input, 576 GPH	30.00	Ea.	\$28,350.00	\$850,500.00
D20402102040		Roof drain, DWV PVC, 4" diam, diam, 10' high	14.00	Ea.	\$1,325.00	\$18,550.00
D20402102080		Roof drain, DWV PVC, 4" diam, for each additional foot add	215.00	Ea.	\$34.65	\$7,449.75
D20908101400		Copper tubing, hard temper, solder, type K, 4" diameter	66,140.00	L.F.	\$164.00	\$10,846,960.00
D30105101880		Apartment building heating system, fin tube radiation, forced hot water, 30,000 SF area,300,000 CF vol	752,000.00	S.F.	\$8.07	\$6,068,640.00
D30106842560		Solar passive heating, direct gain, 2'-6" x 5', double glazed window, one panel wide	3,200.00	Ea.	\$1,110.00	\$3,552,000.00
D30201041560		Large heating systems, electric boilers, hydronic, 223,300 SF, 3,600 KW, 12,283 MBH, 14 floors	752,000.00	S.F.	\$8.36	\$6,286,720.00
D30301154400		Packaged chiller, water cooled, with fan coil unit, schools and colleges, 4,000 SF, 15.33 ton	752,000.00	S.F.	\$20.90	\$15,716,800.00
D30501704000		Splt sys, air cooled condensing unit, schools and colleges, 1,000 SF, 3.83 ton	752,000.00	S.F.	\$9.62	\$7,234,240.00
D50102400560		Switchgear installation, incl switchboard, panels & circuit breaker, 277/480 V, 1000 A	9.00	Ea.	\$30,475.00	\$274,275.00
D50102400620		Switchgear installation, incl switchboard, panels & circuit breaker, 277/480 V, 2000 A	2.00	Ea.	\$51,975.00	\$103,950.00
D50102503020		Panelboard, 4 wire w/conductor & conduit, NQOD, 120/208 V, 400 A, 10 stories, 75' horizontal	2.20		\$32,700.00	\$71,940.00
D50201150200		Receptacle systems, underfloor duct, 5' on center, low density	752,000.00	S.F.	\$10.07	\$7,572,640.00
D50202080640		Fluorescent fixtures, type A, 23 fixtures per 1600 SF	752,000.00	S.F.	\$7.53	\$5,662,560.00
D Services Subtota	l					\$64,267,224.75
F Special Construc	ction					
F10405100100		Special construction, tanks, steel, ground level, 100,000 gal	23.00	Ea.	\$226,500.00	\$5,209,500.00
F Special Construc	ction Sub	tota				\$5,209,500.00

Plumbing Assemblies Takeoff

Level	Restrooms	Water Closets	Sinks	Showers	Drains	Urinals
P2	1	1	1	-	1	-
P1	8	53	35	1	16	10
M4	3	22	15	1	8	4
M3	6	49	32	1	18	10
M2	5	24	16	1	10	4
M1	2	10	8	9	4	2
Α	7	27	19	3	10	11
1	5	20	14	3	6	3
2	45	45	45	45	-	-
3	104	104	104	104	-	-
4	111	111	111	111	-	-
5	104	104	104	104	-	-
6	111	111	111	111	-	-
7	111	111	111	111	-	-
8	111	111	111	111	-	-
9	111	111	111	111	-	-
10	104	104	104	104	-	-
11	104	104	104	104	-	-
12	104	104	104	104	-	-
14	104	104	104	104	-	-
15	104	104	104	104	-	-


Level	Vertical Runs	Height	Vertical Pipe	Horizontal Pipe	Total Linear Feet
P2	100	12.5	1250	200	1450
P1	100	12.5	1250	200	1450
M4	100	12.5	1250	600	1850
M3	200	10	2000	700	2700
M2	200	12.5	2500	750	3250
M1	150	12.5	1875	500	2375
Α	150	10	1500	500	2000
1	450	10	4500	900	5400
2	450	10	4500	400	4900
3	330	8.5	2805	300	3105
4	330	9	2970	300	3270
5	330	8.5	2805	300	3105
6	330	8.5	2805	300	3105
7	330	9	2970	300	3270
8	330	8.5	2805	300	3105
9	330	8.5	2805	300	3105
10	330	9	2970	300	3270
11	330	8.5	2805	300	3105
12	330	8.5	2805	300	3105
14	330	9	2970	300	3270
15	250	9	2250	200	2450
16	200	12.5	2500	1000	3500
Total	5980	219.5	56890	9250	66140


Plumbing Assemblies Takeoff


Level	Fixtures	Sq. Ft.	Fixture / Sq. Ft.	1000	1600	2000	3000	4000
P2	150	50000	0.003	3	5	6	9	12
P1	150	50000	0.003	3	5	6	9	12
M4	353	21500	0.016	16	26	33	49	66
M3	353	21500	0.016	16	26	33	49	66
M2	353	21500	0.016	16	26	33	49	66
M1	353	21500	0.016	16	26	33	49	66
Α	353	21500	0.016	16	26	33	49	66
1	150	30000	0.005	5	8	10	15	20
2	150	30000	0.005	5	8	10	15	20
3	280	30000	0.009	9	15	19	28	37
4	280	30000	0.009	9	15	19	28	37
5	280	30000	0.009	9	15	19	28	37
6	280	30000	0.009	9	15	19	28	37
7	280	30000	0.009	9	15	19	28	37
8	280	30000	0.009	9	15	19	28	37
9	280	30000	0.009	9	15	19	28	37
10	280	30000	0.009	9	15	19	28	37
11	280	30000	0.009	9	15	19	28	37
12	280	30000	0.009	9	15	19	28	37
14	280	30000	0.009	9	15	19	28	37
15	280	30000	0.009	9	15	19	28	37
16	280	30000	0.009	9	15	19	28	37
Total	6005	657500	0.219	10	16	20	30	40

Appendix D:

Detailed Site Layout Planning

Appendix E:

General Conditions Estimate

Division 01 General Requirements Subtotal

Nathan Braskey

Date: 08-Oct-13

General Conditions Estimate Year 2013 Quarter 3 Unit Detail Report Prepared By: John Smith PSU

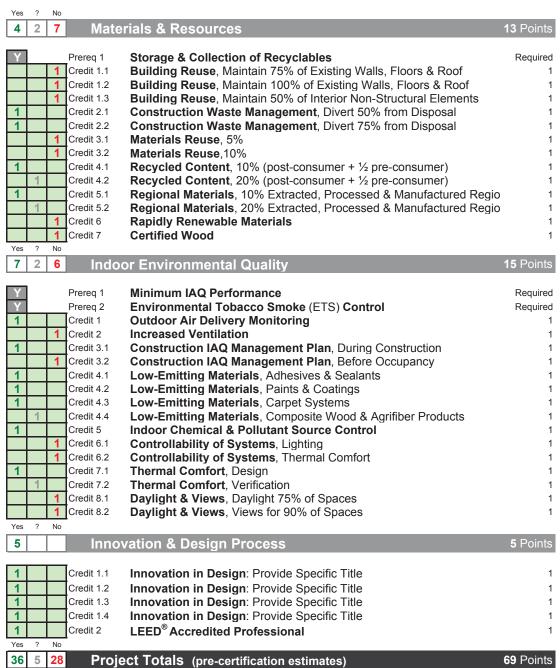
LineNumber	*	Ø.	T	Description	Quantity	Unit	Total Incl. O&P	Ext. Total Incl. O&P
Division 01 Gen	eral Requ	uiremen	ts					
013113200120				Field personnel, field engineer,	950.00	Week	\$2,050.00	\$1,947,500.00
			_	average				
013113200140				Field personnel, field engineer, maximum	190.00	Week	\$2,325.00	\$441,750.00
013113200180				Field personnel, project manager, minimum	190.00	Week	\$2,900.00	\$551,000.00
013113200200				Field personnel, project manager,	190.00	Week	\$3,350.00	\$636,500.00
				average				
013113200220				Field personnel, project manager, maximum	190.00	Week	\$3,825.00	\$726,750.00
013113200240				Field personnel, superintendent, minimum	190.00	Week	\$2,825.00	\$536,750.00
013113200260				Field personnel, superintendent, average	190.00	Week	\$3,100.00	\$589,000.00
013113200280				Field personnel, superintendent,	190.00	Week	\$3,550.00	\$674,500.00
015113800100				Temporary Heat, per week, 12 hours per day, incl. fuel and operation	342.00	CSF Flr	\$36.20	\$12,380.40
015113800450				Temporary Power, for temp lighting only, 23.6 KWH/month	342.00	CSF Flr	\$3.63	\$1,241.46
015113800650				Temporary Utilities, power for job duration, incl. elevator, etc, max	342.00	CSF Flr	\$121.00	\$41,382.00
015213200550				Office Trailer, furnished, rent per month, 50' x 12', excl. hookups	48.00	Ea.	\$375.00	\$18,000.00
015433406410				Rent toilet portable chemical, Incl. Hourly Oper. Cost.	48.00	Month	\$222.42	\$10,676.16
015433600500				Rent tower crane, static, 130' high, 106' jib, 6200 lb capacity at 400 fpm, Excl. Hourly Oper. Cost.	48.00	Month	\$18,150.00	\$871,200.00
015626500100				Temporary Fencing, chain link, 6' high, 11 ga	1,400.00	L.F.	\$5.76	\$8,064.00
015813500020				Project signs, sign, high intensity reflectorized, buy, excl. posts	250.00	S.F.	\$37.50	\$9,375.00
017413200050				Cleaning up, cleanup of floor area, continuous, per day, during	752.00	M.S.F.	\$46.00	\$34,592.00
7.1.1				construction				

\$7,110,661.02

General Conditions Takeoff

ltem	Qauntity	Unit	Cost / Unit	Total Cost
Field Personnel				
Operations Manager	190	Weeks	\$ 3,825.00	\$ 726,750.00
Executive Project Manager	190	Weeks	\$ 3,350.00	\$ 636,500.00
Project Manager	190	Weeks	\$ 2,900.00	\$ 551,000.00
Project Engineer	190	Weeks	\$ 2,325.00	\$ 441,750.00
Office Engineer (3)	570	Weeks	\$ 2,050.00	\$ 1,168,500.00
General Superintendent	190	Weeks	\$ 3,550.00	\$ 674,500.00
Project Superintendent	190	Weeks	\$ 3,100.00	\$ 589,000.00
Area Superintendent	190	Weeks	\$ 2,825.00	\$ 536,750.00
Field Engineer (2)	380	Weeks	\$ 2,050.00	\$ 779,000.00
Temporary Utilities				
Power	342	CSF / Flr	\$ 124.63	\$ 42,623.46
Restrooms	48	Months	\$ 222.42	\$ 10,676.16
Heat	342	CSF / Flr	\$ 36.20	\$ 12,380.40
Trailer	48	Months	\$ 375.00	\$ 18,000.00
Crane (3)	48	Months	\$ 18,150.00	\$ 871,200.00
Fencing	1400	L.F.	\$ 5.76	\$ 8,064.00
Project Signs	250	S.F.	\$ 37.50	\$ 9,375.00
Waste Management	752	M.S.F.	\$ 46.00	\$ 34,592.00
Subtotal				\$ 7,110,661.02
Measurement & Verification	0.25%	%	\$ 500,000,000	\$ 1,250,000.00
Insurance				
Builder's Risk	0.50%	%	\$ 500,000,000	\$ 2,500,000.00
General Liability	0.50%	%	\$ 500,000,000	\$ 2,500,000.00
Payment & Performance Bond	0.75%	%	\$ 500,000,000	\$ 3,750,000.00
Scheduling	0.05%	%	\$ 500,000,000	\$ 250,000.00
Miscellaneous Contingency	1.0%	%	\$ 500,000,000	\$ 5,000,000.00
Total Cost				\$ 22,360,661.02

Appendix F:


Project LEED Scorecard

LEED for New Construction v2.2 Registered Project Checklist

Project Name: Sunnyvale Plaza Project Address:

Yes ? No		
9 5 Su	stainable Sites	14 Points
Decree 4	Construction Activity Pollution Processing	Descriped
Prereq 1 Credit 1	Construction Activity Pollution Prevention Site Selection	Required 1
1 Credit 2	Development Density & Community Connectivity	1
1 Credit 3	Brownfield Redevelopment	1
1 Credit 4.1	Alternative Transportation, Public Transportation Access	1
1 Credit 4.2	Alternative Transportation, Bicycle Storage & Changing Rooms	1
1 Credit 4.3	Alternative Transportation, Low-Emitting & Fuel-Efficient Vehicles	1
1 Credit 4.4	Alternative Transportation, Parking Capacity	1
1 Credit 5.1	Site Development, Protect or Restore Habitat	1
1 Credit 5.2	Site Development, Maximize Open Space	1
1 Credit 6.1	Stormwater Design, Quantity Control	1
1 Credit 6.2	Stormwater Design, Quality Control	1
1 Credit 7.1	Heat Island Effect, Non-Roof	1
1 Credit 7.2	Heat Island Effect, Roof	1
Yes ? No	Light Pollution Reduction	1
	ter Efficiency	5 Points
	tor Emoionoy	5 1 010
1 Credit 1.1	Water Efficient Landscaping, Reduce by 50%	1
1 Credit 1.2	Water Efficient Landscaping, No Potable Use or No Irrigation	1
1 Credit 2	Innovative Wastewater Technologies	1
1 Credit 3.1	Water Use Reduction, 20% Reduction	1
1 Credit 3.2	Water Use Reduction, 30% Reduction	1
7 1 9 End	ergy & Atmosphere	17 Points
Y Prereq 1	Fundamental Commissioning of the Building Energy Systems	Required
	Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance	
Y Prereq 1 Y Prereq 2 Y Prereq 3	Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management	Required Required Required
Y Prereq 1 Y Prereq 2 Y Prereq 3 *Note for EAc1: All LEED for	Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management or New Construction projects registered after June 26th, 2007 are required to achieve at least two (2) point	Required Required Required
Y Prereq 1 Y Prereq 2 Y Prereq 3	Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management or New Construction projects registered after June 26 th , 2007 are required to achieve at least two (2) poin Optimize Energy Performance	Required Required Required ts under EAc1.
Y Prereq 1 Y Prereq 2 Y Prereq 3 *Note for EAc1: All LEED for	Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management or New Construction projects registered after June 26th, 2007 are required to achieve at least two (2) point	Required Required Required ts under EAc1. 1 to 10
Y Prereq 1 Y Prereq 2 Y Prereq 3 *Note for EAc1: All LEED for	Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management or New Construction projects registered after June 26th, 2007 are required to achieve at least two (2) poin Optimize Energy Performance 10.5% New Buildings or 3.5% Existing Building Renovations 14% New Buildings or 7% Existing Building Renovations 17.5% New Buildings or 10.5% Existing Building Renovations	Required Required Required ts under EAc1. 1 to 10
Y Prereq 1 Y Prereq 2 Y Prereq 3 *Note for EAc1: All LEED for	Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management or New Construction projects registered after June 26th, 2007 are required to achieve at least two (2) poin Optimize Energy Performance 10.5% New Buildings or 3.5% Existing Building Renovations 14% New Buildings or 7% Existing Building Renovations 17.5% New Buildings or 10.5% Existing Building Renovations 21% New Buildings or 14% Existing Building Renovations	Required Required Required ts under EAc1. 1 to 10 1 2
Y Prereq 1 Y Prereq 2 Y Prereq 3 *Note for EAc1: All LEED for	Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management or New Construction projects registered after June 26th, 2007 are required to achieve at least two (2) poin Optimize Energy Performance 10.5% New Buildings or 3.5% Existing Building Renovations 14% New Buildings or 7% Existing Building Renovations 17.5% New Buildings or 10.5% Existing Building Renovations 21% New Buildings or 14% Existing Building Renovations 24.5% New Buildings or 17.5% Existing Building Renovations	Required Required Required ts under EAc1. 1 to 10 1 2 3 4 5
Y Prereq 1 Y Prereq 2 Y Prereq 3 *Note for EAc1: All LEED for	Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management or New Construction projects registered after June 26th, 2007 are required to achieve at least two (2) poin Optimize Energy Performance 10.5% New Buildings or 3.5% Existing Building Renovations 14% New Buildings or 7% Existing Building Renovations 17.5% New Buildings or 10.5% Existing Building Renovations 21% New Buildings or 14% Existing Building Renovations 24.5% New Buildings or 17.5% Existing Building Renovations 28% New Buildings or 21% Existing Building Renovations	Required Required Required ts under EAc1. 1 to 10 1 2 3 4 5 6
Y Prereq 1 Y Prereq 2 Y Prereq 3 *Note for EAc1: All LEED for	Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management or New Construction projects registered after June 26th, 2007 are required to achieve at least two (2) poin Optimize Energy Performance 10.5% New Buildings or 3.5% Existing Building Renovations 14% New Buildings or 7% Existing Building Renovations 17.5% New Buildings or 10.5% Existing Building Renovations 21% New Buildings or 14% Existing Building Renovations 24.5% New Buildings or 17.5% Existing Building Renovations 28% New Buildings or 21% Existing Building Renovations 31.5% New Buildings or 24.5% Existing Building Renovations	Required Required Required ts under EAc1. 1 to 10 1 2 3 4 5 6 7
Y Prereq 1 Y Prereq 2 Y Prereq 3 *Note for EAc1: All LEED for	Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management or New Construction projects registered after June 26th, 2007 are required to achieve at least two (2) poin Optimize Energy Performance 10.5% New Buildings or 3.5% Existing Building Renovations 14% New Buildings or 7% Existing Building Renovations 17.5% New Buildings or 10.5% Existing Building Renovations 21% New Buildings or 14% Existing Building Renovations 24.5% New Buildings or 17.5% Existing Building Renovations 28% New Buildings or 21% Existing Building Renovations 31.5% New Buildings or 24.5% Existing Building Renovations 35% New Buildings or 28% Existing Building Renovations	Required Required Required ts under EAc1. 1 to 10 1 2 3 4 5 6 7 8
Y Prereq 1 Y Prereq 2 Y Prereq 3 *Note for EAc1: All LEED for	Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management or New Construction projects registered after June 26th, 2007 are required to achieve at least two (2) poin Optimize Energy Performance 10.5% New Buildings or 3.5% Existing Building Renovations 14% New Buildings or 7% Existing Building Renovations 17.5% New Buildings or 10.5% Existing Building Renovations 21% New Buildings or 14% Existing Building Renovations 21% New Buildings or 17.5% Existing Building Renovations 28% New Buildings or 21% Existing Building Renovations 31.5% New Buildings or 24.5% Existing Building Renovations 35% New Buildings or 28% Existing Building Renovations 38.5% New Buildings or 31.5% Existing Building Renovations	Required Required Required ts under EAc1. 1 to 10 1 2 3 4 5 6 7 8 9
Prereq 1 Prereq 2 Prereq 3 *Note for EAc1: All LEED for 5 5 Credit 1	Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management or New Construction projects registered after June 26th, 2007 are required to achieve at least two (2) poin Optimize Energy Performance 10.5% New Buildings or 3.5% Existing Building Renovations 14% New Buildings or 7% Existing Building Renovations 17.5% New Buildings or 10.5% Existing Building Renovations 21% New Buildings or 14% Existing Building Renovations 24.5% New Buildings or 17.5% Existing Building Renovations 28% New Buildings or 21% Existing Building Renovations 31.5% New Buildings or 24.5% Existing Building Renovations 35% New Buildings or 28% Existing Building Renovations 38.5% New Buildings or 31.5% Existing Building Renovations 42% New Buildings or 35% Existing Building Renovations	Required Required Required ts under EAc1. 1 to 10 1 2 3 4 5 6 7 8 9 10
Y Prereq 1 Y Prereq 2 Y Prereq 3 *Note for EAc1: All LEED for	Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management or New Construction projects registered after June 26th, 2007 are required to achieve at least two (2) poin Optimize Energy Performance 10.5% New Buildings or 3.5% Existing Building Renovations 14% New Buildings or 7% Existing Building Renovations 17.5% New Buildings or 10.5% Existing Building Renovations 21% New Buildings or 14% Existing Building Renovations 24.5% New Buildings or 17.5% Existing Building Renovations 28% New Buildings or 21% Existing Building Renovations 31.5% New Buildings or 24.5% Existing Building Renovations 35% New Buildings or 28% Existing Building Renovations 38.5% New Buildings or 31.5% Existing Building Renovations 42% New Buildings or 35% Existing Building Renovations On-Site Renewable Energy	Required Required Required ts under EAc1. 1 to 10 1 2 3 4 5 6 7 8 9 10 1 to 3
Prereq 1 Prereq 2 Prereq 3 *Note for EAc1: All LEED for 5 5 Credit 1	Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management or New Construction projects registered after June 26th, 2007 are required to achieve at least two (2) poin Optimize Energy Performance 10.5% New Buildings or 3.5% Existing Building Renovations 14% New Buildings or 7% Existing Building Renovations 17.5% New Buildings or 10.5% Existing Building Renovations 21% New Buildings or 14% Existing Building Renovations 21% New Buildings or 17.5% Existing Building Renovations 28% New Buildings or 21% Existing Building Renovations 31.5% New Buildings or 24.5% Existing Building Renovations 35% New Buildings or 28% Existing Building Renovations 38.5% New Buildings or 31.5% Existing Building Renovations 42% New Buildings or 35% Existing Building Renovations On-Site Renewable Energy 2.5% Renewable Energy	Required Required Required ts under EAc1. 1 to 10 1 2 3 4 5 6 7 8 9 10 1 to 3
Prereq 1 Prereq 2 Prereq 3 *Note for EAc1: All LEED for 5 5 Credit 1	Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management or New Construction projects registered after June 26th, 2007 are required to achieve at least two (2) poin Optimize Energy Performance 10.5% New Buildings or 3.5% Existing Building Renovations 14% New Buildings or 7% Existing Building Renovations 17.5% New Buildings or 10.5% Existing Building Renovations 21% New Buildings or 14% Existing Building Renovations 24.5% New Buildings or 17.5% Existing Building Renovations 28% New Buildings or 21% Existing Building Renovations 31.5% New Buildings or 24.5% Existing Building Renovations 35% New Buildings or 28% Existing Building Renovations 38.5% New Buildings or 31.5% Existing Building Renovations 42% New Buildings or 35% Existing Building Renovations 0n-Site Renewable Energy 2.5% Renewable Energy 7.5% Renewable Energy	Required Required Required ts under EAc1. 1 to 10 1 2 3 4 5 6 7 8 9 10 1 to 3
Prereq 1 Prereq 2 Prereq 3 *Note for EAc1: All LEED for 5 5 Credit 1	Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management or New Construction projects registered after June 26th, 2007 are required to achieve at least two (2) poin Optimize Energy Performance 10.5% New Buildings or 3.5% Existing Building Renovations 14% New Buildings or 7% Existing Building Renovations 17.5% New Buildings or 10.5% Existing Building Renovations 21% New Buildings or 14% Existing Building Renovations 24.5% New Buildings or 17.5% Existing Building Renovations 28% New Buildings or 21% Existing Building Renovations 31.5% New Buildings or 24.5% Existing Building Renovations 35% New Buildings or 28% Existing Building Renovations 38.5% New Buildings or 31.5% Existing Building Renovations 42% New Buildings or 35% Existing Building Renovations 42% New Buildings or 35% Existing Building Renovations 42% Renewable Energy 2.5% Renewable Energy 7.5% Renewable Energy	Required Required Required ts under EAc1. 1 to 10 1 2 3 4 5 6 7 8 9 10 1 to 3
Prereq 1 Prereq 2 Prereq 3 *Note for EAc1: All LEED for 5 5 Credit 1	Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management or New Construction projects registered after June 26th, 2007 are required to achieve at least two (2) poin Optimize Energy Performance 10.5% New Buildings or 3.5% Existing Building Renovations 14% New Buildings or 7% Existing Building Renovations 17.5% New Buildings or 10.5% Existing Building Renovations 21% New Buildings or 14% Existing Building Renovations 24.5% New Buildings or 17.5% Existing Building Renovations 28% New Buildings or 21% Existing Building Renovations 31.5% New Buildings or 24.5% Existing Building Renovations 35% New Buildings or 28% Existing Building Renovations 38.5% New Buildings or 31.5% Existing Building Renovations 42% New Buildings or 35% Existing Building Renovations 0n-Site Renewable Energy 2.5% Renewable Energy 7.5% Renewable Energy	Required Required Required Required Required Standard FAc1. 1 to 10 1 2 3 4 5 6 7 8 9 10 1 to 3 1 2 3
Prereq 1 Prereq 2 Prereq 3 *Note for EAc1: All LEED fc 5 5 Credit 1 Credit 2	Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management or New Construction projects registered after June 26th, 2007 are required to achieve at least two (2) poin Optimize Energy Performance 10.5% New Buildings or 3.5% Existing Building Renovations 14% New Buildings or 7% Existing Building Renovations 17.5% New Buildings or 10.5% Existing Building Renovations 21% New Buildings or 14% Existing Building Renovations 24.5% New Buildings or 17.5% Existing Building Renovations 28% New Buildings or 21% Existing Building Renovations 31.5% New Buildings or 24.5% Existing Building Renovations 35% New Buildings or 28% Existing Building Renovations 38.5% New Buildings or 31.5% Existing Building Renovations 42% New Buildings or 35% Existing Building Renovations 42% New Buildings or 35% Existing Building Renovations 42% Renewable Energy 2.5% Renewable Energy 12.5% Renewable Energy 12.5% Renewable Energy Enhanced Commissioning	Required Required Required Required Required Required Is under EAc1. 1 to 10 1 2 3 4 5 6 7 8 9 10 1 to 3 1 2 3 1

Certified: 26-32 points, Silver: 33-38 points, Gold: 39-51 points, Platinum: 52-69 pc